沥青混合料的组成结构及强度原理

沥青混合料的组成结构及强度原理
沥青混合料的组成结构及强度原理

第六章沥青混合料的强度构成机理

§沥青混合料的组成结构及强度原理

沥青混合料的组成结构

沥青混合料是一种复杂的多种成分的材料,其“结构”概念同样也是极其复杂的。因为这种材料的各种不同特点的概念,都与结构概念联系在一起。这些特点是:矿物颗粒的大小及其不同粒径的分布;颗粒的相互位置;沥青在沥青混合料中的特征和矿物颗粒上沥青层的性质;空隙量及其分布;闭合空隙量与连通空隙量的比值等。“沥青混合料结构”这个综合性的术语,是这种材料单一结构和相互联系结构的概念的总和。其中包括:沥青结构、矿物骨架结构及沥青-矿粉分散系统结构等。上述每种单一结构中的每种性质,都对沥青混合料的性质产生很大的影响。

随着混合料组成结构的研究的深入,对沥青混合料的组成结构有下列两种互相对立的理

论。

(1)表面理论按传统的理解,沥青混合料是由粗集料、细集料和填料经人工组配成

密实的级配矿质骨架,此矿质骨架由稠度较稀的沥青混合料分布其表面,而将它们胶结成为一个具有强度的整体。这种理论认识可图解如下:

(2)胶浆理论近代某些研究从胶浆理论出发,认为沥青混合料是一种多级空间网状

胶凝结构的分散系。它是以粗集料为分散相而分散在沥青砂浆的介质中的一种粗分散系;同样,砂浆是以细集料为分散相而分散在沥青浆介质中的一种细分散系;而胶浆又是以填料为分散相而分散在高稠度的沥青介质中的一种微分散系。这种理论认识可图解如下:

分散相—粗集料

沥青混合料(粗分散系)分散相—细集料

分散介质—砂浆(细分散系)分散相—填料

分散介质—沥青胶结物(微分散系)

分散介质—沥青

这3级分散系以沥青胶浆(沥青—矿粉系统)最为重要,典型的沥青混合料的弹-粘-塑性,主要取决于起粘结料的作用的沥青-矿粉系统的结构特点。这种多级空间网状胶凝结构的特点是,结构单元(固体颗粒)通过液相的薄层(沥青)而粘结在一起。胶凝结构的强度,取决于结构单元产生的分子力。胶凝结构具有力学破坏后结构触变性复原自发可逆的特点。

对于胶凝结构,固体颗粒之间液相薄层的厚度起着很大的作用。相互作用的分子力随薄层厚度的减小而增大,因而系统的粘稠度增大,结构就变得更加坚固。此外,分散介质(液相)本身的性质对于胶凝结构的性质亦有很大的影响。

可以认为,沥青混合料的弹性和粘塑性的性质主要取决于沥青的性质、粘结矿物颗粒的沥青层的厚度,以及矿物材料与结合料相互作用的特性。沥青混合料胶凝健合的特点,也取决于这些因素。

沥青混合料的结构取决于下列因素:矿物骨架结构、沥青的结构、矿物材料与沥青相互作用的特点、沥青混合料的密实度及其毛细-孔隙结构的特点。

矿物骨架结构是指沥青混合料成分中矿物颗粒在空间的分布情况。由于矿物骨架本身承受大部分的内力,因此骨架应由相当坚固的颗粒所组成,并且是密实的。沥青混合料的强度,在一定程度上也取决于内摩阻力的大小,而内摩阻力又取决于矿物颗粒的形状、大小及表面特性等。

形成矿物骨架的材料结构,也在沥青混合料结构的形成中起很大作用。应把沥青混合料中沥青的分布特点,以及矿物颗粒上形成的沥青层的构造综合理解为沥青混合料中的沥青结构。为使沥青能在沥青混合料中起到自己应有的作用,应均匀地分布到矿物材料中,并尽可能完全包裹矿物颗粒。矿物颗粒表面上的

沥青层厚度,以及填充颗粒间空隙的自由沥青的数量,具有重要的作用。自由沥青和矿物颗粒表面所吸附沥青的性质,对于沥青混合料的结构产生影响。沥青混合料中的沥青性质,取决于原来沥青的性质、沥青与矿料的比值,以及沥青与矿料相互作用的特点。

综上所述可以认为:沥青混合料是由矿质骨架和沥青胶结物所构成的、具有空间网络结构的一种多相分散体系。沥青混合料的力学强度,主要由矿质颗粒之间的内摩阻力和嵌挤力,以及沥青胶结料及其与矿料之间的粘结力所构成。

沥青混合料,按其强度构成原则的不同可分为按嵌挤原则构成的结构和按密实级配原则构成的结构两大类。

按嵌挤原则构成的沥青混合料的结构强度,是以矿质颗粒之间的嵌挤力和内摩阻力为主、沥青结合料的粘结作用为辅而构成的。沥青贯入式路面、沥青表面处治、以及沥青碎石路面均属此类结构。这类路面是以较粗的、颗粒尺寸均匀的矿料构成骨架,沥青结合料填充其空隙,并把矿料粘结成一个整体。这类沥青混合料结构强度受自然因素(温度)的影响较小。

按密实级配原则构成的沥青混合料的结构强度,是以沥青与矿料之间的粘结力为主,矿质颗粒间的嵌挤力和内摩阻力为辅而构成的。沥青混凝土路面和沥青碎石混合料路面属于此类。这类沥青混合料的结构强度受温度的影响较大。

按级配原则构成的沥青混合料,其结构通常可按下列三种方式组成:

1)悬浮密实结构:由连续级配矿质混合料组成的密实混合料,由于材料从大到小连续存在,

并且各有一定数量,实际上同一档较大颗粒都被较小一档颗粒挤开,大颗粒犹

如以悬浮状态处于较小颗粒之中。这种结构通常按最佳级配原理进行设计,因为密实度与强度较高,但受沥青材料的性质和物理状态的影响较大故稳定性较差。

2)骨架空隙结构:较粗石料彼此紧密相接,较细粒料的数量较少。不足以充分填充空隙。

因此,混合料的空隙较大,石料能够充分开成骨架。在这种结构中,粗骨料之间的内摩阻力起着重要的作用,其结构强度受沥青的性质和物理状态的影响较小,因而稳定性较好。

3)骨架密实结构:是综合以上两种方式组成的结构。混合料中既有一定数量的粗骨料形成

骨架,又根据粗料空隙的多少加入细料,形成较高的密实度。间断级配即是按此原理构成。

沥青混合料的强度理论与强度参数

沥青混合料属于分散体系,是由强度很高的粒料与粘结力较弱的沥青材料所构成的混合

体。根据沥青混合料的颗粒性特征,可以认为沥青混合料的强度构成起源于两个方面:

(1)由于沥青的存在而产生的粘结力;

(2)由于骨料的存在而产生的内摩阻力。

目前,对沥青混合料强度构成特性开展研究时,许多学者普遍采用了摩尔-库仑理论

作为分析沥青混合料的强度理论,并引起两个强度参数——粘结力c 和内摩阻角φ,作为其强度理论的分析指标。摩尔-库仑理论的一般表达式为:

式中:σ1——最大主应力;

σ3——最小主应力;

σij ——应力状态张量。

对于组成沥青混合料的两种原始材料——沥青和骨料,通过实验研究和强度理论分析,

可以认为:纯沥青材料的c ≠0而φ=0;干燥骨料的c=0而φ≠0。但由此形成的沥青混合料,其c ≠0且φ≠0,沥青混合料在参数c 、φ值的确定上需要把理论准则与实验结果结合起来。理论准则采用摩尔—库仑理论,而实验结果则可通过三轴实验、简单拉压实验或直剪实验获得。

(1)三轴实验确定

()()0

cos 2sin 3131=-+--=??σσσσσc f ij

对于三轴实验来说,其摩尔-库仑的理论表达式为 显然,在一定的力学加载条件下,如果材料是给定的,那么内在参数c 、φ值应为常数,σ1与σ3之间便具有线性关系。同时,众多实验研究结果也表明,

在给定实验条件下,σ1与σ3之间具有如下形式的线性关系

σ1=k σ3+b

式中:k 与b 均大于零。

将以上两式对等,则可得到内在参数c 、φ值的计算公式:

目前,国内外研究者主要是通过三轴实验来确定沥青混合料的c 、φ值。但是,由于三

轴实验在仪器设备方面比较复杂,要求较高,实验所需人力物力较多,在操作上难度大,因此,尽管三轴实验能够很好地模拟真实的应力应变状态,但它的实际应用受到一定程度的限制,在工程上难以普及使用。

(2)简单拉压实验确定

?

?σ??σsin 1cos 2sin 1sin 131-+-+=c k

b b

c k k 2cos sin 121

1

sin =-?=+-=???

