Ⅲ族氮化物半导体材料

Ⅲ族氮化物半导体材料
Ⅲ族氮化物半导体材料

in族氮化物半导体材料

Zhe Chuan Feng Taiwan University , China n -Nitride SemiconductorMaterials2006 ,428pp.Ha rdcove r

USDl20.00ISBN 1-86094-636-4Imperial College Press

n族氮化物半导体材料(Al , In , Ga)N ,(包括GaN、InN、AlN 、InGaN 、AlGaN 和AIlnGaN 等)是性能优良、适宜制作半导体光电子和电子器件的材料。用这种材料研究发展的高功率、高亮度的蓝-绿-白发光管和蓝光激光器以及其他电子器件和光电子器件近几年来均有很大突破,有的已形成了产业。预期在本世纪内氮化物基的发光管有可能置换传统的钨丝灯,这在照明领域是一次革命,将会极大地影响人们的生活。

此书共有12 章,每章作者均是该领域的专家。全书内

容包括了n -N科学和技术的基础和各个重要的方面,主要内容有:1 n族氮化物材料的氢化物汽相外延; 2 n族氮化

物材料外延的平面MOVPE 技术; 3 GaN 和相关材料外延的紧耦合喷头MOCVD 技术; 4 n -N 材料的分子束外延; 5 非极性GaN 薄膜和异质结的生长和特性; 6 InN 的高压CVD 生长、适时和非原位持性;7 对InN 新的认识;8

AlxGal-xN 合金(x=0-1)的生长和光/电特性;9 M0CVD lnGaN/GaN

量子阱结构的光学研究;1O 掺SiInGaN/GaN 量子阱结构的簇状纳米结构和光学特性;11川族氮化物的

微结构和纳米结构;12 稀释氮化物半导体研究的新进展。

此书介绍了川族氮化物材料的一些重要性能和关键生长技术,指出了21世纪以来川族氮化物半导体的最新进展和还有待研究解决的问题。适合从事川族氮化物领域的研究、教学、工程技术人员以及研究生、大学生阅读和参考。

孔梅影,研究员

(中国科学院半导体研究所)

Kong Meiying ,Professor

(Institute of Semiconductors ,

the Chinese Academy of Sciences)

半导体材料发展情况

实用标准文案 1、硅材料 从提高硅集成电路成品率,降低成本看,增大直拉硅(CZ-Si)单晶的直径和减小微缺陷的密度仍是今后CZ-Si发展的总趋势。目前直径为8英寸(200mm)的Si单晶已实现大规模工业生产,基于直径为12英寸(300mm)硅片的集成电路(IC‘s)技术正处在由实验室向工业生产转变中。目前300mm,0.18μm工艺的硅ULSI生产线已经投入生产,300mm,0.13μm工艺生产线也将在2003年完成评估。18英寸重达414公斤的硅单晶和18英寸的硅园片已在实验室研制成功,直径27英寸硅单晶研制也正在积极筹划中。 从进一步提高硅IC‘S的速度和集成度看,研制适合于硅深亚微米乃至纳米工艺所需的大直径硅外延片会成为硅材料发展的主流。另外,SOI材料,包括智能剥离(Smart cut)和SIMOX材料等也发展很快。目前,直径8英寸的硅外延片和SOI材料已研制成功,更大尺寸的片材也在开发中。 理论分析指出30nm左右将是硅MOS集成电路线宽的“极限”尺寸。这不仅是指量子尺寸效应对现有器件特性影响所带来的物理限制和光刻技术的限制问题,更重要的是将受硅、SiO2自身性质的限制。尽管人们正在积极寻找高K介电绝缘材料(如用Si3N4等来替代SiO2),低K介电互连材料,用Cu代替Al 引线以及采用系统集成芯片技术等来提高ULSI的集成度、运算速度和功能,但硅将最终难以满足人类不断的对更大信息量需求。为此,人们除寻求基于全新原理的量子计算和DNA生物计算等之外,还把目光放在以GaAs、InP为基的化合物半导体材料,特别是二维超晶格、量子阱,一维量子线与零维量子点材料和可与硅平面工艺兼容GeSi合金材料等,这也是目前半导体材料研发的重点。

半导体材料课程教学大纲

半导体材料课程教学大纲 一、课程说明 (一)课程名称:半导体材料 所属专业:微电子科学与工程 课程性质:专业限选 学分: 3 (二)课程简介:本课程重点介绍第一代和第二代半导体材料硅、锗、砷化镓等的制备基本原理、制备工艺和材料特性,介绍第三代半导体材料氮化镓、碳化硅及其他半导体材料的性质及制备方法。 目标与任务:使学生掌握主要半导体材料的性质以及制备方法,了解半导体材料最新发展情况、为将来从事半导体材料科学、半导体器件制备等打下基础。 (三)先修课程要求:《固体物理学》、《半导体物理学》、《热力学统计物理》; 本课程中介绍半导体材料性质方面需要《固体物理学》、《半导体物理学》中晶体结构、能带理论等章节作为基础。同时介绍材料生长方面知识时需要《热力学统计物理》中关于自由能等方面的知识。 (四)教材:杨树人《半导体材料》 主要参考书:褚君浩、张玉龙《半导体材料技术》 陆大成《金属有机化合物气相外延基础及应用》 二、课程内容与安排 第一章半导体材料概述 第一节半导体材料发展历程 第二节半导体材料分类 第三节半导体材料制备方法综述 第二章硅和锗的制备 第一节硅和锗的物理化学性质 第二节高纯硅的制备 第三节锗的富集与提纯

第三章区熔提纯 第一节分凝现象与分凝系数 第二节区熔原理 第三节锗的区熔提纯 第四章晶体生长 第一节晶体生长理论基础 第二节熔体的晶体生长 第三节硅、锗单晶生长 第五章硅、锗晶体中的杂质和缺陷 第一节硅、锗晶体中杂质的性质 第二节硅、锗晶体的掺杂 第三节硅、锗单晶的位错 第四节硅单晶中的微缺陷 第六章硅外延生长 第一节硅的气相外延生长 第二节硅外延生长的缺陷及电阻率控制 第三节硅的异质外延 第七章化合物半导体的外延生长 第一节气相外延生长(VPE) 第二节金属有机物化学气相外延生长(MOCVD) 第三节分子束外延生长(MBE) 第四节其他外延生长技术 第八章化合物半导体材料(一):第二代半导体材料 第一节 GaAs、InP等III-V族化合物半导体材料的特性第二节 GaAs单晶的制备及应用 第三节 GaAs单晶中杂质控制及掺杂 第四节 InP、GaP等的制备及应用 第九章化合物半导体材料(二):第三代半导体材料 第一节氮化物半导体材料特性及应用 第二节氮化物半导体材料的外延生长 第三节碳化硅材料的特性及应用 第十章其他半导体材料

(整理)半导体基础知识.

