克隆载体与表达载体介绍

克隆载体与表达载体

克隆载体:大多是高拷贝的载体,一般是原核细菌,将需要克隆的基因与克隆载体的质粒相连接,再导入原核细菌内,质粒会在原核细菌内大量复制,形成大量的基因克隆,被克隆的基因不一定会表达,但一定被大量复制。克隆载体只是为了保存基因片段,这样细胞内不会有很多表达的蛋白质而影响别的工作。 克隆载体(Cloning vector ):携带插入外源片段的质粒或噬菌体,从而产生更多物质或蛋白质产物。 (这是为携带”感兴趣的外源DNA实现外源DNA勺无性繁殖或表达有意义的蛋白质所采用的一些DNA分子。) 其中,为使插入的外源 DNA序列可转录、进而翻译成多肽链而设计的克隆载体又称表达载体。 是否含有表达系统元件,即启动子 -- 核糖体结合位点 -- 克隆位点 -- 转录终止信号,这是用来区别克隆载体和表达载体的标志。 表达载体:有的是高拷贝的,有的是低拷贝的,各有各的用处,是一些用于工程生产的细菌,被导入的目标基因会在此类细菌中得到表达,生产出我们需要的产物,导入的基因是由克隆载体产出的。表达载体具有较高的蛋白质表达效率,一般因为具有强的启动子。 表达载体( Expression vectors )就是在克隆载体基本骨架的基础上增加表达元件(如启动子、RBS、终止子等),是目的基因能够表达的载体。如表达载体 pKK223-3 是一个具有典型表达结构的大肠杆菌表达载体。其基本骨架为来自pBR322和pUC的质粒复制起点和氨苄青霉素抗性基因。在表达元件中,有一 个杂合tac强启动子和终止子,在启动子下游有RBS位点(如果利用这个位点,要求与ATG之间间隔5-13bp),其后的多克隆位点可装载要表达的目标基因。 (RBS位点:1974年Shine和Dalgarno首先发现,原核生物,在 mRNAk有核糖体的结合位点,它们是起始密码子AUG和一段位于AUG上游3?10 bp处的由3 —9bp组成的序列。这段序列富含嘌吟核苷酸,刚好与16S rRNA 3,末端的富含嘧啶的序列互补,是核糖体 RNA的识另U与结合位点。根据发现者的名字,命名为 Shine-Dalgarno 序列,简称 S-D 序列。 由于它正好与30S小亚基中的16s rRNA3 '端一部分序列互补,因此 S-D序列也叫做核糖体结合序列。 真核生物存在于真核生物mRNA勺一段序列,其在翻译的起始中有重要作用。加Kozark sequence(GCCACC), Kozak sequence 是用来增强真核基因的翻译效率的。是最优化的ATG环境, 避免 ribosome 出现 leaky scan ) 克隆载体目的在于复制足够多的目标质粒,所以常带有较强的自我复制元件,如复制起始位点等,往往在菌体内存在多拷贝,所以抽质粒会抽出一大堆。但不具备表达元件。而表达质粒有复杂的构成,为的是控制目标蛋白的表达,如各种启动子(T7),调节子(LacZ)等,而且以pET为代表的表达载体在菌体内 都是低拷贝的,防止渗漏表达。 克隆载体只是把你要的基因片段拿到就可以了,不管读码框什么的,但是表达载体是不但要你的目的基因连在上面,而且要表达蛋白,所以就要求你的读码框不能乱了,否则就不能得到你想到的表达产物。 1. 载体即要把一个有用的基因(目的基因——研究或应用基因)通过基因工程手段送到生物细胞(受体细 胞),需要运载工具(交通工具)携带外源基因进入受体细胞,这种运载工具就叫做载体(vector )。2. 载体的分类 按功能分成:( 1)克隆载体 : 都有一个松弛的复制子,能带动外源基因,在宿主细胞中复制扩增。它是用来克隆和扩增DNA片段(基因)的载体。(2)表达载体:具有克隆载体的基本元件(ori,Ampr,Mcs等)还具有转录/翻译所必需的DNA顺序的载体。 按进入受体细胞类型分:( 1 )原核载体( 2)真核载体( 3)穿梭载体( sbuttle vector )指在两种宿 主生物体内复制的载体分子,因而可以运载目的基因(穿梭往返两种生物之间).