沥青混合料的c 、φ值亦可通过测定无侧限抗压强度R 和抗拉强度r 予以换算。其换算关系可通过推导获得,也可以直接利用摩尔圆求得。

当无侧限抗压时,相当于σ3=0及σ1=R ,得:

简单拉压实验确定沥青混合料的内在参数c 、φ值,是以一项基本假定为前提的。即:在试验变量(材料组成变量、力学激励变量)相同的条件下,假定沥青混合料在压缩和拉伸两种加载方式下的内在参数值是相同的。

这种实验方法相对于三轴实验来说,在操作上要容易得多,且在一般试验机上均可以实

施,易于推广应用。但其试验结果的准确性要依赖于实验技术的完善与提高,特别是拉伸实验。在拉伸实验中,有两个实验技术难关需要克服,即:(1)沥青混合料的拉伸实验技术(拉头问题);(2)试件的偏心受拉问题。通过改进实验技术,这两个困难目前都可以克服。

(2)直剪实验确定

r R r R Rr c ctg c c r r tg c c R +-==??

? ??+?=+=

-==-=??

? ??+?=-=

=??π??σσσ?π??σsin 2

1242sin 1cos 20242sin 1cos 23311联立解得

则及当抗拉时相当于

内在参数c、φ值的确定,还可以通过沥青混合料的直剪实验来实现。这种实验方法与土的直剪实验非常类似,主要是通过测定不同正压力水平σi下的抗剪强度τfi,在τ-σ坐标系中绘制库仑直线,从而获得材料的c、φ值。

沥青混合料的直剪实验相对于三轴实验、简单拉压实验,在c、φ值的原理上更为直观明了,但在操作上可能更不容易实现,比如因剪切挤压而引起的破坏面不均匀问题。就现有资料来看,目前还没有见到关于沥青混合料直剪实验方面的研究报告。关于这种实验方法可行性、准确性,以及它的实验结果与三轴实验和简单拉压实验结果之间的可比性等三方面的研究工作,还有待于进一步探讨,以便确定一种较为有效和简便的方法来获得内在参数c、φ值。

§沥青与矿料之间的相互作用

沥青与矿料之间的相互作用是沥青混合料结构形成的决定性因素。它直接关系到沥青混合料的强度、温度稳定性、水稳定性、以及老化速度等一系列重要性能。因此,深入研究沥青与矿料之间相互作用的原理,充分认识并积极地利用与改善这个作用过程具有十分重要的意义。

研究表明,沥表与矿料相互作用时,所发生的效应是各种各样和特殊的,主要与表面效应有关。

矿料对沥青的吸附作用

原苏联π.A.列宾捷尔研究认为,沥青与矿料相互作用后,沥青在矿料表面产生化学组分的重新排列,在矿料表面形成一层扩散结构膜(如图6-1a所示),在此膜厚度以内的沥青称为结构沥青。此膜以外的沥青称为自由沥青。结构沥青与矿料之间发生相互作用,并且沥青的性质有所改变;而自由沥青与矿料距离较远,没有与矿料发生相互作用,仅将分散的矿料粘结起来,并保持原来性

质。

如果颗粒之间接触处由扩散结构膜所联结(如图6-1b所示),则促成沥青具有更高的粘滞度和更大的扩散结构膜的接触面积,从而可以获得更大的颗粒粘着力。反之,如颗粒之间接触处为自由沥青所联结(如图6-1c所示),则具有较小的粘着力。

图6-1 沥青与矿粉交互作用的结构图式

按照物理化学观点,沥青与矿料之间的相互作用过程是个比较复杂的、多种多样的吸附过程,它们包括沥青层被矿物表面的物理吸附过程、沥青-矿料接触

面上进行的化学吸附过程、以及沥青组分向矿料的选择性扩散过程。

固体或液体的表面和与它进行接触的液态或气态物质分子的粘结性质,以及对气体或液体的吸着现象称为吸附。吸附作用分为物理吸附和化学吸附两种形态,当吸附物质(吸附剂)与被吸附物质之间仅有分子作用力(即范德华力)存在时,则产生物理吸附;当接触的两种相(沥青和矿料)形成化合物时则产生化学吸附。

在引力作用下发生的物理吸附作用,会在矿料表面形成沥青的定向层,此时,被吸附的沥青不发生任何化学变化。在化学吸附的情况下,被吸附的沥青发生化学变化。但是,化学吸附作用仅触及被吸附物质的一层分子,而物理吸附时,实际上可能形成几个分子厚度的吸附层。

沥青在矿料表面上的吸附强度,很大程度上取决于这些材料之间发生的粘结性质。当存在化学键时(即产生化学吸附时),沥青与矿料的粘结最为牢固。当碳酸盐或碱性岩石与含有足够数量酸性表面活性物质的活化沥青粘结时,会发生化学吸附过程。这种表面活性物质能在沥青与矿料的接触面上,形成新的化合物。因为这些化合物不溶于水。所以矿料表面上形成的沥青层具有较高的抗水能力。而当沥青与酸性岩石(SiO2含量大于65%的岩石)粘结时,不会形成化学吸附化合物,故其间的粘结强度较低,遇水易剥离。

原苏联.雷西娜等人的研究表明,碳酸盐和碱性石料每个单位表面上吸附的沥青多于酸性石料具有更坚固的结构,对于比表面大和吸附力很大的的矿料,更具有特殊意义。

沥青与矿料表面粘结牢固的必要先决条件是沥青能很好地润湿矿料的表面。由物理化学得知,彼此接触物体相互作用过程的特性和强度主要取决于物体的表面性质,首先是表面自由能。

研究物质内部质点(原子、离子、分子)与位于表面的质点之间的相互作用时,可以得到关于固体或液体表面能的概念。位于固体或液体内部的每一固体或液体质点,都从各方面承受着围绕它的并和它相类似的质点的引力作用,而位于固体或液体表面的质点,只从一面受到处于固体或液体内部质点的引力作用,而另一面是空气(气相)。由于气体分子彼此相距甚远,因此只有临近固体或液体表面的气体才产生力场。气体分子对固体或液体表面质点的作用非常小,不能平衡承受从内部质点方面产生的力的作用。

固体或液体表面未平衡(未补偿)元素质点的存在相当于该表面每单位面积具有一定数量的自由能,其数量等于形成表面所消耗的功。该自由能称为表面自由能或表面能力。

润湿是自发的过程,在这一过程中,相接触的三相—矿料、水和空气或沥青体系内,于一定的温度条件下会发生体系的表面自由能的降低现象。

大多数的造岩矿物,如氧化物、碳酸盐、硅酸盐、云母、石英等,均属于亲水性的。所有亲水性矿物都具有离子键(有极性的)的晶格,因此,当它们分裂时在表面层可能有未平衡的离子——带自由价的离子。

憎水性矿物具有共价键(原子键)的晶格,或者具有分子键的晶格。有些憎水性材料具有离子和分子键的晶格,即元素质点内部有牢固的离子键,质点之间有分子键。这些元素质点的表面几乎没有未补偿的键。

两种相互接触的物体,例如沥青同矿料的接触表面相互作用所消耗的能量,以粘结作用来表征,这种粘结作用通常简称为粘结力。

能良好地润湿固体干燥表面的液体,并不意味着一定有良好的粘结力。沥青润湿与粘结潮湿矿料表面的能力,取决于固体表面排挤水分的性质和沥青的个别

组分在边界层中的选择性吸附。这就相应地减小了体系的表面自由能。吸附的结果增加了相界面处被吸附物质的浓度,且减小了界面上的表面自由能。

吸附层的性质取决于被吸附物质的数量、被吸附物质与固体相互作用的性质和能量。这

些因素将构成固体-液体分界面上二相相互联系的特性。吸附层,特别是在完全饱和的情况下,它类似于很薄的固体膜,具有高的力学强度。这种性质由于周围液体介质(溶剂-沥青中的油分)的作用,其能力再一次地加强了。

化学吸附是沥青中的某些物质(如沥青酸)与矿料表面的金属阳离子产生化学反应,生成沥青酸盐,在矿料表面构成化学吸附层的过程。化学相互作用力的强度,超过分子力作用许多倍。化学相互作用的能量转为化学反应的热量时,其数值为数百焦尔/克分子以上;而物理相互作用的能量转为热量时最大仅为数十焦尔/克分子。因此,当沥青与矿料形成化学吸附层时,相互间的粘附力远大于物理吸附时的粘附力。也只有产生化学吸附,沥青混合料才可能具有良好的水稳性。

化学吸附产生与否以及吸附程度,决定于沥青及矿料的化学成分。例如石油沥青中因含有沥青酸及沥青酸酐能与碱性矿料中的高价金属盐产生化学反应,生成不溶于水的有机酸盐,与低价金属盐反应生成的有机酸盐则易溶于水,而与酸性矿料之间则只能产生物理吸附。煤沥青中既有酸性物质(如酚类),以有碱性物质(如吡啶类),因而与酸性矿料及碱性矿料均能起化学吸附作用,当然其吸附程度和生成物的性质仍与矿料的化学成分密切相关。