1.1 半导体基础知识概念归纳 本征半导体定义:纯净的具有晶体结构的半导体称为本征半导体。 电流形成过程:自由电子在外电场的作用下产生定向移动形成电流。 绝缘体原子结构:最外层电子受原子核束缚力很强,很难成为自由电子。 绝缘体导电性:极差。如惰性气体和橡胶。 半导体原子结构:半导体材料为四价元素,它们的最外层电子既不像导体那么容易挣脱原子核的束缚,也不像绝缘体那样被原子核束缚得那么紧。 半导体导电性能:介于半导体与绝缘体之间。 半导体的特点: ★在形成晶体结构的半导体中,人为地掺入特定的杂质元素,导电性能具有可控性。 ★在光照和热辐射条件下,其导电性有明显的变化。 晶格:晶体中的原子在空间形成排列整齐的点阵,称为晶格。 共价键结构:相邻的两个原子的一对最外层电子(即价电子)不但各自围绕自身所属的原子核运动,而且出现在相邻原子所属的轨道上,成为共用电子,构成共价键。 自由电子的形成:在常温下,少数的价电子由于热运动获得足够的能量,挣脱共价键的束缚变成为自由电子。 空穴:价电子挣脱共价键的束缚变成为自由电子而留下一个空位置称空穴。 电子电流:在外加电场的作用下,自由电子产生定向移动,形成电子电流。 空穴电流:价电子按一定的方向依次填补空穴(即空穴也产生定向移动),形成空穴电流。 本征半导体的电流:电子电流+空穴电流。自由电子和空穴所带电荷极性不同,它们运动方向相反。 载流子:运载电荷的粒子称为载流子。 导体电的特点:导体导电只有一种载流子,即自由电子导电。 本征半导体电的特点:本征半导体有两种载流子,即自由电子和空穴均参与导电。 本征激发:半导体在热激发下产生自由电子和空穴的现象称为本征激发。 复合:自由电子在运动的过程中如果与空穴相遇就会填补空穴,

半导体材料的发展现状与趋势

半导体材料与器件发展趋势总结 材料是人类社会发展的物质基础与先导。每一种重大新材料的发现和应用都把人类支配自然的能力提高到一个全新的高度。材料已成为人类发晨的里程碑。本世纪中期单晶硅材料和半导体晶体管的发明及其硅集成电路的研究成功,导致了电子工业大革命。使微电子技术和计算机技术得到飞速发展。从20世纪70年代的初期,石英光纤材料和光学纤维的研制成功,以及GaAs等Ⅲ-Ⅴ族化合物的材料的研制成功与半导体激光器的发明,使光纤通信成为可能,目前光纤已四通八达。我们知道,每一束光纤,可以传输成千上万甚至上百万路电话,这与激光器的发明以及石英光纤材料、光纤技术的发展是密不可分的。超晶格概念的提出MBE、MOCVD先进生长技术发展和完善以及超品格量子阱材料包括一维量子线、零维量子点材料的研制成功。彻底改变了光电器件的设计思想。使半导体器件的设计与制造从过去的杂质工程发展到能带工程。出现了以“电学特性和光学特性的剪裁”为特征的新范畴,使人类跨入到以量子效应为基础和低维结构为特征的固态量子器件和电路的新时代,并极有可能触发新的技术革命。半导体微电子和光电子材料已成为21世纪信息社会的二大支柱高技术产业的基础材料。它的发展对高速计算、大容量信息通信、存储、处理、电子对抗、武器装备的微型化与智能化和国民经济的发展以及国家的安全等都具有非常重要的意义。 一、几种重要的半导体材料的发展现状与趋势 1.硅单晶材料 硅单晶材料是现代半导体器件、集成电路和微电子工业的基础。目前微电子的器件和电路,其中有90%到95%都是用硅材料来制作的。那么随着硅单晶材料的进一步发展,还存在着一些问题亟待解决。硅单晶材料是从石英的坩埚里面拉出来的,它用石墨作为加热器。所以,来自石英里的二氧化硅中氧以及加热器的碳的污染,使硅材料里面包含着大量的过饱和氧和碳杂质。过饱和氧的污染,随着硅单晶直径的增大,长度的加长,它的分布也变得不均匀;这就是说材料的均匀性就会遇到问题。杂质和缺陷分布的不均匀,会使硅材料在进一步提高电路集成度应用的时候遇到困难。特别是过饱和的氧,在器件和电路的制作过程中,它要发生沉淀,沉淀时的体积要增大,会导致缺陷产生,这将直接影响器件和电路的性能。因此,为了克服这个困难,满足超大规模集成电路的集成度的进一步提高,人们不得不采用硅外延片,就是说在硅的衬底上外延生长的硅薄膜。这样,可以有效地避免氧和碳等杂质的污染,同时也会提高材料的纯度以及掺杂的均匀性。利用外延方法,还可以获得界面非常陡、过渡区非常窄的结,这样对功率器件的研制和集成电路集成度进一步提高都是非常有好处的。这种材料现在的研究现状是6英寸的硅外延片已用于工业的生产,8英寸的硅外延片,也正在从实验室走向工业生产;更大直径的外延设备也正在研制过程中。 除此之外,还有一些大功率器件,一些抗辐照的器件和电路等,也需要高纯区熔硅单晶。区熔硅单晶与直拉硅单晶拉制条件是不一样的,它在生长时,不与石英容器接触,材料的纯度可以很高;利用这种材料,采用中子掺杂的办法,制成N或P型材料,用于大功率器件及电路的研制,特别是在空间用的抗辐照器件和电路方面,它有着很好的应用前景。当然还有以硅材料为基础的SOI材料,也就是半导体/氧化物/绝缘体之意,这种材料在空间得到了广泛的应用。总之,从提高集成电路的成品率,降低成本来看的话,增大硅单晶的直径,仍然是一个大趋势;因为,只有材料的直径增大,电路的成本才会下降。我们知道硅技术有个摩尔定律,每隔18个月它的集成度就翻一番,它的价格就掉一半,价格下降是同硅的直径的增大密切相关的。在一个大圆片上跟一个小圆片上,工艺加工条件相同,但出的芯片数量则不同;所以说,增大硅的直径,仍然是硅单晶材料发展的一个大趋势。那我们从提高硅的

