初中几何证明题库菱形

初中几何证明题库菱形
初中几何证明题库菱形

8.如图,已知E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE的度数为()

A.20°B.25°C.30°D.35°

考点:菱形的性质.

分析:依题意得出AE=AB=AD,∠ADE=50°,又因为∠B=80°故可推出∠ADC=80°,∠CDE=∠ADC﹣∠ADE,从而求解.

解答:解:∵AD∥BC,

∴∠AEB=∠DAE=∠B=80°,

∴AE=AB=AD,

在三角形AED中,AE=AD,∠DAE=80°,

∴∠ADE=50°,

又∵∠B=80°,

∴∠ADC=80°,

∴∠CDE=∠ADC﹣∠ADE=30°.

故选C.

点评:本题是简单的推理证明题,主要考查菱形的边的性质,同时综合利用三角形的内角和及等腰三角形的性质.

已知菱形ABCD的边长是8,点E在直线AD上,若DE=3,连接BE与对角线AC相交

于点M ,则

MC

AM

的值是 .

6.如图,两条笔直的公路l 1、l 2相交于点O ,村庄C 的村民在公路的旁边建三个加工厂 A 、B 、D ,已知AB=BC=CD=DA=5公里,村庄C 到公路l 1的距离为4公里,则村庄C 到公路l 2的距离是【 】

A 、3公里

B 、4公里

C 、5公里

D 、6公里

7.如图,已知菱形ABCD 的边长为2,∠BAD =60°,若DE ⊥AB ,垂足为点E ,则DE 的长为 ▲ .

2.如图,已知菱形ABCD 的边长为2,∠BAD =60°,若DE ⊥AB ,垂足为点E ,则DE 的长为 ▲ .

例5.如图,在四边形ABCD 中,AD ∥BC ,对角线AC 的中点为O ,过点O 作AC 的垂直平

图1

M

E D

B

C A

图2

M

E

D

B

C

A

分线分别与AD、BC相交于点E、F,连接AF。

求证:AE=AF。

【答案】证明:连接CE。

∵AD∥BC,∴∠AEO=∠CFO,∠EAO=∠FCO,。

又∵AO=CO,∴△AEO≌△CFO(AAS)。

∴AE=CF。∴四边形AECF是平行四边形。

又∵EF⊥AC,∴平行四边形AECF是菱形。

∴AE=AF。

【考点】菱形的判定和性质,平行的性质,全等三角形的判定和性质。

【分析】由已知,根据AAS可证得△AEO≌△CFO,从而得AE=CF。根据一组对边平行且相等的四边形是平行四边形的判定可得四边形AECF是平行四边形。由EF⊥AC,根据对角线互相垂直的平行四边形是菱形的判定得平行四边形AECF是菱形。根据菱形四边相等的性质和AE=AF。

3.如图,菱形ABCD的周长为20cm,且tan∠ABD=4

,则菱形ABCD的面积为

3

▲cm2.

例1.如图,菱形纸片ABCD 中,∠A=600,将纸片折叠,点A 、D 分别落在A ’、D ’处,且A ’D ’经过B ,EF 为折痕,当D ’F ⊥CD 时,

CF

FD

的值为【 】

A.

1

2

B.

6

C.

1

6

D.

1

8

【答案】A 。

【考点】翻折变换(折叠问题),菱形的性质,平行的性质,折叠的性质,锐角三角函数定义,特殊角的三角函数值。

【分析】延长DC 与A ′D ′,交于点M ,

∵在菱形纸片ABCD 中,∠A=60°, ∴∠DCB=∠A=60°,AB ∥CD 。 ∴∠D=180°-∠A=120°。 根据折叠的性质,可得 ∠A ′D ′F=∠D=120°,

∴∠FD ′M=180°-∠A ′D ′F=60°。

∵D ′F ⊥CD ,∴∠D ′FM=90°,∠M=90°-∠FD ′M=30°。

∵∠BCM=180°-∠BCD=120°,∴∠CBM=180°-∠BCM-∠M=30°。∴∠CBM=∠M 。 ∴BC=CM 。

设CF=x ,D ′F=DF=y , 则BC=CM=CD=CF+DF=x+y 。∴FM=CM+CF=2x+y ,

在Rt △D ′FM 中,tan ∠M=tan30°=

D F y FM 2x y '==+x =。

CF x FD y ==。故选A 。 例2.如图,菱形ABCD 中,AB=AC ,点E 、F 分别为边AB 、BC 上的点,且AE=BF ,连接CE 、AF 交于点H ,连接DH 交AG 于点O .则下列结论①△ABF ≌△CAE ,②∠AHC=1200,③AH+CH=DH ,④AD 2=OD ·DH 中,正确的是【 】.

A. ①②④

B. ①②③

C. ②③④

D. ①②③④ 【答案】D 。

【考点】菱形的性质,等边三角形的判定和性质,全等、相似三角形的判定和性质,三角形内角和定理,四点共圆的判定,圆周角定理。

【分析】∵菱形ABCD 中,AB=AC ,∴△ABC 是等边三角形。∴∠B=∠EAC=600。

又∵AE=BF,∴△ABF≌△CAE(SAS)。结论①正确。

∵△ABF≌△CAE,∴∠BAF=∠ACE。

∴∠AHC=1800-(∠ACE+∠CAF)=1800-(∠BAF+∠CAF)=1800-∠BAC=1800-600=1200。

结论②正确。

如图,在HD上截取HG=AH。

∵菱形ABCD中,AB=AC,∴△ADC是等边三角形。

∴∠ACD=∠ADC=∠CAD=600。

又∵∠AHC=1200,∴∠AHC+∠ADC =1200+600=1800。

∴A,H,C,D四点共圆。∴∠AHD=∠ACD =600。∴△AHG是等边三角形。

∴AH=AG,∠GAH=600。∴∠CAH=600-∠CAG=∠DAG。

又∵AC=AD,∴△CAH≌△DAG(SAS)。∴CH=DG。∴AH+CH= HG+ DG =DH。结论③正确。

∵∠AHD =∠OAD=600,∠ADH=∠ODA,△ADH∽△ODA。∴AD HD

OD AD ∴AD 2=OD·DH。结论④正确。

综上所述,正确的是①②③④。故选D。

例5.已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M 作ME⊥CD于点E,∠1=∠2.

(1)若CE=1,求BC的长;

(2)求证:AM=DF+ME.