所谓选择性吸附,就是一相物质中的某一特定组分由于扩散作用沿着另一相的微孔渗入到其内部。当沥青与矿料相互作用时,选择性扩散产生的可能性以及其作用大小,取决于矿料的表面性质、孔隙状况及沥青的组分与活性。

矿料对沥青的选择性吸附作用,主要产生于表面具有微孔(孔隙直径小于)的

矿料,如石灰岩、泥灰岩、矿渣等。此时沥青中活性较高的沥青质吸附在矿料表面,树脂吸附在矿料表层小孔中,而油分则沿着毛细管被吸收到矿料内部。因此,矿料表面的树脂和油分相对减少,沥青质增多,结果沥青性质发行变化——稠度提高、粘结力增加,从而在一定程度上改善了沥青混合料的热稳性与水稳性。

沥青与多孔的材料相互作用的特点,一方面取决于表面性质和吸咐物的结构(孔隙的大小及其位置),另一方面与沥青的特性有关(主要是活性和基团组成)。矿料表面上如有微孔,就会大大改变其与沥青相互作用的条件,微孔具有极大的吸附势能,因而孔中吸附大部分的沥青表面活性组分。当沥青与结构致密的矿料(如石英岩)相互作用时,上述过程就失去了必要的条件,因而其对沥青的选择性吸附不显著。

沥青与初生矿物表面的相互作用

沥青与初生矿物表面的相互作用是一种特殊的作用形式,因为它决定于化学-力学过程。并与上面叙述的化学吸附同时发生。

化学-力学是一个比较新的科学领域,它研究力学作用对各种物质所产生的范围极广的现象。许多研究人员对化学-力学有着特殊兴趣,这与在力学作用时有可能在一定条件下引起化学过程有关。因此,利用化学-力学手段进行材料机械加工过程的研究具有非常广阔的前景。

远在1873年,卡列·M·里曾经指出,某些化学反应只能在力学作用的条件下才会更有效,或是一般只能在这种作用下才能发生反应。

引起固体中大部分力学化学过程的最重要的因素有:化学活性很大的新表面的产生;受机械力破坏而形成的颗粒表面层的结构变化;初生颗粒表面上进行的化学反应。

固体受机械力作用产生的初生表面的能量状态的研究包括初生表面的带电及其吸附能力的研究,重新形成的颗粒表层结构的研究,以及自由基的产生过程和基的相互反应过程等。

B.B.德拉金指出,颗粒经磨碎后成为带电颗粒,并且电荷的正负与大小取决于颗粒的大小和物质的性质。初生表面的带电,在矿料的活化过程中起着一定的作用。

决定初生表面具有很高的化学活性的一个因素是由于出现自由基,自由基是借助机械力的破坏作用,使化学健断开而产生的。化学键在机械力作用下断开的可能性是史塔乌金捷尔最先提出的。1952年,帕依克和瓦特森证实了在这种情况下可能产主自由基。

自由基是分子的残余部分,或是处于电子受激震状态下的分子,它具有很大的化学活性。自由基的主要化学特性是,具有很高的反应能力,这种能力与自由化合价有关,自由基易与一般的饱和分子起化学反应。

初生表面很高的活性,也与磨碎过程中形成的颗粒表面层的结构变化有关。例如,德姆波斯捷尔等人的研究表明,磨碎的石英表面是由变化了的含结晶硅砂层所组成。阿尔姆斯特朗格观测到磨碎石英颗粒表层的非晶形性,并且某些磨碎破坏的深度约为50-100um。在磨碎的石英表面上,非晶形层的厚度达40nm。

因磨细而产生的颗粒表面层的松散结构,有助于它的反应能力和吸附能力,从而提高了其活化效果。

顺磁共振试验表明,矿料中自由基的浓度随磨碎时间的增长而增大,试验还证明,当沥青与花岗石或石英进行一般的拌和时,只产生矿料与沥青的物理吸附,而在沥青与花岗石或石英一起磨碎的过程中,沥青和矿料之间发生了化学键。

在沥青与矿料一起磨碎的过程中,沥青与矿料表面的相互作用,与沥青和早先磨细的矿料拌和时的相互作用,有着明显的差别,前者化学吸附的沥青量及其随磨碎时间的增长速率均明显高于后者。

§影响沥青混合料强度的因素

如前所述,沥青混合料的强度由两部分组成:矿料之间的嵌挤力与内摩阻力和沥青与矿料之间的粘聚力。下面从内因、外因两方面分析沥青混合料强度的影响因素。

影响沥青混合料强度的内因

1、沥青粘度的影响

沥青混凝土作为一个具有多级网络结构的分散系来看待,从最细一级网络结构来看,它是各种矿质集料分散在沥青中的分散系,因此它的强度与分散相的浓度和分散介质粘度有着密切的关系。在其它因素固定的条件下,沥青混合料的粘聚力是随着沥青粘度的提高而增大的。因为沥青的粘度即沥青内部沥青胶团相互位移时,其分散介质抵抗剪切作用的抗力,所以沥青混合料受到剪切作用时,特别是受到短暂的瞬时荷载时,具有高粘度的沥青能赋予沥青混合料较大的粘滞阻力,因而具有较高抗剪强度。在相同的矿料性质和组成条件下,随着沥青粘度的提高,沥青混合料粘聚力有明显的提高,同时内摩擦角亦稍有提高。

2、沥青与矿料化学性质的影响

在沥青混合料中,如果矿粉颗粒之间接触处是由结构沥青膜所联结,这样促成沥青具有更高的粘度和更大的扩散溶化膜的接触面积,因而可以获得更大的粘聚力。反之,如颗粒之间接触处是自由沥青所联结,则具有较小的粘聚力。

沥青与矿料相互作用不仅与沥青的化学性质有关,而且与矿粉的性质有关。.鲍尔雷曾采用紫外线分析法对两种最典型的矿粉进行研究,在石灰石粉和石英石粉的表面上形成一层吸附溶化膜,如图(6-3)所示。研究认为,在不同性质矿粉表面形成的吸附溶化膜组成结构和厚度的吸附溶化膜,所以在沥青混合料中,当采用石灰石矿粉时,矿粉之间更有可能通过结构沥青来联结,因而具有较高的粘聚力。

图 6-2 不同矿粉的吸附溶化膜结构图式

3、矿料比面的影响

由前述沥青与矿粉交互作用的原理可知,结构沥青的形成主要是由于矿料与沥青的交互作用,而引起沥青化学组分在矿料表面的重分布。所以在相同的沥

青用量条件下,与沥青产生交互作用的矿料表面积愈大,则形成的沥青膜愈薄,则在沥青中结构沥青所占的比率愈大,因而沥青混合料的粘聚力也愈高。通常在工程应用上,以单位质量集料的总表面积来表示表面积的大小,称为“比表面积”(简称“比面”)。例如1kg的粗集料的表积约为,它的比面即为kg,而矿粉用量虽只占7%左右,而其表面积却占矿质混合料的总表面积的80%以上,所以矿粉的性质和用量对沥青混合料的强度影响很大。为增加沥青与矿料物理-化学作用的表面,在沥青混合料配料时,必须含有适量的矿粉。提高矿粉细度可增加矿粉比面,所以对矿粉细度也有一定的要求。希望<粒径的含量不要过少;但是<部分的含量亦不宜过多,否则将使沥青混合料结成团块,不易施工。

4、沥青用量的影响

在固定质量的沥青和矿料的条件下,沥青与矿料的比例(即沥青用量)是影响沥青混合料抗剪强度的重要因素。

在沥青用量很少时,沥青不足以形成结构沥青的薄膜来粘结矿料颗粒。随着沥青用量的增加,结构沥青逐渐形成。沥青更为完满地包裹在矿料表面,使沥青与矿料间的粘附力随着沥青的用量增加而增加。当沥青用量足以形成薄膜并充分粘附矿料颗粒表面时,沥青胶浆具有最优的粘聚力。随后,如沥青用量继续增加,则由于沥青用量过多,逐渐将矿料颗粒推开,在颗粒间形成未与矿料交互作用的“自由沥青”,则沥青胶浆的粘聚力随着自由沥青的增加而降低。当沥青用量增加至某一用量后,沥青混合料的粘聚力主要取决于自由沥青,所以抗剪强度几乎不变。随着沥青用量的增加,沥青不仅起着粘结剂的作用,而且起着润滑剂的作用,降低了粗集料的相互密排作用,因而降低了沥青混合料的内摩擦角。

沥青用量不仅影响沥青混合料的粘聚力,同时也影响沥青混合料的内摩擦角。通常当沥青薄膜达最佳厚度(亦即主要以结构沥青粘结)时,具有最大的

粘聚力;随着沥青用量的增加,沥青混合料的内摩擦角逐渐降低。

5、矿质集料的级配类型、粒度、表面性质的影响

沥青混合料的强度与矿质集料在沥青混合料中的分布情况有密切关系。沥青混合料有密级配、开级配和间断级配等不同组成结构类型已如前述,因此矿料级配类型是影响沥青混合料强度的因素之一。