常用的克隆载体

第一章 概 论 第二章 基因疫苗工作 原理 第三章 基因疫苗抗原 基因的筛选和克隆 第四章 基因疫苗的构 建 第五章 基因疫苗制备 第六章 基因疫苗免疫方法 第七章 基因疫苗免疫 效果检测 第八章 影响基因疫苗免疫效果的因素 第九章 基因疫苗安全性 第十章 细菌病基因疫苗 第十一章 病毒病基因 疫苗 第十二章 寄生虫病基 因疫苗 第十三章 肿瘤基因疫 苗 第十四章 控制动物生 长性能的基因疫苗 四、常用的克隆载体 克隆载体就是将目的基因导入宿主细胞进行复制,从而获得大量克隆化片段的运载工具,常用的克隆载体种类很多,主要包括质粒、粘粒和噬菌体等。其中,质粒是目前应用最为广泛 的克隆载体。下面简要介绍作为克隆质粒的特性和结构。 (一)质粒特性 质粒是指在染色体外能够独立复制和稳定遗传的一类环状双链 DNA 分子。有的质粒处于染色体外的游离状态,可以随着染色体的复制而复制,并且通过细胞分裂传递到子代。有的质 粒在一定条件下能够可逆地整合到寄主染色体上。 质粒的表示常根据 1976 年提出质粒命名原则,用小写字母 p 代表质粒,在 p 字母后面 用两个大写字母代表发现这一质粒的作者或者实验室名称。例如质粒 pUCl8 ,字母 p 代表质粒, UC 是构建该质粒的研究人员的姓名代号, 18 代表构建的一系列质粒的编号。 质粒广泛地分布于原核生物细胞中,也存在于一些真核细胞中。质粒相对分子质量范围为10 6 -2 @ 10 8 。根据质粒在受体细胞内的数量将质粒分为严紧型质粒和松弛型质粒两种类 型。严紧型质粒在每个细胞只有 1 个至几个拷贝;松弛型质粒在每个细胞中有 10-200 个拷贝。 质粒可以分为三种构型,一种是呈现超螺旋的 SC 构型( scDNA ),一种是开环 DNA ( ocDNA ),另一种是呈线形分子的 L 构型。质粒 DNA 与一般 DNA 分子的理化性质相似,例如溶于水、不溶于乙醇等有机溶剂、能吸收紫外线、可嵌入溴乙锭染料等。实验室常利用这 些理化特性鉴定和纯化质粒。 质粒具有以下几项生物学特性: ? 寄生性:质粒可以在特定的宿主细胞内存在和复制。 ? 稳定性:每种质粒在特定的宿主细胞内保持着一定的拷贝数。 ? 重组性:两种不同的质粒处于同一宿主细胞中或者一种质粒处于一种宿主细胞中,有可能发生质粒与质粒之间或质粒与染色体之间的重组。 ? 不相容性:有相同复制始区的不同质粒不能共存于同一宿主细胞中,其分子基础主要是由于它们在复制功能之间的相互干扰造成的。 ? 传递性:有些质粒在细菌间能够传递,具有传递性的质粒带有一套与传递有关的基 因。

克隆载体表达载体构建详细版

一、稀释引物 1、4℃,15min、13000转离心(先等离心机降温) 2、根据OD值加DD水。 3、静置30min(冰上) 4、准备1.5毫升EP管,并加90ulDD水。 5、向EP管中加10ul引物,震荡离心,-20℃保存。 二、跑MIX检测引物(20ul体系)、 上引物0.8ul 下引物0.8ul Mix 10ul DNA(日本晴)1ul DD水7.4ul 三跑高保真酶(50ul体系) DNAorCDNA 2ul 上引物2ul 下引物2ul 5*buffer 10ul dNTPs 5ul DD水28ul Pfu(最后加)1ul 四胶回收流程 1、在紫外线下切胶,用牙签装入2ml的EP管中。 2、按量加XP2,放在55℃水浴锅中10min,每2min摇匀1次,涡旋,短离。 3、将液体冷却到室温,转移到平衡住中,离心10000转,1min30s,倒掉滤液。 4、加入xp2 300ul,离心10000r,1min30s,倒掉滤液。 5、加入spw700ul,离心10000r,1min,倒掉滤液(重复一次) 6、空转2min,13000r,之后换1.5mlEP管。 7、套上保鲜膜放入37℃烘箱中,30min。 8、加入DD水10ul,静置2min,离心2min,13000r,重复3次,-20℃保存。 五、胶回收产物检测(10ul)体系 上引物0.4ul 下引物0.4ul Mix 5ul 回收产物1ul DD水 3.2ul 六、构建blunt cloning 载体(克隆载体)(4ul 体系) 胶回收产物 3.5ul Blunt cloning 0.5ul 混匀后,PCR:25℃15min 盖子温度50℃

真核细胞常见表达载体

真核细胞常见表达载体 真核细胞, 表达载体 1、pCMVp-NEO-BAN载体 特点:该真核细胞表达载体分子量为6600碱基对,主要由CMVp启动子、兔β-球蛋白基因内含子、聚腺嘌呤、氨青霉素抗性基因和抗neo基因以及pBR322骨架构成,在大多数真核细胞内都能高水平稳定地表达外源目的基因。更重要的是,由于该真核细胞表达载体中抗neo 基因存在,转染细胞后,用G418筛选,可建立稳定的、高表达目的基因的细胞株。 插入外源基因的克隆位点包括Sal1、BamH1和EcoR1位点。注意在此载体中有二个EcoR1位点存在。 2、pEGFP, 增强型绦色荧光蛋白表达载体(Enhanced Fluorecent Protein Vector) 特点: pEGFP表达载体中含有绿色荧光蛋白,在PCMV启动子驱动下,在真核细胞中高水平表达。载体骨架中的SV40origin使该载体在任何表达SV40 T抗原的真核细胞内进行复制。Neo抗性盒由SV40早期启动子、Tn5的neomycin/kanamycin抗性基因以及HSV-TK基因的聚腺嘌呤信号组成,能应用G418筛选稳定转染的真核细胞株。此外,载体中的pUC origin 能保证该载体在大肠杆菌中的复制,而位于此表达盒上游的细菌启动子能驱动kanamycin抗性基因在大肠杆菌中的表达。 用途: 该表达载体EGFP上游有Nde1、Eco47111和Age1克隆位点,将外源基因扦入这些位点,将合成外源基因和EGFP的融合基因。借此可确定外源基因在细胞内的表达和/或组织中的定位。 亦可用于检测克隆的启动子活性(取代CMV启动子,Acet1-Nhe1)。 3、pEGFT-Actin, 增强型绿色荧光蛋白/人肌动蛋白表达载体 特点:pEGFP-Actin表达载体中含有绿色荧光蛋白和人胞浆β-肌动蛋白基因,在PCMV启动子驱动下,在真核细胞中高水平表达。载体骨架中的SV40origin使该载体在任何表达SV40 T 抗原的真核细胞内进行复制。Neo抗性盒由SV40早期启动子、Tn5的neomycin/kanamycin 抗性基因以及HSV-TK基因的聚腺嘌呤信号组成,能应用G418筛选稳定转染的真核细胞株。此外,载体中的pUC origin 能保证该载体在大肠杆菌中的复制,而位于此表达盒上游的细菌启动子能驱动kanamycin抗性基因在大肠杆菌中的表达。 用途: pEGFP-Actin载体在真核细胞表达EGFP-Actin融合蛋白,该蛋白能整合到胞内正在生的肌动蛋白,因而在活细胞和固定细胞中观察到细胞内含肌动蛋白的亚细胞结构。 4、pSV2表达载体 特点:该表达质粒是以病责SV40启动子驱动在真核细胞目的基因进行表达的,克隆位点为Hind111。SV40启动子具有组织/细胞的选择特异性。此载体不含neo基因,故不能用来筛选、建立稳定的表达细胞株。 5、CMV4 表达载体 特点:该真核细胞表达载体由CMV启动子驱动,多克隆区域酶切位点选择性较多。含有氨苄青霉素抗性基因和生长基因片段以及SV40复制原点和fl单链复制原点。但值得注意的是,该表达载体不含有neo基因,转染細胞后不能用G418筛选稳定的表达细胞株。 其他常用克隆Vector: pBluscript II KS DNA 15 ug pUC18 DNA 25 ug pUC19 DNA 25 ug 说明: pBluescript II kS、pUC18 &Puc19载体适合于DNA片段的克隆、DNA测序和对外源基因进行表达等。这些载体由于在lacZ基因中含有多克隆位点,当外源DNA片段扦入,转化lacZ基因缺乏细胞,并在含有IPTG和X-gal的培养基上培养时,含有外源DNA载体的细胞将