【答案】解:(1)∵四边形ABCD是菱形,∴AB∥CD。∴∠1=∠ACD。

∵∠1=∠2,∴∠ACD=∠2。∴MC=MD。

∵ME⊥CD,∴CD=2CE。

∵CE=1,∴CD=2。∴BC=CD=2。

(2)证明:∵F为边BC的中点,∴BF=CF=1

BC。∴CF=CE。

2

∵在菱形ABCD中,AC平分∠BCD,∴∠ACB=∠ACD。

在△CEM和△CFM中,∵CE=CF,∠ACB=∠ACD,CM=CM,

∴△CEM≌△CFM(SAS),∴ME=MF。

延长AB交DF于点G,

∵AB∥CD,∴∠G=∠2。

∵∠1=∠2,∴∠1=∠G。

∴AM=MG。

在△CDF和△BGF中,

∵∠G=∠2,∠BFG=∠CFD,BF=CF,∴△CDF≌△BGF(AAS)。

∴GF=DF。

由图形可知,GM=GF+MF,∴AM=DF+ME。

【考点】菱形的性质,平行的性质,等腰三角形的判定和性质,全等三角形的判定和性质。【分析】(1)根据菱形的对边平行可得AB∥D,再根据两直线平行,内错角相等可得∠1=∠ACD,所以∠ACD=∠2,根据等角对等边的性质可得CM=DM,再根据等腰三角形三线合一的性质可得CE=DE,然后求出CD的长度,即为菱形的边长BC的长度。

(2)先利用SAS证明△CEM和△CFM全等,根据全等三角形对应边相等可得ME=MF,延长AB交DF于点G,然后证明∠1=∠G,根据等角对等边的性质可得AM=GM,再利用AAS证明△CDF和

△BGF全等,根据全等三角形对应边相等可得GF=DF,最后结合图形GM=GF+MF即可得证。

例3.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为【】

A. 1 B C.2 D+1

【答案】B。

【考点】菱形的性质,线段中垂线的性质,三角形三边关系,垂直线段的性质,矩形的判定和性质,锐角三角函数定义,特殊角的三角函数值。

【分析】分两步分析:

(1)若点P ,Q 固定,此时点K 的位置:如图,作点P 关于BD 的对称点P 1,连接P 1Q ,交BD 于点K 1。

由线段中垂线上的点到线段两端距离相等的性质,得 P 1K 1 = P K 1,P 1K=PK 。

由三角形两边之和大于第三边的性质,得P 1K +QK >P 1Q= P 1K 1+Q K 1= P K 1+Q K 1。

∴此时的K 1就是使PK+QK 最小的位置。

(2)点P ,Q 变动,根据菱形的性质,点P 关于BD 的对称点P 1在AB 上,即不论点P 在BC 上任一点,点P 1总在AB 上。

因此,根据直线外一点到直线的所有连线中垂直线段最短的性质,得,当P 1Q ⊥AB 时P 1Q 最短。

过点A 作AQ 1⊥DC 于点Q 1。 ∵∠A=120°,∴∠DA Q 1=30°。

又∵AD=AB=2,∴P

1Q=AQ 1=AD ·cos300=23

?

=

综上所述,PK+QK B 。

初中几何证明题五大经典(含答案)

经典题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 证明:过点G 作GH ⊥AB 于H ,连接OE ∵EG ⊥CO ,EF ⊥AB ∴∠EGO=90°,∠EFO=90° ∴∠EGO+∠EFO=180° ∴E 、G 、O 、F 四点共圆 ∴∠GEO=∠HFG ∵∠EGO=∠FHG=90° ∴△EGO ∽△FHG ∴ FG EO =HG GO ∵GH ⊥AB ,CD ⊥AB ∴GH ∥CD ∴ CD CO HG GO = ∴CD CO FG EO = ∵EO=CO ∴CD=GF 2、已知:如图,P 是正方形ABCD 内部的一点,∠PAD =∠PDA =15°。 求证:△PBC 是正三角形.(初二) 证明:作正三角形ADM ,连接MP ∵∠MAD=60°,∠PAD=15° ∴∠MAP=∠MAD+∠PAD=75° ∵∠BAD=90°,∠PAD=15° ∴∠BAP=∠BAD-∠PAD=90°-15°=75° ∴∠BAP=∠MAP ∵MA=BA ,AP=AP ∴△MAP ≌△BAP ∴∠BPA=∠MPA ,MP=BP 同理∠CPD=∠MPD ,MP=CP ∵∠PAD =∠PDA =15° ∴PA=PD ,∠BAP=∠CDP=75° ∵BA=CD ∴△BAP ≌∠CDP ∴∠BPA=∠CPD ∵∠BPA=∠MPA ,∠CPD=∠MPD ∴∠MPA=∠MPD=75° ∴∠BPC=360°-75°×4=60° ∵MP=BP ,MP=CP ∴BP=CP ∴△BPC 是正三角形

3、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 证明:连接AC ,取AC 的中点G ,连接NG 、MG ∵CN=DN ,CG=DG ∴GN ∥AD ,GN= 2 1AD ∴∠DEN=∠GNM ∵AM=BM ,AG=CG ∴GM ∥BC ,GM= 2 1BC ∴∠F=∠GMN ∵AD=BC ∴GN=GM ∴∠GMN=∠GNM ∴∠DEN=∠F 经典题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) 证明:(1)延长AD 交圆于F ,连接BF ,过点O 作OG ⊥AD 于G ∵OG ⊥AF ∴AG=FG ∵AB ⌒ =AB ⌒ ∴∠F=∠ACB 又AD ⊥BC ,BE ⊥AC ∴∠BHD+∠DBH=90° ∠ACB+∠DBH=90° ∴∠ACB=∠BHD ∴∠F=∠BHD ∴BH=BF 又AD ⊥BC ∴DH=DF ∴AH=AG+GH=FG+GH=GH+DH+DF+GH=2GH+2DH=2(GH+DH )=2GD 又AD ⊥BC ,OM ⊥BC ,OG ⊥AD ∴四边形OMDG 是矩形 ∴OM=GD ∴AH=2OM (2)连接OB 、OC ∵∠BAC=60∴∠BOC=120° ∵OB=OC ,OM ⊥BC ∴∠BOM= 2 1 ∠BOC=60°∴∠OBM=30° ∴BO=2OM 由(1)知AH=2OM ∴AH=BO=AO