半导体材料

半导体 维基百科,自由的百科全书跳转到:导航, 搜索 汉漢▼ 显示↓

在纯硅中掺入少许的硼(最外层有三个电子),就反而少了一个电子,而形成一个电洞(hole),这样就形成P型半导体少了一个带负电荷的电子,可视为多了一个正电荷)。 目录 [隐藏] ?1概观 ?2半导体的能带结构 o 2.1能量-动量色散 ?3载子的产生与复合 ?4半导体的掺杂 o 4.1掺杂物 o 4.2载子浓度 o 4.3掺杂对半导体能带结构的影响 ?5半导体材料的制造 ?6应用 ?7延伸阅读 o7.1材料 o7.2物理学 o7.3工业 ?8参考资料 ?9相关条目 ?10外部链接 o10.1半导体行业网站

[

Diamantstruktur Diamantstruktur Zinkblendestruktur (Elementarzelle)

(Pauli exclusion principle),同一个量子态内不能有两个电子,已经被填满的能带无法导电,因为该能带内的所有量子态都已经被电子占据,所以半导体材料的传导带不会被电子占满,让电子可以在其中的量子态间移动。 费米-狄拉克分布。 在价带内的电子获得能量后便可跃升到传导带,而这便会在价带内留下一个空缺,也就是所谓的“电洞”(electron holes)。传导带中的电子和价带中的电洞都对电流传递有贡献,电洞本身不会移动,但是其它电子可以移动到这个电洞上面,等效于电洞本身往反方向移动。相对于带负电的电子,电洞的电性为正电。 由化学键结的观点来看,获得足够能量、进入传导带的电子也等于有足够能量可以打破电子与固体原子间的共价键(covalent bonds),而变成自由电子,进而对电流传导做出贡献。 半导体和导体之间有个显著的不同是半导体的电流传导同时来自电流与电洞的贡献,而导体的费米能阶(Fermi level)则已经在传导带内,因此电子不需要很大的能量即可找到空缺的量子态供其跳跃、造成电流传导。 固体材料内的电子能量分布遵循费米-狄拉克分布(Fermi-Dirac Distribution)。在绝对零度时,材料内电子的最高能量即为费米能阶,当温度高于绝对零度时,费米能阶为所有能阶中,被电子占据机率等于0.5的能阶。半导体材料内电子能量分布为温度的函数也使其导电特性受到温度很大的影响,当温度很低时,可以跳到传导带的电子较少,因此导电性也会变得较差。 [编辑]能量-动量色散 上述关于能带结构的内容为了简化,因此跳过了一个重要的现象,称为“能量的色散”(dispersion of energy)。同一个能带内之所以会有不同能量的量子态,原因是能带的电

半导体材料

半导体材料 应用物理1001 20102444 周辉 半导体材料的电阻率界于金属与绝缘材料之间的材料。这种材料在某个温度 范围内随温度升高而增加电荷载流子的浓度,电阻率下降。由化合物构成的半导 体材料,通常是指无机化合物半导体材料。比起元素半导体材料来它的品种更多, 应用面更广。 半导体材料结构特征主要表现在化学键上。因为化合物至少由两个元素构 成,由于它们彼此间的原子结构不同,价电子必然向其中一种元素靠近,而远离 另一种元素,这样在共价键中就有了离子性。这种离子性会影响到材料的熔点、 带隙宽度、迁移率、晶体结构等。 化合物半导体的组成规律一般服从元素周期表排列的法则。对已知的化合物 半导体材料,其组成元素在同一族内垂直变换,其结果是随着元素的金属性增大 而其带隙变小,直到成为导体。反之,随着非金属性增加而其带隙变大,直至成 为绝缘体。 类别按其构成元素的数目可分为二元、三元、四元化合物半导体材料。它 们本身还可按组成元素在元素周期表中的位置分为各族化合物,如Ⅲ—V族,I —Ⅲ—Ⅵ族等。下面介绍二元化合物,其中主要的类别为Ⅲ—v族化合物半导体 材料,Ⅱ—Ⅵ族化合物半导体材料,Ⅳ—Ⅳ族化合物半导体材料。 Ⅳ—Ⅵ族化合物半导体材料。已发现具有半导体性质的有格式,GeSe,GeTe, SnO ,SnS,SnSe,SnTe,Pb0,PbS,PbSe,PbTe,其中PbO,PbS,PbSe,PbTe 2 已获重要用途。

V—Ⅵ族化合物半导体材料。已发现具有半导体性质的有Bi 2O 3 ,Bi 2 S 3 ,Bi 2 Se 3 , Bi 2Te 3 ,Sb 2 O 3 ,Sb 2 S 3 ,Sb 2 Te 3 、As 2 O 3 ,As 2 S 3 ,其中Bi 2 Te 3 ,Bi 2 Se 3 等已获实际应用。 I—Ⅵ族化合物具有半导体性质的有Cu 2 O,Cu 2 S,Ag 2 S,Ag 2 Se,Ag 2 Te等,其 中Cu 20,Cu 2 S已获应用。 三元化合物种类较多,如I—Ⅲ—Ⅵ、I—v—Ⅵ、Ⅱ—Ⅲ—Ⅵ、Ⅱ—Ⅳ—V 族等。多数具有闪锌矿、纤锌矿或黄铜矿型晶体结构,黄铜矿型结构的三元化合 物多数具有直接禁带。比较重要的三元化合物半导体有CuInSe 2,AgGaSe 2 , CuGaSe 2,ZnSiP 2 ,CdSiP 2 ,ZnGeP 2 ,CdGaS 4 ,CdlnS 4 ,ZnlnS 4 和磁性半导体。后者 的结构为AB 2X 4 (A—Mn,Co,Fe,Ni;B—Ga,In;X—S,Se)。 四元化合物研究甚少,已知有Cu 2FeSnS 4 ,Cu 2 FeSnSe 4 ,Cu 2 FeGeS 4 等。 应用化合物及其固溶体的品种繁多,性能各异,给应用扩大了选择。在光电子方面,所有的发光二极管、激光二极管都是用化合物半导体制成的,已获工业应用的有GaAs,GaP,GaAlAs,GaAsP,InGaAsP等。用作光敏元件、光探测器、光调制器的有InAsP,CdS,CdSe,CdTe,GaAs等。一些宽禁带半导体(SiC,ZnSe等)、三元化合物具有光电子应用的潜力。GaAs是制作超高速集成电路的最主要的材料。微波器件的制作是使用GaAs,InP,GaAlAs等;红外器件则用GaAs,GaAlAs,CdTe,HgCdTe,PbSnTe等。太阳电池是使用CdS,CdTe,CulnSe2,GaAs,GaAlAs等。最早的实用“半导体”是「电晶体/ 二极体」。 一、在无线电收音机及电视机中,作为“讯号放大器用。 二、近来发展「太阳能」,也用在「光电池」中。 三、半导体可以用来测量温度,测温范围可以达到生产、生活、医疗卫生、科研教学等应用的70%的领域,有较高的准确度和稳定性,分辨率可达0.1℃,甚至达到0.01℃也不是不可能,线性度0.2%,测温范围-100~+300℃,是性价比极高的一种测温元件。 其中在半导体材料中硅材料应用最广,所以一般都用硅材料来集成电路,因为硅是元素半导体。电活性杂质磷和硼在合格半导体和多晶硅中应分别低于

