陶瓷成型工艺原理及方法

材料成型原理题库

陶瓷大学材料成型原理题库 热传导:在连续介质内部或相互接触的物体之间不发生相对位移而仅依靠分子及自由电子等微观粒子的热运动来传递热量。 热对流:流体中质点发生相对位移而引起的热量传递过程 热辐射:是物质由于本身温度的原因激发产生电磁波而被另一低温物体吸收后,又重新全部或部分地转变为热能的过程。 均质形核:晶核在一个体系内均匀地分布 凝固:物质由液相转变为固相的过程 过冷度:所谓过冷度是指在一定压力下冷凝水的温度低于相应压力下饱和温度的差值 成分过冷:这种由固-液界面前方溶质再分配引起的过冷,称为成分过冷 偏析:合金在凝固过程中发生化学成分不均匀现象 残余应力:是消除外力或不均匀的温度场等作用后仍留在物体内的自相平衡的内应力 定向凝固原则:定向凝固原则是采取各种措施,保证铸件结构上各部分按距离冒口的距离由远及近,朝冒口方向凝固,冒口本身最后凝固。 屈服准则:是塑性力学基本方程之一,是判断材料从弹性进入塑性状态的判据 简单加载;在加载过程中各个应力分量按同一比例增加,应力主轴方向固定不变 滑移线:塑性变形金属表面所呈现的由滑移所形成的条纹 本构关系;应力与应变之间的关系 弥散强化:指一种通过在均匀材料中加入硬质颗粒的一种材料的强化手段 最小阻力定律:塑性变形体内有可能沿不同方向流动的质点只选择阻力最小方向流动的规律 边界摩擦:单分子膜润滑状态下的摩擦 变质处理:在液态金属中添加少量的物质,以改善晶粒形核绿的工艺 孕育处理;抑制柱状晶生长,达到细化晶粒,改善宏观组织的工艺 真实应力:单向拉伸或压缩时作用在试样瞬时横截面上是实际应力 热塑性变形:金属再结晶温度以上的变形 塑性:指金属材料在外力作用下发生变形而不破坏其完整性的能力 塑性加工:使金属在外力作用下产生塑性变形并获得所需形状的一种加工工艺 相变应力:金属在凝固后冷却过程中产生相变而带来的0应力 变形抗力:反应材料抵抗变形的能力 超塑性: 材料在一定内部条件和外部条件下,呈现出异常低的流变应力,异常高的流变性能的现象

材料成型工艺

材料成型工艺 (Material Molding Process) 课程代码:(07310060) 学分:6 学时:90(其中:讲课学时78:实验学时:12) 先修课程:材料成型原理、金属学及热处理、机械设计基础 适用专业与培养计划:材料成型及控制工程专业2012年修订版培养计划 教材:《金属材料液态成型工艺》、贾志宏主编、化学工业出版社、第一版; 《金属材料焊接工艺》、雷玉成主编、化学工业出版社、第一版; 《冲压工艺与模具设计》、姜奎华主编、机械工业出版社、第一版开课学院:材料科学与工程学院 课程网站:(选填) 一、课程性质与教学目标 (一)课程性质与任务(需说明课程对人才培养方面的贡献) 《材料成型工艺》是材料成型及控制工程专业的主干课程之一。该课程主要任务是学习液态成型、塑性成型及焊接成型的工艺原理、方法、特点、质量影响因素及其规律、质量控制、适用范围等。学习过程中侧重于实际经验、工程技术及其理论知识的综合应用。通过系统学习,在掌握成型工艺过程基本规律及其物理本质的基础上,学生能够根据不同的零件需求,灵活选择和全面分析成型工艺、完成合理的工艺设计;同时,针对成型过程中出现的质量问题进行科学分析,找到解决措施,消除和减少工件质量缺陷; 本课程以数学、物理、化学、物理化学、力学、金属学与热处理、材料成型原理等作为理论基础,主要应用物理冶金、化学冶金、成形力学理论,系统阐述金属材料成型工艺过程的相关现象及其影响因素、规律、形成机制;同时,还汇总了大量的工程技术经验和实用技术。 通过本课程的学习,可以为材料成型工艺课程设计、金属综合性实验、毕业设计等后续课程学习奠定必要的基础知识。 (二)课程目标(需包括知识、能力与素质方面的内容,可以分项写,也可以合并写) 1. 掌握铸造成型、冲压成型和焊接成型工艺过程所涉及的主要物理原理; 2. 掌握各种成型方法的工艺特点及应用范围,能够根据实际产品需要选择高效、优质低成本的成型工艺方法;

材料成形原理课后习题解答汇总

材料成型原理 第一章(第二章的内容) 第一部分:液态金属凝固学 1.1 答:(1)纯金属的液态结构是由原子集团、游离原子、空穴或裂纹组成。原子集团的空穴或 裂纹内分布着排列无规则的游离的原子,这样的结构处于瞬息万变的状态,液体内部 存在着能量起伏。 (2)实际的液态合金是由各种成分的原子集团、游离原子、空穴、裂纹、杂质气泡 组成的鱼目混珠的“混浊”液体,也就是说,实际的液态合金除了存在能量起伏外, 还存在结构起伏。 1.2答:液态金属的表面张力是界面张力的一个特例。表面张力对应于液-气的交界面,而 界面张力对应于固-液、液-气、固-固、固-气、液-液、气-气的交界面。 表面张力σ和界面张力ρ的关系如(1)ρ=2σ/r,因表面张力而长生的曲面为球面时,r为球面的半径;(2)ρ=σ(1/r1+1/r2),式中r1、r2分别为曲面的曲率半径。 附加压力是因为液面弯曲后由表面张力引起的。 1.3答:液态金属的流动性和冲型能力都是影响成形产品质量的因素;不同点:流动性是确 定条件下的冲型能力,它是液态金属本身的流动能力,由液态合金的成分、温度、杂 质含量决定,与外界因素无关。而冲型能力首先取决于流动性,同时又与铸件结构、 浇注条件及铸型等条件有关。 提高液态金属的冲型能力的措施: (1)金属性质方面:①改善合金成分;②结晶潜热L要大;③比热、密度、导热系大; ④粘度、表面张力大。 (2)铸型性质方面:①蓄热系数大;②适当提高铸型温度;③提高透气性。 (3)浇注条件方面:①提高浇注温度;②提高浇注压力。 (4)铸件结构方面:①在保证质量的前提下尽可能减小铸件厚度; ②降低结构复杂程度。 1.4 解:浇注模型如下:

