单釜与三釜串联反应器中的返混测定

单釜与三釜串联反应器中的返混测定
单釜与三釜串联反应器中的返混测定

实验十四 连续流动反应器中的返混测定

A 实验目的

本实验通过单釜与三釜反应器中停留时间分布的测定,将数据计算结果用多釜串联模型来定量返混程度,从而认识限制返混的措施。本实验目的为

(1) 掌握停留时间分布的测定方法。

(2) 了解停留时间分布与多釜串联模型的关系。 (3) 了解模型参数n 的物理意义及计算方法。 B 实验原理

在连续流动的反应器内,不同停留时间的物料之间的混和称为返混。返混程度的大小,一般很难直接测定,通常是利用物料停留时间分布的测定来研究。然而测定不同状态的反应器内停留时间分布时,我们可以发现,相同的停留时间分布可以有不同的返混情况,即返混与停留时间分布不存在一 一对应的关系,因此不能用停留时间分布的实验测定数据直接表示返混程度,而要借助于反应器数学模型来间接表达。

物料在反应器内的停留时间完全是一个随机过程,须用概率分布方法来定量描述。所用的概率分布函数为停留时间分布密度函数f ()t 和停留时间分布函数F ()t 。停留时间分布密度函数f ()t 的物理意义是:同时进入的N 个流体粒子中,停留时间介于t 到t+dt 间的流体粒子所占的分率N dN 为f ()t dt 。停留时间分布函数F ()t 的物理意义是:流过系统的物料中停留时间小于t 的物料的分率。

停留时间分布的测定方法有脉冲法,阶跃法等,常用的是脉冲法。当系统达到稳定后,在系统的入口处瞬间注入一定量Q 的示踪物料,同时开始在出口流体中检测示踪物料的浓度变化。

由停留时间分布密度函数的物理含义,可知

()()dt t C V dt t f ?= (1)

()?

=

dt t VC Q (2)

所以

()()

()()

()dt

t C t C dt

t VC t VC t f ??∞

=

=

(3)

由此可见()t f 与示踪剂浓度()t C 成正比。因此,本实验中用水作为连续流动的物料,以饱和KCl 作示踪剂,在反应器出口处检测溶液电导值。在一定范围内,KCl 浓度与电导值成正比,则可用电导值来表达物料的停留时间变化关系,即()()t L t f ∝,这里

()∞-=L L t L t ,t L 为t 时刻的电导值,∞L 为无示踪剂时电导值。

停留时间分布密度函数()t f 在概率论中有二个特征值,平均停留时间(数学期望)t 和方差2t σ。

-

t 的表达式为:

()()()???∞

-

=

=

dt

t C dt

t tC dt t tf t (4)

采用离散形式表达,并取相同时间间隔,t ?则:

()()()()

t L t L t t

t C t t tC t ∑?∑=

?∑?∑=

-

(5)

2

t σ的表达式为:

()()()2

2

02

2

dt t f t dt t f t t -=-=

??∞

σ (6)

也用离散形式表达,并取相同t ?,则:

()

()

()()

()

2

2

2

2

2

t t L t L t t t C t C t t

-∑∑=

-∑∑=

σ

(7)

若用无因次对比时间θ

来表示,即t =θ,

无因次方差2

2

2t

t σσθ= 。

在测定了一个系统的停留时间分布后,如何来评介其返混程度,则需要用反应器模型来描述,这里我们采用的是多釜串联模型。

所谓多釜串联模型是将一个实际反应器中的返混情况作为与若干个全混釜串联时的返混程度等效。这里的若干个全混釜个数n 是虚拟值,并不代表反应器个数,n 称为模型参数。多釜串联模型假定每个反应器为全混釜,反应器之间无返混,每个全混釜体积相同,则可以推导得到多釜串联反应器的停留时间分布函数关系,并得到无因次方差2θσ与模型参数n 存在关系为

2

1

θ

σ=

n (8)

当 1=n , 12

=θσ ,为全混釜特征;

当∞→n , 02

→θσ, 为平推流特征;

这里n 是模型参数,是个虚拟釜数,并不限于整数。 C 预习与思考

(1)为什么说返混与停留时间分布不是一一对应的?为什么我们又可以通过测定停

留时间分布来研究返混呢?

(2)测定停留时间分布的方法有哪些?本实验采用哪种方法? (3)何谓返混?返混的起因是什么?限制返混的措施有哪些? (4) 何谓示踪剂?有何要求?本实验用什么作示踪剂? (5)模型参数与实验中反应釜的个数有何不同?为什么? D 实验装置与流程

实验装置如图2–22所示,由单釜与三釜串联二个系统组成。三釜串联反应器中每个釜的体积为1L ,单釜反应器体积为3L ,用可控硅直流调速装置调速。实验时,水分别从二个转子流量计流入二个系统,稳定后在二个系统的入口处分别快速注入示踪剂,由每个反应

釜出口处电导电极检测示踪剂浓度变化,并由记录仪自动录下来。

E 实验步骤及方法

(1) 通水,开启水开关,让水注满反应釜,调节进水流量为20h L ,

保持流量稳定。 (2) 通电,开启电源开关。 ① 开记录仪,记下走纸速度; ② 开电导仪并调整好,以备测量;

③ 开动搅拌装置,转速应大于300min r 。

(3)待系统稳定后,用注射器迅速注入示踪剂,在记录纸上作起始标记。 (4)当记录仪上显示的浓度在2min 内觉察不到变化时,即认为终点己到。 (5)关闭仪器,电源,水源,排清釜中料液,实验结束。 F 实验数据处理

根据实验结果,我们可以得到单釜与三釜的停留时间分布曲线,这里的物理量 - 电导值L 对应了示踪剂浓度的变化;走纸的长度方向对应了测定的时间,可以由记录仪走纸速度换算出来。然后用离散化方法,在曲线上相同时间间隔取点,一般可取20个数据点左右,

再由公式(5),(7)分别计算出各自的2

t

t σ和-

,及无因次方差2

22

-=t t

σ

σθ。通过多釜串

联模型,利用公式(8)求出相应的模型参数n ,随后根据n 的数值大小,就可确定单釜和三釜系统的两种返混程度大小。

若采用微机数据采集与分析处理系统,则可直接由电导率仪输出信号至计算机,由计算机负责数据采集与分析,在显示器上画出停留时间分布动态曲线图,并在实验结束后自动计算平均停留时间、方差和模型参数。停留时间分布曲线图与相应数据均可方便地保存或打印输出,减少了手工计算的工作量。