菱形的判定专项练习30题(有答案)ok

菱形的判定专项练习30题(有答案) 1.如图,梯形ABCD中,AD∥BC,BA=AD=DC=BC,点E为BC的中点. (1)求证:四边形ABED是菱形; (2)过A点作AF⊥BC于点F,若BD=4cm,求AF的长. 2.如图,四边形ABCD中,对角线AC、BD相交于点O,且AC⊥BD.点M,N分别在BD、AC上,且AO=ON=NC,BM=MO=OD. 求证:BC=2DN. 3.如图,在△ABC中,AB=AC,D,E,F分别是BC,AB,AC的中点. (1)求证:四边形AEDF是菱形; (2)若AB=12cm,求菱形AEDF的周长. 4.如图,在?ABCD中,EF∥BD,分别交BC,CD于点P,Q,交AB,AD的延长线于点E,F.已知BE=BP.求证:(1)∠E=∠F; (2)?ABCD是菱形. 菱形的判定--- 1

5.如图,在△ABC中,D是BC的中点,E是AD的中点,过点A作AF∥BC,AF与CE的延长线相交于点F,连接BF. (1)求证:AF=DC; (2)若∠BAC=90°,求证:四边形AFBD是菱形. 6.已知平行四边形ABCD中,对角线BD平分∠ABC,求证:四边形ABCD是菱形. 7.如图,在一个含30°的三角板ABC中,将三角板沿着AB所在直线翻转180°得到△ABF,再将三角板绕点C顺时针方向旋转60°得到△DEC,点F在AC上,连接AE. (1)求证:四边形ADCE是菱形. (2)连接BF并延长交AE于G,连接CG.请问:四边形ABCG是什么特殊平行四边形?为什么? 8.如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是为E F,并且DE=DF.求证:四边形ABCD是菱形. 9.如图,在△ABC中,DE∥BC,分别交AB,AC于点D,E,以AD,AE为边作?ADFE交BC于点G,H,且EH=EC. 求证:(1)∠B=∠C; (2)?ADFE是菱形. 菱形的判定--- 2

菱形的判定(教学设计)

菱形的判定 一、教学目标:经历菱形的判定方法的探究过程,掌握菱形的三种判定方法. 二、教学重点:菱形判定方法的探究. 三、教学难点:菱形判定方法的探究及灵活运用. 四、教学过程: 活动1、引入新课,激发兴趣 1、复习 (1)菱形的定义:一组邻边相等的平行四边形是菱形。 (2)菱形的性质1 菱形的两组对边分别平行,四条边都相等; 性质2 菱形的两组对角分别相等,邻角互补; 性质3 菱形的两条对角线互相平分,菱形的两条对角线互相 垂直,且每一条对角线平分一组对角。 2、导入 (1)如果一个四边形是一个平行四边形,则只要再有什么条件就可以判定它是一个菱形?依据是什么? 根据菱形的定义可知: 一组邻边相等的平行四边形是菱形. 所以只要再有一组邻边相等的条件即可. (2)要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?活动2、探究与归纳菱形的第二个判定方法 【问题牵引】 用一长一短两根细木条,在它们的中点处固定一个小钉子,做成一个可转动的十字架,四周围上一根橡皮筋,做成一个四边形。 问: 任意转动木条,这个四边形总有什么特征?你能证明你发现的结论吗? 继续转动木条,观察什么时候橡皮筋周围的四边形变成菱形?你能证明你的猜想吗?

学生猜想:对角线互相垂直的平行四边形是菱形。 教师提问:这个命题的前提是什么?结论是什么? 学生用几何语言表示命题如下: 已知:在□ABCD 中,对角线AC ⊥BD , 求证:□ABCD 是菱形。 分析:我们可根据菱形的定义来证明这个平行四边形是菱形,由平行四边形的性质得到BO=DO ,由∠AOB=∠AOD=90o及AO=AO ,得ΔAOB ≌ΔAOD ,可得到AB=AD (或根据线段垂直平分线性质定理,得到AB=AD) ,最后证得□ABCD 是菱形。 【归纳定理】 通过探究和进一步证明可以归纳得到菱形的第二个判定方法(判定定理1): 对角线互相垂直的平行四边形是菱形。 提示:此方法包括两个条件——(1)是一个平行四边形;(2)两条对角线互相垂直。对角线互相垂直且平分的四边形是菱形。 活动3、菱形第二个判定方法的应用 例3 如图,如图,□ABCD 的对角线AC 、BD 相交 于点O ,且AB=5,AO=4,BO=3,求证:□ABCD 是菱形。 思路点拨:由于平行四边形对角线互相平分,构 成了△ABO 是一个三角形,?而AB=5,AO=4,BO=3,由勾股定理的逆定理可知∠AOB=90°,证出对角线互相垂直,这样可利用菱形第二个判定方法证得。 活动4、探究与归纳菱形的第三个判定方法 【操作探究】过程: 先画两条等长的线段AB 、AD ,然后分别以B 、D 为圆心,AB 为半径画弧,得到两弧的交点C ,连接BC 、CD ,就得到了一个四边形,提问:观察画图的过程,你能说明得到的四边形为什么是菱形吗?你能得到什么结论? 学生观察思考后,展开讨论,指出该四边形四条边相等,即有两组对边相等,它首先是一个平行四边形,又有一组邻边相等,根据菱形定义即可判定该四边形是菱形。得出从一般的四边形直接判定菱形的方法:四边相等的四边形是菱形。 O D C B A

初三数学几何证明题(经典)

如图;已知:在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O 交AB于点D,过点D作⊙O 的切线DE交BC于点E. 求证:BE=CE 证明:连接CD ∵AC是直径 ∴∠ADC=90° ∵∠ACB=90°,ED是切线 ∴CE=DE ∴∠ECD=∠EDC ∵∠ECD+∠B=90°,∠EDC+∠BDE=90° ∴∠B=∠BDE ∴BE=DE ∴BE=CE 如图,半圆O的直径DE=10cm,△ABC中,∠ABC=90°,∠BCA=30°,BC=10cm,半圆O 以2cm/s的速度从左向右运动,在运动过程中,D、E始终在直线BC上,设运动时间为t(s),当t=0(s)时,半圆O在△ABC的左侧且OB=9cm。(1)当t为何值时,△ABC的一边所在的直线与半圆O所在的圆相切; (2)当△ABC一边所在直线与半圆O所在的圆相切时,如果半圆O与直径DE围成的区域与△ABC的三边围成的区域有重叠部分,求重叠部分的面积。 (1)当t为何值时,△ABC的一边所在的直线与半圆O所在的圆相切; 相切分两种情况,如图, ①左图:当t=0时,原图中OB=9,此时圆移动了OB-OE=9-5=4cm 则:t=4/2=2s; --------------- ②右图:设圆O与边AC的切点为F,此问不用三角函数是无法求出的==>∵∠C=30==>∴OC=OF/sinC=5/sin30=10=BC ==>O与B重合,此时圆移动的长即为OB的长,即9cm ==>t=9/2; =========

