距离保护地振荡闭锁

距离保护地振荡闭锁
距离保护地振荡闭锁

§3.5距离保护的振荡闭锁(Power Swing Blocking of Distance

Protection )

§3.5.1振荡闭锁的概念(Concept of Power Swing Blocking )

并联运行的电力系统或发电厂失去同步的现象,称为电力系统的振荡(Power Swing )。电力系统振荡时,系统两侧等效电动势间的夹角 在o o 360~0围作周期性变化,从而使系统中各点的电压、线路电流、功率方向以及距离保护的测量阻抗也都呈现周期性变化。这样,以上述这些量为测量对象的各种保护的测量元件,就有可能因系统振荡而动作。

电力系统的振荡是属于严重的不正常运行状态,而不是故障状态,大多数情况下能够通过自动装置的调节自行恢复同步。如果在振荡过程中继电保护动作,切除了重要的联络线,或断开了电源和负荷,不仅不利于振荡的自动恢复,而且还有可能使事故扩大,造成更为严重后果。所以在系统振荡时,要采取必要的措施,防止保护因测量元件动作而误动。这种用来防止系统振荡时保护误动的措施,就称为振荡闭锁。

因电流保护、电压保护和功率方向保护等一般都只应用在电压等级较低的中低压配电系统,这些系统出现振荡的可能性很小,振荡时保护误动产生的后果也不会太严重,所以一般不需要采取振荡闭锁措施。距离保护一般用在较高电压

等级的电力系统,系统出现振荡的可能性大,保护误动造成的损失严重,所以必须考虑振荡闭锁问题。在无特殊说明的情况下,本书所提及的振荡闭锁,都是指距离保护的振荡闭锁。

§3.5.2 电力系统振荡对距离保护测量元件的影响(Effect

of Power Swing to Measuring Unit of Distance Protection )

1.电力系统振荡时电流、电压的变化规律

现以图3-31所示的双侧电源的电力系统为例,分析系统振荡时电流、电压的变化规律。

设系统两侧等效电动势M

E &和N E &的幅值相等,相角差(即功角)为δ,等效电源之间的阻抗为N l M Z Z Z Z ++=∑,其中M Z 为M 侧系统的等值阻抗,N Z 为N 侧系统的等值阻抗,l

Z 为联络线路的阻抗,则线路中的电流和母线M 、N 上

的电压分别为:

-∑∑-=?=-=Z e E Z E Z E E I j M N M )1(δ&&&&& (3-144)

M M

M Z I E U ?-=&&& (3-145)

N N

N Z I E U ?+=&&& (3-146) 它们之间的相位关系如图3-32(a)所示。以M

E

&为参考相量,当δ在0o ~360o 围变化时,相当于N

E

&相量在0o ~360o 围旋转。

由图可以看出电势差的有效值为

图3-32系统振荡时的电流和电压

(a) 相量图; (b) 电流有效值变化曲线;(c ) 电压有效值变化曲线

)

180

max o

=

N

E &

(a)

δ

(b)

δ

(c)

2sin

M E E =? (3-147)

所以线路电流的有效值为

2

sin 2δ∑∑=?=Z E Z E I M (3-148) 电流有效值随δ变化的曲线如图(b)所示。电流的相位

滞后于N

M E E E &&&-=?的角度为d ?,其相量末端的随δ变化的轨迹如图(a)中的虚线圆周所示。

假设系统中各部分的阻抗角都相等,则线路上任意一

点的电压相量的末端,都必然落在由M E &和N E &的末端连接而成的直线上(即E &?上)。M 、N 两母线处的电压相量M

U &和N U &标在图(a)中。 其有效值随δ变化的曲线,如图(c)所示。

在图(a)中,由o 点向相量E

&?作一垂线,并将该垂线代表的电压相量记为os

U &,显然,在δ为0以外的任意值时,电压os

U &都是全系统最低的,特别是当o 180=δ时,该电压的有效值变为0。电力系统振荡时,电压最低的这一点称为振荡中心,在系统各部分的阻抗角都相等的情况下,振荡中心的

位置就位于阻抗中心∑Z 21

处。由图(a)可见,振荡中心电压的

有效值可以表示为

2

cos

δ

M os E U = (3-149)

2.电力系统振荡时测量阻抗的变化规律

系统振荡时,安装在M 点处的测量元件的测量阻抗为

输电线路的距离保护习题答案

:___________ 班级: ___________ 序号:___________ 输电线路的距离保护习题 一、填空题: 1、常规距离保护一般可分 为、和三部分。 2、距离保护I段能够保护本线路全长的。 3、距离保护第Ⅲ段的整定一般按照躲开来整定。 4、阻抗继电器按比较原理的不同,可分为式 和式。 5、方向阻抗继电器引入非故障相电压的目的是为了__________________________________。 6、若方向阻抗继电器和全阻抗继电器的整定值相同,___________继电器受过渡电阻影响 大,继电器受系统振荡影响大。 7、全阻抗继电器和方向阻抗继电器均按躲过最小工作阻抗整定,当线路上发生短路时, _______________继电器灵敏度更高。 8、校验阻抗继电器精工电流的目的是__________________。 9、阻抗继电器的0°接线是指_________________,加入继电器的___________________。 10、助增电流的存在,使距离保护的测量阻抗,保护范 围,可能造成保护的。 11、根据《220~500kV电网继电保护装置运行整定规程》的规定,对50km以下的线路,相间距离保护中应有对本线末端故障的灵敏度不小于的延时保护。 二、选择题: 1、距离保护装置的动作阻抗是指能使阻抗继电器动作的。