G 结果与讨论

(1)计算出单釜与三釜系统的平均停留时间-

t ,并与理论值比较,分析偏差原因;

图2–22 连续流动反应器返混实验装置图

1–全混釜(3L );2、3、4–全混釜(1L ); 5–转子流量计;6–电机;

7–电导率仪;8–电导电极;9–记录仪;10–四笔记录仪或微机

(2)计算模型参数n ,讨论二种系统的返混程度大小; (3)讨论一下如何限制返混或加大返混程度。 H 主要符号说明

()t C - t 时刻反应器内示踪剂浓度; ()t f - 停留时间分布密度; ()t F - 停留时间分布函数; ()t L L L t ,,∞ - 液体的电导值;

n - 模型参数; t - 时间;

v - 液体体积流量;

t - 数学期望,或平均停留时间;

2

2,θσσt - 方差;

θ - 无因次时间。

参 考 文 献

(1) 陈甘棠主编 . 化学反应工程 . 北京:化学工业出版社,1981 (2) 朱炳辰主编 . 化学反应工程 . 北京:化学工业出版社,1998

实验一多釜串联连续流动反应器中停留时间分布的测定

实验一 多釜串联连续流动反应器中停留时间分布的测定 一、实验目的 本实验通过单釜与三釜反应器中停留时间分布的测定,将数据计算结果用多釜串联模型来描述返混程度,从而认识限制返混的措施。 1、掌握停留时间分布的测定方法; 2、了解停留时间分布与多釜串联模型的关系; 3、掌握多釜串联模型参数N 的物理意义及计算方法。 二、实验原理 在连续流动的反应器内,不同停留时间的物料之间的混和称为返混。返混程度的大小,一般很难直接测定,通常是利用物料停留时间分布的测定来研究。然而在测定不同状态的反应器内停留时间分布时,可以发现,相同的停留时间分布可以有不同的返混情况,即返混与停留时间分布不存在一一对应的关系,因此不能用停留时间分布的实验测定数据直接表示返混程度,而必须借助于反应器数学模型来间接表达。 物料在反应器内的停留时间完全是一个随机过程,须用概率分布方法来定量描述。所用的概率分布函数为停留时间分布密度函数E (t)和停留时间分布函数F (t)。 停留时间分布密度函数E (t )的物理意义是:同时进入的N 个流体粒子中,停留时间介于t 到t +dt 间的流体粒子所占的分率dN/N 为E (t )dt 。 停留时间分布函数F (t )的物理意义是:流过系统的物料中停留时间小于t 的物料所占的分率。 停留时间分布的测定方法有脉冲输入法、阶跃输入法等,常用的是脉冲输入法。当系统达到稳定后,在系统的入口处瞬间注入一定量Q 的示踪物料,同时开始在出口流体中检测示踪物料的浓度变化。 由停留时间分布密度函数的物理含义,可知: E (t )dt =VC (t )/Q (1) ?∞ =0)(dt t VC Q (2) 所以 ? ? ∞ ∞ = = )() ()() ()(dt t C t C dt t VC t VC t E (3)

釜式反应器的应用

釜式反应器的应用、技术进展 什么是釜式反应器?一种低高径比的圆筒形反应器,用于实现液相单相反应过程和液液、气液、液固、气液固等多相反应过程。器内常设有搅拌(机械搅拌、气流搅拌等)装置。在高径比较大时,可用多层搅拌桨叶。在反应过程中物料需加热或冷却时,可在反应器壁处设置夹套,或在器内设置换热面,也可通过外循环进行换热。 工业应用,釜式反应器按操作方式可分为:①间歇釜式反应器,或称间歇釜。操作灵活,易于适应不同操作条件和产品品种,适用于小批量、多品种、反应时间较长的产品生产。间歇釜的缺点是:需有装料和卸料等辅助操作,产品质量也不易稳定。但有些反应过程,如一些发酵反应和聚合反应,实现连续生产尚有困难,至今还采用间歇釜。②连续釜式反应器,或称连续釜。可避免间歇釜的缺点,但搅拌作用会造成釜内流体的返混。在搅拌剧烈、液体粘度较低或平均停留时间较长的场合,釜内物料流型可视作全混流,反应釜相应地称作全混釜。在要求转化率高或有串联副反应的场合,釜式反应器中的返混现象是不利因素。此时可采用多釜串联反应器,以减小返混的不利影响,并可分釜控制反应条件。③半连续釜式反应器。指一种原料一次加入,另一种原料连续加入的反应器,其特性介于间歇釜和连续釜之间。间歇式反应器操作灵活,易于适应不同操作条件和产品品种,适用于小批量、多品种、反应时间较长的产品生产。间歇釜的缺点是:需有装料和卸料等辅助操作,产品质量也不易稳定。但有些反应过程,如一些发酵反应和聚合反应,实现连续生产尚有困难,至今还采用间歇釜。 有搅拌器的釜式设备是化学工业中广泛采用的反应器之一,它可用来进行液液均相反应,也可用于非均相反应,如非均相液相、液固相、气液相、气液固相等。普遍应用于石油化工、橡胶、农药、染料、医药等工业,用来完成磺化、硝化、氢化、烃化、聚合、缩合等工艺过程,以及有机染料和医药中间体的许多其他工艺过程的反应设备。聚合反应过程约90%采用搅拌釜式反应器,如聚氯乙烯,在美国70%以上用悬浮法生产,采用10~1503m 的搅拌反应器:德国氯乙烯悬浮聚合采用的是2003m 的大型搅拌釜式反应器:中国生产聚氯乙烯,大多采用13.53m 、333m 不锈钢或复合钢板的聚合釜式反应器,以及73m 、143m 的搪瓷釜式反应器。又如涤纶树脂的生产采用本体熔融缩聚,聚合反应也使用釜式反应器。在精细化工的生产中,几乎所有的单元操作都可以在釜式反应器中进行。 釜式反应器的技术进展 1、大容积化,这是增加产量、减少批量生产之间的质量误差、降低产品成本的有效途径和发展趋势。染料生产用反应釜国内多为6000L 以下,其它行业有的达30m3;国外在染料行业有20000~40000L ,而其它行业可达120m3。 2、反应釜的搅拌器,已由单一搅拌器发展到用双搅拌器或外加泵强制循环。反应釜发展趋势除了装有搅拌器外,尚使釜体沿水平线旋转,从而提高反应速度。 3、以生产自动化和连续化代替笨重的间隙手工操作,如采用程序控制,既可保证稳定生产,提高产品质量,增加收益,减轻体力劳动,又可消除对环境的污染。 4、合理地利用热能,选择最佳的工艺操作条件,加强保温措施,提高传热效率,使热损失降至最低限度,余热或反应后产生的热能充分地综合利用。热管技术的应用,将是今后反应釜发展趋势。>