此外,沥青混合料中,矿质集料的粗度、形状和表面粗糙度对沥青混合料的强度都具有极为明显的影响。因为颗粒形状及其粗糙度,在颇大程度上将决定混合料压实后颗粒间相互位置的特性和颗粒接触有效面积的大小。通常具有显著的面和棱角,各方向尺寸相差不大,近似正方体,以及具有明显细微凸出的粗糙表面的矿质集料,在碾压后能相互嵌挤锁结而具有很大的内摩擦角。在其他条件相同的情况下,这种矿料所组成的沥青混合料较之圆形而表面平滑的颗粒具有较高的抗剪强度。

许多试验证明,要想获得具有较大内摩擦角的矿质混合料,必须采用粗大、均匀的颗粒。在其他条件下,矿质集料颗粒愈粗,所配制的沥青混合料愈具有较高的内摩擦角。相同粒径组成的集料,卵石的内摩擦角较碎石为低。

影响沥青混合料强度的外因

1、温度的影响

沥青混合料是一种热塑性材料,它的抗剪强度随着温度的升高而降低。在材料参数中,粘聚力随温度升高而显著降低,但是内摩擦角受温度变化的影响较少。

2、形变速率的影响

沥青混合料是一种粘-弹性材料,它的抗剪强度与形变速率有密切关系。在其他条件相同的情况下,变形速率对沥青混合料的内摩擦角影响较小,而对沥青混合料的粘聚力影响较为显著。试验资料表明,粘聚力随变形速率的减小而显著提高,而内摩擦角随变形速率的变化很小。

综上所述可以认为,得到高强度沥青混合料的基本条件是:密实的矿物骨架,这可以通过适当地选择级配和使矿物颗粒最大限度地相互接近来取得;对所用的混合料、拌制和压实条件都适合的最佳沥青用量;能与沥青起化学吸附的活性矿料。

过多的沥青量和矿物骨架空隙率的增大,都会使削弱沥青混合料结构粘聚力的自由沥青量增多。上面已经指出沥青与矿粉在一定配比下的强度,可达到二元系统(沥青与矿粉)的最高值。这就是说,矿粉在混合料中的某种浓度下,能形成粘结相当牢固的空间结构。

应指出的是,最好的沥青混合料结构,不是用最高强度来表示,而是所需要的合理强度。这种强度应配合沥青混合料在低温下具有充分的变形能力以及耐浸蚀性。从这个角度来看,也是有关沥青混合料工艺的一个中心问题。

显然,为使沥青混合料产生最高的强度,应设法使自由沥青含量尽可能地少或完全没有。但是,必须有某种数量的自由沥青,以保证应有的耐侵蚀性,以及沥青混合料具有最佳的塑性。

上面已经指出,选择空隙率最低的沥青混合料的矿料级配,能降低自由沥青量,因此许多国家都规定了矿料最大空隙率。此外,自由沥青量也取决于空隙的填满程度。配比正确的沥青混合料中,被沥青所充满的颗粒之间的空隙容积,

AC-25密级配沥青混凝土下面层施工技术方案

嵩明(小铺)~昆明高速公路路面合同段 K00+000~K32+000 AC-25密级配沥青混凝土 下面层施工技术方案 中国交建云南嵩昆高速公路项目 路桥技术分部路面标段

AC-25密级配沥青混凝土下面层施工方案 一、编制说明 1、编制依据 (1)《嵩昆高速公路工程招标文件》; (2)《嵩昆高速公路工程合同文件》; (3)《公路工程技术标准》(JTG B01-2003) (4)《公路沥青路面设计规范》(JTG D50-2006); (5)《公路沥青路面施工技术规范》(JTG F40-2004); (6)《公路工程沥青及沥青混合料试验规程》(JTJ E20-2011); (7)《公路工程岩石试验规程》(JTG E41-2005); (8)《公路工程集料试验规程》(JTG E42-2005); (9)《公路路基路面现场测试规程》(JTG E60-2008); (10)《公路工程质量检测评定标准》(JTG F80-2004) (11)《国家高速公路网G85重庆至昆明高速公路嵩明(小铺)~昆明高速公路路面两阶段施工图设计》。 2、编制原则 (1)遵循招标文件的各项条款; (2)遵循设计和验收标准,确保工程优良; (3)根据本单位的施工能力,确保施工方案的可行性,合理性。 二、工程概况

国家高速公路网G85渝昆高速嵩明(小铺)至昆明段高速公路 工程,包括小铺立交、小街立交、杨林立交、甸头立交(甸头立交匝道不属于本合同段)。主线技术标准为双向六车道,设计时速100km/h,整体式路基宽33.5m,分离式路基宽16.75m,各立交匝道路基宽 10.5~21.5m。 本工程起自K00+000~K32+000,全长33.8km(含1.8km长链)。路线设小铺、杨林、大板桥、黄土坡等乡镇。对应路基工程1、2、3、4标段。AC-25沥青混凝土下面层厚度为8cm,工程数量约734254.6m2。 合同总工期为12个(2015年10月-2016年10月),计划于2016 年10月上旬完成沥青混凝土下面层施工。 我部共设2个沥青拌和站,1#沥青拌和站位于小街工业园区,占地约45亩,场站内架设一套5000型沥青拌和楼;2#沥青拌和站位于杨林工业园区,占地约48亩,场站内架设一套4000型沥青拌和楼。拌和站位置和运输线路图详见附件1、附件2。 三、施工准备工作 1、技术准备 1.1、熟悉和审核施工设计文件,并进行必要的现场调查核对。 1.2、对全线的水准点、导线点进行联测,采用全站仪按10米间距(曲线半径小的曲线段按5米间距)测出中桩位置,并依据中桩确定下面层的边线位置。复测下承层断面高程,再依据下承层的纵断高程和横坡的控制情况确定摊铺时摊铺机的找平控制方式,并进行施工

建筑项目五_沥青混合料_习题

项目五沥青混合料习题 一、填空题 1.在马歇尔试验中,反映材料强度的指标是,反映混合料变形能力的指标是。 2.沥青混合料的配合比设计的内容①其方法有与;②,其方法是。 3.测定沥青混合料高温稳定性的方法有①,② ,③,其中试验方法最符合混合料在路中的受力状态,而目前工地上广泛采用的是试验方法。 4.沥青混合料按矿料最大粒径分为、、 、。 5..沥青混合料技术性质有、、、 。 6.沥青混合料的组成结构有、、三个类型。 7.沥青与矿料间的吸附作用有与。 8.沥青混合料的强度主要取决于与。 9.沥青混合料粘聚力的影响因素有、、 、 。 10.根据沥青与矿料相互作用原理,沥青用量要适量,使混合料中形成足够多的 沥青,尽量减少沥青。 11.我国现行沥青混凝土技术指标是按方法检配,其技术指标包括、、、、。 12.沥青混合料中,沥青与矿料发生吸附作用,形成扩散结构膜称为沥青,可改善沥青原有的性质。

13.提高沥青粘结力的主要组分是、。 14.测定沥青温度稳定性的主要指标是与。 15.沥青混合料若用的是石油沥青,为提高其粘结力则应优先选用矿料。 16沥青混合料的,,,统称其技术性质。 17沥青混合料(骨架一空隙结构)的强度主要是由矿料间的决定。 18.按拌和铺筑温度分类,沥青混合料可分,,三种。 19.沥青混合料的技术性质包括四个方面,即,, ,。 20. 沥青混合料的组成结构有、、。 二、判断题 1.沥青混合料的温度稳定性,随用油量的增加而提高。( ) 2.沥青混合料加入的矿粉应是酸性矿粉为好。( ) 3.在沥青混合料中加入矿粉的目的是提高混合料的密实度和增大矿料的比表面积。( ) 4.沥青混合料的耐久性是用密实度来表征的,密实度愈大耐久性也越好。( ) 5.沥青与矿料产生物理吸附后,其热稳定性要比产生化学吸附的水稳性差。( ) 6.沥青用量在足够包裹矿料表面前提下。膜越薄越好。( ) 7.沥青混合料空隙率愈小,愈密实,路用性能愈好。( ) 8.在水的作用下,沥青与矿料表面的化学吸附是不可逆的。( ) 9.选用道路沥青材料时。寒冷地区宜选用针人度越大,延度越大的沥青,较热地区宜选用针入度较小,软化点高的沥青。( ) 10.在相同沥青用量情况下,矿料表面积愈大,形成的沥青膜愈薄,结构沥青所占比例愈小,沥青混合料的粘结力愈低。( ) 11.马歇尔稳定度试验时的温度愈高,则稳定度愈大,流值愈小。( ) 12.道路石油沥青,用酸性矿料比碱性矿料要好。( )