(A)最小测量阻抗;(B)最大测量阻抗;(C)介于最小与最大测量阻抗之间的一个定值;(D)大于最大测量阻抗的一个定值。 2、为了使方向阻抗继电器工作在状态下,故要求继电器的最大灵敏角等于被保护线路的阻抗角。最有选择;(B)最灵敏;(C)最快速;(D)最可靠。 3、距离保护中阻抗继电器,需采用记忆回路和引入第三相电压的 是。 (A)全阻抗继电器;(B)方向阻抗继电器;(C)偏移特性的阻抗继电器;(D)偏移特性和方向阻抗继电器。 4、距离保护是以距离元件作为基础构成的保护装置。 (A)测量;(B)启动;(C)振荡闭锁;(D)逻辑。 5、从继电保护原理上讲,受系统振荡影响的有。 (A)零序电流保护;(B)负序电流保护;(C)相间距离保护;(D)相间过流保护。 6、单侧电源供电系统短路点的过渡电阻对距离保护的影响是。 (A)使保护范围伸长;(B)使保护范围缩短;(C)保护范围不变;(D)保护范围不定。 7、方向阻抗继电器中,记忆回路的作用是。 (A)提高灵敏度;(B)消除正向出口三相短路的死区;(C)防止反向出口短路动作;(D)提高选择性。 8、阻抗继电器常用的接线方式除了00接线方式外,还有。(A)900接线方式? (B)600接线方式? (C)300接线方式? (D)200接线方式 三、判断题: 1、距离保护就是反应故障点至保护安装处的距离,并根据距离的远近而确定动作时间的一种保护装置。() 2、距离Ⅱ段可以保护线路全长。() 3、距离保护的测量阻抗的数值随运行方式的变化而变化。() 4、方向阻抗继电器中,电抗变压器的转移阻抗角决定着继电器的最大灵敏角。() 5、阻抗继电器的最小精确工作电压,就是最小精确工作电流与电抗变压器转移阻抗值的乘积。() 6、在距离保护中,“瞬时测定”就是将距离元件的初始动作状态,通过起动元件的动作而固定下来,以防止测量元件因短路点过渡电阻的增大而返回,造成保护装置拒绝动作。()

距离保护地振荡闭锁

§3.5距离保护的振荡闭锁(Power Swing Blocking of Distance Protection ) §3.5.1振荡闭锁的概念(Concept of Power Swing Blocking ) 并联运行的电力系统或发电厂失去同步的现象,称为 电力系统的振荡(Power Swing )。电力系统振荡时,系统两 侧等效电动势间的夹角 在o o 360~0范围内作周期性变化, 从而使系统中各点的电压、线路电流、功率方向以及距离保护的测量阻抗也都呈现周期性变化。这样,以上述这些量为测量对象的各种保护的测量元件,就有可能因系统振荡而动作。 电力系统的振荡是属于严重的不正常运行状态,而不是故障状态,大多数情况下能够通过自动装置的调节自行恢复同步。如果在振荡过程中继电保护动作,切除了重要的联络线,或断开了电源和负荷,不仅不利于振荡的自动恢复,而且还有可能使事故扩大,造成更为严重后果。所以在系统振荡时,要采取必要的措施,防止保护因测量元件动作而误动。这种用来防止系统振荡时保护误动的措施,就称为振荡闭锁。 因电流保护、电压保护和功率方向保护等一般都只应用在电压等级较低的中低压配电系统,这些系统出现振荡的可能性很小,振荡时保护误动产生的后果也不会太严重,所以

一般不需要采取振荡闭锁措施。距离保护一般用在较高电压等级的电力系统,系统出现振荡的可能性大,保护误动造成的损失严重,所以必须考虑振荡闭锁问题。在无特殊说明的情况下,本书所提及的振荡闭锁,都是指距离保护的振荡闭锁。 §3.5.2 电力系统振荡对距离保护测量元件的影响(Effect of Power Swing to Measuring Unit of Distance Protection ) 1.电力系统振荡时电流、电压的变化规律 现以图3-31所示的双侧电源的电力系统为例,分析系 统振荡时电流、电压的变化规律。 设系统两侧等效电动势M E 和N E 的幅值相等,相角差(即功角)为δ,等效电源之间的阻抗为N l M Z Z Z Z ++=∑,其中M Z 为M 侧系统的等值阻抗,N Z 为N 侧系统的等值阻 抗,l Z 为联络线路的阻抗,则线路中的电流和母线M 、N 上的电压分别为: ∑ -∑∑-=?=-=Z e E Z E Z E E I j M N M )1(δ (3-144)

输电线路的距离保护习题答案42806资料

输电线路的距离保护习题答案42806

姓名:___________ 班级: ___________ 序号:___________ 输电线路的距离保护习题 一、填空题: 1、常规距离保护一般可分 为、和三部分。 2、距离保护I段能够保护本线路全长的。 3、距离保护第Ⅲ段的整定一般按照躲开来整定。 4、阻抗继电器按比较原理的不同,可分为式 和式。 5、方向阻抗继电器引入非故障相电压的目的是为了__________________________________。 6、若方向阻抗继电器和全阻抗继电器的整定值相同,___________继电器受过渡电阻影响 大,继电器受系统振荡影响大。 7、全阻抗继电器和方向阻抗继电器均按躲过最小工作阻抗整定,当线路上发生短路时, _______________继电器灵敏度更高。 8、校验阻抗继电器精工电流的目的是__________________。 9、阻抗继电器的0°接线是指_________________,加入继电器的___________________。 10、助增电流的存在,使距离保护的测量阻抗,保护范 围,可能造成保护的。 11、根据《220~500kV电网继电保护装置运行整定规程》的规定,对50km以下的线路,相间距离保护中应有对本线末端故障的灵敏度不小于的延时保护。 二、选择题: 1、距离保护装置的动作阻抗是指能使阻抗继电器动作的。

(A)最小测量阻抗;(B)最大测量阻抗;(C)介于最小与最大测量阻抗之间的一个定值;(D)大于最大测量阻抗的一个定值。 2、为了使方向阻抗继电器工作在状态下,故要求继电器的最大灵敏角等于被保护线路的阻抗角。最有选择;(B)最灵敏;(C)最快速;(D)最可靠。 3、距离保护中阻抗继电器,需采用记忆回路和引入第三相电压的 是。 (A)全阻抗继电器;(B)方向阻抗继电器;(C)偏移特性的阻抗继电器;(D)偏移特性和方向阻抗继电器。 4、距离保护是以距离元件作为基础构成的保护装置。 (A)测量;(B)启动;(C)振荡闭锁;(D)逻辑。 5、从继电保护原理上讲,受系统振荡影响的有。 (A)零序电流保护;(B)负序电流保护;(C)相间距离保护;(D)相间过流保护。 6、单侧电源供电系统短路点的过渡电阻对距离保护的影响是。 (A)使保护范围伸长;(B)使保护范围缩短;(C)保护范围不变;(D)保护范围不定。 7、方向阻抗继电器中,记忆回路的作用是。 (A)提高灵敏度;(B)消除正向出口三相短路的死区;(C)防止反向出口短路动作;(D)提高选择性。 8、阻抗继电器常用的接线方式除了00接线方式外,还有。 (A)900接线方式? (B)600接线方式? (C)300接线方式? (D)200接线方式 三、判断题: 1、距离保护就是反应故障点至保护安装处的距离,并根据距离的远近而确定动作时间的一种保护装置。() 2、距离Ⅱ段可以保护线路全长。( ) 3、距离保护的测量阻抗的数值随运行方式的变化而变化。() 4、方向阻抗继电器中,电抗变压器的转移阻抗角决定着继电器的最大灵敏角。()