3单釜与三釜串联反应器中的返混测定30分钟

实验二 单釜与多釜反应器中的返混测定 一、 实验目的 本实验通过单釜与三釜反应器中停留时间分布的测定,将数据计算结果用多釜串联模型来定量返混程度,从而认识限制返混的措施。本实验目的为 (1)掌握停留时间分布的测定方法。 (2)了解停留时间分布与多釜串联模型的关系。 (3)了解模型参数n 的物理意义及计算方法。 二、 实验原理 在连续流动的反应器内,不同停留时间的物料之间的混和称为返混。返混程度的大小,一般很难直接测定,通常是利用物料停留时间分布的测定来研究。然而测定不同状态的反应器内停留时间分布时,我们可以发现,相同的停留时间分布可以有不同的返混情况,即返混与停留时间分布不存在一 一对应的关系,因此不能用停留时间分布的实验测定数据直接表示返混程度,而要借助于反应器数学模型来间接表达。 物料在反应器内的停留时间完全是一个随机过程,须用概率分布方法来定量描述。所用的概率分布函数为停留时间分布密度函数f ()t 和停留时间分布函数F ()t 。停留时间分布密度函数f ()t 的物理意义是:同时进入的N 个流体粒子中,停留时间介于t 到t+dt 间的流体粒子所占的分率N dN 为f ()t dt 。停留时间分布函数F ()t 的物理意义是:流过系统的物料中停留时间小于t 的物料的分率。 停留时间分布的测定方法有脉冲法,阶跃法等,常用的是脉冲法。当系统达到稳定后,在系统的入口处瞬间注入一定量Q 的示踪物料,同时开始在出口流体中检测示踪物料的浓度变化。 由停留时间分布密度函数的物理含义,可知 ()()Q dt t C V dt t f ?= (1) ()? ∞ = dt t VC Q (2)

实验1连续搅拌釜式反应器停留时间分布的测定

实验一 连续搅拌釜式反应器停留时间分布的测定 一、 实验目的 (1) 加深对停留时间分布概念的理解; (2) 掌握测定液相停留时间分布的方法; (3) 了解停留时间分布曲线的应用。 (4)了解停留时间分布于多釜串联模型的关系,了解模型参数N 的物理意义及计算方法。 (5) 了解物料流速及搅拌转速对停留时间分布的影响。 二、 实验原理 (1)停留时间分布 当物料连续流经反应器时,停留时间及停留时间分布是重要概念。停留时间分布和流动模型密切相关。流动模型分平推流,全混流与非理想流动三种类型。 对于平推流,流体各质点在反应器内的停留时间均相等,对于全混流,流体各质点在反应器内的停留时间是不一的,在0~∞范围内变化。对于非理想流动,流体各质点在反应器内的停留时间分布情况介乎于以上两种理想状态之间,总之,无论流动类型如何,都存在停留时间分布与停留时间分布的定量描述问题。 (2)停留时间分布密度函数E (t ) 停留时间分布密度函数E (t )的定义: 当物料以稳定流速流入设备(但不发生化学变化)时,在时间t =0时,于瞬时间dt 进入设备的N 个流体微元中,具有停留时间为t 到(t +dt )之间的流体微元量dN 占当初流入量N 的分率为E (t )dt ,即 ()=dN E t dt N (1) E (t )定义为停留时间分布密度函数。 由于讨论的前提是稳定流动系统,因此,在不同瞬间同时进入系统的各批N 个流体微元均具有相同的停留时间分布密度,显然,流过系统的全部流体,物料停留时间分布密度为同一个E (t )所确定。根据E (t )定义,它必然具有归一化性质:

()1∞ =? E t dt (2) 不同流动类型的E (t )曲线形状如图1所示。根据E (t )曲线形状,可以定性分析物料在反应器(设备)内停留时间分布。 平推流 全混流 非理想流动 图1 各种流动的E (t )~t 关系曲线图 (3)停留时间分布密度函数E (t )的测定 停留时间分布密度函数E (t )的测定,常用的方法是脉冲法。此法采用的示踪剂,既不与被测流体发生化学反应,又不影响流体流动特性,也就是说,示踪物在反应器(设备)内的停留时间分布与被测流体的停留时间分布相同。所以,当注入一定量Q 的示踪物时,经过t →(t +dt )时间间隔流出的示踪物量占示踪物注入总量Q 的分率就是与示踪物注入同时进入系统的物料中,停留时间为t →(t +dt )的那部分流体物料占总流体的物料的分率, 即: 亦即: ()()??=V C t dt E t dt Q 或 () ()?= V C t E t Q (3) V ——流体体积流量,(ml/s) Q ——加入的示踪物总量,(mg) C (t )——示踪物的出口浓度,(mg/ml)

搅拌釜式反应器课程设计

搅拌釜式反应器课程设计任务书 一、设计内容安排 1. 釜式反应器的结构设计 包括:设备结构、人孔数量及位置,仪表接管选择、工艺接管管径计算等。 2. 设备壁厚计算及其强度、稳定性校核 3. 筒体和裙座水压试验应力校核 4. 编写设计计算书一份 5. 绘制装配图一张(电子版) 二、设计条件 三、设计要求 1.学生要按照任务书要求,独立完成塔设备的机械设计; 2.根据设计计算书、图纸及平时表现综合评分。 四、设计说明书的内容 1.符号说明 2.前言 (1)设计条件; (2)设计依据; (3)设备结构形式概述。 3.材料选择 (1)选择材料的原则; (2)确定各零、部件的材质;

(3)确定焊接材料。 4.绘制结构草图 (1)按照工艺要求,绘制工艺结构草图; (2)确定裙座、接管、人孔、控制点接口及附件、内部主要零部件的轴向及 环向位置,以单线图表示; (3)标注形位尺寸。 5.标准化零、部件选择及补强计算: (1)接管及法兰选择:根据结构草图统一编制表格。内容包括:代号,PN,DN, 法兰密封面形式,法兰标记,用途)。补强计算。 (2)人孔选择:PN,DN,标记或代号。补强计算。 (3)其它标准件选择。 6.结束语:对自己所做的设计进行小结与评价,经验与收获。 7.主要参考资料。 【设计要求】: 1.计算单位一律采用国际单位; 2.计算过程及说明应清楚; 3.所有标准件均要写明标记或代号; 4.设计计算书目录要有序号、内容、页码; 5.设计计算书中与装配图中的数据一致。如果装配图中有修改,在说明书中要注明变更; 6.设计计算书要有封面和封底,均采用A4纸,正文用小四号宋体,行间距1.25倍,横向装订成册。