三四章分子克隆载体---答案_完_

第三章分子克隆载体(Molecular cloning vectors) 一、名词解析 1.质粒:质粒是染色体外的遗传因子,能进行自我复制(但依赖于宿主编码的 酶和蛋白质);大多数为超螺旋的双链共价闭合环状DNA分子(covalently closed circle , cccDNA),少数为线性;大小一般为1~200Kb,有的更大。2.质粒拷贝数:质粒拷贝数(plasmid copy numbers)是指细胞中单一质粒的份数 同染色体数之比值,常用质粒数/每染色体来表示。不同的质粒在宿主细胞中的拷贝数不同。 3.质粒的不相容性:两个质粒在同一宿主中不能共存的现象称质粒的不相容 性,它是指在第二个质粒导入后,在不涉及DNA 限制系统时出现的现象。 不相容的质粒一般都利用同一复制系统,从而导致不能共存于同一宿主中。 4.质粒的转移性:质粒具转移性。它是指在自然条件下,很多质粒可以通过称 为细菌接合的作用转移到新宿主内。它需要移动基因 mob ,转移基因 tra ,顺式因子 bom 及其内部的转移缺口位点 nic。 5.穿梭质粒:既能在真核细胞中繁殖又能在原核细胞中繁殖的载体。这类载体 必须既有细菌的复制原点或质粒的复制原点,又含有真核生物的复制原点,还具备酶切位点和合适的筛选指标。它用来转化细菌,又可以用于转化真核细胞。 6.α-互补:α-互补是指 lacZ 基因上缺失近操纵基因区段的突变体与带有完 整的近操纵基因区段的β-半乳糖苷酶(β -galactosidase ,由 1024 个氨基酸组成)阴性的突变体之间实现互补。α-互补是基于在两个不同的缺陷β-半乳糖苷酶之间可实现功能互补而建立的 7.温和噬菌体:既能进入溶菌生命周期又能进入溶源生命周期的噬菌体。 8.溶源性细菌:具有一套完整的噬菌体基因组的细菌叫溶源性细菌。 9.整合:如果噬菌体的DNA是被包容在寄主细菌染色体DNA中,便叫做已整合 的噬菌体DNA。这中细菌提DNA组入细菌染色体DNA的过程,叫做噬菌体DNA 的整合或插入。 10.溶源化:用温和的噬菌体感染细菌培养物使之形成溶源性细菌的过程叫做溶 源化。

各种表达载体

表达载体 一、原核细胞表达载体 1. pBAD载体: 特点; 该表达质粒含有araBAD(arabinose)操纵子的P BAD启动子和编码该启动子的正负调控子基因araC,具有紧密调控功能和高水平表达外源蛋白质的原核细胞表达载体。 请注意: 1. 当要扦入其他信号肽片段,改建此载体时,请不要利用该载体上的Nde1 EcoR1 BamH1 Kpn1和 Pst1位点,以免造成重组困难,因为前述内切酶在此载体上均有二个位点,最好使用只有一个酶切位点的Sac1和Hind111位点。同时记住,如在不含任何信号肽的P BAD表达质粒扦入信号肽,其非编码N- 末端要包含核糖体结合位点(RBS)核苷酸序列。 2在使用含Omp A分泌信号肽的P BAD表达质粒时,请应用Omp A分泌信号肽上的Sac1以及载体Hind111酶切位点,这些在载体序列上都是单个酶切位点。 本公司目前有含Omp A分泌信号肽和不含任何信号肽的二种P BAD表达质粒,其多克隆位点区域图谱如下: (a)、含Omp A分泌信号肽的P BAD表达质粒多克隆区域 SD P BAD….TACCCGTTTTTTT CC….GCTAGCAGGAGGAAACG ATG AAA AAG ACA GCT ATC GCG ATT GCA GTG GCA CTG GCT GGT A M A E L TTC GCT ACC GTA GCC ATG GCC GAG CTC GGTACCCGGGGATCCTCTAGAGTCGCCTGCAGGCATCCAAGCTT Nco1 Sac1 Kpn1 Smal1 BamH1 (b)、不含分泌信号肽的P BAD表达质粒多克隆区域 Pst1 P BAD GCTAGCGAATTCGAGCTCGGTACCCGGGGATCCTCTAGAGTCGCCTGCAGGCATCCAAGCTT Nde1 Sac1 Smal 1 Hind111 下图显示本公司应用pBAD表达载体完成的实验结果: pBAD载体驱动大分子蛋白质在原核细胞 Origami(DE3)内高效表达 2. pCAl-n & pCAl-pelB载体 特点: 该原核细胞表达载体是来源于以T7 RNA聚合酶为基础的pET载体, 含有T7/LacO启动子、编码钙调素结合多肽标鉴和凝血酶切点的核苷酸序列。 因此,该表达载体在E.coli BL21(DE3)或BL21(DE3)pLysS宿主菌中能高水 平表达外源蛋白质、且这种表达的外源蛋白质因带有钙调素结合多肽和凝血 酶切点,故该蛋白产物易于纯化和产业化。 此外,本公司利用分泌信号肽PelB,构建成新型的的原核细胞表达载体Pcal-PelB。此载体表达的蛋白产物能在分泌肽PelB的指引下进入细胞周质。