材料成型原理

硕士研究生入学考试《材料成形原理》命题大纲 第一部分考试说明 一、考试性质 《材料成形原理》考试科目是我校为招收材料成形及控制工程、材料加工工程专业硕士研究生而设置的,由我校材料科学与工程学院命题。考试的评价标准是普通高等学校材料成形及控制工程和相近专业优秀本科毕业生能达到的及格或及格以上水平。 二、考试的学科范围 应考范围包括:焊接热源及热过程,熔池凝固及焊缝固态相变,焊接化学冶金,焊接热影响区的组织与性能,焊接缺陷与控制;金属塑性成形的物理基础,应力分析,应变分析,屈服准则,应力应变关系,变形与流动问题,塑性成形力学的工程应用。 三、评价目标 《材料成形原理》是材料成形及控制工程和相关专业重要的专业基础课。本课程考试旨在考查考生是否了解材料成形的基本过程、基本特点、基本概念和基本理论,是否掌握了材料成形的基本原理、基本规律及应用。 四、考试形式与试卷结构 (一) 答卷方式:闭卷,笔试; (二) 答题时间:180分钟; 第二部分考查要点 一、焊接热源及热过程 1、与焊接热过程相关的基本概念 2、熔焊过程温度场 3、焊接热循环 二、熔池凝固及焊缝固态相变 1、焊接熔池凝固特点 2、焊接熔池结晶形态 3、结晶组织的细化 4、焊缝金属的化学成分不均匀性 5、焊缝固态相变 6、焊缝性能的控制 三、焊接化学冶金 1、焊接化学冶金过程的特点 2、焊缝金属与气相的相互作用 3、焊缝金属与熔渣的相互作用 4、焊缝金属的脱氧与脱硫 5、合金过渡 四、焊接热影响区的组织与性能 1、焊接热循环条件下的金属组织转变特点 2、焊接热影响区的组织与性能

五、焊接缺陷与控制 1、焊缝中的夹杂与气孔 2、焊接裂纹 六、金属塑性成形的物理基础 1、冷塑性变形与热塑性变形 2、影响塑性与变形抗力的因素 七、应力分析 1、应力张量的性质 2、点的应力状态与任意斜面上的应力 3、主应力,主切应力,等效应力 4、应力球张量与偏张量 八、应变分析 1、应变张量的性质 2、工程应变、对数应变、真实应变 九、屈服准则 1、Tresca屈服准则与Mises屈服准则 2、屈服轨迹与屈服表面 十、应力应变关系 1、塑性应力应变关系 2、增量理论与全量理论 十一、变形与流动问题 1、影响变形与流动的因素 2、摩擦及其影响 十二、塑性成形力学的工程应用。 1、主应力法的应用 2、滑移线法的应用 2014试题范围:今年的真题跟去年论坛里回忆的真题考的内容有80%都不一样。还是分为必做题和选做题,必做题100分,选做题50分。必做题包括塑性和焊接,选做题塑性焊接二选一。必做题前四题是塑性,后五题为焊接。选做题中:塑性部分是三题计算题,焊接部分有五题,第一题是计算题,后四题为分析简答题。 必做题:塑性考了 1.冷塑性变形对金属组织和性能的影响。2.什么是应力偏张量,应力球张量以及它们的物理意义。 3.考了对数应变和相对应变。4.还考了塑性成形过程中的力学方程。焊接考了 1.结晶裂纹的影响因素,防治措施 2.还考了熔渣的脱氧 3.熔渣的碱度对金属氧化,脱氧等等的影响。其他的忘了,跟去年考的很不一样,好多不会。 选作题;塑性是考了三个计算题,我没注意看,反正考了利用屈服准则来计算,还考了正应力,切应力,主应力的计算。最后一题利用主应力法来计算什么,我选做题选的是焊接,

材料成型原理习题

(a) (b) (c) (1分)(2分)(2分) (只要画出各实线以及与成份C0间的相对位置即可得分) 4. 什么是焊接热循环?其主要参数有哪些?t8/5和t100各代表什么含义?(5分) 答:在焊接过程中,焊件上某点的温度由低到高,达到最大值后又由高到低随时间的变化,称为焊接热循环。其主要参数有加热速度、最高温度(峰值温度)、相变温度以上的停留时间(高温停留时间)、冷却速度(冷却时间)。 t8/5——代表从800冷却至500的冷却时间;t100——从最高温度冷却至100的冷却时间;评分标准:对焊接热循环,答对“焊件上某点温度随时间变化”即得1分;主要参数每答出1个得0.5分,4个参数全答出得2分;t8/5和t100各1分。 5. 焊接熔池凝固有何特点?其凝固组织形态有哪些?(5分) 答:由于焊接熔池凝固条件有体积小、过热、处于运动状态、熔池界面导热好及冷却速度快○2择优生长,即当最优结晶方向与导热最快方向一致时,晶粒生长最快而优先长大,取向不一致的晶粒被淘汰。 ○3熔池界面各点柱状晶成长的平均速度θ cos ? =v R,v为焊接速度,θ为R与v之间夹角。 焊接熔池凝固组织形态,宏观上看主要是柱状晶和少量等轴晶。微观分析,柱状晶内又有平面晶、包状晶及树枝晶等。 评分标准:第1问若答出联生(外延结晶)、择优成长及θ cos ? =v R,即得满分3分;第2问只要答出(包状晶、平面晶、包状树枝晶、树枝晶)柱状晶之一和等轴晶即得满分2分。 6. 焊接中脱氧反应有哪几种形式?CO2焊应采用什么焊丝?(5分) 答:在焊接中脱氧反应按其方式和特点可分为先期脱氧、沉淀脱氧和扩散脱氧三种。先期脱氧是在药皮加热阶段,固态药皮受热后发生的脱氧反应;沉淀脱氧是在熔滴和熔池阶段,溶解在液态金属中的脱氧剂和FeO直接进行反应,把铁还原,且脱氧产物浮出液态金属的过程,扩散氧化是在液态金属与熔渣的界面上进行的,是以分配定律为理论基础的。 CO2气保焊时,由于气氛的强氧化性,根据锰硅联合脱氧原则,常在焊丝中加入适当比例的锰和硅,可减少焊缝中的氧和夹杂物。如常用H08MnSiA或H08Mn2SiA等。 评分标准:第1问答出先期脱氧、沉淀脱氧及扩散脱氧即可得满分3分;第2问答出锰硅联合脱氧得1分;能写出一种焊丝牌号得1分。 7. 什么是动可容速度场?(3分)