Ⅲ族氮化物半导体材料

Ⅲ族氮化物半导体材料 Zhe Chuan Feng Taiwan University ,ChinaⅢ-Nitride SemiconductorMaterials2006 ,428pp.Hardcover USDl20.00ISBN 1-86094-636-4Imperial College Press Ⅲ族氮化物半导体材料(Al ,In,Ga)N,(包括GaN、InN 、AlN 、InGaN 、AlGaN 和AIlnGaN 等)是性能优良、适宜制作 半导体光电子和电子器件的材料。用这种材料研究发展的高 功率、高亮度的蓝-绿-白发光管和蓝光激光器以及其他电子 器件和光电子器件近几年来均有很大突破,有的已形成了产 业。预期在本世纪内氮化物基的发光管有可能置换传统的钨 丝灯,这在照明领域是一次革命,将会极大地影响人们的生 活。 此书共有12 章,每章作者均是该领域的专家。全书内 容包括了Ⅲ-N 科学和技术的基础和各个重要的方面,主要内容有:1 Ⅲ族氮化物材料的氢化物汽相外延; 2 Ⅲ族氮化物材料外延的平面MOVPE 技术;3 GaN 和相关材料外延 的紧耦合喷头MOCVD 技术;4 Ⅲ-N 材料的分子束外延; 5 非极性GaN 薄膜和异质结的生长和特性; 6 InN 的高压CVD 生长、适时和非原位持性; 7 对InN 新的认识;8

AlxGal-xN 合金(x=O-1) 的生长和光/电特性;9 MOCVD lnGaN/GaN 量子阱结构的光学研究;1O 掺SiInGaN/GaN 量子阱结构的簇状纳米结构和光学特性;11 Ⅲ族氮化物的微结构和纳米结构;12 稀释氮化物半导体研究的新进展。 此书介绍了Ⅲ族氮化物材料的一些重要性能和关键生 长技术,指出了21 世纪以来Ⅲ族氮化物半导体的最新进展 和还有待研究解决的问题。适合从事Ⅲ族氮化物领域的研 究、教学、工程技术人员以及研究生、大学生阅读和参考。 孔梅影,研究员 (中国科学院半导体研究所) Kong Meiying ,Professor (Institute of Semiconductors , the Chinese Academy of Sciences)

半导体材料的发展现状与趋势

半导体材料的发展现状与趋势

半导体材料与器件发展趋势总结 材料是人类社会发展的物质基础与先导。每一种重大新材料的发现和应用都把人类支配自然的能力提高到一个全新的高度。材料已成为人类发晨的里程碑。本世纪中期单晶硅材料和半导体晶体管的发明及其硅集成电路的研究成功,导致了电子工业大革命。使微电子技术和计算机技术得到飞速发展。从20世纪70年代的初期,石英光纤材料和光学纤维的研制成功,以及GaAs 等Ⅲ-Ⅴ族化合物的材料的研制成功与半导体激光器的发明,使光纤通信成为可能,目前光纤已四通八达。我们知道,每一束光纤,可以传输成千上万甚至上百万路电话,这与激光器的发明以及石英光纤材料、光纤技术的发展是密不可分的。超晶格概念的提出MBE、MOCVD先进生长技术发展和完善以及超品格量子阱材料包括一维量子线、零维量子点材料的研制成功。彻底改变了光电器件的设计思想。使半导体器件的设计与制造从过去的杂质工程发展到能带工程。出现了以“电学特性和光学特性的剪裁”为特征的新范畴,使人类跨入到以量子效应为基础和低维结构

的制作过程中,它要发生沉淀,沉淀时的体积要增大,会导致缺陷产生,这将直接影响器件和电路的性能。因此,为了克服这个困难,满足超大规模集成电路的集成度的进一步提高,人们不得不采用硅外延片,就是说在硅的衬底上外延生长的硅薄膜。这样,可以有效地避免氧和碳等杂质的污染,同时也会提高材料的纯度以及掺杂的均匀性。利用外延方法,还可以获得界面非常陡、过渡区非常窄的结,这样对功率器件的研制和集成电路集成度进一步提高都是非常有好处的。这种材料现在的研究现状是6英寸的硅外延片已用于工业的生产,8英寸的硅外延片,也正在从实验室走向工业生产;更大直径的外延设备也正在研制过程中。 除此之外,还有一些大功率器件,一些抗辐照的器件和电路等,也需要高纯区熔硅单晶。区熔硅单晶与直拉硅单晶拉制条件是不一样的,它在生长时,不与石英容器接触,材料的纯度可以很高;利用这种材料,采用中子掺杂的办法,制成N或P型材料,用于大功率器件及电路的研制,特别是在空间用的抗辐照器件和电路方面,