AC-13沥青混凝土配合比设计过程

热拌沥青混合料配合比设计方法 1.矿质混合料组成设计 (1)根据道路等级、路面结构层位及结构层厚度等方面要求,按照上述方法,选择适用的沥青混合料类型,并按照表8-22和表8-23(现行规范)或8-24和表8-25(新规范稿)的内容确定相应矿料级配范围,经技术经济论证后确定。 (2)矿质混合料配合比计算 1)组成材料的原始数据测定 按照规定方法对实际工程使用的材料进行取样,测试粗集料、细集料及矿粉的密度,并进行筛分试验,测定各种规格集料的粒径组成。 2)确定各档集料的用量比例 根据各档集料的筛分结果,采用计算法或图解法,确定各规格集料的用量比例,求得矿质混合料的合成级配。矿质混合料的合成级配曲线必须符合设计级配范围的要求,不得有过多的犬牙交错。当经过反复调整仍有两个以上的筛孔超出设计级配范围时,必须对原材料进行调整或更换原材料重新设计。 通常情况下,合成级配曲线宜尽量接近设计级配中限,尤其应使0.075mm、2.36mm、4.75mm等筛孔的通过量尽量接近设计级配范围的中限。对于交通量大、轴载重的道路,合成级配可以考虑偏向级配范围的下限,而对于中小交通量或人行道路等,合成级配宜偏向级配范围的上限。 2.沥青混合料马歇尔试验 沥青混合料马歇尔试验的主要目的是确定最佳沥青用量(以OAC表示)。沥青用量可以通过各种理论公式计算得到,但由于实际材料性质的差异,计算得到

的最佳沥青用量,仍然要通过试验进行修正,所以采用马歇尔试验是沥青混合料配合比设计的基本方法。 (1)制备试样 1)马歇尔试件制备过程是针对选定混合料类型,根据经验确定沥青大致用量或依据表4-10推荐的沥青用量范围,在该用量范围内制备一批沥青用量不同、且沥青用量等差变化的若干组(通常为五组)马歇尔试件,并要求每组试件数量不少于4个。 2)按已确定的矿质混合料级配类型,计算某个沥青用量条件下一个马歇尔试件或一组试件中各种规格集料的用量(实践中大多是一个标准马歇尔试件矿料总量1200g左右)。 3)确定一个或一组马歇尔试件的沥青用量(通常采用油石比),按要求将沥青和矿料拌制成沥青混合料,并按上节表8-7(现行规范要求)或表8-9(新规范要求)规定的击实次数和操作方法成型马歇尔试件。 (2)测定试件的物理力学指标 首先,测定沥青混合料试件的密度,并计算试件的理论最大密度、空隙率、沥青饱和度、矿料间隙率等参数。在测试沥青混合料密度时,应根据沥青混合料类型及密实程度选择测试方法。在工程中,吸水率小于0.5%的密实型沥青混合料试件应采用水中重法测定;较密实的沥青混合料试件应采用表干法测定;吸水率大于2%的沥青混合料、沥青碎石混合料等不能用表干法测定的试件应采用蜡封法测定;空隙率较大的沥青碎石混合料、开级配沥青混合料试件可采用体积法测定。 随后,在马歇尔试验仪上,按照标准方法测定沥青混合料试件的马歇尔稳定度和流值。 3.最佳沥青用量的确定

AC-13密级配沥青混凝土上面层施工技术方案

AC-13密级配沥青混凝土上面层施工技术方案

AC-13密级配沥青混凝土上面层施工方案 一、编制说明 1、编制依据 (1)《嵩昆高速公路工程招标文件》; (2)《嵩昆高速公路工程合同文件》; (3)《公路工程技术标准》(JTG B01-2003) (4)《公路沥青路面设计规范》(JTG D50-2006); (5)《公路沥青路面施工技术规范》(JTG F40-2004); (6)《公路工程沥青及沥青混合料试验规程》(JTG E20-2011); (7)《公路工程岩石试验规程》(JTG E41-2005); (8)《公路工程集料试验规程》(JTG E42-2005); (9)《公路路基路面现场测试规程》(JTG E60-2008); (10)《公路工程质量检测评定标准》(JTG F80/1-2004) (11)《国家高速公路网G85重庆至昆明高速公路嵩明(小铺)~昆明高速公路路面两阶段施工图设计》。 2、编制原则 (1)遵循招标文件的各项条款; (2)遵循设计和验收标准,确保工程优良; (3)根据本单位的施工能力,确保施工方案的可行性,合理性。

二、工程概况 国家高速公路网G85渝昆高速嵩明(小铺)至昆明段高速公路工程,包括小铺立交、小街立交、杨林立交、甸头立交(甸头立交匝道不属于本合同段)。主线技术标准为双向六车道,设计时速 100km/h,整体式路基宽33.5m,分离式路基宽16.75m,各立交匝道路基宽10.5~21.5m。 本工程起自K00+000~K32+000,全长33.8km(含1.8km长链)。路线设小铺、杨林、大板桥、黄土坡等乡镇。对应路基工程1、2、3、4标段。AC-13沥青混凝土上面层厚度为4cm,工程数量约1274962.6m2。 合同总工期为12个(2015年10月-2016年10月),计划于2016年10月底完成沥青混凝土上面层施工。 我部共设2个沥青拌和站,1#沥青拌和站位于小街工业园区,占地约45亩,场站内架设一套5000型沥青拌和楼;2#沥青拌和站位于杨林工业园区,占地约48亩,场站内架设一套4000型沥青拌和楼。拌和站位置和运输线路图详见附件1、附件2。 三、施工准备工作 1、技术准备 1.1、熟悉和审核施工设计文件,并进行必要的现场调查核对。 1.2、对全线的水准点、导线点进行联测,采用全站仪按10米间距(曲线半径小的曲线段按5米间距)测出中桩位置,并依据中桩确

电脑的组成原理与基本结构

第1章电脑的组成原理与基本结构 学习目标 在组装电脑之前,应首先了解组装一台电脑至少需要哪些基本部件,以及各部件的大致功能等基本常识。本章将对电脑的基本组成和结构进行讲解,剖析电脑的基本结构,让读者对电脑有一个初步的认识,了解一些关于电脑的基础知识,迈出组装电脑的第一步。 本章要点 ?电脑的诞生 ?电脑的发展 ?电脑的软件系统 ?电脑的硬件系统 ?电脑的基本结构 1.1 电脑的发展史 电脑是20世纪最伟大的发明之一,可以说电脑是当代社会、科学和经济发展的奠基石。电脑的发明带动了20世纪下半叶的信息技术革命,和以往的工业革命不同的是,电脑将人类从繁杂的脑力和体力劳动中解放了出来,这使得人类社会近50年来的发展速度比此前任何一个时期都快,生产总值比此前几千年来的总和还要多。 电脑为什么会有如此神奇的力量呢?它究竟是什么样子呢?它又是如何被发明的?下面就来了解一下电脑的历史。 1.1.1 电脑的诞生 电脑是人们对电子计算机的俗称,第一台电脑是1946年2月15日由美国宾夕法尼亚大学研制的,名为ENIAC。后来,由天才数学大师、美籍匈牙利数学家冯·诺依曼对其进行了改进,并命名为“冯·诺依曼”体系电脑,现在的电脑都是由“冯·诺依曼”体系电脑发展而来的,因此冯·诺依曼被西方科学家尊称为“电子计算机之父”。 在电子计算机之前,还有具有历史意义的一台计算器,那就是由法国数学家帕斯卡于1642年发明的。在帕斯卡小时候,其父亲在税务局上班,为了减轻父亲计算税务的麻烦,他发明了一种可以计算的小机器。这个计算器是一个不大的黄铜盒子,盒子里面并排装着一些齿轮,这些齿轮上标有0~9共10个数字,每个齿轮代表一位数,当低位齿轮转动10圈时,高位齿轮转动1圈,这样就实现了自动进位,这和机械钟表极其相似。 后来,德国数学家莱布尼兹在帕斯卡计算器的基础上,于1694年发明了世界上第一台