材料成型原理-7 凝固金属的组织结构

液态金属成型原理
0、概论 1、液态金属的结构和性质 2、凝固的热力学基础 3、界面 4、凝固的结晶学基础 5、凝固的传热基础 6、凝固过程的流体流动 7、凝固金属的组织结构 8、凝固过程的缺陷和对策
第七章 凝固金属的组织结构

第七章 凝固金属的组织结构
? 第一节 凝固金属的组织结构 第二节 偏析(Segregation) 第三节 金属凝固组织形态控制
第七章 凝固金属的组织结构
2

一、凝固铸态组织的含义
z 铸态组织,即铸件的晶粒组 织,包括晶粒的形状、尺寸 和取向。广义讲,还包括合 金元素的分布(偏析)和凝 固过程形成的缺陷。
第七章 凝固金属的组织结构
3

二、晶粒组织(Grain Structure)
? 典型铸态组织:表面细晶粒、柱状晶粒、等轴晶粒
z激冷晶区的晶粒细小;
内部等轴晶区 表层急冷晶区
z柱状晶区的晶粒垂直 于型壁排列,且平行 于热流方向.
z内部等轴晶区的晶粒 较为粗大;
中间柱状晶区
第七章 凝固金属的组织结构
4

几种不同类型的铸件宏观组织示意图
(a)只有柱状晶;(b)表面细等轴晶加柱状晶;(c)三个晶区都有;(d)只有等轴晶
第七章 凝固金属的组织结构
5

三、铸态组织形成原因
? 1. 表面细晶粒
z 型壁激冷,大量生核; z 三维散热,生长迅速,
相互抑制; z 生长无方向性。
第七章 凝固金属的组织结构
6

材料成型原理(上)考试重点复习题

《材料成形原理》阶段测验 (第一章) 班级:姓名:学号成绩: 1、下图中偶分布函数g(r),液体g(r)为c图,晶态固体g(r)为a图,气体g(r)为 b 图。 (a)(b)(c) 2、液态金属是由大量不停“游动”着的原子团簇组成,团簇内为某种有序结构,团簇周围是一些散乱无序的原子。由于“能量起伏”,一部分金属原子(离子)从某个团簇中分化出去,同时又会有另一些原子组合到该团簇中,此起彼伏,不断发生着这样的涨落过程,似乎原子团簇本身在“游动”一样,团簇的尺寸及其内部原子数量都随时间和空间发生着改变,这种现象称为结构起伏。 3、对于液态合金,若同种元素的原子间结合力F(A-A、B-B) 大于异类元素的原子间结合力F(A-B),则形成富A及富B的原子团簇,具有这样的原子团簇的液体仅有“拓扑短程序”;若熔体的异类组元具有负的混合热,往往F(A -B)>F(A-A、B-B),则在液体中形成具有A-B化学键的原子团簇,具有这样的原子团簇的液体同时还有“化学短程序”。 4、液体的原子之间结合力(或原子间结合能U)越大,则内摩擦阻力越大,粘度也就越大。液 体粘度η随原子间结合能U按指数关系增加,即(公式):?? ? ? ? ? = T U T B B k exp k 2 3 τ δ η。 5、加入价电子多的溶质元素,由于造成合金表面双电层的电荷密度大,从而造成对表面压力大,而使整个系统的表面张力增大。 6、铸件的浇注系统静压头H越大,液态金属密度 1 ρ及比热 1 C、合金的结晶潜热H ?越大,浇注温 度 浇 T、铸型温度T型越高,充型能力越强。 7、两相质点间结合力越大,界面能越小,界面张力就越小。两相间的界面张力越大,则润湿角越大,表示两相间润湿性越差。 8、铸件的浇注系统静压头H越大,液态金属密度 1 ρ及比热 1 C、 合金的结晶潜热H ?越小,浇注温度 浇 T、铸型温度T型越高, 充型能力越强。 9、右图为碱金属液态的径向分布函数RDF,请在图中标注液 态K的平均原子间距r1的位置,并以积分面积(涂剖面线)表 达液态K的配位数N1的求法。见图中标注 10、试总结原子间相互作用力、温度、原子间距、表面活性元 素对液态金属的粘度、表面张力的总体规律。(可写于背面)

材料成型原理复习题

综合测试题一 模具寿命与材料成形加工及材料学 一、填空题(每小题2分,共20分) 1. 目前铸造成形技术的方法种类繁多按生产方法分类,可分为砂型铸造和特种铸造。 2. 在铸造生产中,细化铸件晶粒可采用的途径有增加过冷度、采用孕育处理和附加振动。 3. 铸铁按碳存在形式分灰铸铁、可锻铸铁、球墨铸铁、蠕墨铸铁等。 4. 合金在铸造时的难易程度的衡量指标合金的流动性和收缩。 5. 合金的流动性主要取决于它本身的化学成分。 6. 压力加工的加工方法主要有:冲压、锻造、轧制、拉拔和 挤压等。 7. 合金的流动性常采用浇注螺旋型标准试样的方法来衡量, 8. 流动性不好的合金容易产生浇不足、冷隔、气孔、夹渣等缺陷。 9. 液态金属的充型能力主要取决于金属的流动性,还受外部条件如浇注温度、充型压力、铸型结构和铸型材料等因素的影响,是各种因素的综合反映。 10.金属由浇注温度冷却到室温经历了液态收缩、凝固收缩和固态收缩三个相互关联的收缩阶段。 11.液态收缩和凝固收缩是铸件产生缩孔和缩松的基本原因。固态收缩对铸件的形状和尺寸精度影响很大,是内应力、变形和裂纹等缺陷产生的基本原因。 12.铸造中常产生的铸造缺陷有缩孔、缩松、浇不足、裂纹、内应力、夹渣和夹砂等

13. 特种铸造相对于砂型铸造的两类特点:型模的革新和充型方式的变更。 14.常用特种铸造方法金属型铸造、压力铸造、离心铸造、消失模铸造和熔模铸造、壳型铸造等。 15.衡量金属锻造性能的两个指标塑性和变形抗力。 16.自由锻造常用设备空气锤和水压机。 17.自由锻的基本工序包括镦粗、拔长、冲孔、弯曲、切割、扭转和错移等。 18.镦粗的变形特点横截面积变大,长度变短普通拔长的变形特点横截面积变小,长度变长芯轴拔长的变形特点内孔直径不变,长度变长,壁厚变薄。 19.锻造温度范围是指始锻温度与终锻温度之差。后者过低易产生加工硬化现象。 20. 锤上模锻的实质金属在模膛内成形和变形阻力大,变形不均匀。 21. 模膛的分类制坯模膛和模锻模膛。 22. 板料冲压中分离工序有冲孔、落料、剪切和修整等。变形工序有拉深、弯曲、翻边和成形等。 23. 电弧燃烧实质是指电弧的产生、运动和消失的动态平衡。 24. 电弧分为阴极区、阳极区和弧柱区三个区。 25. 直流电焊机正接极是指焊件接正极,焊条接负极。 26. 焊接冶金过程的特点反应温度高、接触面积大、冷却速度快。 27. 焊接接头是指焊缝和热影响区。焊接热影响区包括熔合区、过热区、正火区、部分相变区和再结晶区。 28. 焊接应力和变形产生的原因对焊缝区不均匀的加热和冷却。