半导体材料硅基本性质

半导体材料硅的基本性质 一.半导体材料 固体材料按其导电性能可分为三类:绝缘体、半导体及导体,它们典型的电阻率如下: 图1 典型绝缘体、半导体及导体的电导率范围 半导体又可以分为元素半导体和化合物半导体,它们的定义如下: 元素半导体:由一种材料形成的半导体物质,如硅和锗。 化合物半导体:由两种或两种以上元素形成的物质。 1)二元化合物 GaAs —砷化镓 SiC —碳化硅 2)三元化合物 As —砷化镓铝 AlGa 11 AlIn As —砷化铟铝 11 半导体根据其是否掺杂又可以分为本征半导体和非本征半导体,它们的定义分别为:本征半导体:当半导体中无杂质掺入时,此种半导体称为本征半导体。 非本征半导体:当半导体被掺入杂质时,本征半导体就成为非本征半导体。 掺入本征半导体中的杂质,按释放载流子的类型分为施主与受主,它们的定义分别为:施主:当杂质掺入半导体中时,若能释放一个电子,这种杂质被称为施主。如磷、砷就是硅的施主。 受主:当杂质掺入半导体中时,若能接受一个电子,就会相应地产生一个空穴,这种杂

质称为受主。如硼、铝就是硅的受主。 图(a)带有施主(砷)的n型硅 (b)带有受主(硼)的型硅 掺入施主的半导体称为N型半导体,如掺磷的硅。 由于施主释放电子,因此在这样的半导体中电子为多数导电载流子(简称多子),而空穴为少数导电载流子(简称少子)。如图所示。 掺入受主的半导体称为P型半导体,如掺硼的硅。 由于受主接受电子,因此在这样的半导体中空穴为多数导电载流子(简称多子),而电子为少数导电载流子(简称少子)。如图所示。 二.硅的基本性质 硅的基本物理化学性质 硅是最重要的元素半导体,是电子工业的基础材料,其物理化学性质(300K)如表1所示。 性质符号单位硅(Si) 原子序数Z 14 原子量M 原子密度个/cm3 ×1022 晶体结构金刚石型 晶格常数 a ? 熔点Tm ℃1420 密度(固/液) ρg/ cm3 介电常数ε0 个/ cm3×1010本征载流子浓度n i 本征电阻率ρi Ω·cm ×105

半导体材料的分类及应用

半导体材料的分类及应用 能源、材料与信息被认为是当今正在兴起的新技术革命的三大支柱。材料方面, 电子材料的进展尤其引人注目。以大规模和超大规模集成电路为核心的电脑的问世极大地推动了现代科学技术各个方面的发展,一个又一个划时代意义的半导体生产新工艺、新材料和新仪器不断涌现, 并迅速变成生产力和生产工具, 极大地推动了集成电路工业的高速发展。半导体数字集成电路、模拟集成电路、存储器、专用集成电路和微处理器, 无论是在集成度和稳定可靠性的提高方面, 还是在生产成本不断降低方面都上了一个又一个新台阶,有力地促进了人类在生物工程、航空航天、工业、农业、商业、科技、教育、卫生等领域的全面发展, 也大大地方便和丰富了人们的日常生活。半导体集成电路的发展水平, 是衡量一个国家的经济实力和科技进步的主要标志之一, 然而半导体材料又是集成电路发展的一个重要基石。“半体体材料”作为电子材料的代表, 在生产实践的客观需求刺激下, 科技工作者已经发现了数以千计的具有半导体特性的材料, 并正在卓有成效在研究、开发和利用各种具有特殊性能的材料。 1 元素半导体 周期表中有12 种具有半导体性质的元素( 见下表) 。但其中S、P、As、Sb 和I 不稳定, 易发挥; 灰Sn 在室温下转变为白Sn, 已金属; B、C 的熔点太高, 不易制成单晶; T e 十分稀缺。这样只剩下Se、Ge 和Si 可供实用。半导体技术的早期( 50 年代以前) 。 表1 具有半导体性质的元素

周期ⅢA ⅣA ⅤA ⅥA ⅦA B C S i P S Ge As S e S n Sb Te I Se 曾广泛地用作光电池和整流器, 晶体管发明后,Ge 迅速地兴起, 但很快又被性能更好的Si 所取代。现在Se 在非晶半导体器件领域还保留一席之地, Ge 在若干种分立元件( 低压、低频、中功率晶体管以及光电探测器等) 中还被应用, 而Si 则一直是半导体工作的主导材料, 这种情况预计到下个世纪初也不会改变。Si 能成为主角的原因是: 含量极其丰富( 占地壳的27%) , 提纯与结晶方便; 禁带宽度1. 12eV, 比Ge 的0. 66eV 大, 因而Si 器件工作温度高; 更重要的是SiO2 膜的纯化和掩蔽作用, 纯化作用使器件的稳定性与可靠性大为提高,掩蔽作用使器件的制和实现了平面工艺, 从而实现了大规模自动化的工业生产和集成化, 使半导体分立器件和集成电路以其低廉的价格和卓越的性能迅速取代了电子管, 微电子学取代了真空电子学, 微电子工程成为当代产业中的一支生力军。据报导, 1995 年世界半导体器件销售额为1464 亿美元, 硅片销费量约为30. 0 亿平方英寸, 1996 年市场规模为1851 亿美元, 增长了26. 4%, 消费硅片则达33. 46 亿平方英寸。 硅材料分为多晶硅, 单晶硅和非晶硅。单晶硅分为直拉单晶硅( CZ) 、区熔单晶硅( FZ) 和外延单晶硅片( EPI) 。其中, CZ 单晶