沥青混凝土详细分类

沥青混凝土中文名称: 沥青混凝土英文名称: asphalt concrete定义1: 经过加热的骨料、填料和沥青、按适当的配合比所拌和成的均匀混合物,经压实后为沥青混凝土。定义2: 由沥青、填料和粗细骨料按适当比例配制而成。 拼音:liqing hunningtu英文:bituminous concrete沥青混凝土俗称沥青砼(tong)经人工选配具有一定级配组成的矿料(碎石或轧碎砾石、石屑或砂、矿粉等)与一定比例的路用沥青材料,在严格控制条件下拌制而成的混合料。分类 沥青混凝土按所用结合料不同,可分为石油沥青的和煤沥青的两大类;有些国家或地区亦有采用或掺用天然沥青拌制的。按所用集料品种不同,可分为碎石的、砾石的、砂质的、矿渣的数类,以碎石采用最为普遍。按混合料最大颗粒尺寸不同,可分为粗粒(35~40毫米以下)、中粒(20~25毫米以下)、细粒(10~15毫米以下)、砂粒(5~7毫米以下)等数类。按混合料的密实程度不同,可分为密级配、半开级配和开级配等数类,开级配混合料也称沥青碎石。其中热拌热铺的密级配碎石混合料经久耐用,强度高,整体性好,是修筑高级沥青路面的代表性材料,应用得最广。各国对沥青混凝土制订有不同的规范,中国制定的热拌热铺沥青混合料技术规范,以空隙率10%及以下者称为沥青混凝土,又细分为Ⅰ型和Ⅱ型,Ⅰ型的孔隙率为3(或2)~6%,属密级配型;Ⅱ型为6~10%,属半开级配型;空隙率10%以上者称为沥青碎石,属开级配型;混合料的物理力学指标有稳定度、流值和孔隙率等。 配料情况 沥青混合料的强度主要表现在两个方面。一是沥青与矿粉形成的胶结料的粘结力;另一是集料颗粒间的内摩阻力和锁结力。矿粉细颗粒(大多小于0.074毫米)的巨大表面积使沥青材料形成薄膜,从而提高了沥青材料的粘结强度和温度稳定性;而锁结力则主要在粗集料颗粒之间产生。选择沥青混凝土矿料级配时要兼顾两者,以达到加入适量沥青后混合料能形成密实、稳定、粗糙度适宜、经久耐用的路面。配合矿料有多种方法,可以用公式计算,也可以凭经验规定级配范围,中国目前采用经验曲线的级配范围。沥青混合料中的沥青适宜用量,应以试验室试验结果和工地实用情况来确定,一般在有关规范内均列有可资参考的沥青用量范围作为试配的指导。当矿料品种、级配范围、沥青稠度和种类、拌和设施、地区气候及交通特征较固定时,也可采用经验公式估算。 制备工艺 热拌的沥青混合料宜在集中地点用机械拌制。一般选用固定式热拌厂,在线路较长时宜选用移动式热拌机。冷拌的沥青混合料可以集中拌和,也可就地路拌。沥青拌和厂的主要设备包括:沥青加热锅、砂石贮存处、矿粉仓、加热滚筒、拌和机及称量设备、蒸汽锅炉、沥青泵及管道、除尘设施等,有些还有热集料的重新分筛和贮存设备(见沥青混合料拌和基地)。拌和机又可分为连续式和分批式两大类。在制备工艺上,过去多采用先将砂石料烘干加热后,再与热沥青和冷的矿粉拌和。近来,又发展一种先

道路沥青混合料的种类与性质

第七章沥青混合料的组成设计 沥青混合料从颗粒均匀预涂沥青的沥青涂层碎石(coated stone)到沥青玛碲脂(mastic asphalt)其成分变化无穷。然而,沥青混合料大体上可以分为沥青混凝土(asphalt)和沥青碎石(macadam)两大类。 沥青混凝土与碎石的主要区别如下: ●沥青混凝土的集料级配一般由颗粒大致均匀的粗集料加上大量的细集料和很 少量的中等大小的集料组成。 ●沥青混凝土的强度与砂/填料/沥青成份的劲度即沥青砂浆有关;为了砂浆 要有足够的劲度,制造沥青混凝土时要用比较硬的沥青和含量高的填料;至于沥青碎石的强度,主要是依靠摩擦和集料颗粒间的机械互锁力,因此可以用较软等级的沥青。 ●由于沥青混凝土含的填料比例很大,也即是集料有大幅的表面积要用沥青裹 覆,因而沥青用量较高;而沥青碎石含细小的集料少,因此用以裹覆集料的沥青少量也够了;沥青碎石内的沥青主要功能是在压实时作为润滑剂和在使用过程中粘结着集料颗粒。 ●沥青混凝土的空隙率低,基本上不透水并且用予繁重交通的道路上非常耐 久;沥青碎石的空隙率相对较高而具透水性,并不如前者耐久。从沥青涂层碎石到沥青玛蹄脂各种沥青合料中,使用的沥青等级愈来愈硬,沥青、矿料和砂的含量增加,粗集料含量减少。 图7-1 各种沥青混合料的典型级配曲线

§7.1道路沥青混合料的种类与性质 7.1.1沥青混凝土 用不同粒径的碎石、天然砂、矿粉和沥青按一定比例以及最佳密实级配原则设计、在拌和机中热拌所得的混合料称沥青混凝土混合料。这种混合料的矿料部分应有严格的级配要求。它们经过压实后所得的材料具有规定的强度和孔隙率时称作沥青混凝土。沥青混凝土的强度和密实度是一般沥青混合料中最大的,但它们在常温或高温下都具有一定的塑性。沥青混凝土的高密实度使得它水稳性好,因此有较强的抗自然侵蚀能力,故寿命长、耐久性好,适合作为现代高速公路的柔性面层。从国外以及国内的工程实践来看,以沥青混凝土作为高等级公路或城市道路的路面材料已经相当普遍。 由于沥青混凝土的胶结料主要为沥青,沥青是一种对温度十分敏感的材料,这就导致了沥青混凝土的性质(主要为力学性能)受温度的影响十分突出(这也是沥青混合料最大的特点),如它们的劈裂强度随温度的变化可从零下温度的几兆帕到高温的零点几兆帕而不同。 沥青混凝土的分类从广义来说,可包括沥青玛碲脂(MA)、热压式沥青混凝土(HRA)、传统的密级配沥青混凝土(HMA)、多空隙沥青混凝土(PA)、沥青玛碲脂碎石(SMA)以及其它新型的沥青混凝土。 传统沥青混凝土、SMA和多空隙沥青混凝土典型级配曲线的比较见下图: 图7-2 三种典型混凝土级配比较 上图中,曲线1为传统沥青混凝土,孔隙率3%;曲线2为SMA,孔隙率3%;曲线3为多孔沥青混凝土、孔隙率20%。就孔隙率而言,当马歇尔设计孔隙率小于4%(或路面实际孔隙率小于8%)时,它已形成较为密实的结构,水不易进入沥青混凝土,整个结构的耐久性较好;或者路面实际孔隙率大于15%

计算机组成原理与体系结构

计算机组成原理与 体系结构 1 2020年4月19日

计算机组成原理与体系结构(专业基础课) Computer Organization and Architecture 【课程编号】BJ26157 【课程类别】专业基础课 【学分数】3.5 【编写日期】 .3.30 【学时数】70 = 63(理论)+ 7(研究)【先修课程】离散数学、数字电路 【适用专业】网络通信工程 一、教学目的、任务 《计算机组成原理与体系结构》是计算机专业本科生核心硬件课程。学习本课程应已具备数字 逻辑的基本知识,并掌握数字系统的一般设计方法。经过学习本课程,能了解计算机一般组成原理 与内部运行机制,为学习本专业后继课程和进行与硬件有关的技术工作打好基础。 二、课程教学的基本要求 本课程主要讲述计算机硬件系统的基本组成原理与运行机制。课程从组成硬件系统的五大部件出发,讲解了各组成部分的工作原理、设计方法以及构成整机系统的基本原理。主要内容有:计算机系统概论;运算方法和运算器;存储系统;指令系统;中央处理器;系统总线和输入输出系统。经过对计算机各部件工作原理、信息加工处理及控制过程的分析,使学生掌握基本的分析方法、设计方法和互连成整机的技术。具备维护、使用计算机的基本技能,并为具备硬件系统的开发应用能 力打下一定的基础。 三、教学内容和学时分配(3 + 7 + 12 + 10 + 8 + 12 + 10 + 8 = 70) 第一章计算机系统概论 3 学时(课堂讲授学时) 主要内容: 1.1 计算机发展简史 1.2 计算机硬件组成 1.3 计算机技术指标 1.4 软件概述 1.5 计算机系统层次结构 教学要求: 总体介绍计算机发展的历史,以及计算机的硬件和软件组成。另外,介绍计算机在硬件层次上的结构组成。 其它教学环节(如实验、习题课、讨论课、其它实践活动):无(实验课独立开设)。

沥青混合料力学性能指标2

10.2 沥青路面材料的力学特性与温度稳定性——这三个你仔细看一下吧 10.2.1 沥青混合料的强度特性 表征沥青混合料力学强度的参数是:抗压强度、抗剪强度和抗拉(包括抗弯拉)强度。一般沥青混合料均具有较高的抗压强度,而抗剪和抗拉强度则较低。因此,沥青路面的损坏,往往是由拉裂或滑移开始而逐渐扩展。 1、抗剪强度(shearing strength) 沥青混合料的剪切破坏可按摩尔一库仑原理进行分析。材料在外力作用下如不产生剪切破坏,则应具备下列条件: τmax< σ tg φ+c (2-4) 式中:τmax — 在外荷载作用下,某一点所产生最大的剪应力; σ — 在外荷载作用下,在同一剪切面上的正应力; c — 材料的粘结力; φ — 材料的内摩阻角; 在沥青路面的最不利位置取一单元体,设其三个方向的主应力为σ1、σ2和σ3,且σ1>σ2>σ3。由于单元体中最不利的剪切条件取决于σ1和σ3,故仅根据σ1和σ3分析单元体的应力状况。图2-17为单元体应力状况的摩尔圆。 图2-17 应力状况摩尔圆图 图2-18 三轴剪切实验装置 1-压力环;2-活塞;3-出水口;4-保温罩;5-进水口;6-接压力盒;7-试件;8-接水银压力计 从图2-17可得: ()φσστcos 2131-= (2-5) ()φφφσσσ2231sin cos 21tg c -+= (2-6)