多釜串联

实验报告 课程名称: 化工专业实验1 指导老师: 黄灵仙 成绩:__________________ 实验名称: 多釜串联流动特性的测定 实验类型:___________同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的 1.观察了解多釜串联的流动特性,并与理想流型特性曲线作比较。 2.掌握用脉冲示踪法测定停留时间分布的实验方法及数据处理。 3.根据单个釜的流动特性推测四釜串联的理论流动特性,并与实际测量值进行比较。 二、实验内容和原理 1.对于等容积理想全混式多釜串联的流动,如用脉冲示踪法测定其出口浓度变化曲线,经过换算,可得到停留时间分布的密度函数E ( t ),即 1 ()(1)!N Nt N t N t E t e N t t -- ?? = ? -?? (1) 令-=t t /θ,代入上式 θ θθN N N e N N E ---=1)()!1()( (2) 式中 N —釜数 t — 整个装置的平均停留时间,(= N(V R )i / v) (V R )i — 每一小釜的体积 v — 流体流量 据式(1),(2)可计算一组理想全混式的流动曲线,如图一(a )所示,由于实验测定的是出口浓度变化曲线C ( t ) ~ t ,如图一(b )所示,经下列关系换算,可得E ( t ) ()()()C t C t E t Co Cdt ∞ = = ? 或写成离散型函数1 () ()n C t E t C t =- ?∑

反应工程实验讲义

单釜和多釜串联返混性能测定 一、实验目的 本实验通过单釜与三釜反应器中停留时间分布的测定,将数据计算结果用多釜串联模型来定量返混程度,从而掌握控制返混的措施。本实验目的为: 1.掌握停留时间分布的测定方法; 2.了解停留时间分布与多釜串联模型的关系; 3.了解模型参数N 的物理意义与计算方法。 二、实验原理 在连续流动的反应器内,不同停留时间的物料之间的混合称为返混。返混程度的大小通常用物料在反应器内的停留时间分布来测定。然而,在测定不同状态的反应器内物料的停留时间分布时发现,相同的停留时间分布可以有不同的返混情况,即返混与停留时间分布不存在一一对应关系,因此不能用停留时间分布的实验测定数据直接表示返混程度,而要借助于相关的数学模型来间接表达。 物料在反应器内的停留时间完全是一个随机过程,需用概率分布的方法来定量描述。所用的概率分布分布函数为停留时间分布密度函数)(t E 和停留时间分布函数)(t F 。停留时间分布密度函数)(t E 的物理意义是:同时进入的N 个流体粒子中,停留时间介于t 到dt t +间的流体粒子所占的分率为N dN /为dt t F )(。停留时间分布函数)(t F 的物理意义是:流过系统的物料中停留时间小于t 的物料的分率。 停留时间分布的测定方法有脉冲法、阶跃法等,常用的是脉冲法。当系统达到稳定后,在系统的入口处瞬间注入一定量Q 的示踪物料,同时在出口液体中检测示踪物料的浓度变化。 由停留时间分布密度函数的物理含义,可知 ) 2()()1(/)()(0?∞ ==dt t Vc Q Q dt t Vc dt t E 所以 ) 3()() ()() ()(0 ? ? ∞ ∞ = = dt t c t c dt t Vc t Vc t E 由此可见, )(t E 与示踪剂浓度)(t c 成正比。因此,本实验中用水作为连续流动的物 料,以饱和KCl 作示踪剂,在反应器出口处检测溶液电导值。在一定范围内,KCl 浓度与电导值成正比,则可用电导值来表达物料的停留时间变化关系,即)()(t L t F ∝,这里

实验8 连续流动反应器中的返混测定

实验8 连续流动反应器中的返混测定实验八连续流动反应器中的返混测定 1.目的及任务 1.1 实验目的 1.了解全混釜和多釜串联反应器的返混特性; 2.掌握利用电导率测定停留时间分布的基本原理和实验方法; 3.了解停留时间分布与多釜串联模型的关系; 4.了解模型参数n的物理意义及计算方法。 1.2实验任务 1. 用脉冲示踪法测定单反应釜停留时间分布,确定返混程度; 2. 用脉冲示踪法测定三反应釜串联系统的停留时间分布,确定返混程度; 2.基本原理 在连续流动的釜式反应器内,激烈的搅拌使得反应器内物料发生混合,反应器出口处的物料会返回流动与进口处物料混合,形成空间上的返混;为限制空间返混的发生程度,通常从几何空间上将一个反应釜分成多个反应釜,可以使返混程度降低。 在连续流动的釜式反应器内,不同停留时间的物料之间的混合形成时间上的返混。返混程度的大小,一般很难直接测定,通常是利用物料停留时间分布的测定来研究。然而测定不同状态的反应器内停留时间分布时,我们可以发现,相同的停留时间分布可以有不同的返混情况,即返混与停留时间分布不存在一一对应的关系,因此不能用停留时间分布的实验测定数据直接表示返混程度,而要借助于反应器数学模型来间接表达。

停留时间分布的测定方法有脉冲法,阶跃法等,常用的是脉冲法。当系统达到稳定后,在系统的入口处瞬间注入一定量Q的示踪物料,同时开始在出口流体中检测示踪物料的浓度变化。 由停留时间分布密度函数的物理含义及物料衡算,可知 QftdtVCtdt,,, ,,,,(1) 示踪剂加入量符合 , ,,Q,VCtdt(2) ,0 由(1)与(2)可得停留时间分布密度函数 VCtCt,,,,,,ft,, ,,(3) ,,,,VCtdtCtdt,,00 由此可见与示踪剂浓度成正比。因此,本实验中用水作为连续流动的物料,,,,,ftCt 以饱和KCl作示踪剂,在反应器出口处检测溶液电导值。在一定范围内,KCl 浓度与电导值L成正比,则可用电导值来表达物料的停留时间变化关系,即,这里,,,,ft,Lt,,,为t时刻的电导值,为无示踪剂时电导值。 Lt,L,LLLt,t? 停留时间分布密度函数在概率论中有二个特征值,即平均停留时间(数学期望),,ft ,22t和方差。与的表达式为: ,,ttt ,tCtdt,,,,,0ttf,,tdt,, (4) ,,0,,Ctdt,0 ,,2222,,,,,,,,t,tftdt,tftdt,t (5) t,,00 ,t,采用离散形式表达,并取相同时间间隔则: ,,tCt,t,t,Lt,,,,t,, (6) ,,,,,Ct,t,Lt 22,,,,,tCt,tLt222,,,,,t,,t (7) t,,,,,Ct,Lt 222,,,,t若用无因次对比时间来表示,即,无因次方差。 ,,tt,t在测定了 一个系统的停留时间分布后,如何来评介其返混程度,则需要用反应器模型来描述,这里我们采用的是多釜串联模型。