(2)如右图:由②得:∠AOE=90 ==>S阴=(90*π*5^2)/360=6.25π 不明之处请指出~~

初一几何证明题练习

初一下学期几何证明题练习1、如图,∠B=∠C,AB∥EF,试说明:∠BGF=∠C。(6 解:∵∠B=∠C ∴ AB∥CD( ) 又∵ AB∥EF() ∴ ∥() ∴∠BGF=∠C() 2、如图,在△ABC中,CD⊥AB于D,FG⊥AB于G,ED//BC,试说明 ∠1=∠2,以下是证明过程,请填空:(8分) 解:∵CD⊥AB,FG⊥AB ∴∠CDB=∠=90°( 垂直定义) ∴_____//_____ ( ∴∠2=∠3 ( 又∵DE//BC ∴∠=∠3 ( ∴∠1=∠2 ( ) 3、已知:如图,∠1+∠2=180°, 试判断AB、CD有何位置关系?并说明理由。(8分) 4、如图,AD是∠EAC的平分线,AD∥BC,∠B = 30°,你能算出∠EAD、∠ DAC、∠C的度数吗?(7分) D C B A E D

5、如图,已知EF∥AD,∠1=∠2,∠BAC=70 o,求∠AGD。 解:∵EF∥AD(已知) ∴∠2= () 又∵∠1=∠2(已知) ∴∠1=∠3(等量替换) ∴AB∥() ∴∠BAC+ =180 o () ∵∠BAC=70 o(已知)∴∠AGD= ° 6、如图,已知∠BED=∠B+∠D,试说明AB与CD的位置关系。 解:AB∥CD,理由如下: 过点E作∠BEF=∠B ∴AB∥EF() ∵∠BED=∠B+∠D(已知) 且∠BED=∠BEF+∠FED ∴∠FED=∠D ∴CD∥EF() ∴AB∥CD()7、如图,AD是∠EAC的平分线,AD∥BC,∠B=30 o, 求∠EAD、∠DAC、∠C的度数。(6分) 8、如图,EB∥DC,∠C=∠E,请你说出∠A=∠ADE的理由。(6分)

22.3菱形的判定常考题(含有详细的答案解析)

菱形的判定2 一、选择题 1、在平面直角坐标系中,已知点A(0,2),B(﹣2,0),C(0,﹣2),D(2,0),则以这四个点为顶点的四边形ABCD是() A、矩形 B、菱形 C、正方形 D、梯形 2如图,下列条件之一能使平行四边形ABCD是菱形的为() ①AC⊥BD;②∠BAD=90°;③AB=BC;④AC=BD. A、①③ B、②③ C、③④ D、①②③ 3、能判定一个四边形是菱形的条件是() A、对角线相等且互相垂直 B、对角线相等且互相平分 C、对角线互相垂直 D、对角线互相垂直平分 4、四边形的四边长顺次为a、b、c、d,且a2+b2+c2+d2=ab+bc+cd+ad,则此四边形一定是() A、平行四边形 B、矩形 C、菱形 D、正方形 填空 1、如图,如果要使平行四边形ABCD成为一个菱形,需要添加一个条件,那么你添加的条件是_________. 2、如图,平行四边形ABCD中,AF、CE分别是∠BAD和∠BCD的角平分线,根据现有的图形,请添加一个条件,使 四边形AECF为菱形,则添加的一个条件可以是_________.(只需写出一个即可,图中不能再添加别的“点”和“线”) 3、在四边形ABCD中,对角线AC、BD交于点O,从(1)AB=CD;(2)AB∥CD;(3)OA=OC;(4)OB=OD;(5)AC⊥BD;(6)AC平分∠BAD这六个条件中,选取三个推出四边形ABCD是菱形.如(1)(2)(5)=>ABCD是菱形,再写出符合要求的两个:_________=>ABCD是菱形;_________=>ABCD是菱形

三、解答题(共11小题) 1、如图,在△ABC中,AB=AC,D是BC的中点,连接AD,在AD的延长线上取一点E,连接BE, CE. (1)求证:△ABE≌△ACE; (2)当AE与AD满足什么数量关系时,四边形ABEC是菱形?并说明理由. 2、如图,在?ABCD中,E,F分别为边AB,CD的中点,连接DE、BF、BD. (1)求证:△ADE≌△CBF. (2)若AD⊥BD,则四边形BFDE是什么特殊四边形?请证明你的结论. 3、(2007?娄底)如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F. (1)求证:AE=DF; (2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由. 4、(2011?常州)已知:如图,在梯形ABCD中,AB∥CD,BC=CD,AD⊥BD,E为AB中点,求证:四边形BCDE是菱形. 5、如图,在△ABC和△DCB中,AB=DC,AC=DB,AC与DB交于点M. (1)求证:△ABC≌△DCB; (2)过点C作CN∥BD,过点B作BN∥AC,CN与BN交于点N,试判断线段BN与CN的数量关系,并证明你的结论.

新人教版八年级下册菱形知识点及同步练习

学科:数学 教学内容:菱形 学习目标 1.掌握菱形的概念. 2.理解菱形的性质及识别方法. 3.能利用菱形的性质及识别方法,解决一些问题. 学法指导 把平行四边形、矩形、菱形的性质及识别方法对照起来学习,了解它们的相同点和不同点. 基础知识讲解 1.菱形的定义 四条边都相等的平行四边形(或一组邻边相等的平行四边形)叫做菱形. 由菱形的定义可知,菱形是一种特殊的平行四边形,菱形的定义包含两个条件,①是平行四边形,②邻边相等,这两个条件缺一不可. 2.菱形的性质 (1)它具有平行四边形的一切性质 (2)它除具有平行四边形的性质外,还具有自己的特殊性质.①菱形的四条边都相等.②菱形的对角线互相垂直平分,而且每条对角线平分一组对角.③菱形是轴对称图形,对称轴是两条对角线所在的直线.④菱形的对角线分菱形为4个全等的直角三角形. 3.菱形的识别方法 菱形的识别方法,除用定义来识别外,还有其它的识别方法,用定义来识别是最基本的识别方法. 其它的识别方法有①四条边都相等的四边形,也为菱形.②对角线互相垂直的平行四边形,也是菱形,运用这个识别方法必须符合两个条件,一是对角线互相垂直,二是平行四边形. 4.菱形的面积计算 由菱形的对角线把菱形分成4个全等的直角三角形,可得出,菱形的面积=4×S Rt △. 设对角线长分别为a ,b .则菱形的面积=4×21×(22b a )=2 1ab ,即菱形的面积等于对角线乘积的一半. 5.菱形的性质及识别方法的作用 利用它们可以证明线段相等、垂直、平分、平行等关系.证明角相等,平分等关系,证明一个四边形为菱形和进行有关的计算. 重点难点 重点:菱形的性质,识别方法及其在生活、生产中的应用. 难点:运用菱形的性质及识别方法,灵活地解答一些问题. 易错误区分析 运用菱形的定义时易忽略,邻边相等的平行四边形中的平行四边形这个条件.