将式(2-5)、(2-6)代人式(2-4)得: ()()[]c ≤+--φσσσσφsin cos 213131 (2-7a ) ()c tg ≤--φτσφτmax max cos (2-7b) 式(2-7a)或(2-7b)为沥青路面材料强度的判别式。 式左端称为活动剪应力,当活动剪应力等于粘结力c 时,材料处于极限平衡,若大于粘结力c ,材料出现塑性变形。 根据式(2-7a)或(2-7b)可求得沥青路面材料应具有的c 和Φ值。 c 和Φ值可通过三轴剪切试验取得。三轴剪切试验的装置如图2-18所示。 三轴剪切试验所用试件的直径应大于矿料最大粒径的4倍,试件的高与直径之比应大于 2。矿料最大粒径小于25cm 时,试件直径为10cm ,高为20m 。试验时,将一组试件分别在不同侧压力下以一定加荷速度施加垂直压力,直至试件破坏。此时测得的最大垂直压力,即为沥青混合料的最大主应力σ1 ,侧压力即为最小主应力σ3(σ1=σ3)。根据各试件的侧压力和最大垂直压力给出相应的摩尔圆,这些圆的公切线称为摩尔包线,切线与τ轴相交的截距即为粘结力,切线的斜率即为内摩阻角Φ(见图2-19)。 由于温度对沥青混合料的抗剪强度有很大的影响,故试件应在高温条件(65℃或50℃)下进行测试。 粘结力c 和内摩阻角Φ值,也可根据无侧限抗压和轴向拉伸试验取得的抗压强度和抗拉强度来计算: 抗压强度 ??? ??+=242φπctg R (2-8) 抗拉强度 ??? ??+= 242φπtg c r (2-9) 从式(2-8)或(2-9)可得: ??? ??+-=r R r R -1sin φ (2-10) Rr c 5.0= (2-11)

AC-13密级配沥青混凝土上面层施工技术方案

AC-13密级配沥青混凝土上面层施工方案 一、编制说明 1、编制依据 (1)《嵩昆高速公路工程招标文件》; (2)《嵩昆高速公路工程合同文件》; (3)《公路工程技术标准》(JTG B01-2003) (4)《公路沥青路面设计规范》(JTG D50-2006); (5)《公路沥青路面施工技术规范》(JTG F40-2004); (6)《公路工程沥青及沥青混合料试验规程》(JTG E20-2011); (7)《公路工程岩石试验规程》(JTG E41-2005); (8)《公路工程集料试验规程》(JTG E42-2005); (9)《公路路基路面现场测试规程》(JTG E60-2008); (10)《公路工程质量检测评定标准》(JTG F80/1-2004) (11)《国家高速公路网G85重庆至昆明高速公路嵩明(小铺)~昆明高速公路路面两阶段施工图设计》。 2、编制原则 (1)遵循招标文件的各项条款; (2)遵循设计和验收标准,确保工程优良; (3)根据本单位的施工能力,确保施工方案的可行性,合理性。 二、工程概况

国家高速公路网G85渝昆高速嵩明(小铺)至昆明段高速公路 工程,包括小铺立交、小街立交、杨林立交、甸头立交(甸头立交匝道不属于本合同段)。主线技术标准为双向六车道,设计时速100km/h,整体式路基宽33.5m,分离式路基宽16.75m,各立交匝道路基宽 10.5~21.5m。 本工程起自K00+000~K32+000,全长33.8km(含1.8km长链)。路线设小铺、杨林、大板桥、黄土坡等乡镇。对应路基工程1、2、3、4标段。AC-13沥青混凝土上面层厚度为4cm,工程数量约1274962.6m2。 合同总工期为12个(2015年10月-2016年10月),计划于2016 年10月底完成沥青混凝土上面层施工。 我部共设2个沥青拌和站,1#沥青拌和站位于小街工业园区,占地约45亩,场站内架设一套5000型沥青拌和楼;2#沥青拌和站位于杨林工业园区,占地约48亩,场站内架设一套4000型沥青拌和楼。拌和站位置和运输线路图详见附件1、附件2。 三、施工准备工作 1、技术准备 1.1、熟悉和审核施工设计文件,并进行必要的现场调查核对。 1.2、对全线的水准点、导线点进行联测,采用全站仪按10米间距(曲线半径小的曲线段按5米间距)测出中桩位置,并依据中桩确定下面层的边线位置。复测下承层断面高程,再依据下承层的纵断高程和横坡的控制情况确定摊铺时摊铺机的找平控制方式,并进行施工

计算机组成原理和系统结构课后答案

1.1 概述数字计算机的发展经过了哪几个代?各代的基本特征是什么? 略。 1.2 你学习计算机知识后,准备做哪方面的应用? 略。 1.3 试举一个你所熟悉的计算机应用例子。 略。 1.4 计算机通常有哪些分类方法?你比较了解的有哪些类型的计算机? 略。 1.5 计算机硬件系统的主要指标有哪些? 答:机器字长、存储容量、运算速度、可配置外设等。 答:计算机硬件系统的主要指标有:机器字长、存储容量、运算速度等。 1.6 什么是机器字长?它对计算机性能有哪些影响? 答:指CPU一次能处理的数据位数。它影响着计算机的运算速度,硬件成本、指令系统功能,数据处理精度等。 1.7 什么是存储容量?什么是主存?什么是辅存? 答:存储容量指的是存储器可以存放数据的数量(如字节数)。它包括主存容量和辅存容量。 主存指的是CPU能够通过地址线直接访问的存储器。如内存等。 辅存指的是CPU不能直接访问,必须通过I/O接口和地址变换等方法才能访问的存储器,如硬盘,u盘等。 1.8 根据下列题目的描述,找出最匹配的词或短语,每个词或短语只能使用一次。(1)为个人使用而设计的计算机,通常有图形显示器、键盘和鼠标。 (2)计算机中的核心部件,它执行程序中的指令。它具有加法、测试和控制其他部件的功能。 (3)计算机的一个组成部分,运行态的程序和相关数据置于其中。 (4)处理器中根据程序的指令指示运算器、存储器和I/O设备做什么的部件。 (5)嵌入在其他设备中的计算机,运行设计好的应用程序实现相应功能。 (6)在一个芯片中集成几十万到上百万个晶体管的工艺。 (7)管理计算机中的资源以便程序在其中运行的程序。 (8)将高级语言翻译成机器语言的程序。 (9)将指令从助记符号的形式翻译成二进制码的程序。 (10)计算机硬件与其底层软件的特定连接纽带。 供选择的词或短语: 1、汇编器 2、嵌入式系统 3、中央处理器(CPU) 4、编译器 5、操作系统 6、控制器 7、机器指令 8、台式机或个人计算机 9、主存储器10、VLSI 答:(1)8,(2)3,(3)9,(4)6,(5)2, (6)10,(7)5,(8)4,(9)1,(10)7

沥青混合料冻融劈裂试验

沥青混合料冻融劈裂试验 1目的与适用范围 1.1本方法适用于在规定条件下对沥青混合料进行冻融循环,测定混合料试件在受到水损害前后劈裂破坏的强度比,以沥青混合料水稳定性。非经注明,试验温度为25℃,加载速率为50mm/min。 1.2本方法采用马歇尔击实法成型的圆柱体试件,击实次数为双面各50次,集料公称最大粒径不得大于26.5mm。 2仪具与材料 2.1试验机:能保持规定加载速率的材料试验机,也可采用马歇尔试验仪。试验机负荷应满足最大测定荷载不超过其量程的80%且不小于其量程的20%的要求,宜采用40kN或60kN传感器,读数精密度为10N。 2.2恒温冰箱:能保持温度为—18℃,当缺乏专用的恒温冰箱时,可采用家用电冰箱的冷冻室代替,控温准确度为2℃。 2.3恒温水槽:用于试件保温,温度范围能满足试验要求,控温准确度为0.5℃。 2.4压条:上下各一根,试件直径100mm时,压条宽度为12.7mm,内侧曲率半径50.8mm,压条两端均应磨圆。 2.5劈裂试验夹具:下压条固定在夹具上,压条可上下自由活动。 2.6其它:塑料袋、卡尺、天平、记录纸、胶皮手套等。 3方法与步骤