计算机控制釜式反应器返混性能测定实验说明书

计算机控制多釜串联返混性能测定实验 (一)实验目的 本实验通过单釜与三釜反应器中停留时间分布的测定,将数据计算结果用多釜串联模型来定量返混程度,从而认识限制返混的措施。 1.通过实验了解停留时间分布测定的基本原理和实验方法。 2.掌握停留时间分布的统计特征值的计算方法。 3.学会用理想反应器的串联模型来描述实验系统的流动特性 (二)实验原理 在连续流动的反应器内,不同停留时间的物料之间的混合称为返棍。返混程度的大小,一般很难直接测定,通常是利用物料停留时间分布的测定来研究。然而测定不同状态的反应器内停留时间分布时,我们可以发现,相同的停留时间分布可以有不同的返混情况,即返混与停留时间分布不存在一一对应的关系,因此不能用停留时间分布的实验测定数据直接表示返混程度,而要借助于反应器数学模型来间接表达。 物料在反应器内的停留时间完全是一个随机过程,须用概率分布方法来定量描述。所用的概率分布函数为停留时间分布密度函数f(t)和停留时间分布函数F(t)。停留时间分布密度函数f(t)的物理意义是:同时进入的N 个流体粒子中,停留时间介于t 到t+dt 间的流体粒子所占的分率dN/N 为f(t)dt 。停留时间分布函数F(t)的物理意义是:流过系统的物料中停留时间小于t 的物料的分率。 停留时间分布的测定方法有脉冲法,阶跃法等,常用的是脉冲法。当系统达到稳定后,在系统的入口处瞬间注入一定量Q 的示踪物料,同时开始在出口流体中检测示踪物料的浓度变化。 由停留时间分布密度函数的物理含义,可知 ()()/f t dt V c t dt Q =? ()0Q Vc t dt ∞ =? ()() () () ()0 Vc t c t f t Vc tdt c t dt ∞ ∞ = = ? ? 由此可见f(t)与示踪剂浓度c(t)成正比。因此,本实验中用水作为连续流动

连续搅拌釜反应器中乙酸乙酯的水解反应

实验报告 课程名称:化工专业实验指导老师:黄灵仙成绩:________________ 实验名称:连续搅拌釜反应器中乙酸乙酯的水解反应实验类型:反应工程实验 一、实验目的和要求 二、实验内容和原理 三、主要仪器设备 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析 七、讨论、心得 一、实验目的 1.了解和掌握搅拌釜反应器非理想流动产生的原因; 2.掌握搅拌釜反应器达到全混流状态的判断和操作; 3.了解和掌握某一反应在全混釜中连续操作条件下反应结果的测量方法,以及与间歇反应器内反应结果的差别。 二、实验原理 在稳定条件下,根据全混釜反应器的物料衡算基础,有 A m A A A m A A A A x C C C C C C V F r ττ0000)1()()=-=-= (-(1) 对于乙酸乙脂水解反应: OH H C COO CH H COOC CH OH 52-3K 523-+?→?+ A B C D 当C A0=C B0,且在等分子流量进料时,其反应速度(-r A )可表示如下形式: 2 20A 20 2 A 02)1))/exp()A A A A A x kC C C C RT E k kC r -=-==(((-(2) 则根据文献(物化实验)的乙酸乙酯动力学方程,由(1),(2)可计算出x A 2 20A m )1A A A x kC x C -=(τ(3) 同时由于C A0∝(L 0-L ∞),C A ∝(L t -L ∞),由实验值得: )( 100∞ ---=L L L L x t A (4) 式中: L 0,L ∞—— 分别为反应初始和反应完毕时的电导率 L t —— 空时为m τ时的电导率 根据反应溶液的电导率的大小,由(4)式可以直接得到相应的反应转化率,由(3)式计算得到相同条件下的转化率,两者进行比较可知目前反应器的反应结果偏离全混流反应的理论计算值。 专业: 姓名: 学号: 日期: 地点:

多釜串并联返混实验装置

计算机控制多釜串并联 返混实验装置说明书 天津大学化工基础实验中心 2012.02

在连续流动反应器中进行化学反应时,反应进行的程度除了与反应系统本身的性质有关以外,还与反应物料在反应器内停留时间长短有密切关系。停留时间越长,则反应越完全。停留时间通常是指从流体进入反应器时开始,到其离开反应器为止的这一段时间。显然对流动反应器而言,停留时间不象间歇反应器那样是同一个值,而是存在着一个停留时间分布。造成这一现象的主要原因是流体在反应器内流速分布的不均匀,流体的扩散,以及反应器内的死区等。 停留时间分布的测定不仅广泛应用于化学反应工程及化工分离过程,而且应用于涉及流动过程的其它领域。它也是反应器设计和实际操作所必不可少的理论依据。 一、实验装置的基本功能和特点: 1.通过实验了解停留时间分布测定的基本原理和实验方法。 2.掌握停留时间分布的统计特征值的计算方法。 3.学会用理想反应器的串联模型来描述实验系统的流动特性。 二、实验装置简介: 1.实验装置流程图: 图一实验设备流程示意图 1-水箱;2-水泵:3-转子流量计;4,5-KCL的进样口;6、7-进水阀; 8-搅拌电机;9-釜式反应器;10-溢流口;11-电导电极;12-回流阀;