精选初中数学几何证明经典试题(含答案)

初中几何证明题 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600 ,求证:AH =AO .(初二) 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 3、如果上题把直线MN 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE 求证:AP =AQ .(初二) A P C D B A F G C E B O D N

F 4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半. 经典题(三) 1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二) 2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线 求证:AE =AF .(初二) 3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 求证:PA =PF .(初二) 4、如图,PC 切圆O 于 C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、 D .求证:AB = DC ,BC =AD .(初三) 经典题(四) 1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,求:∠APB 的度数.(初二) 2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二) 4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二) D

菱形练习题(含答案)

特殊的平行四边形——菱形 一.菱形的定义:有一组邻边相等的平行四边形叫做菱形. 二.菱形的性质:菱形具有平行四边形一切性质,此外,它还具有如下特殊性质: 1.菱形的四条边相等。 2.菱形的两条对角线互相垂直,且每一条对角线平分一组对角。 3.菱形是轴对称图形也是中心对称图形,两条对角线所在的直线是它的两条对称轴。 三.菱形的判定办法:1.用菱形的定义:有一组邻边相等的平行四边形是菱形; 2.四条边都相等的四边形是菱形; 3.对角线垂直的平行四边形是菱形; 4.对角线互相垂直平分的四边形是菱形。 四.菱形的面积:等于两条对角线乘积的一半.(有关菱形问题可转化为直角三角形或 等腰三角形的问题来解决.),周长=边长的4倍 复习: 1.如图,在ABC △中,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于F ,且AF DC =,连接CF . (1)求证:D 是BC 的中点;(2)若AB AC =,试猜测四边形ADCF 的形状,并证明. 解答:(1)证明:AF BC ∥,AFE DBE ∴∠=∠.∵E 是AD 的中点,AE DE ∴=. 又AEF DEB ∠=∠,AEF DEB ∴△≌△.AF DB ∴=.∵AF DC =,DB DC ∴=. (2)解:四边形ADCF 是矩形,证明:∵AF DC ∥,AF DC =,∴四边形ADCF 是平 行四边形.∵AB AC =,D 是BC 的中点,AD BC ∴⊥.即90ADC ∠=.∴四边形ADCF 是矩形. 菱形例题讲解: 1.已知点D 在△ABC 的BC 边上,DE ∥AC 交AB 于E ,DF ∥AB 交AC 于F .若AD 平分∠BAC , 试判断四边形AEDF 的形状,并说明理由. 解答:四边形AEDF 是菱形,∵DE ∥AC ,∠ADE=∠DAF ,同理∠DAE=∠FDA ,∵AD=DA , ∴△ADE ≌△DAF ,∴AE=DF ; ∵DE ∥AC ,DF ∥AB ,∴四边形AEDF 是平行四边形,∴∠DAF=∠FDA .∴AF=DF .∴平行四边形AEDF 为菱形. 2.已知:如图,在梯形ABCD 中,AB ∥CD ,BC=CD ,AD ⊥BD ,E 为AB 中点,求证:四边形BCDE 是菱形. 证明:∵AD ⊥BD ,∴△ABD 是Rt △∵E 是AB 的中点,∴BE=DE ,∴∠EDB=∠EBD , ∵CB=CD ,∴∠CDB=∠CBD ,∵AB ∥CD ,∴∠EBD=∠CDB , ∴∠EDB=∠EBD=∠CDB=∠CBD ,∵BD=BD ,∴△EBD ≌△CBD (ASA ),∴BE=BC , ∴CB=CD=BE=DE ,∴菱形BCDE .(四边相等的四边形是菱形) 3.如图,△ABC 与△CDE 都是等边三角形,点E 、F 分别在AC 、BC 上,且EF ∥AB , (1)求证:四边形EFCD 是菱形;(2)设CD=4,求D 、F 两点间的距离. 解答:(1)证明:∵△ABC 与△CDE 都是等边三角形,∴ED=CD=CE .∵EF ∥AB ∴∠EFC=∠ACB=∠FEC=60°, ∴EF=FC=EC ∴四边形EFCD 是菱形. (2)解:连接DF ,与CE 相交于点G ,由CD=4,可知CG=2, ∴ ∴. 4.如图,平行四边形ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别相交于点E 、F .求证:四边形AFCE 是菱形. 证明:∵AE ∥FC .∴∠EAC=∠FCA .又∵∠AOE=∠COF ,AO=CO ,∴△AOE ≌△COF . ∴EO=FO .又EF ⊥AC ,∴AC 是EF 的垂直平分线. ∵EF 是AC 的垂直平分线.∴四边形AFCE 为菱形 5.在 ABCD 中,E F ,分别为边AB CD ,的中点,连接DE BF BD ,,. (1)求证:ADE CBF △≌△. (2)若AD BD ⊥,则四边形BFDE 是什么特殊四边形?请证明你的结论. 解:(1)在平行四边形ABCD 中,∠A =∠C ,AD =CB ,AB =CD .∵E ,F 分别为AB ,CD 的中点∴AE =CF , (S A S )A E D C F B ∴△≌△. (2)若AD ⊥BD ,则四边形BFDE 是菱形. 证明:AD BD ⊥,ABD ∴△是Rt △, 且AB 是斜边(或90ADB ∠=),E 是AB 的中点,12 DE AB BE ∴==.由题意可EB DF ∥且EB DF =, ∴四边形BFDE 是平行四边形,∴四边形BFDE 是菱形. O D C B A

初中数学知识点大全(超全、超好用)