相间距离保护

实验二 距离保护 (1)实验目的 1. 了解距离保护的原理; 2. 熟悉相间距离保护的圆特性; 3. 掌握距离保护的逻辑组态方法。 (2)实验原理及逻辑框图 1.距离保护的原理及整定方法; 由于电流保护整定值的选择、保护范围以及灵敏系数等方面都直接受电网接线方式及系统运行方式的影响,在35KV 及以上电压的复杂网络中,很难满足选择性、灵敏性以及快速切除故障要求,为此采用距离保护来实现。 距离保护是反应故障点至保护安装地点之间的距离(阻抗),并根据距离的远近而确定动作时间的一种保护装置。 距离保护的Ⅰ段: 它和电流保护的Ⅰ段很类似,都是按躲开下条线路出口处短路,保护装置不误动来整定,可靠系数一般取0.8-0.85。AB K dz Z K Z =?2 ' 距离保护的Ⅱ段: 按以下两点原则来整定: 1)与相邻线路距离保护第Ⅰ段相配合,)'(12 ''??+=dz fz AB K dz Z K Z K Z K K -----一般取0.8;fz K -------应采用当保护1第Ⅰ段末端短路时可能出现的最 小值。如果遇到有助增电流或外汲电流的影响,系数fz K 取小。 2)躲开线路末端变电所变压器低压侧出口处短路时的阻抗值。 K K -----一般取0.7;fz K -------应采用当短路时可能出现的最小值。 计算后,取以上两式中的较小一个,动作时限为下条线路一段配合,一般为0.5S 。 校验:灵敏度一般为≥1.25。 距离保护的Ⅲ段: 一般按躲开最小负荷阻抗来整定。 2.距离保护评价 1)可以在多电源复杂网络中保证动作的选择性。 2)距离Ⅰ段不能保护全长,两端合起来就是30%-40%的线路不能瞬时切除,须经0.5S 的延时才能切除,在220KV 及以上电网中有时候是不满足稳定性要求的,不能作为主保护。 3)由于阻抗继电器同时反应于电压的减低和电流的增加而动作,它较电流、电压保护灵敏。 4)距离Ⅰ段的保护范围不受系统运行方式变化影响,其他两段影响也小,保护范围比较稳定。 5)距离保护接线复杂,可靠性比电流保护低。

第四章距离保护

第四章距离保护 一、GB50062-92《电力装置的继电保护和自动装置设计规范》对距离保护的规定 (一)对110kV线路的下列故障,应装设相应的保护装置 (1)单相接地短路。 (2)相间短路。 (二)110kV线路装设相间短路保护装置的配置原则如下 (1)主保护的配置原则。在下列情况下,应装设全线速动的主保护。 1)系统稳定有要求时。 2)线路发生三相短路,使发电厂厂用电母线或重要用户电压低于额定电压的60%,且其他保护不能无时限和有选择性地切除短路时。 (2)后备保护的配置原则。11OkV线路后备保护配置宜采用远后备方式。 (3)根据上述110kV线路保护的配置原则,对接地短路,应装设相应的保护装置,并应符合下列规定: 1)宜装设带方向或不带方向的阶段式零序电流保护。 2)对某些线路,当零序电流保护不能满足要求时,可装设接地距离保护,并应装设一段或二段零序电流保护作后备保护。 (4)根据上述11OkV 线路保护的配置原则,对相间短路,应装设相应的保护装置,并应符合下列规定: 1)单侧电源线路,应装设三相多段式电流或电流电压保护。 2)双侧电源线路,可装设阶段式距离保护装置。 3)并列运行的平行线,可装设相间横联差动及零序横联差动保护作主保护。后备保护可按和电流方式连接。 4)电缆线路或电缆架空混合线路,应装设过负荷保护。保护装置宜动作于信号。当危及设备安全时,可动作于跳闸。 二、DL 400-91《继电保护和安全自动装置技术规程》规定 (一)ll0~220kV中性点直接接地电力网中的线路保护 (1)对相间短路,应按下列规定装设保护装置: 1)单侧电源单回线路,可装设三相电流电压保护,如不能满足要求,则装设距离保护; 2)双侧电源线路宜装设距离保护。 (2)对接地短路,可采用接地距离保护,并辅之以阶段式或反时限零序电流保护。 (二)330~500kV线路的后备保护 (1)对相间短路,后备保护宜采用阶段式距离保护。 (2)对接地短路,应装设接地距离保护并辅以阶段式或反时限零序电流保护,对中长线路,若零序电流保护能满足要求时,也可只装设阶段式零序电流保护。接地后备保护应保证在接地电阻不大于300Ω时,能可靠地有选择性地切除故障。 第一节距离保护概述 一、距离保护的原理 这种反应故障点到保护安装处之间的距离,并根据这一距离的远近决定动作时限的一种保护,称为距离保护。距离保护实质上是反应阻抗的降低而动作的阻抗保护。 二、距离保护的时限特性 距离保护的动作时限与故障点至保护安装处之间的距离的关系,称为距离保护的时限特性。目前广泛应用的是三段式阶梯时限特性的距离保护。距离保护的Ⅰ、Ⅱ、Ⅲ段与电流保护Ⅰ、Ⅱ、Ⅲ段相似。