半导体材料有哪些

半导体材料有哪些 半导体材料有哪些 半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。锗和硅是最常用的元素半导体;化合物半导体包括第Ⅲ和第Ⅴ族化合物(砷化镓、磷化镓等)、第Ⅱ和第Ⅵ族化合物(硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。除上述晶态半导体外,还有非晶态的玻璃半导体、有机半导体等。 半导体的分类,按照其制造技术可以分为:集成电路器件,分立器件、光电半导体、逻辑IC、模拟IC、储存器等大类,一般来说这些还会被分成小类。此外还有以应用领域、设计方法等进行分类,虽然不常用,但还是按照IC、LSI、VLSI(超大LSI)及其规模进行分类的方法。此外,还有按照其所处理的信号,可以分成模拟、数字、模拟数字混成及功能进行分类的方法。 延伸 半导体材料是什么? 半导体材料(semiconductor material)是一类具有半导体性能(导电能力介于导体与绝缘体之间,电阻率约在1mΩ·cm~1GΩ·cm范围内)、可用来制作半导体器件和集成电路的电子材料。 自然界的物质、材料按导电能力大小可分为导体、半导体和绝缘体三大类。半导体的电阻率在1mΩ·cm~1GΩ·cm范围(上限按谢嘉奎《电子线路》取值,还有取其1/10或10倍的;因角标不可用,暂用当前描述)。在一般情况下,半导体电导率随温度的升高而升高,这与金属导体恰好相反。 凡具有上述两种特征的材料都可归入半导体材料的范围。反映半导体半导体材料内在基本性质的却是各种外界因素如光、热、磁、电等作用于半导体而引起的物理效应和现象,这些可统称为半导体材料的半导体性质。构成固态电子器件的基体材料绝大多数是半导体,正是这些半导体材料的各种半导体性质赋予各种不同类型半导体器件以不同的功能和特性。 半导体的基本化学特征在于原子间存在饱和的共价键。作为共价键特征的典型是在晶格结构上表现为四面体结构,所以典型的半导体材料具有金刚石或闪锌矿(ZnS)的结构。由于地球的矿藏多半是化合物,所以最早得到利用的半导体材料都是化合物,例如方铅矿

半导体材料

半导体材料应用前景调研报告 1.前言 随着科技的进步,半导体材料的研究与发展越来越受到人们的重视与青睐,从小小的光伏电池与LED灯,到雷达与红外探测器,无论是我们日常的生活中,还是包含国际顶尖技术的设备中,都有着半导体材料的影子。在材料领域里,半导体材料作为科学家们重点研究的对象,在现代社会中不断散发着光和热,使这个世界变得更加美好。 2.半导体材料的应用 (1)半导体照明技术 发光二极管,是一种半导体固体发光器件,是利用固体半导体芯片作为发光材料,在半导体中通过载流子发生复合放出过剩的能量而引起光子发射,直接发出红、黄、蓝、绿、青、橙、紫、白色的光。半导体照明产品就是利用LED作为光源制造出来的照明器具。半导体照明具有高效、节能、环保、易维护等显著特点,是实现节能减排的有效途径,已逐渐成为照明史上继白炽灯、荧光灯之后的又一场照明光源的革命。目前LED已广泛用于大屏幕显示、交通信号灯、手机背光源等,开始应用于城市夜景美化亮化、景观灯、地灯、手电筒、指示牌等,随着单个LED亮度和发光效率的提高,即将进入普通室内照明、台灯、笔记本电脑背光源、LCD显示器背光源等,因而具有广阔的应用前景和巨大的商机。 (2)光伏电池 太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。以光电效应

工作的薄膜式太阳能电池为主流,而以光化学效应原理工作的太阳能电池则还处于萌芽阶段。太阳光照在半导体p-n结上,形成新的空穴--电子对。在p-n结电场的作用下,空穴由n区流向p区,电子由p区流向n区,接通电路后就形成电流。无枯竭危险;绝对干净(无污染,除蓄电池外);不受资源分布地域的限制;可在用电处就近发电;能源质量高;使用者从感情上容易接受;获取能源花费的时间短;供电系统工作可靠等优点。但是太阳能电池成本还很高:比许多绿色/再生能源高很多,无法以合理成本提供大量需求。未来可以期待科学家及工程师们不断的研究,再加上半导体产业技术的进步,太阳能电池的效率也逐渐增加,而且发电系统的单位成本也正逐年下降。因此,随着太阳能电池效率的增加、成本的降低以及环保意识的高涨,太阳能电池的成本可望大幅降低。也可以利用便宜的镜子将阳光反射至昂贵的高效能太阳能电池(需注意散热),可以发电降低成本。 (3)集成电路 材料构成的PN结的单向导电性质,可以用其作出具有一定大小的逻辑电路。集成电路是一种微型电子器件或部件。采用一定的工艺,把一个电路中所需的晶体管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体,使电子元件向着微小型化、低功耗、智能化和高可靠性方面迈进了一大步。它在电路中用字母“IC”表示。集成电路发明者为杰克·基尔比和罗伯特·诺伊思。 有体积小,重量轻,引出线和焊接点少,寿命长,可靠性高,性能好等优点,同时成本低,便于大规模生产。它不仅在工、民用电子设备如收录机、电视机、计算机等方面得到广泛的应用,同时在军事、通讯、遥控等方面也得到广泛的应用。用集成电路来装配电子设备,其装配密度比晶体管可提高几十倍至几千倍,设备的稳定工作时间也可大大提高。

新型半导体材料GaN简介

新型半导体材料GaN GaN的发展背景 GaN材料的研究与应用是目前全球半导体研究的前沿和热点,是研制微电子器件、光电子器件的新型半导体材料,并与SIC、金刚石等半导体材料一起,被誉为是继第一代Ge、Si半导体材料、第二代GaAs、InP化合物半导体材料之后的第三代半导体材料。它具有宽的直接带隙、强的原子键、高的热导率、化学稳定性好(几乎不被任何酸腐蚀)等性质和强的抗辐照能力,在光电子、高温大功率器件和高频微波器件应用方面有着广阔的前景。 在宽禁带半导体材料中,氮化镓由于受到缺乏合适的单晶衬底材料、位错密度大等问题的困扰,发展较为缓慢,但进入90年代后,随着材料生长和器件工艺水平的不断发展,GaN半导体及器件的发展十分迅速,目前已经成为宽禁带半导体材料中耀眼的新星。 GaN的特性 具有宽的直接带隙、强的原子键、高的热导率、化学稳定性好(几乎不被任何酸腐蚀)等性质和强的抗辐照能力,在光电子、高温大功率器件和高频微波器件应用方面有着广阔的前景。 GaN是极稳定的化合物,又是坚硬的高熔点材料,熔点约为1700℃,GaN 具有高的电离度,在Ⅲ—Ⅴ族化合物中是最高的(0.5或0.43)。在大气压力下,GaN晶体一般是六方纤锌矿结构。它在一个元胞中有4个原子,原子体积大约为GaAs的一半。因为其硬度高,又是一种良好的涂层保护材料。在室温下,GaN 不溶于水、酸和碱,而在热的碱溶液中以非常缓慢的速度溶解。NaOH、H2SO4和H3PO4能较快地腐蚀质量差的GaN,可用于这些质量不高的GaN晶体的缺陷检测。GaN在HCL或H2气下,在高温下呈现不稳定特性,而在N2气下最为稳定。GaN的电学特性是影响器件的主要因素。未有意掺杂的GaN在各种情况下都呈n 型,最好的样品的电子浓度约为4×1016/cm3。一般情况下所制备的P型样品,都是高补偿的。 很多研究小组都从事过这方面的研究工作,其中中村报道了GaN最高迁移率数据在室温和液氮温度下分别为μn=600cm2/v·s和μn=1500cm2/v·s,相应的载流子浓度为n=4×1016/cm3和n=8×1015/cm3。未掺杂载流子浓度可控制在