常用分子克隆实验方法

常用分子克隆实验方法I 一、植物总DNA的小量提取 方法1:提取吸附法。无须巯基乙醇、氯仿等有毒物质,产物无须Rnase处理。 (1)充分研磨。称取约0.2克植物组织,加入液氮充分研磨3-5min,稍后加约1ml溶液 A,继续研磨至略粘稠的组织匀浆,用大口1ml吸头将所有溶液移至1.5ml离心管 中,55℃水浴30min; (2) 高速离心去杂质。10,000rpm离心5min,取约600ul上清至新1.5ml离心管; (3) 核酸吸附。往上清液中加入1倍的异丙醇,轻轻混匀,再加入总体积1/4已混匀的 溶液B,静置3min; (4) 低速离心沉淀。5000rpm离心1min,轻轻倒掉上清,并用吸水纸轻吸离心管口, 再用移液枪吸走大部分残余液体; (5) 75%乙醇清洗。加入1ml75%乙醇,5000rpm离心30s,轻轻倒掉上清,用吸水纸稍 吸离心管口。重复该步骤一次,再5000rpm离心30s,然后用移液枪吸走管底的残 液,晾干5min; (6) 核酸洗脱。加入约55ul TE(PH8.0)至管底,轻轻重悬硅土,静置3min,10,000rpm 离心1min,用小枪头轻轻吸取出50ul管底溶液,冷藏。 方法2:CTAB法,此为在经典方法基础上,经过摸索改进,提高了得率,减少了污染。 (1)充分研磨。称取约0.2克植物组织,加入液氮充分研磨3-5min,稍后加约1ml CTAB 提取液,继续研磨至略粘稠的组织匀浆,用大口1ml吸头移至1.5ml离心管,65℃ 水浴30-60min。 (2) 氯仿抽提。10,000rpm离心3min,取约600ul上清。加入1倍的氯仿,轻轻混匀, 10,000rpm离心3min,取上清再抽提1遍。 (3) 核酸沉淀。加入预冷的1倍异丙醇或2倍乙醇,轻混匀,6000rpm离心3min,弃 上清。 (4) 清洗沉淀。轻加入1ml 75%乙醇,再吸掉上清,重复一次,倒置于吸水纸或横放于 离心管架上晾干5min。 (5) 溶解DNA。加50ul含Rnase A(约10ug/ml)的TE,常温下放置30min。取约3-5ul 电泳检测后,低温冷藏。

克隆载体与表达载体---—朕已阅

一部分:概念解析 二部分:问题解答 克隆载体:大多是高拷贝的载体,一般是原核细菌,将需要克隆的基因与克隆载体的质粒相连接,再导入原核细菌内,质粒会在原核细菌内大量复制,形成大量的基因克隆,被克隆的基因不一定会表达,但一定被大量复制。克隆载体只是为了保存基因片段,这样细胞内不会有很多表达的蛋白质而影响别的工作。 克隆载体(Cloning vector ):携带插入外源片段的质粒或噬菌体,从而产生更多物质或蛋白质产物。(这是为“携带”感兴趣的外源DNA、实现外源DNA的无性繁殖或表达有意义的蛋白质所采用的一些DNA分子。) 其中,为使插入的外源DNA序列可转录、进而翻译成多肽链而设计的克隆载体又称表达载体。 是否含有表达系统元件,即启动子--核糖体结合位点--克隆位点--转录终止信号,这是用来区别克隆载体和表达载体的标志。 表达载体:有的是高拷贝的,有的是低拷贝的,各有各的用处,是一些用于工程生产的细菌,被导入的目标基因会在此类细菌中得到表达,生产出我们需要的产物,导入的基因是由克隆载体产出的。表达载体具有较高的蛋白质表达效率,一般因为具有强的启动子。 (RBS位点:1974年Shine和Dalgarno首先发现,原核生物,在mRNA上有核糖体的结合位点,它们是起始密码子AUG和一段位于AUG上游3~10 bp处的由3—9bp组成的序列。这段序列富含嘌呤核苷酸,刚好与16S rRNA 3,末端的富含嘧啶的序列互补,是核糖体RNA的识别与结合位点。根据发现者的名字,命名为Shine-Dalgarno序列,简称S-D序列。 由于它正好与30S小亚基中的16s rRNA3’端一部分序列互补,因此S-D序列也叫做核糖体结合序列。 真核生物存在于真核生物mRNA的一段序列,其在翻译的起始中有重要作用。加Kozark sequence(GCCACC), Kozak sequence是用来增强真核基因的翻译效率的。是最优化的ATG环境,避免ribosome出现leaky scan) 克隆载体目的在于复制足够多的目标质粒,所以常带有较强的自我复制元件,如复制起始位点等,往往在菌体内存在多拷贝,所以抽质粒会抽出一大堆。但不具备表达元件。而表达质粒有复杂的构成,为的是控制目标蛋白的表达,如各种启动子(T7),调节子(LacZ)等,而且以pET为代表的表达载体在菌体内都是低拷贝的,防止渗漏表达。 克隆载体只是把你要的基因片段拿到就可以了,不管读码框什么的,但是表达载体是不但要你的目的基因连在上面,而且要表达蛋白,所以就要求你的读码框不能乱了,否则就不能得到你想到的表达产物。 1.载体即要把一个有用的基因(目的基因——研究或应用基因)通过基因工程手段送到生物细胞(受体细胞),需要运载工具(交通工具)携带外源基因进入受体细胞,这种运载工具就叫做载体(vector)。 2. 载体的分类 按功能分成:(1)克隆载体: 都有一个松弛的复制子,能带动外源基因,在宿主细胞中复制扩增。它是用来克隆和扩增DNA片段(基因)的载体。(2)表达载体:具有克隆载体的基本元件(ori,Ampr,Mcs