继电保护距离保护特性原理说明

三电网距离保护 1距离保护基本原理与构成 1.距离保护的概念 短路时,电压电流同时变化,测量到电压与电流的比值就反映了故障点到保护安装处的距离, 短路时:电流增大、电压变小、 阻抗与电流的关系:故障点与保护安装处越近,阻抗越小,短路电流越大。 阻抗与距离的关系:阻抗与距离成正比,阻抗的单位是欧姆/公里。 距离保护与电流保护的关系:电流保护的范围与距离保护的范围大致相同,电流保护的范围就是用距离来衡量的,电流的保护范围实际反映的是距离的范围。距离与电流是统一的。但是,电流保护只用电流值来判断是否故障,距离保护使用电压、电流2个物理量来判断,因此,距离保护更准确。 2.测量阻抗、负荷阻抗、短路阻抗、整定阻抗、动作阻抗概念辨析? 负荷阻抗:正常运行条件下,额定电压与负荷电流的比值; 短路阻抗:短路发生后,保护安装处的残压与流过保护的短路电流的比值(线路的阻抗值);短路阻抗总小于负荷阻抗。 测量阻抗:继电器测量到的电压除以电流,得到的阻抗值;正常运行时,测量阻抗就是负荷阻抗,短路时,测量阻抗就是短路阻抗。测量阻抗能反应出运行状态。整定阻抗:能使继电器动作的最大阻抗,是一个定值。测量阻抗小于整定阻抗,继电器就动作。阻抗继电器是一个欠量继电器,电流继电器是过量继电器,测量电流大于整定电流时动作。这是一对对偶关系。 动作阻抗:阻抗继电器动作时,测量到的阻抗值。比如:人为设置整定阻抗是20Ω,只要测量到的阻抗值小于20就可以动作,今天动作了一次,一查故障记录,动作阻抗是10Ω,说明动作准确无误。 3.一次阻抗、二次阻抗区别? 这里要对比一次电流和二次电流的概念,道理是一样的。

一次阻抗:一次电压与一次电流的比值, 二次阻抗:二次电压与二次电流的比值, 4.测量阻抗角、负荷阻抗角、短路阻抗角、整定阻抗角、动作阻抗角概念辨析测量阻抗角:测量电压与测量电流的夹角 负荷阻抗角:负荷电压与负荷电流的夹角 短路阻抗角:短路电压与短路电流的夹角 动作阻抗角:继电器动作时,加入继电器的电压与电流的夹角。 整定阻抗角:能够使保护动作的最大灵敏角,这是人为设置的,其余都是测量到的。 5.距离保护的原理 与电流保护一样,需要满足选择性要求,分正方向动作和反方向不动作, 正方向的时候,还判断测量阻抗值,区内动作,区外不动作。 6.测量阻抗怎么表示? 测量阻抗是保护安装处测量的电压与测量电流之比。电压和电流都是向量,带方向的。 阻抗是一个复数,可以用极坐标表示或者用直角坐标表示。 7.测量阻抗在短路前后的差别 短路前:测量到的为负荷阻抗,Z=U/I,负荷电流比短路电流小,额定电压比短路残压高,所以,负荷阻抗值很大,阻抗角较小,功率因数不低于0.9,对应阻抗角不大于25.8度,以电阻性质为主。

距离保护的振荡闭锁

§3.5距离保护的振荡闭锁(Power Swing Blocking of Distance Protection) §3.5.1 振荡闭锁的概念 ( Concept of Power Swing Blocking) 并联运行的电力系统或发电厂失去同步的现象,称为电力 系统的振荡(Power Swing)。电力系统振荡时,系统两侧等效电动势间的夹角在0o~360o范围内作周期性变化,从而使系统中各点的电压、线路电流、功率方向以及距离保护的测量阻抗也都呈现周期性变化。这样,以上述这些量为测量对象的各种保护的测量元件,就有可能因系统振荡而动作。 电力系统的振荡是属于严重的不正常运行状态,而不是故障状态,大多数情况下能够通过自动装置的调节自行恢复同步。如果在振荡过程中继电保护动作,切除了重要的联络线,或断开了电源和负荷,不仅不利于振荡的自动恢复,而且还有可能使事故扩大,造成更为严重后果。所以在系统振荡时,要采取必要的措施,防止保护因测量元件动作而误动。这种用来防止系统振荡时保护误动的措施,就称为振荡闭锁。 因电流保护、电压保护和功率方向保护等一般都只应用在 电压等级较低的中低压配电系统,这些系统出现振荡的可能性很小,振荡时保护误动产生的后果也不会太严重,所以

一般不需要采取振荡闭锁措施。距离保护一般用在较高电压等级的电力系统,系统出现振荡的可能性大,保护误动造成的损失严重,所以必须考虑振荡闭锁问题。在无特殊说明的情况下,本书所提及的振荡闭锁,都是指距离保护的振荡闭锁。 §3.5.2电力系统振荡对距离保护测量元件的影响(Effect of Power Swing to Measuring Unit of Distanee Protectio n) 1电力系统振荡时电流、电压的变化规律 现以图3-31所示的双侧电源的电力系统为例,分析系统振荡时电流、电压的变化规律。 E M M KZ I N E N E之——------------------ 1U 图3-31双侧电源的电力系统 设系统两侧等效电动势E M和E N的幅值相等,相角差 (即功角)为,等效电源之间的阻抗为Z Z M乙Z N,其中Z M为M侧系统的等值阻抗,Z N为N侧系统的等值阻抗,乙为联络线路的阻抗,则线路中的电流和母线M、N上 的电压分别为: E M E N_E E M (1 e」) (3-144)