III族氮化物的电学特性

III族氮化物的电学特性 在半导体产业的发展中, 一般将Si、Ge 称为第一代电子材料; 而将GaA s、InP、GaP、InA s、A lA s 及其合金等称为第二代电子材料; 宽禁带(E g> 213eV ) 半导体材料近年来发展十分迅速, 成为第三代电子材料, 主要包括SiC、ZnSe、金刚石和GaN 等。同第一、二代电子材料相比(表1) , 宽禁带半导体材料具有禁带宽度大, 电子漂移饱和速 度高, 介电常数小, 导热性能好等特点, 非常适合于制作抗辐射、高频、大功率和高密度集成的电子器件; 而利用其特有的禁带宽度, 还可以制作蓝、绿光和紫外光的发光器件和光探测器件。 (参考文献1:GaN——第三代半导体的曙光,梁春广,张冀,半导体学报,第20卷第2期) III族氮化物, 主要包括GaN、A lN、InN (E g< 213V )、A lGaN、Ga InN、A l InN 和A lGa InN 等, 其禁带宽度覆盖了红、黄、绿、蓝、紫和紫外光谱范围. 在通常条件下, 它们以六方对称性的铅锌矿结构存在, 但在一定条件下也能以立方对称性的闪锌矿结构存在. 两种结构的 主要差别在于原子层的堆积次序不同, 因而电学性质也有显著差别.

表2给出了两种结构的A lN、GaN 和InN 在300K 时的带隙宽度和晶格 常数. GaN是III族氮化物中的基本材料, 也是目前研究最多的III族氮化 物材料。 GaN 材料非常坚硬, 其化学性质非常稳定, 在室温下不溶 于水、酸和碱, 其融点较高, 约为1700℃。 GaN 的电学性质是决定 器件性能的主要因素。电子室温迁移率目前可以达900cm2/(V ·s)。 在 蓝宝石衬底上生长的非故意掺杂的GaN 样品存在较高(> 1018/ cm 3) 的n 型本底载流子浓度, 现在较好的GaN 样品的本底n 型载流子浓 度可以降到1016/ cm 3 左右. 由于n 型本底载流子浓度较高, 制备p 型GaN 样品的技术难题曾经一度限制了GaN 器件的发展. 1988 年A kasak i 等人首先通过低能电子束辐照( IEEB I) , 实现掺M g 的GaN 样 品表面p 2型化, 随后N akamura 采用热退火处理技术, 更好更方便地 实现了掺M g 的GaN 样品的p2型化, 目前已经可以制备载流子浓度 在1011~ 1020/cm3 的p2型GaN 材料。 不同生长压力下的GaN薄膜表现出相异的电学性能,即在500Torr 下生长的样品通常表现出更高的载流子浓度((4.6~6.4)×1016cm-3)

半导体材料介绍论文

半导体材料介绍 摘要:本文主要介绍半导体材料的特征、分类、制备工艺以及半导体材料的一些参数。 半导体在我们的日常生活中应用很广泛,半导体材料的一些结构和参数决定了 它的特性。以二氧化钛为例,它就是一种半导体材料,其结构和性能决定了它 在降解有机污染物方面的应用,人们现在研究了有关它的性质,并将进一步研 究提高它的光催化效果。 关键词:半导体材料导电能力载流子电阻率电子空穴 正文: 半导体材料是导电能力介于导体与绝缘体之间的物质。半导体材料是一类具有半导体性能、可用来制作半导体器件和集成电的电子材料,其电导率在10(U-3)~10(U-9)欧姆/厘米范围内。 半导体材料可按化学组成来分,再将结构与性能比较特殊的非晶态与液态半导体单独列为一类。按照这样分类方法可将半导体材料分为元素半导体、无机化合物半导体、有机化合物半导体和非晶态与液态半导体。 制备不同的半导体器件对半导体材料有不同的形态要求,包括单晶的切片、磨片、抛光片、薄膜等。半导体材料的不同形态要求对应不同的加工工艺。常用的半导体材料制备工艺有提纯、单晶的制备和薄膜外延生长。 半导体材料虽然种类繁多但有一些固有的特性,称为半导体材料的特性参数。这些特性参数不仅能反映半导体材料与其他非半导体材料之间的差别,而且更重要的是能反映各种半导体材料之间甚至同一种材料在不同情况下特性上的量的差别。常用的半导体材料的特性参数有:禁带宽度、电阻率、载流子迁移率(载流子即半导体中参加导电的电子和空穴)、非平衡载流子寿命、位错密度。禁带宽度由半导体的电子态、原子组态决定,反映组成这种材料的原子中价电子从束缚状态激发到自由状态所需的能量。电阻率、载流子迁移率反映材料的导电能力。非平衡载流子寿命反映半导体材料在外界作用(如光或电场)下内部的载流子由非平衡状态向平衡状态过渡的弛豫特性。位错是晶体中最常见的一类晶体缺陷。位错密度可以用来衡量半导体单晶材料晶格完整性的程度。当然,对于非晶态半导体是没有这一反映晶格完整性的特性参数的。 半导体材料的特性参数对于材料应用甚为重要。因为不同的特性决定不同的用途。晶体管对材料特性的要求:根据晶体管的工作原理,要求材料有较大的非平衡载流子寿命和载流子迁移率。用载流子迁移率大的材料制成的晶体管可以工作于更高的频率(有较好的频率响应)。晶体缺陷会影响晶体管的特性甚至使其失效。晶体管的工作温度高温限决定于禁带宽度的大小。禁带