真核细胞表达系统的类型与常用真核细胞表达载体

真核细胞表达系统的类型与常用真核细胞表达载体 标签:真核细胞酵母表达系统细胞表达载体真核表达系统昆虫表达系统动物表达系统 摘要: 原核表达系统是常被用来研究基因功能的成熟系统,由于原核表达系统具有包涵体蛋白不易纯化、蛋白修饰不完整等缺陷,人们也开始利用真核细胞表达系统来研究基因。 原核表达系统是常被用来研究基因功能的成熟系统,由于原核表达系统具有包涵体蛋白不易纯化、蛋白修饰不完整等缺陷,人们也开始利用真核细胞表达系统来研究基因。 自上世纪70年代基因工程技术诞生以来,基因表达技术已渗透到生命科学研究的各个领域。并随着人类基因组计划实施的进行,在技术方法上得到了很大发展,时至今日已取得令人瞩目的成就。随着人类基因组计划的完成,越来越多的基因被发现,其中多数基因功能不明。利用表达系统在哺乳动物细胞内表达目的基因是研究基因功能及其相互作用的重要手段。 在各种表达系统中,最早被采用进行研究的是原核表达系统,这也是目前掌握最为成熟的表达系统。该项技术的主要方法是将已克隆入目的基因DNA段的载体(一般为质粒)转化细菌(通常选用的是大肠杆菌),通过iptg诱导并最终纯化获得所需的目的蛋白。其优点在于能够在较短时间内获得基因表达产物,而且所需的成本相对比较低廉。但与此同时原核表达系统还存在许多难以克服的缺点:如通常使用的表达系统无法对表达时间及表达水平进行调控,有些基因的持续表达可能会对宿主细胞产生毒害作用,过量表达可能导致非生理反应,目的蛋白常以包涵体形式表达,导致产物纯化困难;而且原核表达系统翻译后加工修饰体系不完善,表达产物的生物活性较低。 为克服上述不足,许多学者将原核基因调控系统引入真核基因调控领域,其优点是: ①根据原核生物蛋白与靶DNA间作用的高度特异性设计,而靶DNA与真核基因调控序列基本无同源性,故不存在基因的非特异性激活或抑制; ②能诱导基因高效表达,可达105倍,为其他系统所不及; ③能严格调控基因表达,即不仅可控制基因表达的“开关”,还可人为地调控基因表达量。 因此,利用真核表达系统来表达目的蛋白越来越受到重视。目前,基因工程研究中常用的真核表达系统有酵母表达系统、昆虫细胞表达系统和哺乳动物细胞表达系统。 1.酵母表达系统 最早应用于基因工程的酵母是酿酒酵母,后来人们又相继开发了裂殖酵母、克鲁维酸酵母、甲醇酵母等,其中,甲醇酵母表达系统是目前应用最广泛的酵母表达系统。目前甲醇酵母主要有H Polymorpha,Candida Bodini,Pichia Pastris3种。以Pichia Pastoris应用最多。

为什么要先构建克隆载体再用表达载体

为什么要先构建克隆载体再用表达载体 构建克隆载体是大量扩增DNA片段,用以测序、酶切和改造等对DNA实施的后续操作,构建表达载体是大量得到翻译产物——蛋白质。 为什么要先构建克隆载体,再用表达载体,我猜是因为: ①得到大量的DNA,虽然PCR也可以,但PCR扩增有出错率、但你每做一次常规的PCR,而且每次都要重新提DNA和RNA才行,而且,PCR反应的试剂盒又不便宜,用PCR来制备大量DNA有点得不偿失。尽管构建克隆载体也存在操作复杂(相对于PCR),成功率不是极高,而且还要筛选,但一旦你重组成功并转入了大肠杆菌,你就可以保存了,你想什么时候用,摇个菌,就可以制备到大量的DNA。 ②测序需要。你想转表达,你首先得确定你扩增的目的片段是不是你要的,不要以为你设计了个特异性引物,然后跟你mark的长度就可以确定了,这也只是推测,在科学上不严谨。扩增出的基因片段保险起见或者经费允许,要拿去测序,而一般送测的序列都是构建到载体上的序列,克隆载体上一般也都带有测序引物,已确定这就是你要的那条序列。你要写论文必须要给人真凭实据。 先构建克隆载体再构建表达载体并不是一个必须的选择,如果你的扩增PCR目的条带很亮,而且单一性很好,我建议你可以直接克隆进入表达载体。 很多人选择先构建克隆载体,是因为在扩增基因时目的条带模糊,特异性不好,这样将基因连接到克隆载体上就可以便于挑去单克隆进行测序,增加测序的准确度,从而确认自己克隆基因序列的正确性。单纯的PCR产物往往是一些各种PCR片段的混合物,直接送过去测序,往往导致测序信号峰很杂,有时候并不能测出想要的信号序列。同时保存的PCR片段比较容易降解,而构建好克隆载体后形成的质粒是很容易扩增和保存的。 先构建克隆载体,一是为了便于测序,确认克隆序列正确,二是为了便于基因PCR片段的保存。 怎么构建克隆载体和表达载体? 首先根据你的实验需要选择相应的载体。 其次分析你的基因序列以及载体序列上的酶切位点,切记在载体上所选择的酶切位点要和你