初中数学知识点大全 1、一元一次方程根的情况 △=b2-4ac 当△>0时,一元二次方程有2个不相等的实数根; 当△=0时,一元二次方程有2个相同的实数根; 当△<0时,一元二次方程没有实数根 2、平行四边形的性质: ①两组对边分别平行的四边形叫做平行四边形。 ②平行四边形不相邻的两个顶点连成的线段叫他的对角线。 ③平行四边形的对边/对角相等。 ④平行四边形的对角线互相平分。 菱形:①一组邻边相等的平行四边形是菱形 ②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。 ③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。 矩形与正方形: ①有一个内角是直角的平行四边形叫做矩形。 ②矩形的对角线相等,四个角都是直角。

③ 对角线相等的平行四边形是矩形。 ④ 正方形具有平行四边形,矩形,菱形的一切性质。 ⑤一组邻边相等的矩形是正方形。 多边形: ①N 边形的内角和等于(N-2)180度 ②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度) 平均数:对于N 个数X 1,X 2…X N ,我们把(X 1+X 2+…+X N )/N 叫做这个N 个数的算 术平均数,记为X 加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据 的平均数时往往给每个数据加一个权,这就是加权平均数。 二、基本定理 1、过两点有且只有一条直线 2、两点之间线段最短 3、同角或等角的补角相等 4、同角或等角的余角相等 5、过一点有且只有一条直线和已知直线垂直

初三数学-菱形的判定

初三数学 菱形的判定 、教学目标: 1、掌握菱形的判定方法。 2、能运用菱形的判定方法解决有关冋题。 二、教学重点:熟练掌握菱形的判定方法 教学难点:能运用菱形的判定方法解决有关问题。 三、教学过程 (一)复习回顾:菱形的特征 (1)_____________________ 对边_____________________,四条边都 (2)_______________ 对角。 (3)____________________ 对角线___________________________ ,对角线分别这节课我们来探索从平行四边形出发,加上什么条件可以得到菱形: (二)讲授新课 1、菱形的识别: 方法一:有一组邻边______________ 的平行四边形是菱形。(定义) 几何语言::乎BCD中,A吐 _________ 严BCD是。 下面请用菱形的定义来证明“对角线互相垂直的平行四边形是菱形” 已知:如图,________________________________________ 求证:______________________________________________ 证明: 方法二:对角线互相垂直的平行四边形是菱形 (即:平行四边形+对角线菱形 几何语言:如图??? MBCD中,丄 二.ABCD 是。 方法三:四条边都的四边形是菱形。 几何语言:???四边形ABCD中, AB BC CD DA ???四边形ABCD是菱形。 小结:判定一个图形是菱形的方法: (1) __________________________________ 平行四边形+ 菱形 (2) __________________________________ 平行四边形+ 菱形 (3) _______________________ 的四边形—菱形

菱形知识点及经典题

菱形 【知识梳理】 1、定义:有一组邻边相等的平行四边形叫做菱形(菱形是平行四边形:一组邻边相等) 2、性质:(1)边:四条边都相等; (2)角:对角相等、邻角互补; (3)对角线:对角线互相垂直平分且每条对角线平分每组对角; (4)对称性:既是轴对称图形又是中心对称图形. 3、菱形的判定方法: 一组邻边相等的平行四边形是菱形 对角线互相垂直平分的平行四边形是菱形 对角线互相垂直平分的四边形是菱形 四条边都相等的四边形是菱形 4、识别菱形的常用方法 (1)先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任一组邻边相等. (2)先说明四边形ABCD为平行四边形,再说明对角线互相垂直. (3)说明四边形ABCD的四条相等. 5、面积:设菱形ABCD的一边长为a,高为h,则S菱形=ah;若菱形的两对角线的长分别为a,b,则S菱 形=1 2 ab 【经典题】 一、选择题 1. (2014 广东省珠海市) 边长为3cm的菱形的周长是( ) A.6 cm B.9 cm C.12 cm D.15 cm 3. (2014 贵州省毕节地区) 如图所示,菱形ABCD中,对角线AC、BD相交于点O,H为AD边的中点,菱形ABCD 的周长为28,则OH的长等于() A.3.5 B.4 C.7 D.14

B C (第8题图) 4. (2014 湖南省长沙市) 如图,已知菱形ABCD 的边长等于2,∠DAB=60° ,则对角线BD 的长为 ( ) A . 1 B . 2 D . 5. (2014 江苏省徐州市) 若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是 矩形 B.等腰梯形 C.对角线相等的四边形 D.对角线互相垂直的四边形 6. (2014 山东省枣庄市) 如图,菱形ABCD 的边长为4,过点A 、C 作对角线AC 的垂线,分别交CB 和AD 的延长 线于点E ,F,AE=3,则四边形AECF 的周长为( ) A .22 B .18 C .14 D .11 7. (2014 浙江省宁波市) 菱形的两条对角线长分别是6和8,则此菱形的边长是 ( ) A.10 B. 8 C. 6 D. 5 8. (2014 黑龙江省农垦牡丹江管理局) 如图,在菱形ABCD 中,E 是AB 边上一点,且∠A=∠EDF=60°,有下列 结论:①AE=BF ;②△DEF 是等边三角形;③△BEF 是等腰三角形; ④∠ADE=∠BEF ,其中结论正确的个数是( ) A D B

初三经典几何证明练习题(含答案)

初三几何证明题 经典题(一) 1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF. 2、已知:如图,P是正方形ABCD内部的一点,∠PAD=∠PDA= 15°。 求证:△PBC是正三角形.(初二)

3、已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN 于E、F. 求证:∠DEN=∠F. 经典题(二) 1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M. (1)求证:AH=2OM; (2)若∠BAC=600,求证:AH=AO.

2、设MN是圆O外一条直线,过O作OA⊥MN于A,自A引圆的两条割线交圆O于B、C及D、E,连接CD并延长交MN于Q,连接EB并延长交MN于P. 求证:AP=AQ. 3、如图,分别以△ABC的AB和AC为一边,在△ABC的外侧作正方形ABFG和正方形ACDE,点O是DF 的中点,OP⊥BC 求证:BC=2OP 证明:分别过F、A、D作直线BC的垂线,垂足分别是L、M、N ∵OF=OD,DN∥OP∥FL ∴PN=PL ∴OP是梯形DFLN的中位线 ∴DN+FL=2OP ∵ABFG是正方形 ∴∠ABM+∠FBL=90° 又∠BFL+∠FBL=90° ∴∠ABM=∠BFL 又∠FLB=∠BMA=90°,BF=AB ∴△BFL≌△ABM ∴FL=BM 同理△AMC≌△CND ∴CM=DN ∴BM+CN=FL+DN ∴BC=FL+DN=2OP 经典题(三) 1、如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F.