金属、高分子、陶瓷材料加工成型方法

金属材料、高分子材料、陶瓷材料的成型制备方法 金属材料加工成型方法 金属材料成型工艺有以下几种 一、金属液态成型也叫铸造。它是将熔融的金属液体浇注到与零件形状相对应的铸造模型腔中,待冷却后得到实体毛坯或零件的工艺过程。 铸造加工的特点:1.适应性强2.成本低廉3.铸造组织存在一定缺陷4.工艺过程较难控制铸造方法分为砂型铸造、特殊铸造 I、砂型铸造:用型砂做铸型的铸造方法,使用率90% 砂型铸件的结构设计应注意 1、力求外形简单,轮廓平直,只需一个分型面 2、力求铸件的内腔铸造时,型芯数目最少,方便装配、清理、排气 3、起模方向应设计结构斜度 4、铸件应有合理的壁厚 5、力求铸件壁厚均匀,防止局部积聚变形,造成裂纹、缩孔、缩松等缺陷 6、尽量避免铸件中有过大的水平面,防止由于横截面突然增大,导致金属液面上升缓慢,致使型腔顶部受到长时间烘烤,造成夹砂缺陷、产生气孔等;将平面改为倾斜面 II、特种铸造 特种铸造:砂型铸造以外的其他铸造方法,包括熔模铸造、金属型铸造、压力铸造、低压铸造、离心铸造、陶瓷型铸造等。 ①熔模铸造(失蜡铸造):在蜡模表面包以造型材料,待其硬化,将其中的蜡模熔去,从而获得无分型面的铸型的铸造方法。 基本过程:蜡模制造→结壳→脱蜡→造型→焙烧→浇铸→落砂清理 熔模铸造(失蜡铸造)的特点 a、铸件的精度高且表面光洁。 b、适用于各种铸造合金铸件,尤其是高熔点及难切削的合金的铸造。 c、熔模铸件的形状可以比较复杂,最小孔径0.5mm,壁厚0.3mm。 d、铸件的重量不宜太大,一般<=25kg,最大80kg左右。 e、工艺过程复杂,不易控制,使用和消耗的材料较贵,适用于形状复杂、精度较高或难以机加工的小型零件,如发动机叶片和叶轮等。 ②金属型铸造:金属型铸造又称硬模铸造,它是将液体金属浇入金属铸型,以获得铸件的一种铸造方法。铸型是用金属制成,可以反复使用多次(几百次到几千次)。 金属性铸造的优缺点 可以“一型多铸”,铸件的力学性能提高,金属型铸件的冷却速度较快、组织比较致密铸件精度较高,可以少加工或不加工。 但是,成本高、周期长;铸造透气性差、无退让性,易产生冷隔、浇不足、裂纹等缺陷;铸件熔点不宜太高,重量也不宜太大。

材料成型原理复习

《材料成型原理》试卷 一、铸件形成原理部分(共40分) (1)过冷度;(2)液态成形;(3)复合材料;(4) 定向凝固; (1)过冷度:金属的理论结晶温度与实际结晶温度的差,称为过冷度。 (2)液态成形:将液态金属浇入铸型后,凝固后获得一定形状和性能的铸件或铸锭的加工法。 (3)复合材料:有两种或两种以上物理和化学性质不同的物质复合组成的一种多相固体。(4)定向凝固:定向凝固是使金属或合金在熔体中定向生长晶体的一种工艺方法。 (5)溶质再分配系数:凝固过程中固-液界面固相侧溶质质量分数与液相中溶质质量分数之比,称为溶质再分配系数。 2、回答下列问题 (1)影响液态金属凝固过程的因素有哪些?影响液态金属凝固的过程的主要因素是化学成分;冷却速率是影响凝固过程的主要工艺因素;液态合金的结构和性质等对液态金属的凝固也具有重要影响。 (2)热过冷与成分过冷有什么本质区别?热过冷完全由热扩散控制。成分过冷由固-液界前方溶质的再分配引起的,成分过冷不仅受热扩散控制,更受溶质扩散控制。 (3)简述铸件(锭)典型宏观凝固组织的三个晶区.表面细晶粒区是紧靠型壁的激冷组织,由无规则排列的细小等轴晶组成;中间柱状晶区由垂直于型壁彼此平行排列的柱状晶粒组成;内部等轴晶区由各向同性的等轴晶组成。 3、对于厚大金属型钢锭如何获得细等轴晶组织?降低浇注温度,有利于游离晶粒的残存和产生较多的游离晶粒;对金属液处理,向液态金属中添加生核剂,强化非均质形核;浇注系统的设计要考虑到低温快速浇注,使游离晶不重熔;引起铸型内液体流动,游离晶增多,获得等轴晶。 二、焊接原理部分1简述氢在金属中的有害作用。氢脆,白点,气孔,冷裂纹2写出锰沉淀脱氧反应式,并说明熔渣的酸碱性对锰脱氧效果的影响.[Mn] + [FeO] = [Fe] + (MnO),酸性渣脱氧效果好,碱度越大,锰的脱氧效果越差。3冷裂纹的三大形成要素是什麽?钢材的淬硬倾向,氢含量及其分布,拘束应力状态4说明低碳钢或不易淬火钢热影响区组织分布.(1)熔合区:组织不均匀;(2)过热区:组织粗大; (3)相变重结晶区(正火区):组织均匀细小;(4)不完全重结晶区:晶粒大小不一,组织分布不均匀. 一、填空题 1.液态金属本身的流动能力主要由液态金属的成分、温度和杂质含量等决定。 2.液态金属或合金凝固的驱动力由过冷度提供。 3.晶体的宏观生长方式取决于固液界面前沿液相中的温度梯度,当温度梯度为正时,晶体的宏观生长方式为平面长大方式,当温度梯度为负时,晶体的宏观生长方式为树枝晶长大方式。 4.液态金属凝固过程中的液体流动主要包括自然对流和强迫对流。 5.液态金属凝固时由热扩散引起的过冷称为热过冷。 6.铸件宏观凝固组织一般包括表层细晶粒区、中间柱状晶区和内部等轴晶区不同形态的晶区。 7.内应力按其产生的原因可分为热应力、相变应力和机械应力三种。 8.铸造金属或合金从浇铸温度冷却到室温一般要经历液态收缩、凝固收缩和固态收缩三个收缩阶段。 9.铸件中的成分偏析按范围大小可分为微观偏析和宏观偏析二大类。