各种表达载体介绍

pET 载体中,目标基因克隆到 T7 噬菌体强转录和翻译信号控制之下,并通过在宿主细胞提供 T7 RNA 聚合酶来诱导表达。 Novagen 的 pET 系统不断扩大,提供了用于表达的新技术和选择,目前共包括 36 种载体类型、 15 种不同宿主菌和设计用于有效检测和纯化目标蛋白的许多其它相关产品。 优点 · 是原核蛋白表达引用最多的系统 · 在任何大肠杆菌表达系统中,基础表达水平最低 · 真正的调节表达水平的“变阻器”控制 · 提供各种不同融合标签和表达系统配置 · 可溶性蛋白生产、二硫键形成、蛋白外运和多肽生产等专用载体和宿主菌 · 许多载体以 LIC 载体试剂盒提供,用于迅速定向克隆 PCR 产物 · 许多宿主菌株以感受态细胞形式提供,可立即用于转化 阳性 pFORCE TM 克隆系统具有高效克隆 PCR 产物、阳性选择重组体和高水平表达目标蛋白等特点。 pET 系统概述 pET 系统是在大肠杆菌中克隆和表达重组蛋白的最强大系统。根据最初由 Studier 等开发的 T7 启动子驱动系统, Novagen 的 pET 系统已用于表达成千上万种不同蛋白。 控制基础表达水平 pET 系统提供 6 种载体 - 宿主菌组合,能够调节基础表达水平以优化目标基因的表达。没有单一策略或条件适用于所有目标蛋白,所以进行优化选择是必要的。 宿主菌株 质粒在非表达宿主菌中构建完成后,通常转化到一个带有 T7 RNA 聚合酶基因的宿主菌(λDE3 溶原菌)中表达目标蛋白。在λ DE3 溶原菌中, T7 RNA 聚合酶基因由 lacUV5 启动子控制。未诱导时便有一定程度转录,因此适合于表达其产物对宿主细胞生长无毒害作用的一些基因。而宿主菌带有 pLysS 和 pLyE 时调控会更严紧。 pLys 质粒编码 T7 溶菌酶,它是 T7 RNA 聚合酶的天然抑制物,因此可降低其在未诱导细胞中转录目标基因的能力。 pLysS 宿主菌产生低量 T7 溶菌酶,而 pLysE 宿主菌产生更多酶,因此是最严紧控制的λ DE3 溶原菌。 有 11 种不同DE3 溶原化宿主菌。使用最广泛的为 BL21 及其衍生菌株,它的优点在于缺失 lon 和 ompT

表达载体的构建方法及步骤

表达载体的构建方法及步骤 一、载体的选择及如何阅读质粒图谱 目前,载体主要有病毒和非病毒两大类,其中质粒 DNA 是一种新的非病毒转基因载体。 一个合格质粒的组成要素: (1)复制起始位点 Ori 即控制复制起始的位点。原核生物 DNA 分子中只有一个复制起始点。而 真核生物 DNA 分子有多个复制起始位点。 (2)抗生素抗性基因可以便于加以检测,如 Amp+ ,Kan+ (3)多克隆位点 MCS 克隆携带外源基因片段 (4) P/E 启动子/增强子 (5)Terms 终止信号 (6)加 poly(A)信号可以起到稳定 mRNA 作用 选择载体主要依据构建的目的,同时要考虑载体中应有合适的限制酶切位点。如果构建的目 的是要表达一个特定的基因,则要选择合适的表达载体。 载体选择主要考虑下述3点: 【1】构建 DNA 重组体的目的,克隆扩增/基因表达,选择合适的克隆载体/表达载体。 【2】.载体的类型: (1)克隆载体的克隆能力-据克隆片段大小(大选大,小选小)。如<10kb 选质粒。 (2)表达载体据受体细胞类型-原核/真核/穿梭,哺乳类细胞表达载体。

(3)对原核表达载体应该注意:选择合适的启动子及相应的受体菌,用于表达真核蛋白质时注意克服4个困难和阅读框错位;表达天然蛋白质或融合蛋白作为相应载体的参考。 【3】载体 MCS 中的酶切位点数与组成方向因载体不同而异,适应目的基因与载体易于链接,不能产生阅读框架错位。 综上所述,选用质粒(最常用)做载体的5点要求: (1)选分子量小的质粒,即小载体(1-)→不易损坏,在细菌里面拷贝数也多(也有大载 体); (2)一般使用松弛型质粒在细菌里扩增不受约束,一般 10个以上的拷贝,而严谨型质粒<10个。 (3)必需具备一个以上的酶切位点,有选择的余地; (4)必需有易检测的标记,多是抗生素的抗性基因,不特指多位 Ampr(试一试)。(5)满足自己的实验需求,是否需要包装病毒,是否需要加入荧光标记,是否需要加入标签蛋白,是否需要真核抗性(如Puro、G418)等等。 无论选用哪种载体,首先都要获得载体分子,然后采用适当的限制酶将载体 DNA 进行切割,获得线性载体分子,以便于与目的基因片段进行连接。 如何阅读质粒图谱 第一步:首先看 Ori 的位置,了解质粒的类型(原核/真核/穿梭质粒) 第二步:再看筛选标记,如抗性,决定使用什么筛选标记。 (1)Ampr 水解β-内酰胺环,解除氨苄的毒性。 (2)tetr 可以阻止四环素进入细胞。 (3)camr 生成氯霉素羟乙酰基衍生物,使之失去毒性。 (4)neor(kanr)氨基糖苷磷酸转移酶使 G418(长那霉素衍生物)失活 (5)hygr 使潮霉素β失活。