初中数学几何证明经典题(含答案)

初中几何证明题 经典题(一) 1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150. 求证:△PBC是正三角形.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 A P C D B A F G C E B O D

3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 经典题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 B

实用文档之菱形的判定证明题练习

实用文档之" 菱形的判定证明题练习" 1如图,梯形ABCD 中,AB ∥CD ,AC 平分∠BAD ,CE ∥AD 交AB 于点E .求证:四边形AECD 是菱形. 2 已知:如图,在ABCD 中,AE 是BC 边上的高,将ABE △沿BC 方向平移,使点E 与点C 重合,得GFC △. (1)求证:BE DG =; (2)若60B ∠=°,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论. 3如图,在四边形ABCD 中,点E ,F 分别是AD BC ,的中点,G H ,分别是BD AC ,的中点,AB CD ,满足什么条件时,四边形EGFH 是菱形?请证明你的结论. 4如图,在□ABCD 中,EF ∥BD ,分别交BC 、CD 于点P 、Q ,分别交AB 、AD 的延长线于点E 、F .已知BE=BP . 求证:(1)∠E=∠F . (2)□ABCD 是菱形. A B C D E A D G C B F E A B D E G H

D C B A O E 5. 如图,在平行四边形ABCD 中,BE 平分ABC ∠交AD 于点E ,DF 平分 ∠ADC 交BC 于点F . 求证:(1)ABE CDF △≌; (2)若BD EF ⊥,则判断四边形EBFD 是什么特殊四边形,请证明你的结 论. 6. 如图,在△ABC 中,D 是BC 边的中点,E 、F 分别在AD 及其延长线上,CE ∥BF ,连接BE 、CF . (1)求证:△BDF ≌△CDE ; (2)若AB =AC ,求证:四边形BFCE 是菱形. 7. 如图,O 为矩形ABCD 对角线的交点,DE ∥AC ,CE ∥BD . (1)试判断四边形OCED 的形状,并说明理由; (2)若AB =6,BC =8,求四边形OCED 的面积. 8. 已知:如图,在梯形ABCD 中,AB CD ∥,BC CD =,AD BD ⊥,E 为 F D E C A B

初三数学-矩形、菱形、正方形知识点总结

初三数学 特殊四边形知识点及性质 几种特殊四边形的有关概念 (1)矩形:有一个角是直角的平行四边形是矩形,它是研究矩形的基础,它既可以看作是矩形的性质,也可以看作是矩形的判定方法,对于这个定义,要注意把握:①平行四边形;②一个角是直角,两者缺一不可. (2)菱形:有一组邻边相等的平行四边形是菱形,它是研究菱形的基础,它既可以看作是菱形的性质,也可以看作是菱形的判定方法,对于这个定义,要注意把握:①平行四边形;②一组邻边相等,两者缺一不可. (3)正方形:有一组邻边相等且有一个直角的平行四边形叫做正方形,它是最特殊的平行四边形,它既是平行四边形,还是菱形,也是矩形,它兼有这三者的特征,是一种非常完美的图形. (4)梯形:一组对边平行而另一组对边不平行的四边形叫做梯形,对于这个定义,要注意把握:①一组对边平行; ②一组对边不平行,同时要注意和平行四边形定义的区别,还要注意腰、底、高等概念以及梯形的分类等问题. (5)等腰梯形:是一种特殊的梯形,它是两腰相等的梯形,特殊梯形还有直角梯形. 2.几种特殊四边形的有关性质

(1)矩形: ①边:对边平行且相等; ②角:对角相等、邻角互补; ③对角线:对角线互相平分且相等; ④对称性:轴对称图形(对边中点连线 所在直线,2条). (2)菱形: ①边:四条边都相等; ②角:对角相等、邻角互补;、 ③对角线:对角线互相垂直平分 且每条对角线平分每组对角; ④对称性:轴对称图形(对角线 所在直线,2条). (3)正方形: ①边:四条边都相等; ②角:四角相等; ③对角线:对角线互相垂直平 分且相等,对角线与边的夹角为450; ④对称性:轴对称图形(4条).(4)等腰梯形: ①边:上下底平行但不相等,两腰相等; ②角:同一底边上的两个角相等;对角

初中经典几何证明练习题(含答案)

初中几何证明题 经典题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB,E F⊥AB ,E G⊥C O. 求证:CD =G F. 证明:过点G 作GH ⊥AB 于H,连接OE ∵E G⊥CO ,EF ⊥AB ∴∠EGO=90°,∠EFO=90° ∴∠EGO +∠EFO=180° ∴E 、G、O 、F 四点共圆 ∴∠GEO=∠HFG ∵∠E GO =∠FHG =90° ∴△EGO ∽△F HG ∴ FG EO =HG GO ∵GH ⊥A B,CD ⊥AB ∴GH∥CD ∴ CD CO HG GO = ∴CD CO FG EO = ∵E O=C O ∴CD =GF 2、已知:如图,P 是正方形ABCD 内部的一点,∠PAD=∠PDA=15°。 求证:△PB C是正三角形.(初二) 证明:作正三角形ADM,连接MP ∵∠MA D=60°,∠PAD =15° ∴∠MAP=∠MAD+∠PAD=75° ∵∠BAD=90°,∠PA D=15° ∴∠BAP=∠BAD -∠PAD=90°-15°=75° ∴∠B AP=∠MAP ∵MA=BA ,AP=AP ∴△MAP ≌△BAP ∴∠BPA=∠MPA ,MP=B P 同理∠CPD=∠MP D,MP =C P ∵∠PAD=∠PDA =15° ∴PA=P D,∠BA P=∠CDP=75° ∵BA=CD ∴△BAP ≌∠C DP ∴∠BP A=∠CPD ∵∠B PA =∠MPA ,∠CPD=∠MPD ∴∠MP A=∠M PD=75° ∴∠BPC=360°-75°×4=60° ∵M P=BP,MP=CP ∴BP=CP ∴△BPC 是正三角形