2.实验装置主要技术参数: 多釜式反应器直径110mm,高120mm,有机玻璃制成,3个。 单釜式反应器直径160mm,高120mm,有机玻璃制成,1个。 搅拌马达25W,转数90-1400转/分,无级变速调节 液体(水)流量计 4---40 L/h 3.实验原理: 停留时间分布测定所采用的方法主要是示踪响应法。它的基本思路是:在反应器入口以一定的方式加入示踪剂,然后通过测量反应器出口处示踪剂浓度的变化,间接地描述反应器内流体的停留时间。常用的示踪剂加入方式有脉冲输入、阶跃输入和周期输入等。本实验选用的是脉冲输入法。 脉冲输入法是在极短的时间内,将示踪剂从系统的入口处注入注流体,在不影响主流体原有流动特性的情况下随之进入反应器。与此同时,在反应器出口检测示踪剂浓度c(t)随时间的变化。整个过程可以用图1形象地描述。 由概率论知识可知,概率分布密度函数E(t)就是系统的停留时间分布密度函数。因此,E(t)dt就代表了流体粒子在反应器内停留时间介于t到t+dt之间的概率。 在反应器出口处测得的示踪剂浓度c(t)与时间t的关系曲线叫响应曲线。由响应曲线就可以计算出E(t)与时间t的关系,并绘出E(t)~t关系曲线。计算方法是对反应器作示踪剂的物料衡算,即 Qc(t)dt=mE(t)dt (1)式中Q表示主流体的流量,m为示踪剂的加入量。示踪剂的加入量可以用下式计

实验一 多釜串联连续流动反应器中停留时间分布的测定

实验一多釜串联连续流动反应器中停留时间分布的测定一、实验目的 本实验通过单釜与三釜反应器中停留时间分布的测定,将数据计算结果用多釜串联模型来描述返混程度,从而认识限制返混的措施。 1、掌握停留时间分布的测定方法; 2、了解停留时间分布与多釜串联模型的关系; 3、掌握多釜串联模型参数N的物理意义及计算方法。 二、实验原理 在连续流动的反应器内,不同停留时间的物料之间的混和称为返混。返混程度的大小,一般很难直接测定,通常是利用物料停留时间分布的测定来研究。然而在测定不同状态的反应器内停留时间分布时,可以发现,相同的停留时间分布可以有不同的返混情况,即返混与停留时间分布不存在一一对应的关系,因此不能用停留时间分布的实验测定数据直接表示返混程度,而必须借助于反应器数学模型来间接表达。 物料在反应器内的停留时间完全是一个随机过程,须用概率分布方法来定量描述。所用的概率分布函数为停留时间分布密度函数E(t)和停留时间分布函数F(t)。 停留时间分布密度函数E(t)的物理意义是:同时进入的N个流体粒子中,停留时间介于t到t+dt间的流体粒子所占的分率dN/N为E(t)dt。 停留时间分布函数F(t)的物理意义是:流过系统的物料中停留时间小于t的物料所占的分率。 停留时间分布的测定方法有脉冲输入法、阶跃输入法等,常用的是脉冲输入法。当系统达到稳定后,在系统的入口处瞬间注入一定量Q的示踪物料,同时开始在出口流体中检测示踪物料的浓度变化。 由停留时间分布密度函数的物理含义,可知: E(t)dt=VC(t)/Q (1) ?∞= )(dt t VC Q (2)

所以 ? ? ∞ ∞ = = )() ()() ()(dt t C t C dt t VC t VC t E (3) 由此可见E (t )与示踪剂浓度C (t )成正比。 本实验中用水作为连续流动的物料,以饱和KCl 作示踪剂,在反应器出口处检测溶液的电导值。在一定范围内,KCl 浓度与电导值成正比,则可用电导值来表达物料的停留时间变化关系,即E (t )∝L (t ),这里L(t)=L t -L ∞,L t 为t 时刻的电导值,L ∞为无示踪剂时电导值。 停留时间分布密度函数E (t )在概率论中有二个特征值——平均停留时间(数学期望)t 和方差σt 2。 t 的表达式为: ???∞∞ ∞ = =00 )()()(dt t C dt t tC dt t tE t (4) 采用离散形式表达,并取相同时间间隔Δt ,则: )() ()()(t L t tL t t C t t tC t ∑∑=?∑?∑= (5) σt 2的表达式为: ??∞ ∞ -=-=0 220 22)()()(t dt t E t dt t E t t t σ (6) 也可采用离散形式表达,并取相同Δt ,则: 222 22 ) ()()()(t t L t L t t t C t C t t -∑∑=-∑∑=σ (7) 若用无因次对比时间θ来表示,即:t t /=θ, 无因次方差:222 t t σσθ=。 在测定了一个系统的停留时间分布后,如何来评价其返混程度,则需要用反应器模型来描述,这里我们采用多釜串联模型。 所谓多釜串联模型是将一个实际反应器中的返混情况作为与若干个全混釜串联时的返混程度等效。这里的若干个全混釜个数N 是虚拟值,并不代表反应器个数,N 称为模型参数。多釜串联模型假定每个反应器为全混釜,反应器之间无返混,每个全混釜体积相同,则可以推导得到多釜串联反应器的停留时间分布函数关

多釜串联实验讲义(1)

实验十四 连续流动反应器中的返混测定 A 实验目的 本实验通过单釜与三釜反应器中停留时间分布的测定,将数据计算结果用多釜串联模型来定量返混程度,从而认识限制返混的措施。本实验目的为 (1) 掌握停留时间分布的测定方法。 (2) 了解停留时间分布与多釜串联模型的关系。 (3) 了解模型参数n 的物理意义及计算方法。 B 实验原理 在连续流动的反应器内,不同停留时间的物料之间的混和称为返混。返混程度的大小,一般很难直接测定,通常是利用物料停留时间分布的测定来研究。然而测定不同状态的反应器内停留时间分布时,我们可以发现,相同的停留时间分布可以有不同的返混情况,即返混与停留时间分布不存在一 一对应的关系,因此不能用停留时间分布的实验测定数据直接表示返混程度,而要借助于反应器数学模型来间接表达。 物料在反应器内的停留时间完全是一个随机过程,须用概率分布方法来定量描述。所用的概率分布函数为停留时间分布密度函数f ()t 和停留时间分布函数F ()t 。停留时间分布密度函数f ()t 的物理意义是:同时进入的N 个流体粒子中,停留时间介于t 到t+dt 间的流体粒子所占的分率N dN 为f ()t dt 。停留时间分布函数F ()t 的物理意义是:流过系统的物料中停留时间小于t 的物料的分率。 停留时间分布的测定方法有脉冲法,阶跃法等,常用的是脉冲法。当系统达到稳定后,在系统的入口处瞬间注入一定量Q 的示踪物料,同时开始在出口流体中检测示踪物料的浓度变化。 由停留时间分布密度函数的物理含义,可知 ()()Q dt t C V dt t f ?= (1) ()? ∞ = dt t VC Q (2)