材料成型原理

21.铸件宏观组织的控制途径与措施 1.铸件结晶组织对铸件质量和性能的影响 表面细晶粒区薄,对铸件的质量和性能影响不大。 铸件的质量与性能主要取决于柱状晶区与等轴晶区的比例以及晶粒的大小。 (1)柱状晶: 生长过程中凝固区域窄,横向生长受到相邻晶体的阻碍,枝晶不能充分发展,分枝少,结晶后显微缩松等晶间杂质少,组织致密。 但柱状晶比较粗大,晶界面积小,排列位向一致,其性能具有明显的方向性:纵向好、横向差。凝固界面前方常汇集有较多的第二相杂质气体,将导致铸件热裂。 (2)等轴晶: 晶界面积大,杂质和缺陷分布比较分散,且各晶粒之间位向也各不相同,故性能均匀而稳定,没有方向性。 枝晶比较发达,显微缩松较多,凝固后组织不够致密。 细化能使杂质和缺陷分布更加分散,从而在一定程度上提高各项性能。晶粒越细综合性能越好。 对塑性较好的有色金属或奥氏体不锈钢锭,希望得到较多的柱状晶,增加其致密度; 对一般钢铁材料和塑性较差的有色金属铸锭,希望获得较多的甚至是全部细小的等轴晶组织;对于高温下工作的零件,通过单向结晶消除横向晶界,防止晶界降低蠕变抗力。 2.铸件宏观组织的控制途径和措施 等轴晶组织的获得和细化 强化非均匀形核促进晶粒游离抑制柱状晶区 1)加入强生核剂——孕育处理 孕育——向液态金属中添加少量物质以达到增加晶核数、细化晶粒、改善组织之目的的一种方法。 变质——加入少量物质通过元素的选择性分布而改变晶体的生长形貌,如球化或细化。 A.形核剂: a)直接作为外加晶核 b)通过与液态金属的相互作用而产生非均匀晶核 能与液相中某些元素组成较稳定的化合物 通过在液相中造成大的微区富集而使结晶相提前弥散析出 B.强成分过冷元素: 通过在生长界面前沿的富集而使晶粒根部和树枝晶分枝根部产生细弱缩颈,从而促进晶粒的游离。 强化熔体内部的非均匀形核孕育剂富集抑制晶体生长

超有用的材料成型原理试卷试题及答案(精选.)

陕西工学院考试试卷(B)标准答案 一、填空题(每空2分,共40分) 1.液态金属本身的流动能力主要由液态金属的成分、温度和杂质含量等决定。2.液态金属或合金凝固的驱动力由过冷度提供。 3.晶体的宏观生长方式取决于固液界面前沿液相中的温度梯度,当温度梯度为正时,晶体的宏观生长方式为平面长大方式,当温度梯度为负时,晶体的宏观生长方式为树枝晶长大方式。 5.液态金属凝固过程中的液体流动主要包括自然对流和强迫对流。6.液态金属凝固时由热扩散引起的过冷称为热过冷。 7.铸件宏观凝固组织一般包括表层细晶粒区、中间柱状晶区和内部等轴晶区三个不同形态的晶区。 8.内应力按其产生的原因可分为热应力、相变应力和机械应力三种。9.铸造金属或合金从浇铸温度冷却到室温一般要经历液态收缩、凝固收缩和固态收缩三个收缩阶段。 10.铸件中的成分偏析按范围大小可分为微观偏析和宏观偏析二大类。 二、下列各小题均有多个答案,选择最适合的一个填于横线上(每空1分,共9分)。 1.塑性变形时,工具表面的粗糙度对摩擦系数的影响大于工件表面的粗糙 度对摩擦系数的影响。

A、大于;B、等于;C、小于; 2.塑性变形时不产生硬化的材料叫做A。 A、理想塑性材料;B、理想弹性材料;C、硬化材料; 3.用近似平衡微分方程和近似塑性条件求解塑性成形问题的方法称为 B。 A、解析法;B、主应力法;C、滑移线法; 4.韧性金属材料屈服时,A准则较符合实际的。 A、密席斯;B、屈雷斯加;C密席斯与屈雷斯加;5.塑性变形之前不产生弹性变形(或者忽略弹性变形)的材料叫做B。 A、理想弹性材料;B、理想刚塑性材料;C、塑性材料; 6.硫元素的存在使得碳钢易于产生A。 A、热脆性;B、冷脆性;C、兰脆性; 7.应力状态中的B应力,能充分发挥材料的塑性。 A、拉应力;B、压应力;C、拉应力与压应力; 8.平面应变时,其平均正应力 mB中间主应力 2。 A、大于;B、等于;C、小于; 9.钢材中磷使钢的强度、硬度提高,塑性、韧性 B 。 A、提高;B、降低;C、没有变化; 三、判断题(对打√,错打×,每题1分,共7分) 1.合金元素使钢的塑性增加,变形拉力下降。(X )