初中几何证明题的三种思考和四种方法

初中几何证明题的三种思考和四种方法 发表时间:2013-05-24T10:06:25.373Z 来源:《科教新时代》2013年5月供稿作者:常见山 [导读] 学校应积极构建以校为本的研究机制,引领教师专业成长,反之又以教师的专业成长来推动学校发展,提升学校的办学水平。 山东省诸城市教育局招生办公室常见山 【中图分类号】G552.04 【文章标识码】A 【文章编号】1326-3587(2013)05-0064-02 众所周知,几何证明是初等数学学习的难点之一,其难就难在如何寻找证明思路,追根究底还是因为几何证明题的本质不易把握。为此,在初等几何的学习中融入数学思想方式,具有重要意义,而且切实可行。通过平时的学习、探索和积累,笔者发现其中的“结构思想”,即“数学是一个有机的整体,观察数学问题要着眼于结构的整体性。从宏观上对数学问题进行整体研究,抓住问题的框架结构和本质关系,把一些貌似独立而实质又紧密联系的特征视为系统中的整体”对探寻几何的证明思路,把握问题的本质,培养观察能力有一定的指导意义。新一轮课程改革立足于“改变课程过于注重知识传授的倾向,强调形成积极主动的学习态度,使获得基础知识与基本技能的过程同时成为学会学习和形成正确价值观的过程。”在这样的指导思想下,初中几何发生了较大的变化。 初中几何一直就是中学数学的重要内容,秉承“深化教育改革,全面推进素质教育”的指导思想,在这次新课程改革中,初中几何部分有了较大的调整。对比新课程改革后初中几何的变化,深入理解教改的初衷,全面贯彻教改的思想,不但有利于更好地完成教改的任务,而且有利于利用新教材创造性地提高学生的数学素养。考题:如图,在Rt△ABC中∠C=90°以AC为直接径,作⊙O,交AB于D,过O作OE∥AB,交BC于E,连接ED。 ⑴求证:ED是⊙O的切线。 ⑵E为BC的中点,如果⊙O的半径为1.5, ED=2,求AB的长。 这是某市九年级人教版秋季学期一道期考试题,从题型看这是一道再普通不过的圆有关证明和计算的几何考题,而我校作为一所比较有名的初中,全校九年级约500个考生的答卷中,第(2)问“求AB的长”尚有80%左右的考生能正确的解答出来,而第(1)“求证:ED是⊙O的切线”只有约10%的考生能正确地写出证明解答过程。究其原因何在?笔者认为,其主要原因是教师在平时的课堂教学中,对几何证明的指导不到位、引导方式不够灵活,措施不到位造成的直接后果。 怎样指导学生对几何证明题进行有效正确的证明分析解答,并简单地写出证明过程,笔者通过对本考题学生答卷出现的各种错误情况,结合本校使用新课改教材突出的特点,归纳总结出以下三种思考和四种方法,进行指导,收到良好的效果。三种思考方式:(1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。 (2)逆向思维。顾名思义,就是从相反的方向思考问题。运用逆向思维解题,能使学生从不同角度,不同方向思考问题,探索解题方法,从而拓宽学生的解题思路。这种方法是推荐学生一定要掌握的。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显,数学这门学科知识点很少,关键是怎样运用,对于初中几何证明题,最好用的方法就是用逆向思维法。如果你已经上初三了,几何学的不好,做题没有思路,那你一定要注意了:从现在开始,总结做题方法。同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。这是非常好用的方法,同学们一定要试一试。 (3)正逆结合。对于从结论很难分析出思路的题目,同学们可以结合结论和已知条件认真的分析,初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。四种方法: 1.读。读就是阅读题目和题图的过程中,做到逐个条件,逐个问题地对号入座地进行审题、读图。 2.记。记就是在“读”的过程中,对题目中给出的条件和问题作简要的浓缩并作划记,并用①、②……和“?”作标记。如本考题问可作标记为:已知①∠C=90°;②AC为直径;③OE∥AB求证ED是⊙O的切线? 3.选。“选”就是选定解题思路,确定解题方式,即根据读题和标记的结果,结合自己所掌握的数学知识。选定解题思路,最终确定解题方式,并写出简要解答过程。如本题中,要证明DE为⊙O的切线,得作辅助线:连结OD,则点D就是⊙O的外端,只须再证明OD⊥DE(即∠ODE=90°)就可以了,从而选定证明∠ODE=90°;而要达到这个∠ODE=90°这个结果,只有通过证明△EOC≌△EOD从而也就确定了解题方式。 4.返。就是选定了解题思路、确定了解题方式,并写出解答的过程中,特别是遇到解答的过程受诅时,不断地返回到题目中已作的标记和题图的标记和已知条件中去,检查是否漏用或误用已知条件,及时调整解题方案。可以看出,“读、记、选、返”四个步骤通俗易董、浅显具体,只要始终坚持渗透课程数学课堂教学之中,并要求学生始终运用到式时的练习之中,善于积累,逐渐养成“见其型,通其路,套其法”的良候彀惯,就能很好距淆学生不良的解题思维习惯和学习习惯! 初中数学,我们早已使用人教版的教材,课改的新理念、新思维、新评价如风暴袭来,我们有过欣喜和期盼,教学实践中,没有石头照样过河。评价考试后,我们充满困惑与无奈,却不知路在何方。长期以来,我们数学课堂教学关注的是大量繁杂的公式,陷入了题的海洋。中学数学课堂教学最应该关注什么?既不是单纯的方式总结,也不是数学知识技能的简单积聚。数学教育的发展方向应与教育发展的大方向相一致,数学教育更应该关注思考:上完一节数学课,在学生颔首的同时还是有那么多的学生仍在质疑,到底学到了什么?他们对自己在数学学科上付出那么多的时间和精力感到惋惜,对自己在数学上的天赋和能力产生怀疑与反思。而教师本身是否也反省过自己,一节课下来我们到底教给了学生什么?方式、过程,还是答案?所谓“点石成金”我们到底教给学生“点石”的手指还是“点成”的金子?我们不能武断地归结于学生的不努力,我们的数学教育有没有问题。就目前的状况,中学数学教育仍旧可以用“纸上谈兵”这句成语简单概括之。 课堂是教师演练阵容的战场,解题成为操起的刀戈,忽略了解题思路、解题方式,一味追求解题结果,将会逐渐迷失自我,丧失自我思考的能力!我们是否思考过:路就在自己的脚下,路就在自己的每一节课中,让校本科研走进我们每一个数学教师的每一节课中吧!当今世界,反思意识已成为学术界的重要特征。要使基础教育课程改革向纵深推进,就必须提高教师的素质,尤其是提高教师的反思特质。

相关文档
最新文档