实验四:单釜与三釜串联返混性能测定

实验四:单釜与三釜串联返混性能测定 三釜实验数据处理表(釜一) T(s) V1(mv) L(t i) L(t i)·△t t i·L(t i)·△t i t i2·L(t i)·△t i 0 1.507 0 0 0 0 34 10.395 8.888 302.192 10274.528 349333.952 68 9.032 7.525 255.85 17397.8 1183050.4 102 7.895 6.388 217.192 22153.584 2259665.568 137 6.939 5.432 190.12 26046.44 3568362.28 171 6.104 4.597 156.298 26726.958 4570309.818 205 5.418 3.911 132.974 27259.67 5588232.35 239 4.821 3.314 112.676 26929.564 6436165.796 273 4.312 2.805 95.37 26036.01 7107830.73 307 3.893 2.386 81.124 24905.068 7645855.876 342 3.519 2.012 70.42 24083.64 8236604.88 376 3.197 1.69 57.46 21604.96 8123464.96 410 2.963 1.456 49.504 20296.64 8321622.4 444 2.717 1.21 41.14 18266.16 8110175.04 478 2.556 1.049 35.666 17048.348 8149110.344 512 2.361 0.854 29.036 14866.432 7611613.184 616 2.001 0.494 51.376 31647.616 19494931.46 719 1.807 0.3 30.9 22217.1 15974094.9 822 1.657 0.15 15.45 12699.9 10439317.8 926 1.578 0.071 7.384 6837.584 6331602.784 1029 1.536 0.029 2.987 3073.623 3162758.067 1132 1.503 -0.004 1236 1.484 -0.023 1339 1.473 -0.034 1442 1.465 -0.042 1546 1.453 -0.054 1649 1.453 -0.054 1752 1.454 -0.053 1857 1.445 -0.062 1961 1.444 -0.063 2064 1.445 -0.062 计算基准: 1.507 Σ1935.119 400371.625 142664102.6 t平均206.8976766 方差σt230917.03591 无因次方差σθ20.722248458 模型参数N 1.384565089

连续循环反应器中返混状况测定

实验名称:实验三连续循环反应器中返混状况测定模 块名称预习考查 题目权重 1、理想的连续循环反应器在循环比 R=0和R=∞时,将成为哪两种理想的 反应器?() A、R=0时为全混流反应器;R=∞时为 平推流反应器 B、R=0时为平推流反应器;R=∞时为 全混流反应器 C、R=0时为无梯流反应器;R=∞时为 微分流反应器 D、R=0时为平推流反应器;R=∞时为 微分流反应器 2、以下对连续循环反应器的循环比的 定义,正确的说法是?() A、循环体积流量与反应器入口体积流 量之比 B、反应器入口体积流量与循环体积流 量之比 C、循环体积流量与最终离开反应器物 料的体积流量之比 D、最终离开反应器物料的体积流量与 循环体积流量之比 3、描述返混程度的多釜串联模型参数 n,与连续循环反应器的循环比R的关 系式?() A、增大循环比R,模型参数n将增大 B、增大循环比R,模型参数n将出现 极值 C、增大循环比R,模型参数n不变 D、增大循环比R,模型参数n将减小 4、在连续循环反应器中,限制返混的 措施有?多选() A、填充固体填料 B、增大循环比R C、增大管径 D、提高高径比 5、实验采用饱和KCL水溶液作为示踪 剂的理由是?多选() A、无毒无害,价廉易得 B、强电解质,电导率响应灵敏 20

C、易于溶解在测定体系中 D、不与体系发生化学反应 你的回答本模块得分[满分100] B|C|D|A,B,C,D|A,B,C,D 93 模 块名称仪器选择 题目权重 选错一次扣5分10 你的回答 本模块得分[满 分100] 正确答案:记录仪、微机、循环泵、 排液阀、填料塔 (红色圈所指示部 分)、电导仪、进水阀、循环流量计、 电极、注射器、流量计 做错次数:0 100 模 块名称操作步骤 题目权重 选错一次扣5分10 你的回答 本模块得分[满 分100] 正确答案: 做错次数:0 100 模 块名称实验报告--实 验目的 题目权重 请单击本次实验目的前的复选框作出 选择,答案不止一项。 A、了解连续均相管式循环反应器的返 混特性。 B、掌握电导仪表的通讯原理。 C、研究不同循环比下的返混程度,计 算模型参数n。 D、学习连续循环反应器的安装方法。 E、分析观察连续均相管式反应器的流 动特征。 5 你的回答 本模块得分[满 分100] A,C,E 100

多釜串联返混性能测定实验

多釜串联返混性能测定实验 实验基本要求及注意事项:(1) 书包放书包柜或实验台最外侧柜子;(2) 必须穿实验服;(3) 实验完成后清扫桌面和地面;关闭锁好窗户拉好窗帘;(4) 老师在原始数据上签字后方可离开实验室;(5) 实验操作规程在设备对应实验台的第一个抽屉内。 1实验前准备工作 1.1检查并确认水箱内水满(去离子水);用100ml烧杯配好饱和KCl溶液待用。 1.2电导率仪调节:按下绿色按钮后,打开电导率仪开关,将温度补偿旋钮调至25℃,按“测量”档位至“×103”,“调零”旋钮调至“0.000”;按下“校正”键,校对电极常数与电极棒常数(已标在电极棒上)相一致;再按“测量”档位至“×103”。注意不要碰触蓝色电极棒,以免损坏。 1.3 检查搅拌釜及其控制系统:搅拌马达控制器电源为关闭状态(“0”),搅拌转速为0(旋钮逆时针旋到头);关闭各釜下底阀门(注意:左手扶住阀体,右手顺时针方向扳阀柄至水平位。固定阀柄的螺母松动后,应及时拧紧)。 1.4记录实验室温度和各反应釜的体积(体积已标在相应反应釜上)。 1.5确认离心泵旁路阀已打开,多釜进水阀和流量计阀门已关闭,启动离心泵(按下黄色按钮)。 1.6打开计算机,点击桌面上文件名为“dfc”的实验装置图标进入操作系统界面。 2三釜串联实验 2.1向釜内加水:打开多釜进水阀,慢慢打开转子流量计调节阀至20L/hr,向釜内注水至红色刻线。此期间,当水位没过搅拌桨时,开启搅拌釜上方搅拌马达开关(“1” ),用旋钮缓慢调节马达转速至200rpm。通过调节搅拌釜左侧π形管高度,控制各釜内的液位至红色刻线。2.2实验及采集数据:各釜内液位稳定在红色刻线后,调节电导仪调零旋钮至“0.000”,以扣除本底。点击“实验操作”“参数设定”“采样频率”调为5s“确定”;“实验操作”“多釜实验”;“实验操作”“开始实验”。点击“结果显示”“曲线图”,待跑线稳定后,用注射器取3ml饱和KCl溶液,赶气泡并用滤纸吸干注射器外面液体后,迅速注入第一釜。计算机系统自动采集数据,当曲线图由最高点恢复到三釜的电导仪数据均为0.000时,点“实验操作”“停止采集”。注意:实验中保持流量计流量为20 L/hr。 2.3 保存数据:“实验操作”“开始计算”;“结果显示”“数据表”;“文件”“另存为”txt文件“保存”;“实验操作”“结束实验”。由老师统一拷贝数据。 3 单釜实验 打开单釜进水阀,用与2.1、2.2和2.3相同的步骤进行操作。饱和KCl溶液加入量为6ml。 4 实验结束 4.1 清洗反应釜:将流量计流量调为0,停止搅拌,打开各釜下底阀(用左手扶住阀体),放掉釜内水后,关闭下底阀,流量计流量调为30 L/hr,π形管提高约1cm,再向釜内加水至红色刻线上方1cm处,搅拌下对搅拌釜清洗约5min后,关闭流量计调节阀和进水阀,停离心泵(按黄色按钮),停搅拌关搅拌电源(“0”);放掉釜内水,各阀门处于打开状态;π形管恢复原位。 4.2 关电源、向储水槽加水:关电导率仪电源、总电源和计算机;向储水槽中注满水。 基础仪器实验室 2009年月10月16日