特高压输电线路继电保护特殊问题简析

特高压输电线路继电保护特殊问题简析 摘要:社会的飞速发展对电力的需求量也越来越大,为了提高电能传送能力, 实现大功率的中、远距离电能传送,以及实现远距离的电力系统互联,所以就广 泛应用特高压电能传送线路。但是在应用中继电保护存在一些问题,下面对特高 压电能传送线路继电保护特殊问题进行分析探讨,提出相关的解决措施,进而促 进特高压电能传送线路的安全应用。 关键词:特高压电能传送线路;继电保护;问题;解决措施 前言 为了不断提高逐步增强的电力能源供应需要,电力网电位差等级持续增强,1000kV及以 上的特高压电能传送线路也愈发得到了人们的重视。国际上已经在二十世纪七十年代就对特 高压电能传送线路的科技因素采取了探索,因为特高压电能传输线路的进展时速相当平缓, 许多高压电能传送线路只能经过低电位差完成它自身的传输,这针对特高压电能传送线路继 电保养的稳定传输就有着非常高的条件,假如单纯依赖低压电能传送线路的继电保养没有办 法完成对特高压电能传送线路的维护保养。 一、特高压电能传送线路继电保护的影响因素 1、电容分布较大 相对来说,会在特高压电能传送系统中安排分裂导线,因为它在电容上的分布是比较大的,所以分布的电流也就相对来说比较大。其电能传送线路外部有故障出现的时候,两侧的 故障和幅值都会在电容电流的作用下有着相应的改变和变化,这样就将厂方向和相位比较式 在操作上出现的错误性增大。在正常的电能传送过程中,由于安装在电能传送线路两端的测 量电流是电容电流与电容电流的向量之和,因此很容易产生相位差,从而在比较两侧的电流 相位保护时产生错误操作。 2、电能传送电压与电流互感器问题 与电磁式电压互感器相比之下,电容式电压互感器受到的暂态过程的影响是比较大的, 所以在特高压电能传送线路中使用电容式的电压互感器不能够快速并且精准的将一次电压的 变化反应出来。当电容量增大的时候,电能传送电压的衰减速度就会出现降低,所造成的误 差也会随着电容量的增大而增大。在进行实践的过程中,我们知道电容式电压互感器的误差 是不能够忽略的,电容式电压传感器的误差对电能传送线路的保护速度有着严重的影响,特 别是作为电能传送线路末端的保护有着明显的影响。 3、位置问题 特高压电能传送线路需要将远距离的电力进行传送,在传送的过程中一定需要大功率才 能完成,这也就将电能传送线路的负荷增大。通常来说,在进行正常的运输时,其负荷会在 极限值附近稳定。经过实践得知,若将电能传送线路的大功率保障起来,在外部也不会有系 统振荡的问题出现,那么就需要将故障以最快的速度除掉,这样也就是在对系统保护的工作 上有了更高更细致的要求。同时,由于各方面的因素有着一定的限制,特高压电能传送线路 很容易的出现位置的问题,出现了位置的更换,也就将三相电能传送线路参数出现不对称。 二、特高压电能传送线路电流纵联差动保护 1、电容电流补偿方法 电量电流强度弥补措施的完成,基本上是利用特高压电能传送线路中的参照数设计标准,依据各种线路等级、在各种线路两头把它出现的电流强度电量采取删除降低,获得的信息结 论便可以在之后进一步跟进节点电流定律,此种措施一样也是完成电线两端装置纵向联结起 来的基本规律。对于电流电容补偿方法来说,通常包括全补偿和半补偿两种基本的方式。两 种补偿方法在理论上都能实现,主要是根据线路运行的需要来确定采用全补偿方式还是采用 半补偿方式。 2、差动保护新原理 虽然弥补法在必然层面上可以加强特高压电子回路实施的输送,可是面对部分问题判断 依然存在着部分没有办法察觉的盲点,面对这种情况,就提议了有关差动保护的新规律。在

线路保护介绍

保护配置 基本配置 系统差异 接地系统和不接地系统的差异 分相保护和不分相保护的差异:不一致、单跳、单重 电压的差异:电容电流和末端过电压、网架中心和重要程度 功能介绍 距离保护: 距离元件采用比相式姆欧继电器,即由工作电压Uop 与极化电压Up 构成比相方程。 比相式距离继电器的通用动作方程为:0 09090<<-P OP U U Arg 式中:工作电压 OP set U U I Z =-?,极化电压1P U U =-。 对接地距离继电器,工作电压为: ()set OP Z I K I U U ??+-=ΦΦΦ03 对相间距离继电器,工作电压为: set OP Z I U U ?-=ΦΦΦΦΦΦ 装置中三段式接地与相间距离继电器,在正序极化电压较高时由正序电压极化否则进入三相低压程序,此时采用记忆正序电压作为极化电压。 采用非记忆的正序电压作为极化电压,故障期间,正序电压主要由健全相电压形成,正

序电压同故障前保持一致,继电器具有很好的方向性。 距离保护正方向故障动作特性 应用于较短输电线路时,为了提高抗过渡电阻能力,极化电压中使用了接地距离偏移角如图中所示θ1,该定值可以由用户整定为0°, 15° 或 30°。接地距离偏移角会使动作特性圆向第一象限移动。 虽然这可提高测量过渡电阻的能力,在高阻接地故障条件下保证很好的动作性能,但是如果在线路对侧存在助增电源的情况下,对于经过渡电阻接地的故障可能会出现超越现象。为了防止超越,通常距离保护Ⅰ、Ⅱ段和零序电抗元件配合使用。 零序电抗 工作电压: ()s e t OP Z I K I U U ??+-=ΦΦΦ03 极化电压: D P Z I U ?-=Φ0,式中D Z 为模拟阻抗,幅值为1,角度为78°。 比相方程为 ()0 00090390

第四节-影响距离保护正确工作的因素及采取的防止措施

第四节 影响距离保护正确工作的因素及采取的防止措施 一、短路点过渡电阻对距离保护的影响 保护1的测量阻抗为g R ,保护2的测量阻抗为g AB R Z +。由图(b)可见,当g R 较大时,可能出现1.J Z 已超出保护1第Ⅰ段整定的特性圆范围,而2.J Z 仍位于保护2第Ⅱ段整定的特性圆范围以内。此时保护1和保护2将同时以第Ⅱ段的时限动作,因而失去了选择性。 结论:保护装置距短路点越近时,受过渡电阻的影响越大,同时保护装置的整定值越小,则相对地受过渡电阻的影响也越大。 对图3—36(a ) 所示的双侧电源的网络,短路点的过渡电阻可能使量阻抗 增大,也可能使测量阻抗减小。 保护1和保护2的测量阻抗分别为 式中 α—d I 超前1d I 的角度。 当α为正时,测量阻抗增大,当α为负时,测量阻抗的电抗部分将减小。在后一种情况下,可能导致保护无选择性的动作。过渡电阻主要是纯电阻性的电弧电阻R g ,且电弧的长度和电流的大小都随时间而变化,在短路开始瞬间电弧电流很大,电弧的长度很短,R g 很小。随着电弧电流的衰减和电弧长度的增长,R g 随着增大,大约经0.1~0.15秒后,R g 剧烈增大。 减小过渡电阻对距离保护影响的措施 (1)采用瞬时测定装置 它通常应用于距离保护第Ⅱ段。原理接线如图3—37所示。 (2)采用带偏移特性的阻抗继电器 保护2的测量阻抗Zcl2=Zd+Rg 当过渡电阻达Rg1时,具有椭圆特性的阻抗继电器开始拒动。 当过渡电阻达Rg2时,方向阻抗继电器开始拒动。 当过渡电阻达Rg3时,全阻抗继电器开始拒动。 结论:阻抗继电器的动作特性在+R 轴方向所占的面积越大则受过渡电阻的影响越小。 采用能容许较大的过渡电阻而不致拒动的阻抗继电器,如偏移特性阻抗继电器等。 二、电力系统振荡对距离保护的影响及振荡闭锁回路 (一)电力系统振荡时电流、电压的分布 图3-38为简化系统等值电路图, 当系统发生振荡时,设M E 超前于N E 的相位角为δ,E E E N M == ,且 系统中各元件的阻抗角相等,则振荡电流为 ∑-=++-=Z E E Z Z Z E E I N M N L M N M zh =∑δ--Z )e 1(E j 振荡电流滞后于电势差N M E E -的角度为系统振荡阻抗角为 N M Z M E 图3-38 系统振荡的等值图