材料成型原理课后题答案

第三章: 8:实际金属液态合金结构与理想纯金属液态结构有何不同 答:纯金属的液态结构是由原子集团、游离原子、空穴或裂纹组成的,是近程有序的。液态中存在着很大的能量起伏。而实际金属中存在大量的杂质原子,形成夹杂物,除了存在结构起伏和能量起伏外还存在浓度起伏。 12:简述液态金属的表面张力的实质及其影响因数。 答:实质:表面张力是表面能的物理表现,是是由原子间的作用力及其在表面和内部间排列状态的差别引起的。 影响因数:熔点、温度和溶质元素。 13:简述界面现象对液态成形过程的影响。 答:表面张力会产生一个附加压力,当固液相互润湿时,附加压力有助于液体的充填。液态成形所用的铸型或涂料材料与液态合金应是不润湿的,使铸件的表面得以光洁。凝固后期,表面张力对铸件凝固过程的补索状况,及是否出现热裂缺陷有重大影响。 15:简述过冷度与液态金属凝固的关系。 答:过冷度就是凝固的驱动力,过冷度越大,凝固的驱动力也越大;过冷度为零时,驱动力不存在。液态金属不会在没有过冷度的情况下凝固。 16:用动力学理论阐述液态金属完成凝固的过程。 答:高能态的液态原子变成低能态的固态原子,必须越过高能态的界面,界面具有界面能。生核或晶粒的长大是液态原子不断地向固体晶粒堆积的过程,是固液界面不断向前推进的过程。只有液态金属中那些具有高能态的原子才能越过更高能态的界面成为固体中的原子,从而完成凝固过程。 17:简述异质形核与均质形核的区别。 答:均质形核是依靠液态金属内部自身的结构自发形核,异质形核是依靠外来夹杂物所提供的异质界面非自发的形核。 异质形核与固体杂质接触,减少了表面自由能的增加。 异质形核形核功小,形核所需的结构起伏和能量起伏就小,形核容易,所需过冷度小。 18:什么条件下晶体以平面的方式生长什么条件下晶体以树枝晶方式生长 答:①平面方式长大:固液界面前方的液体正温度梯度分布,固液界面前方的过冷区域及过冷度极小,晶体生长时凝固潜热析出的方向与晶体的生长方向相反。 ②树枝晶方式生长:固液界面前方的液体负温度梯度分布,固液界面前方的过冷区域较大,且距离固液界面越远过冷度越大,晶体生长时凝固潜热析出的方向与晶体生长的方向相同。 19:简述晶体的微观长大方式及长大速率。 答:①连续生长机理--粗糙界面的生长:动力学过冷度小,生长速率快。②二维生长机理--光滑界面生长:过冷度影响大,生长速度慢。③从缺陷处生长机理--非完整界面生长:所需过冷度较大,生长速度位于以上二者之间。 20:为生么要研究液态金属凝固过程中的溶质再分配它受那些因素的影响 答:液态金属在凝固过程中的各组元会按一定的规律分配,它决定着凝固组织的成分分布和组织结构,液态合金凝固过程中溶质的传输,使溶质在固液界面两侧的固相和液相中进行再分配。掌握凝固过程中的溶质再分配的规律,是控制晶体生长行为的重要因素,也是在生产实践中控制各种凝固偏析的基础。 凝固过程中溶质的再分配是合金热力和动力学共同作用的结果,不同的凝固

陶瓷材料的成型方法(一)

陶瓷材料的成型方法(一) 陶瓷材料已经成为我们生活中一个智能更要的工具了,在现代陶瓷材料的生产中,常用的成型方法有挤制成型、干压成型、热压铸成型、注浆成型、轧膜成型、等静压成型、热压成型和流延成型等。 1.挤制成型 挤制成型主要用于制造片形、棒形和管形制品,如电阻的基体蜂窝陶瓷载体的陶瓷棒、陶瓷管等陶瓷制品。该成型方法生产效率高,产量大、操作简便,使用的挤压机分卧式和立式两种。配料中新土含量较大时,成型的坯料一般不加黏合剂,配料经过真空练泥、闲料后即可用于挤制成型。坯料中一般含水量为16%一25%。配料中含茹土少或不含教土时,将均匀混合了熟合剂的粉料经真空练泥和闲料后,再用于挤制成型。挤制成型的氧化铝瓷球常用的教合剂有糊精、桐油、甲基纤维素(MC)、羧印基纤维素、泽丙基甲基纤维素(HPMC)和亚硫酸纸浆废液等。 挤制资管时应注意防止坯体变形,管的外径越大,壁越薄,机械强度越差,越容易变形。 2.干压成型 干压成型是最常用的成型方法之一,适用于成型简单的瓷件,如圆片形等,对模具质量的要求较高。该方法少产效率高,

易于自动化,制品烧成收缩率小,不易变形。干压成型方法所用坯料的含水量一般控制在4%一8%左右。干压常用熟合剂主要有聚乙烯醇(PVA)水溶液、石蜡、亚硫酸纸浆废液等。通常配料中黏合剂的加入量为:聚乙烯醇水溶液3%一8%、石蜡8%左右、亚硫酸纸浆废液10%左右。 干压成型是利用模具在泊压机上进行的。干压成型的加压方式有单面加压和双面加压两种。直接受压一端的压力大,坯体密度大;远离加压一端的压力小,密度小。金属填料的双面加压时坯体两端直接受压,两端密度大,中间密度小。造粒料并加润滑剂时,双面加压的尔意图,坯体密度非常均匀。成型压力的大小直接影响资体的密度和收缩率。如某BaTiO3系资料,外加5%聚乙烯醇水溶液造粒,在相同烧成条件下,成型压力为0.5MPa时,收缩系数为1.15—1.16;成型乐力为0.6MPa时,收缩系数为1.13—1.14;成型压力为0.7MPa时,收缩系数为1.11-1.12;成型压力为0.8MPa时,收缩系数为1.03。 原文链接:https://www.360docs.net/doc/c517655293.html,/new/View_73.html版权所有,转载请以链接形式注明作 者及原始出处。 本站关键词:防腐施工、陶瓷防腐、化工填料、蜂窝陶瓷、

材料成型原理(读书报告)

3D 打印技术及其发展趋势 3D 打印(3D Printing )技术作为快速成型领域的一种新兴技术,目前正成为一种迅猛发展的潮流,引起了国内外新闻媒体和社会公众的广泛关注。2011年2月,英国《经济学人》杂志刊载的封面文章,对3D 打印技术的发展作了简要介绍和展望,文章认为:3D 打印技术未来的发展将使大规模的个性化生产成为可能,这将会带来全球制造业经济的重大变革。更有新闻媒体乐观地认为:3D 打印产业将成为下一个具有广阔前景的朝阳产业。由此可见,了解3D 打印技术的相关知识及其未来发展对我们学习先进成型技术、掌握新材料和新成型技术的市场需求及发展具有重要意义。 一、3D 打印技术简介 3D 打印技术,是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,采用分层加工、迭加成形的方式逐层增加材料来生成三维实体的技术。与传统的“去除型”制造不同的是:传统的数控制造一般是在原材料的基础上,使用切割、磨削、腐蚀、熔融等方法,去除多余部分,得到零部件,再以拼装、焊接等方法组合成最终产品(如图1(a)所示);而3D 打印技术则是直接根据计算机图形数据,将三维实体分解为若干个二维平面,再通过逐层增加材料的方法生成所需形状的物体(如图1(b)所示),因此又称为“增材制造”(AM ,Additive Manufacturing )技术。3D 打印技术在制造过程中不需要复杂的成型工艺,不需要原胚和模具,亦不需要众多的人力,从而简化了产品的制造程序,缩短了产品的研制周期,提高了生产效率并降低了成本。 作为一种综合性应用技术,3D 打印技术综合了数字建模技术、机电控制技术、信息技图1(a )去除型制造 原材料 零件 二维分解 逐层添加 零件 图1(b )增材制造 图1 去除型制造与增材制造的区别