氮化物宽禁带半导体—第三代半导体技术

氮化物宽禁带半导体一第三代半导体技术 张国义1,李树明2 北掌大学韵曩最,卜蘑■一目毫重点宴■宣 ‘2北大董光科技酣青曩公司 北囊1∞耵1 i盲謦。 莳耍曰曩了量化精半导体曲主要持征和应用■量.巨督圈辱上和重内的主曩研兜理状.市场分析与攮测.由此-u蚪再}11.氯化韵帕研究已妊成为高科技鬣壤田际竟争的■膏点之一.t为第三代半■体拄术,育形成蠢科技臣夫产_t群的r口艟 性.也存在着蠢积的竞争和蕞{;‘翻舶风龄. 众所周知,以Ge,Si为基础的半导体技术,奠定丁二十世纪电子工业的基础.其主要产品形式是以大规模集成电路为主要技术的计算机等电子产品.形成了巨大的徽电子产业 群。其技术水平标志是大的晶片尺寸和窄的线条宽度.如12英寸/0.15微米技术.是成 功的标志,被称之为第一代半导体技术.以G“s.InP.包括G吐l^s,IfIGaAsP,InGaAlP瞢 III—v族砷化物和碑化韵半导体技术,奠定了二十世纪光电子产业的基础,其主要产品形 式是以光发射器件,如半导体发光二极管(L肋)和激光嚣(LD)等.为基础的光显示. 光通讯,光存储等光电子系统,形成了巨大的信息光电产业群。其技术水平标志是使通讯 速度,信息容量,存储密度大幅度提高,被称之为第二代半导体技术. 对徽电子和光电子领域来说,二十世纪存在的问矗和二十一世纪发晨趋势是人们关心的问题.高速仍然是微电子的追求目标,高温大功率还是没有很好解决的问题;光电子的 主要发展趋势是全光谱的发光器件,特别是短波长(绿光.蓝光.咀至紫外波段)LED和 LD.光电集成(0EIc)是人们长期追求的目标,由于光电材料的不兼容性,还没有很好的 实现。事实上.这些问题是第一代和第二代半导体材料本身性质决定,不可舱解决的问 题。它需要寻找一种高性能的宽禁带半导体材料.而这一工作二十世纪后半叶就已经开 始.在世纪之交得以确认。那就是第三代半导体技术一III一族氮化物半导体技术. GaN、AlN和InN以及由它们组成的三元合金是主要的III族氰化物材料.所有氮化物晶体的稳定结构是具有六方对称性的纤锌矿结构,而在一些特定的条件下,例如在立方豸多。 衬底上外延时,GaN和InN能够形成立方对称性的闪锌矿结构.这两种结构只是原子层的 堆积次序不同,它们的原予最近邻位置几乎完全相同,而次近邻位置有所不同,因而它们 的性质根接近。三元合金A1GaN,InGaN也是重要的氰化物材料。它们的禁带宽度基本符 合vegard定理[1,2]。№tsuoka[3]通过计算指出AlN与GaN可咀组成组份连续变化的合 金,IrIN与GaN则存在较大的互熔间隙. 以氮化镓为基础的宽禁带半导体可以用来,并已经广泛用来制备高亮度蓝。绿光平"白光LED,蓝光到紫外波段的激光器(LD),繁外光传感器,等光屯子器件:高温人功率场 设麻品体管(FET).双极晶体管(HBT),高电子迁移率晶体管(HEMT)等徽电子器 什:这些器件构成了全色火屏幕LED显示和交通信号灯等应Hj的RGB1:鞋:向光LED将构 ?17?

InN半导体材料及器件研究进展

InN半导体材料及器件研究进展 摘要:InN是性能优良的三五族化合物半导体材料,在光电子领域有着非常重要的应用价值,因此一直是国际国内研究的焦点。这里,就InN材料的制备方法、P型掺杂、电学特性、光学特性、高温退火特性、器件的研究应用以及研究的最新进展进行了综述。 关键词:InN 制备特性应用太赫兹辐射进展 1.引言:三族氮化物半导体材料GaN、AlN、InN是性能优越的半导体材料。在光电子器 件方面已有重要的应用,在光电集成、超高速微电子器件及集成电路上也有十分广阔的前景。但是因为InN具有低得离解温度,要求低温生长,而作为氮源的NH3的分解温度较高,这是InN生长的一对矛盾。其次,对已氮化銦材料生长又缺少与之匹配的衬底材料,使得高质量氮化銦材料生长特别困难,有没有什么进展。后来的理论研究表明,InN 具有极高的漂移速度和电子渡越速度以及最小的有效电子质量。同时电子迁移率也比较高。因此,InN材料是理想的高速、高频晶体管材料。最近研究表明:InN的禁带宽度也许是0.7eV左右,而不是先前普遍接受的1.9eV,所以通过调节合金组分可以获得从 0.6eV(InN)到6.2eV(AlN)的连续可调直接带隙,这样利用单一体系的材料就可以制 备覆盖从近红外到深紫外光谱范围的光电器件。因此,InN有望成为长波长半导体光电器件、全彩显示、高效率太阳能电池的优良半导体材料。理论研究表明,1nN材料在Ⅲ族氮化物半导体材料中具有最高的迁移率(室温下最大的迁移率是14000 平方厘米/V s)、峰值速率、电子漂移速率和尖峰速度(4.3×107cm/s)以及具有最小的有效电子质量m*=0.05m0。这些特性使得InN在高频率,高速率晶体管的应用上有着非常独特的优势。然而,由于InN的制备和检测都比较困难,对其研究和应用还很不完善。尽管如此,随着材料生长技术的不断发展进步以及材料生长工艺的提高,现在已经可以在不同衬底材料上外延生长得到质量较好的InN薄膜单晶材料,同时,由于测量技术的进一步提高,使得InN材料的研究和应用迈进了很大一步。一些相关的应用研究和器件也已有很多报道:如用作异质结场效应管,气体/液体传感器,异质结太阳能电池的透明传导窗口材料,InN/Si p-n结;InN薄膜已经被尝试着作为Li离子薄膜电池的阳极;还有InN热电器件以及太赫兹发射器件;InN的欧姆接触也已经被证实,InN/GaN的肖特基接触也已经实现;对于P型掺杂方面,也取得了显著成果;此外,InN具有很高的折射率(>3),还可以应用到光子晶体的设计中。 鉴于InN材料有如此重要的应用价值以及最近来自国际和国内的诸多报道,本文对InN 材料的最新研究进展,包括电学、光学性质及其应用方面做些归纳和总结。 2.InN材料的最新研究进展 2.1InN材料的制备

相关文档
最新文档