(完整word版)《电力系统继电保护》课程教学大纲

《电力系统继电保护》课程教学大纲 一、课程简介 课程名称:电力系统继电保护 英文名称:Principles of Power System Protection 课程代码:0110355 课程类别:专业课 学分:4 总学时:52(52理论+12实验) 先修课程:电路、电子技术、电机学、电力系统分析 课程概要: 《电力系统继电保护》是理论与实践并重的一门课程,是从事电力系统工作的人员必须掌握的一门专业课程,主要介绍电力系统继电保护的构成原理、运行特性及分析方法。其目的和任务是使学生掌握电力系统继电保护的基本原理、整定计算及其运行分析方法,为学生毕业后从事电力系统及相关领域的设计制造、运行维护和科学研究工作打下理论及实践基础。 二、教学目的及要求 本课程的教学目的是:本课程是在分析复杂的电力系统故障状态的前提下讲述保护构成原理、配置及动作行为的,并配以一定的实验。故而是一门理论与实践并重的学科。使学生深刻理解继电保护在电力系统中所担负的任务,并通过本课程学习,掌握电力系统继电保护的基本原理,基本概念,考虑和解决问题的基本方法及基本实验技能,为毕业后从事本专业范围内的各项工作奠定专业基础。 通过本课程的学习要求同学们掌握电力系统的基本知识;通过课程教学,使学生掌握电流保护、方向性电流保护、距离保护和差动保护等几种常用保护的基本工作原理、实现方法和应用范围、整定计算的基本原则和保护之间的配合关系;使学生了解电力系统各主要一次主设备(发电机、变电器、母线、送电线路)的故障类型,不正常运行状态及各自的保护方式;使学生了解各种继电器(电流、方向、阻抗)的构成原理、实现方法、动作特性和一般调试方法,熟悉常用继电保护的实验方法。 三、教学内容及学时分配 第一章绪论(4学时) 掌握电力系统继电保护的任务、基本原理、基本要求及发展概况。 重点:继电保护的任务、对继电保护的基本要求。

第三章距离保护

第三章:电网距离保护 1.距离保护的定义和基本原理: 距离保护:是利用短路时电压、电流同时变化的特征,测量电压与电流的壁纸,反映故障点到保护安装处的距离而工作的保护。 基本原理:按照继电保选择性的要求,安装在线路两端的距离保护仅在下路MN内部故障时,保护装置才应该立即动作,将相应的断路器跳开,而在保护区的反方向或本线路之外正方向短路时,保护装置不应动作。 与电流速断保护一样,为了保证在下级线路的出口处短路时保护不误动作,在保护区的正方向(对于线路MN的M侧保护来说,正方向就是由M指向N的方向)上设定一个小于本线路全长的保护范围,用整定距离Lset来表示。 当系统发生短路故障时,首先判断故障的方向,若故障位于保护区的正方向上,则设法测出故障点到保护安装处的距离Lk,并将Lk与Lset相比较,若Lk小于Lset,说明故障发生在保护范围之内,这时保护应立即动作,跳开相应的断路器;若L K大于Lset,说明故障发生在保护范围之外,保护不应动作,对应的断路器不会跳开。若故障位于保护区的反方向上,则无需进行比较和测量,直接判断为区外故障而不动作。} 通常情况下,距离保护可以通过测量短路阻抗的方法来间接地测量和判断故障距离。 2.几种继电器的方式: 苹果特性:有较高的耐受过渡电阻的能力,耐受过负荷的能力比较差;橄榄特性正好相反。电抗特性:动作情况至于测量阻抗中的电抗分量有关,与电阻无关,因而它有很强的耐过渡电阻的能力。但是它本身不具有方向性,且在负荷阻抗情况下也可能动作,所以通常它不能独立应用,而是与其他特性复合,形成具有复合特性的阻抗原件。 电阻特性:通常也与其他特性复合,形成具有复合特性的阻抗原件。 多边形特性:能同时兼顾耐受过渡电阻的能力和躲负荷的能力。 3测量阻抗:Zm定义为保护安装处测量电压Um&与测量电流Im&之比,即Um&/Im& 动作阻抗:使阻抗原件处于临界动作状态对应的阻抗(Zop)。 Zset1的阻抗角称为最灵敏角。最灵敏角一般取为被保护线路的阻抗角 短路阻抗:Zk=Z1Lk(单位长度线路的复阻抗与短路距离的乘积) 整定阻抗:Zset=Z1Lset 4.负荷阻抗与短路阻抗的区别:负荷阻抗的量值较大,其阻抗角为数值较小的功率因数角,阻抗特性以电阻性为主。短路阻抗的阻抗角就等于输电线路的阻抗角,数值较大,阻抗特性以电感性为主。 5.测量电压的选取和测量电流的选取:要取故障环路上的电压、电流。 为保护接地短路,取接地短路的故障环路为相-地故障环路,测量电压为保护安装处故障相对地电压,测量电流为带有零序电流补偿的故障相电流,由它们算出的测量阻抗能够准确反应单相接地故障、两相接地故障和三相接地短路情况下的故障距离,称为接地距离保护接线方式。 对于相间短路,故障环路为相-相故障环路,取测量电压为保护安装处两故障相的电压差,测量电流为两故障相的电流差,由它们算出的测量阻抗能够准确反应两相短路、三相短路和两相短路接地情况下的故障距离,称为相间距离保护接线方式。

1、距离保护的第Ⅲ段不受振荡闭锁控制,主要是第Ⅲ段的延时来躲(精)