所有质粒载体汇总

酿酒酵母表达载体 pYES2,pYES2/NT,pYES2/CT,pYES3,pYES6, pYCplac22-GFP, 酵母载体pAUR123,pRS303TEF,pRS304, pRS305,pRS306,pY13TEF,pY14TEF pY15TEF, pY16TEF, 酵母基因重组表达载体pUG6, pSH47, 酵母单杂载体pHISi,pLacZi,pHIS2, pGAD424,酵母双杂交系统:酿酒酵母Y187, 酿酒酵母AH109;质粒pGADT7,pGBKT7 ;对照质粒pGBKT7-53 , pGBKT7-lam , pGADT7-T , PCL1,酿酒酵母菌株INVSc1,YM4271, AH109,丫187,丫190, 毕赤酵母表达载体 pPIC9K,pPIC9K-His,pPIC3.5K,pPICZalphaA,B,C,pPICZA,B,C,pGAPZ a A,pAO815,pPIC9k-His,pHIL-S1,pPink hc , 配套毕赤酵母Pichiapink, 毕赤酵母宿主X33, KM71 , KM71H , GS115, 原核表达载体pQE30,31,32,40,60,61,62等原核表达载体,包括pET系列,pET-GST, pGEX 系列(含GST标签),pMAL 系列pMAL-c2x,-c4x,-c4e,-c5x,- p5x,pBAD,pBADHis,pBADmycHis 系列,pQE 系列,pTrc99a,pTrcHis系列, pBV220,221,222,pTXB 系列,pLLP-ompA,pIN-III-ompA (分泌型表达系列),pQBI63 (原核表达带荧光)pET3a, pET 3d, pET 11a, pET 12a, pET 14b, pET 15b, pET 16b, pET 17b, pET 19b, pET 20b, pET 21a,b,d, pET 22b, pET 23a, pET 23b, pET 24a,b, pET 25b, pET 26b, pET 27b, pET 28a,b, pET 29a, pET 30a, pET 31b, pET 32a, pET 35b, pET 38b, pET 39b, pET 40b, pET 41a,b pET 42a, pET 43.1a,b pET 44a, pET 49b pET302,303 pET His,pET Dsb,pET GST,pET Trx pQE2, pQE9 pQE30,31,32, pQE 40 pQE70 pQE80L pQETirs system pRSET-A pRSET-B pRSET-C pGEX4T-1,-2,-3,5x-1,6p-1,6p-2,2tk,3c pBV220,221,222 pTrcHisA,B,C pBAD24,34,43 pBAD HisA,B,C pPi nPoi nt-Xa1,Xa2,Xa3 pMALc2x, p2x pBV220 pGEM Ex1, pGEM7ZF (+) , pTrc99A, pTwin1, pEZZ18 pkk232-8,pkk 233- 3,pACYC184,pBR322,pUC119 pTYB1,pTYB2,pTYB4,pTYB11 pBlueScript SK (+) ,pBlueScript SK (-) pLLP ompA, pINIIIompA, pMBP-P ,pMBP-C,大肠杆菌冷激质粒:pColdI pColdII pColdIII pColdTF原核共表达质粒:pACYCduet-1,pETduet- 1,pCDFduet-1, pRSFduet-1 Takara公司大肠杆菌分子伴侣:pG-KJE8 pGro7 pKJE7 pGTf2 pTf16 大肠杆菌宿主细胞:DH5a JM101 JM103

分子克隆载体

分子克隆载体(vector) 载体(vector)是指运载外源DNA有效进入受体细胞内的工具。载体同外源DNA在体外重组成DNA 重组分子,在进入受体后形成一个复制子,即形成在细胞内能独自进行自我复制的遗传因子。重组DNA 技术中最常用的载体有质粒、噬菌体λ,柯斯质粒(cosmid)和噬菌体M13。 载体(vector)是指运载外源DNA有效进入受体细胞内的工具。载体同外源DNA在体外重组成DNA重组分子,在进入受体后形成一个复制子,即形成在细胞内能独自进行自我复制的遗传因子。因此,作为载体应该满足以下几方面的要求:①有某种限制酶的一个切点,最好是有许多种限制酶的切点,而且每种酶的切点只有一个;②外源DNA插入后不影响载体在受体细胞中进行自我复制,载体应对受体细胞无害,以及载体能接纳尽可能大的外源DNA片段;③有利于选择的标记基因,可以很方便地知道外源DNA已经插入,以及把接受了载体的受体细胞选出;④具有促进外源DNA表达的调控区。 重组DNA技术中最常用的载体有质粒、噬菌体λ,柯斯质粒(cosmid)和噬菌体M13。它们的受体细胞都是大肠杆菌。这四种载体的大小和结构尽管各不相同,但它们的共同特点是:①都能在大肠杆菌中自主复制,而且能连同所带的外源DNA一起复制;②都很容易同细菌DNA分开并加以纯化;③都有一段DNA对于它们自身在细菌中的增殖不是必需的。因此,外源DNA可以插入这一段DNA中,或是置换这一段DNA而不影响载体的复制。根据这一特点,载体又可分成插入型和置换型两大类。 质粒能通过细菌间的接合由一个细菌向另一个细菌转移,可以独立复制,也可整合到细菌染色体DNA中,随着染色体DNA的复制而复制。 载体可以分为:克隆载体、表达载体及穿梭载体。 1.克隆载体(cloning vector):通常采用从病毒、质粒或高等生物细胞中获取的DNA作为克隆载体,在载体上插入合适大小的外源DNA片段,并注意不能破坏载体的自我复制性质。将重组后的载体引入到宿主细胞中,并在宿主细胞中大量繁殖。常见的载体有质粒,噬菌粒,酵母人工染色体。 对载体的要求一种用作克隆载体的理想质粒一般具备下述特点:①具有松驰型复制子(如ColE1),复制子(replicon)是质粒自我增殖所必不可少的基本条件,并可协助维持使每个细胞含有一定数量的质粒拷贝。②在复制子外存在几个单一的酶切位点(或多克隆位点),以便目的DNA片段插入。③具有插入失活的筛选标记,理想的质粒载体应具有两种抗菌素抗性标志,如氨苄青霉素抗性基因(Amp r)和四环素抗性基因(Tet r)等,以便从