材料成型原理第四章答案

第四章 1. 何谓结晶过程中的溶质再分配它是否仅由平衡分配系数K 0所决定当相图上的液相线和固相线皆为直线时,试证明K 0为一常数。 答:结晶过程中的溶质再分配:是指在结晶过程中溶质在液、固两相重新分布的 现象。 溶质再分配不仅由平衡分配系数K 0决定 ,还受自身扩散性质的制约,液相中的对流强弱等因素也将影响溶质再分配。 当相图上的液相线和固相线皆为直线时K 0为一常数,证明如下:如右图所示: 液相线及固相线为直线,假设 其斜率分别为m L 及m S ,虽然 C *S 、C *L 随温度变化有不同值,但 L m S m L S m T T m T T C C K /)(/)(0****--===S L m m =常数, — 此时,K 0与温度及浓度无关, 所以,当液相线和固相线为直 线时,不同温度和浓度下K 0为 定值。 2. 某二元合金相图如右所示。合金液成分为C B =40%,置于长瓷舟中并从左端开始凝固。温度梯度大到足以使固-液界面保持平面生长。假设固相无扩散,液相均匀混合。试求:①α相与液相之间的平衡分配系数K 0;②凝固后共晶体的数量占试棒长度的百分之几③凝固后的试棒中溶质B 的浓度沿试棒长度的分布曲线。 解:(1)平衡分配系数K 0 的求解: 由于液相线及固相线均为直 线不同温度和浓度下K 0为 定值,所以:如右图, 当T=500℃时, K 0 =**L C C α=%60%30= K 0即为所求 α相与液相之间的 平衡分配系数. (2)凝固后共晶体的数量占试棒长度的百分数的计算: > 由固相无扩散液相均匀混合下溶质再分配的正常偏析方程 、 图 4-43 二元合金相图K 0<1C 0K 0C 0/K 0T C *S C *L C 0C T *Tm

陶瓷注浆成型工艺方法

1.目的:保证精陶大件产品注浆成型顺利进行,提高成型半成品合格率。 2. 适用范围:适用于精陶产品如辊棒、方梁、立柱等产品的注浆成型作业。 3.作业要点 注浆作业前的准备 模型清理 注浆工在进行作业前,要仔细检查清理模型。对于新上的模型,首先检查核对型号,检查模型是否完好,工作面有无缺陷。核对检查合格的模型先用细砂纸(240#)将模型工作面轻轻打磨一遍,清除模型表面的脱模剂及其它杂物,并用约20%的稀浆水将模型工作面擦拭一遍。正常使用的模型,注浆作业前要将模型表面的余浆及石膏屑清理干净。模型跑浆时,对沾在模型内外及子母扣处的泥渣都要清理干净。对脱模时发现有不能脱模的情况,再次注浆前用石墨将模型对应坯体不脱模的地方薄薄抹一层,便于脱模。 模型及进浆管与添浆管的安装 清理过的模型放于支架上时,首先要保证支架每个支撑点在一条直线上,模型放置要稳定,不得有悬空的情况,以免引起模型断裂或变形。合模时要将模型子母扣对整齐,并用紧固件压紧。注意紧固件要分布均匀并锁紧,防止注浆时跑浆。进浆管与添浆管依次插紧,添浆管处用来盛浆的容器要高于模型悬挂,且管子要拉直,便于进浆、回浆及排气。 泥浆的准备 泥浆要使用配浆人员已化好的泥浆。泥浆使用前,要确保充分搅拌均匀,搅拌时间不得少于 30分钟,未充分搅拌的泥浆不得使用。在抽进注浆罐前要进行过筛,筛目要求为 100 目。过筛时要缓慢往筛内添浆,不得漫筛,防止料渣进入已过筛的浆料中。浆料的比重规定为,对不符合规定的泥浆不得使用。配浆要保证泥浆具有5天的陈腐期。 注浆操作 注浆作业时,要保证3人以上同时操作,一人控制进浆阀门,一人操作进浆管,一人在添浆管处观察。注浆前往注浆罐内充氮气,罐内压力达到— MPa时停止,并关闭阀门。注浆时要注意控制上浆速度,缓慢均匀进浆,不得猛开阀门。出现跑浆漏浆的情况要立即处理。 根据确定的不同产品的注浆时间,在吸浆过程中要经常观察添浆管中的浆面的位置,及时添加泥浆,防止缺浆造成坯体厚度不够及局部厚薄不均。添浆时要注意不得踩在模型上,避免造成模型振动,引起坯体坍塌。 在吸浆到注浆时间的60%左右时,翻转模型。翻转模型必须由3人以上人员同时操作,翻转模型时要保证轻、慢、稳,禁止动作过猛,引起模型振动,导致坯体振动坍塌。

陶瓷的生产工艺流程

陶瓷的生产工艺流程(图) 2010年08月16日09:21 【字号大中小】打 印 留 言 论 坛 网 摘 手机点 评 纠错 E-mail推荐:

陶瓷的生产工艺流程 原料工序:坯釉原料进厂后,经过精选、淘洗,根据生产配方称量配料,入球磨细碎,达到所需细度后,除铁、过筛,然后根据成型方法的不同,机制成型用泥浆压滤脱水,真空练泥,备用;对于化浆工艺,把泥浆先压滤脱水,后通过加入解凝剂化浆,除铁、过筛后备用;对注浆成型用泥浆,进行真空处理后,成为成品浆,备用。 成型工序:分为滚压成型和注浆成型。然后干燥、修坯,备用。 烧成工序:在取得白坯后,入窑素烧,经过精修、施釉,进行釉烧,对出窑后的白瓷检选,得到合格白瓷。 彩烤工序:对合格白瓷进行贴花、镶金等步骤后,入烤花窑烧烤,开窑后进行花瓷的检选,得到合格花瓷成品。 包装工序:对花瓷按照不同的配套方法、各种要求进行包装,即形成本公司的最终产品,发货或者入库。 建筑陶瓷是指建筑物室内外装饰用的较高级的烧土制晶,它属精陶或粗瓷类。其主要品种有外墙面砖、内墙面砖、地砖、陶瓷锦砖、陶瓷壁画等。 第一节陶瓷的基本知识 一、陶瓷的概念与分类 陶瓷是指用粘土、石英等天然硅酸盐原料经过粉碎、成型、煅烧等过程而得到的具有一定形状和强度的制品。主要指日常生活中常见的日用陶瓷和建筑陶瓷、电瓷等。 陶瓷的生产发展经历了漫长的过程,从传统的日用陶瓷、建筑陶瓷、电瓷发展到今天的氧化物陶瓷、压电陶瓷、金属陶瓷等特种陶瓷,虽然所采用的原料不同,但其基本生产过程