1、距离保护的第Ⅲ段不受振荡闭锁控制,主要是*第Ⅲ段的延时来躲过振荡。(√) 2、对联系较弱的,易发生振荡的环形线路,应加装三相重合闸,对联系较强的线路应加装单相重合闸。(×) 3、断路器的失灵保护主要是由启动回路、时间元件、电压闭锁、跳闸出口回路四部分组成。(√) 4、同期并列时,两侧断路器电压相差小于25%,频率相差1Hz范围内,即可准同期并列。(×) 5、变压器差动保护在新投运前应带负荷测量向量和差电压。(√) 6、新安装的电流互感器极性错误会引起保护装置误动作。(√) 7、新投运的变压器做冲击试验为两次,其他情况为一次。(×) 8、零序电流保护接线简单可*,配以零序方向继电器,一般在中长线路中,灵敏度可满足要求。(√) 9、真空断路器是指触头在空气中开断电路的断路器。(×) 10、变压器油枕中的胶囊起使油与空气隔离和调节内部油压的作用。(√) 11、当变压器三相负载不对称时,将出现负序电流。(√) 12、变压器铭牌上的阻抗电压就是短路电压。(√) 13、在非直接接地系统正常运行时,电压互感器二次侧辅助绕阻的开口三角处有100V 电压。(×) 14、电压互感器的二次侧和电流互感器的二次侧可以互相连接。(×) 15、电流互感器的二次负载根据10%误差曲线来确定。当误差不能满足要求时,该电流互感器不能使用。(√) 16、电流互感器二次绕组串联后变比不变,容量增加一倍。(√) 17、电抗器的作用是抑制高次谐波,降低母线残压。(×) 18、在SF6断路器中,密度继电器指示的是SF6气体的压力值。(√) 19、系统中发生接地故障时,应将消弧线圈退出运行。(×) 20、电容器组跳闸后不能立即合闸,应间隔1min再合闸。(×)

浅析输电线路距离保护的运用问题及解决

浅析输电线路距离保护的运用问题及解决 摘要:电流电压保护的主要优点是简单、经济及工作可靠。但是由于这种保护 整定值的选择、保护范围以及灵敏系数等方面都直接受电网接线方式及系统运行 方式的影响,所以在35kV及以上电压的复杂网络中,它们都很难满足选择性、 灵敏性及快速切除故障的要求。为此,就必须采用性能更加完善的保护装置,而 距离保护就是适应这种要求的一种保护。 关键词:距离保护;并联电抗器;保护死区;故障距离 1.距离保护的基本概念 距离保护是反应故障点至保护安装地点之间的距离(或阻抗),并根据距离 的远近而确定动作时间的一种保护装置。该装置的核心部件为距离或阻抗继电器,或称距离或阻抗原件。对于单相补偿式,所谓I类阻抗继电器,它可根据其端子 上所加的一个电压和一个电流测知保护安装处至短路点间的阻抗值,但可根据其 端子上所加的电压和电流值间接测定保护安装处至短路点之间的距离。由这两种 距离或阻抗继电器构成的距离保护都是在短路点距保护安装处近时,动作时间短;当短路点距保护安装处远时,动作时间增长。这样就能保证了保护有选择性地切 除故障线路。 2.并联电抗器对距离保护的影响 2.1 并联电抗器的接线分析 由于并联电抗器可以补偿线路的对地电容,消除电容效应,在高压输电线路 上为了限制过电压,一般都装设有一定容量的并联电抗器。按照容量定义的并联 电抗器补偿度为: Zo、Zl分别为单位长度线路的零序阻抗和正序阻抗。 2.3 整定值的定性分析 K值则为准确系数,取大于1,其值的大小直接能够影响距离保护的范围。其值越大保护范围越小,其值越接近于1则保护范围越大。 结合2.1节的分析,无论输电线路或并联电抗器内部发生短路故障,首先需 保证保护动作第一时间跳开线路断路器,那么K值的选择则尤为重要。 假设距离保护定值为It,输电线路全段阻抗值为Zl,并联电抗器阻抗为Zr。 2.3.1 当线路阻抗大于并联电抗器阻抗 当线路阻抗大于并联电抗器阻抗时,即Zl>Zr,此时K的取值只需考虑线路阻 抗等于电抗器阻抗Zr点至Zl线路全长之间,也就时说此时由于线路的阻抗值能 够大于电抗器阻抗,电抗器的全段可以考虑在保护范围内,短路电流点可以选择 在线路阻抗等于电抗器阻抗的点之后。当然如果线路阻抗值只是略大于阻抗值, 此时K值的选择则会非常接近于1,从而导致线路距离保护的选择性降低,可能 导致误动。实际上,从并联电抗器的功能上来分析,一般情况下如果该线路需并 联电抗器,除考虑升压要求外,并联电抗器的电抗一般会远远小于线路的阻抗值。 2.3.2 当线路阻抗值小于并联电抗器阻抗 当线路阻抗值小于并联电抗器阻抗时,此时以线路阻抗为基准,并考虑正确 的选择性,牺牲一定的线路保护范围,即K值大于1,使得距离保护无法保护电 抗器的全段,意味着电抗器绕组接近末端中性点位置发生短路故障时,距离保护 则无法动作。即使这样,从合理性角度考虑,线路的距离保护也不能为保证能够 保护到电抗器全段降低整定值电流,从而使得线路距离保护失去选择性,出现不 合理的越级跳闸。介于此,可考虑在电抗器并联分支增设过流保护,这样可保证

影响距离保护正确工作的因素及防止方法

影响距离保护正确工作的因素及防止方法 影响距离保护正确工作的因素: 一,短路点过度电阻的影响 二,电力系统震荡的影响 三,电压回路断线的影响 四,串联电容补偿的影响 五,其他因素的影响 一,短路点过度电阻的影响 过度电阻的存在,使得距离保护的测量阻抗发生变化,一般情况下,会使保护范围缩短,有时也会引起保护的超范围动作,或反方向误动作。 例如:①下图中,BC始端经过度电阻Rt短路 (图5-48、图5-49) 若Rt较大,Zk1会超出保护1的Ⅰ段整定范围,而Zk2仍位于保护2的Ⅱ端段,这时,保护1、保护2的Ⅱ段将同时动作,将B母线切除,扩大了停电范围。 因此,我们可以得出:保护装置离保护点越近,受过度电阻影响就越大;保护装置整定值越小,受过度电阻影响就越大。(所谓手过