实验八连续流动反应器中的返混测定

实验八连续流动反应器中的返混测定 1. 目的及任务 1.1. 实验目的 1. 了解全混釜和多釜串联反应器的返混特性; 2. 掌握利用电导率测定停留时间分布的基本原理和实验方法; 3. 了解停留时间分布与多釜串联模型的关系; 4. 了解模型参数n的物理意义及计算方法。 1.2. 实验任务 1. 用脉冲示踪法测定单反应釜停留时间分布,确定返混程度; 2. 用脉冲示踪法测定三反应釜串联系统的停留时间分布,确定返混程度; 2. 基本原理 在连续流动的釜式反应器内,激烈的搅拌使得反应器内物料发生混合,反应器出口处的物料会返回流动与进口处物料混合,形成空间上的返混;为限制空间返混的发生程度,通常从几何空间上将一个反应釜分成多个反应釜,可以使返混程度降低。 在连续流动的釜式反应器内,不同停留时间的物料之间的混合形成时间上的返混。返混程度的大小,一般很难直接测定,通常是利用物料停留时间分布的测定来研究。然而测定不同状态的反应器内停留时间分布时,我们可以发现,相同的停留时间分布可以有不同的返混 情况,即返混与停留时间分布不存在一一对应的关系,因此不能用停留时间分布的实验测定 数据直接表示返混程度,而要借助于反应器数学模型来间接表达。 停留时间分布的测定方法有脉冲法,阶跃法等,常用的是脉冲法。当系统达到稳定后, 在系统的入口处瞬间注入一定量Q的示踪物料,同时开始在出口流体中检测示踪物料的浓

(7) 度变化。 由停留时间分布密度函数的物理含义及物料衡算,可知 Q f t dt 二 V C t dt ⑴ 示踪剂加入量符合 Q = 0 VC tdt (2) 由(1)与(2)可得停留时间分布密度函数 VCt VC t dt C t dt (3) 由此可见f t 与示踪剂浓度C t 成正比。因此,本实验中用水作为连续流动的物料, 以饱和KCI 作示踪剂,在反应器出口处检测溶液电导值。在一定范围内, KCI 浓度与电导值 L 成正比,则可用电导值来表达物料的停留时间变化关系,即f t 二L t ,这里 Lt [=L t -L ::, L t 为t 时刻的电导值,L a 为无示踪剂时电导值。 停留时间分布密度函数 f t 在概率论中有二个特征值,即平均停留时间(数学期望) t 和方差二t 2。 t 与匚2的表达式为: ?::: 2 - 2 f t d^.0 t f tdt -t 采用离散形式表达,并取相同时间间隔 =t,则: / _.tC t t It L t t iC t :t iL t 厂2 二主 t 一 f 2「汽 t _^2 t St 」 tC t dt 0 Ctdt ⑷ (5) ⑹

实验一 多釜串联连续流动反应器中停留时间分布的测定

实验一多釜串联连续流动反应器中停留时间分布的测定 一、实验目的 本实验通过单釜与三釜反应器中停留时间分布的测定,将数据计算结果用多釜串联模型来描述返混程度,从而认识限制返混的措施。 1、掌握停留时间分布的测定方法; 2、了解停留时间分布与多釜串联模型的关系; 3、掌握多釜串联模型参数N 的物理意义及计算方法。 二、实验原理 在连续流动的反应器内,不同停留时间的物料之间的混和称为返混。返混程度的大小,一般很难直接测定,通常是利用物料停留时间分布的测定来研究。然而在测定不同状态的反应器内停留时间分布时,可以发现,相同的停留时间分布可以有不同的返混情况,即返混与停留时间分布不存在一一对应的关系,因此不能用停留时间分布的实验测定数据直接表示返混程度,而必须借助于反应器数学模型来间接表达。 物料在反应器内的停留时间完全是一个随机过程,须用概率分布方法来定量描述。所用的概率分布函数为停留时间分布密度函数E (t)和停留时间分布函数F (t)。 停留时间分布密度函数E (t )的物理意义是:同时进入的N 个流体粒子中,停留时间介于t 到t +dt 间的流体粒子所占的分率dN/N 为E (t )dt 。 停留时间分布函数F (t )的物理意义是:流过系统的物料中停留时间小于t 的物料所占的分率。 停留时间分布的测定方法有脉冲输入法、阶跃输入法等,常用的是脉冲输入法。当系统达到稳定后,在系统的入口处瞬间注入一定量Q 的示踪物料,同时开始在出口流体中检测示踪物料的浓度变化。 由停留时间分布密度函数的物理含义,可知: E (t )dt =VC (t )/Q (1) ?∞ =0)(dt t VC Q (2) 所以 ? ? ∞ ∞ = = )() ()() ()(dt t C t C dt t VC t VC t E (3)

相关文档
最新文档