都遵循着“原料处理一成型—煅烧”这种传统方式,因此,陶瓷可以认为是用传统的陶瓷生产方法制成的无机多晶产品。 根据陶瓷原料杂质的含量、烧结温度高低和结构紧密程度把陶瓷制品分为陶质、瓷质、和炻质三大类。 陶质制品为多孔结构,吸水率大(低的为9%—12%,高的可达18%—22%)、表面粗糙。根据其原料杂质含量的不同及施釉状况,可将陶质制品分为粗陶和细陶,又可分为有釉和无釉。粗陶一般不施釉,建筑上常用的烧结粘土砖、瓦均为粗陶制品。细陶一般要经素烧、施釉和釉烧工艺,根据施釉状况呈白、乳白、浅绿等颜色。建筑上所用的釉面砖(内墙砖)即为此类。 瓷质制品煅烧温度较高、结构紧密,基本上不吸水,其表面均施有釉层。瓷质制品多为日用制品、美术用品等。 炻质制品介于瓷质制品和陶质制品之间,结构较陶质制品紧密,吸水率较小。炻器按其坯体的结构紧密程度,又可分为粗炻器和细炻器两种,粗炻器吸水率一般为4~/0—8%,细炻器吸水率小于2%,建筑饰面用的外墙面砖、地砖和陶瓷锦砖(马赛克)等均属粗炻器。 二、陶瓷的原料 陶瓷工业中使用的原料品种很多,从它们的来源来分,一种是天然矿物原料,一种是通过化学方法加工处理的化工原料。天然矿物原料通常可分为可塑性物料、瘠性物料、助熔物料和有机物料等四类。下面介绍天然原料主要品种的组成、结构、性能及其在陶瓷工业中的主要用途。 1.可塑性物料——粘土 粘土主要是由铝硅酸盐岩石(火成的、高质的、沉积的)如长石岩、伟晶花岗岩、斑岩、片麻岩等长期风化而成,是多种微细矿物的混和体。

陶瓷粉末成型技术的工艺与控制

陶瓷粉末成型技术的工艺与控制 2008-11-5 1:29:52 人们总是希望陶瓷制品,尤其是特种陶瓷是均质的,能满足良好的机、电、热、化学或某种特殊性能要求,并能实现生产自动化、质量可控、性能一致性好的规模化生产。为此,首先要实现陶瓷坯体在粉末成型过程中是均质的或接近均质的。采用干粉压制、等静压成型是近世纪才发展起来的新型粉末成型工艺。为了最大限度实现陶瓷坯体均质化,不仅需要有先进的粉末成型设备,而且还有陶瓷粉体制备的质量,即每个单一粉末颗粒是均质的,而且是可控的。 1.实现坯体均质化途径 无论是干粉压制或等静压成型,由于粉末颗粒之间、粉体与模具壁之间,都存在内外摩擦而导致坯体密度分布不均匀,尤其是干粉压制,在压制方向上,压力随高度变化而呈指数衰减,形成一个密度梯度,确实很难达到坯体密度上下一致。其次,粉体本身颗粒为满足压制成型所需的粉末成型特性,需要添加一定量的添加剂,它们在每个单一颗粒中是否均匀,也是影响坯体均质的重要因素。 1.1压制方式 影响压坯密度的因素很复杂,除粉体本身特性外,主要有坯体形状和大小、压制件的侧正面积比、压制压力、模具粗糙度、润滑条件以及压制方式和粉末在模具中运动的摩擦系数等都起重要作用。实践证实等静压成型优于干粉压制,湿等静压优于干袋式等静压。现在国际流行的全自动干粉压机结构上采用强制双向拉下压制的曲柄连杆机构,图1给出典型压制过程中上下模头和凹模的运动轨迹,当上模头和凹模同时向下时实现反压,能最大限度地使坯体各部密度均匀。

图1典型压制过程中上下模头和凹模的运动轨迹 很多制品并非简单的等厚坯件,厚薄不一致,甚至有多个台阶,图2给出异形制品成型时模具各部件在压机中的运动轨迹。达到各部位厚度不一样按成型要求密度分层加料,以求成型后坯体各部位基本一致。关于压制成型技术,应视工件形状选择加料方式、上下模头压制次数、压制线的位置以及是否采用保护脱模,即使是1mm厚的制品,也应采用双面压制,也存在压制线位置,即上下压力的调整,且有利于烧成时坯体平整。有关陶瓷压片机设备使用可参阅有关设备说明书。 1.2粉体制备 无论干粉压制或等静压成型均要求粉料呈颗粒状,有较好的流动性;颗粒有一定的强度,以免在运输和加料过程中破碎;有一定的颗粒级配,加料时实现紧密堆积;具有一定的粘结特性和润滑特性,颗粒之间不应相互粘结等造粒特性。 为了达到上述特性要求,无论采用哪种造粒方式,往陶瓷原料中添加各种辅助材料是必然的,这些材料既不能影响坯料组分,又要求它们能均匀分布在每一个粉末颗粒中,从微观上讲是均质的。辅助材料通常有以下几种: 图2 异形制品成型 时候具备部件在机中的运动轨迹 (1)聚乙烯醇:不要以为喷雾造粒就一定能得到均质的粉体,粘结剂选择与搭配是关键。我们希望粘结剂能均匀分给每个粒子,在颗粒内形成的微观结构是均质化的事实上,如果仅往坯料中加入单一的聚乙烯醇作为结合剂,造粒后颗粒表面坚硬,有凹坑,在压制过程中往往存在大量颗粒间隙,坯体难以密实,这种粉末从颗粒上讲就是非均质的。 (2)水溶性聚合物:陶瓷用粘结剂一般采用水溶性聚合物,经验证明往高聚合度粘结剂材料中添加少量低分子粘结剂混合使用,有利于改善粉料颗粒形状和松装密度。实践证明聚乙烯醇是特性最好的粘合剂,但并不能获得最理想的颗粒形状和松装密度,添加少量水溶性低聚合物,如淀粉类及其衍生物,有较好的效果。

相关文档
最新文档