度电阻影响大是指,一个较小的过度电阻就有可能使测量阻抗超出整定范围。) ②对于不同动作特性的阻抗继电器,过度电阻对其影响也是不同的,如图: (图5-51) 当Rt逐渐增大时,测量阻抗依次超出透镜型阻抗继电器、方向性阻抗继电器、全阻抗继电器的整定范围。 因此,我们可以得出:在R轴正方向上动作特性所占面积越大,受过度电阻的影响就越小。 针对以上讨论结果,我们可以采取一些方法和手段来防止过度电阻的影响: ⑴采用合适的阻抗继电器 过度电阻大多是纯电阻,因此我们可以采用(图5-13c)所示的阻抗继电器,只要电抗值不超出整定范围,阻抗继电器不会拒动。 利用多边形阻抗继电器可以灵活整定的特点,我们可以使继电器不发生拒动(图5-14) (图5-52)a所示动作特性既容许在接近保护范围末端发生短路时有较大的过度电阻,又能防止在正常运行情况下,负荷阻抗较小时阻抗继电器误动作;b所示动作特性既可以满足相间短路时过度电阻较小的情况,又能满足接地短路时过度电阻较大的情况。 ⑵利用瞬时测量回路固定阻抗继电器动作 所谓固定阻抗继电器动作,即使其动作只反映短路瞬时的过度

输电线路的距离保护习题答案

姓名:___________ 班级: ___________ 序号:___________ 输电线路的距离保护习题 一、填空题: 1、常规距离保护一般可分为、和三部分。 2、距离保护I段能够保护本线路全长的。 3、距离保护第Ⅲ段的整定一般按照躲开来整定。 4、阻抗继电器按比较原理的不同,可分为式和式。 5、方向阻抗继电器引入非故障相电压的目的是为了__________________________________。 6、若方向阻抗继电器和全阻抗继电器的整定值相同,___________继电器受过渡电阻影响大,继电器受系统振荡影响大。 7、全阻抗继电器和方向阻抗继电器均按躲过最小工作阻抗整定,当线路上发生短路时, _______________继电器灵敏度更高。 8、校验阻抗继电器精工电流的目的是__________________。 9、阻抗继电器的0°接线是指_________________,加入继电器的___________________。 10、助增电流的存在,使距离保护的测量阻抗,保护范围,可能造成保护的。 11、根据《220~500kV电网继电保护装置运行整定规程》的规定,对50km以下的线路,相间距离保护中应有对本线末端故障的灵敏度不小于的延时保护。 二、选择题: 1、距离保护装置的动作阻抗是指能使阻抗继电器动作的。 (A)最小测量阻抗;(B)最大测量阻抗;(C)介于最小与最大测量阻抗之间的一个定值;(D)大于最大测量阻抗的一个定值。 2、为了使方向阻抗继电器工作在状态下,故要求继电器的最大灵敏角等于被保护线路的阻抗角。最有选择;(B)最灵敏;(C)最快速;(D)最可靠。

距离保护基本原理

距离保护的基本原理线路正常运行时:Z=U/I= Z1L+Z L d≈Z L d Z=U/I=Z1L+Z L d≈Z L d为负荷阻抗值大角度在30°左右 线路故障时:Z=U/I=Z1L k=Z k 为故障点到保护安装处的线路阻抗即短路阻抗值小角度在60°~90°左右 利用线路故障时阻抗下降的特点构成 低阻抗保护习惯称距离保护 ?特点: 保护区基本不受系统运行方式的影响 能够区分短路与负荷状态?应用: 110K V及以上线路 基本原理?概念 距离保护-反应故障点至保护安装处的阻抗(距离)并根据阻抗的大小(距离的远近) 确定动作时限的保护。用符号表示。 测量阻抗-保护安装处母线电压与流过保护的电流的比值。又称为感受阻抗。Z M=U/I 整定阻抗-当Φs e t=Φz L 时保护区末端至保护安 装处的线路阻抗。用符号Z s e t表示?基本原理①线路正常运行时:Z M=Z L d>Z s e t保护不启动 ②线路故障时:Z M=Z1L k =Z k>Z s e t保护不启动Z M=Z1L k=Z k≤Z s e t 保护启动 ③启动后的保护动作时限与距离有关保护1:Z M1=Z A B+Z1L k=Z1(L A B+L k) 保护2:Z M2=Z1L k 距离长时限长,距离短时限短,从而保证选 择性 ?基本原理 ①线路正常运行时:Z M=Z L d>Z s e t保护不启动 ②线路故障时:Z M=Z1L k =Z k>Z s e t保护不启动 Z M=Z1L k=Z k≤Z s e t保护启动③启动后的保护动作时限 与距离有关保护1:Z M1 =Z A B+Z1L k= Z1(L A B+L k) 保护2:Z M2=Z1L k 距离长时限长,距离 短时限短,从而保证选 择性三段式距离保 护?组成 距离Ⅰ段:ZⅠs e t.1= K r e l×Z A B K r e l-可靠 系数取0.8~0.85 可保护线路全长的 (80~85)%瞬时动作 距离Ⅱ段:Z Ⅱ s e t.1= K r e l×(Z A B+Z Ⅰ s e t.2) t Ⅱ 1=t Ⅰ 2+ Δt=0.5s 可保护线路全长及下 级线路始端的一部分 距离Ⅲ段:整定阻抗按躲 过线路的最小负荷阻抗整 定 动作时 限按阶梯时限原则确定 保护区较广包括 本级、下级甚至更远 一般Ⅰ、Ⅱ段作为主保 护,Ⅲ段作为后备保护 ?主要元件及其作用 1.电压二次回路断线闭锁 元件:TV二次断线时将 保护闭锁 2. 起动元件:被保护线路 发生短路时立即起动保 护,判断是否是保护范围 内的故障。 3.测量元件:测量短路点 到保护安装处的阻抗,决 定保护是否动作。 4. 振荡闭锁元件:也可以 理解为故障开放元件。在 系统振荡时将保护闭锁。 5.时间元件:设置必要的 延时以满足选择性。?工作 情况 ①正常运行时 起动元件及测 量元件ZⅠ、ZⅡ、ZⅢ均 不动作,距离保护可靠不 动作。 ②线路故障时 起动元件动 作,振荡闭锁元件开放, 测量元件ZⅠ、ZⅡ、ZⅢ 测量至保护安装处的阻 抗,在其保护范围内时动 作,保护出口跳闸。 ③T V二次断线 闭锁保护并发 出断线信号 ④系统振荡 起动元件不动 作,振荡闭锁元件不开放, 将保护闭锁

相关文档
最新文档