分子克隆之载体构建完整步骤

分子克隆之载体构建完整步骤 一、目的片段的扩增和酶切 PCR反应的基本成分包括:模板DNA(逆转录所得cDNA)、引物、4种脱氧核苷酸(dNTPs)、DNA聚合酶和适宜的缓冲液及水。PCR由变性--退火--延伸三个基本反应步骤构成:①模板DNA的高温变性:模板DNA经加热至95℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引物的低温退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA 单链的互补序列配对结合;③引物的适温延伸:DNA模板--引物结合物在。 准备: A.模板DNA:质粒DNA,逆转录cDNA或挑菌落 B.引物配制: a)存储液100uM:公司合成的引物干粉,13000rpm离心2min,加入管壁 nmol数x10ul的ddH2O振荡充分溶解。 b)工作液10uM:上下游引物存储液各10ul加80ul ddH2O混匀配制100ul 工作液。终浓度200-400nM。 1. PCR反应体系(50ul) Taq酶体系:Thermo 10x buffer (无Mg2+)5ul MgCl2(25mM)5ul dNTP (10mM)1ul 上下游引物工作液1ul 模板cDNA(质粒DNA 不超过100ng)2-4ul Taq DNA聚合酶0.5ul ddH2O 补充至50 ul 注:1. 其他体系如菌落PCR反应20ul按比例调整即可。2. 其他公司Taq酶或2x buffer mix已包含Taq酶、dNTPs时作相应调整。 PCR仪设置反应条件: 95℃ 5min 预变性 循环x30-35: 变性95℃ 30s 退火60℃ 30s (退火温度为引物Tm值-3~5℃) 延伸72℃ 60s (延伸时间根据产物长度:Taq酶效率约1kb/min)72℃ 7 min 补充延伸 4-10℃ 保温 高保真Pfu酶体系(优选):Thermo

克隆载体及其主要功能

.克隆载体及其主要功能 载体是克隆基因的关键组分,载体使重组DNA分子能够在受体细胞中复制。质粒和噬菌体是两种天然的DNA载体。目前,能在不同受体细胞中使用的载体有数百种,其中,可以在大肠杆菌中使用的载体数目最多。 质粒pBR322是一种典型的大肠杆菌克隆载体,它全长仅为4.3kb。pBR322带有两种抗生素抗性基因:b -内酰胺酶基因和四环素抗性基因,前者修饰并消除氨苄青霉素对大肠杆菌的毒性。通常,目的基因插入载体质粒将破坏四环素抗性功能。因此,使用含有氨苄青霉素和四环素的培养基,我们可以鉴别大肠杆菌的转化细胞:带有重组质粒的转化细胞只能在含氨苄青霉素、不含四环素的培养基上生长;另一方面,原受体细胞不能在含有氨苄青霉素和四环素的培养基上生长;而有载体质粒但没有目的基因的转化细胞能在含有氨苄青霉素和四环素的培养基上生长。另外,pBR322是一种松弛型质粒,在培养液中加入氯霉素可以使转化细胞中的质粒拷贝数由通常的15个增至1000-3000个,此间,大肠杆菌的染色体并不复制。 在细菌中,噬菌体载体是另外一类常用的克隆载体。和质粒不同的是,噬菌体载体通过感染过程即转导进入宿主大肠杆菌细胞。通常,作为克隆载体的噬菌体,都经过一定的突变和缺失处理。因此,这类噬菌体进入大肠杆菌细胞之后,并不像一般噬菌体那样在宿主染色体上整合,而是直接进入裂解周期:大量复制噬菌体、裂解宿主细胞,最终在培养基上形成含有大量噬菌体拷贝的噬菌斑。 和质粒载体相比,噬菌体载体能够克隆更长的DNA片断。 3.重组克隆筛选 3.1.抗性基因插入失活筛选法 根据抗生素抗性基因插入失活原理而设计的插入失活法是重组体常用的筛选方法。如非重组的pBR322质粒DNA上的四环素和氨苄青霉素抗性基因都是正常的, 表型为AprTcr。带有这种质粒的受体菌可以在加有四环素和氨苄青霉素的双抗性平板上生长。但是, 如果在该质粒的四环素抗性基因内插入外援片段, 就会造成四环素抗性基因失活, 变成AprTcs, 携带这种质粒的宿主菌可以在氨苄青霉素的平板上生长, 而不能在四环素抗性平板上生长。 3.2. 蓝白斑筛选法 根据抗生素抗性基因插入失活原理而设计的插入失活法需要进行菌落平板的影印复制, 才能够将所需的重组体挑选出来, 大大增加了筛选的工作量。后来, 人们设计了以β-半乳糖苷酶的产生作为颜色筛选标记的载体, 简化了筛选程序, 提高了灵敏度。这类载体系统包括M13噬菌体、pUC质粒系统、pEGM质粒系统。它们的共同特点是载体上携带一段细菌的lacZ基因, 它编码β-半乳糖苷酶的一段146个氨基酸的α-肽, 载体转化的受体菌为lacZΔM15基因型。这样, 载体同宿主通过互补, 具有完整的β-半乳糖苷酶的活性。如果在载体的lacZ基

相关文档
最新文档