3.1按本规程T0702方法制作圆柱体试件。用马歇尔击实仪双面击实各50次,试件数目不少于8个。 3.2按本规程的规定方法测定试件的直径及高度,准确至0.1mm。试件尺寸应符合直径101.6mm±0.25mm,高63.5mm±1.3mm的要求。在试件两侧通过圆心画上对称的十字标记。 3.3按本规程规定的方法测定试件的密度、空隙率等各项物理指标。 3.4将试件随机分成两组,每组不少于4个,将第一组试件置于平台上,在室温下保存备用。 3.5将第二组试件按本规程T0717标准的饱水试验方法真空饱水,在98.3kPa—98.7kPa(730mmHg—740mmHg)真空条件下保持15min,然后打开阀门,恢复常压,试件在水中放置0.5h。 3.6取出试件放入塑料袋中,加入约10mL的水,扎紧袋口,将试件放入恒温冰箱(或家用冰箱的冷冻室),冷冻温度为—18℃±2℃,保持16h±1h. 3.7将试件取出后,立即放入保温为60℃±0.5℃的恒温水槽中,撤去塑料袋,保温24h。 3.8将第一组与第二组全部试件浸入温度为25℃±0.5℃的恒温水槽中不少于2h,水温高时可适当加入冷水或冰块调节,保温时试件之间的距离不少于10mm。 3.9取出试件立即按本规程T0716用50mm/min的加载速率进行劈裂试验,得到试验的最大荷载。

AC13沥青混凝土介绍

AC13沥青混凝土 AC-13表示粗集料最大公称粒径为13mm碎石的细粒式沥青混凝土混合料,AC为密级配沥青混凝土混合料,13指的是最大公称粒径为13mm;用以分类的关键性筛孔为2.36mm AC-13F为细型,关键性筛孔通过率大于40%;AC-13C为粗型,关键性筛孔通过率小于40%; AC13的沥青混凝土油石比为5.6%,矿粉是4.5%;1-1.5碎石、0.5-1cm 碎石、0.3-0.8cm碎石以及石屑的比例分别是:22%、23%、13%和42%。 一、工程概况: 本工程建筑面积约为xxx平方米,地下xx层、地上xx层,建筑高度xx米;结构形式为钢筋混凝土框架结构,(局部为钢管混凝土框架结构)。基础采用沥青混凝土垫层,钢筋混凝土筏板基础(内设加强带及后浇带)。楼面为现浇钢筋混凝土。沥青垫层采用沥青混凝土拌合设备厂拌法拌合, 沥青混凝土为人工摊铺,采用5t压路机碾压施工。 二、施工准备工作 1、沥青混凝土所用粗细集料、填料以及沥青均应符合合同技术规范要求,并至少在工程开始前 一个月将推荐混合料配合比包括:矿料级配、沥青含量、稳定度(包括残留稳定度)、饱和度、 流值、马歇尔试件的密度与空隙率等的详细说明,报请监理工程师批准。 2、沥青混合料拌合设备,运输设备以及摊铺设备均应符合合同技术规范要求。 3、施工测量放样,在开挖好的筏板基础基槽每5m设一钢筋桩,双向布置。地梁槽底的两侧每隔 5m也设置一个水平点。桩的底部用细石混凝土进行维护加固。 水平测量:对设立好的钢筋桩进行水平测量,并标出摊铺层的设计标高,作为摊铺的找平基线。 6、沥青材料的准备,沥青材料应先加热,避免局部热过头,并保证按均匀温度把沥青材料源源 不断地从贮料罐送到拌合设备内,不应使用正在起泡或加热超过160°的沥青胶结料。

沥青混合料(题)

沥青混合料 一、填空题 1、沥青混合料是经人工合理选择组成的矿质混合料,与适量拌和而成的混合料的总称。 2、沥青混合料按公称最大粒径分类,可分为、、 、、。 3、沥青混合料按矿质材料的级配类型分类,可分为和。 4、沥青混合料按矿料级配组成及空隙率大小分类,可分为、、和。 5、沥青混合料按沥青混合料制造工艺分类可分为、、 ,目前公路工程中最常用的是。 6、目前沥青混合料组成结构理论有和两种。 7、沥青混合料的组成结构有、、三个类型。 8、沥青与矿料之间的吸附作用有与。 9、沥青混合料的强度主要取决于与。 10、根据沥青与矿料相互作用原理,沥青用量要适量,使混合料中形成足够多的沥青,尽量减少沥青。 11、沥青混合料若用的是石油沥青,为提高其粘结力则应优先选用矿料。 12、我国现行国标规定,采用试验和试验来评价沥青混合料高温稳定性,其技术指标项目包括、和。 13、沥青混合料配合比设计包括、和三个阶段。 14、在AC—25C中,AC表示;25表示;C表示。 15、沥青混合料悬浮—密实结构中的粗集料数量比较,不能形成骨架。它的粘聚力比较,内摩阻角比较,因而高温稳定性。 16、标准马歇尔试件的直径为mm,高度为mm。 17、目前最常用的沥青路面包括、、和等。 18、沥青混合料按施工温度可分为和。 19、沥青混合料按混合料密实度可分为、和。 20、沥青混合料是和的总称。

21、沥青混合料的强度理论是研究高温状态对的影响。 22、通常沥青-集料混合料按其组成结构可分为、和三类。 23、沥青混合料的抗剪强度主要取决于和两个参数。 24、我国现行标准规定,采用、方法来评定沥青混合料的高温稳定性。 25、我国现行规范采用、、和等指标来表征沥青混合料的耐久性。 26、沥青混合料配合比设计包括、和三个阶段。 27、沥青混合料试验室配合比设计可分为和两个步骤。 28、沥青混合料水稳定性如不符合要求,可采用掺加的方法来提高水稳定性。 29、马歇尔模数是和的比值,可以间接反映沥青混合料的能力。 30、沥青混合料的主要技术性质为、、、和。 二、选择题 1、特粗式沥青混合料是指()等于或大于31.5mm的沥青混合料。 A、最大粒径 B、平均粒径 C、最小粒径 D、公称最大粒径 2、在沥青混合料AM—20中,AM指的是() A、半开级配沥青碎石混合料 B、开级配沥青混合料 C、密实式沥青混凝土混合料 D、密实式沥青稳定碎石混合料 3、关于沥青混合料骨架—空隙结构的特点,下列说法有误的是() A、粗集料比较多 B、空隙率大 C、耐久性好 D、热稳定性好 4、关于沥青混合料骨架—密实结构的特点,下列说法有误的是() A、密实度大 B、是沥青混合料中差的一种结构类型 C、具有较高内摩阻角 D、具有较高粘聚力 5、关于沥青与矿料在界面上的交互作用,下列说法正确的是() A、矿质集料颗粒对于包裹在表面上的沥青分子只具有物理吸附作用 B、矿质集料颗粒对于包裹在表面上的沥青分子只具有化学吸附作用 C、物理吸附比化学吸附强 D、化学吸附比物理吸附强; 6、关于沥青与矿粉用量比例,下列说法正确的是() A、沥青用量越大,沥青与矿料之间的粘结力越大

组成原理__试题及答案

内部资料,转载请注明出处,谢谢合作。 1. 用ASCII码(七位)表示字符5和7是(1) ;按对应的ASCII码值来比较(2) ;二进制的十进制编码是(3) 。 (1) A. 1100101和1100111 B. 10100011和01110111 C. 1000101和1100011 D. 0110101和0110111 (2) A.“a”比“b”大 B.“f”比“Q”大 C. 空格比逗号大 D.“H”比“R”大 (3) A. BCD码 B. ASCII码 C. 机内码 D. 二进制编码 2. 运算器由许多部件组成,但核心部件应该是________。 A. 数据总线 B. 数据选择器 C. 算术逻辑运算单元 D 累加寄存器。 3. 对用户来说,CPU 内部有3个最重要的寄存器,它们是。 A. IR,A,B B. IP,A,F C. IR,IP,B D. IP,ALU,BUS 4. 存储器是计算机系统中的记忆设备,它主要用来。 A. 存放程序 B. 存放数据 C. 存放微程序 D. 存放程序和数据 5. 完整的计算机系统由组成。 A. 主机和外部设备 B. 运算器、存储器和控制器 C. 硬件系统和软件系统 D. 系统程序和应用程序 6.计算机操作系统是一种(1) ,用于(2) ,是(3) 的接口。 (1) A. 系统程序 B. 应用程序 C. 用户程序 D. 中间程序 (2) A.编码转换 B. 操作计算机 C. 控制和管理计算机系统的资源 D. 把高级语言程序翻译成机器语言程序 (3) A. 软件和硬件 B. 主机和外设 C. 用户和计算机 D. 高级语言和机器语言机 7.磁盘上的磁道是 (1) ,在磁盘存储器中查找时间是 (2) ,活动头磁盘存储器的平均存取时间是指 (3) ,磁道长短不同,其所存储的数据量 (4) 。 (1) A. 记录密度不同的同心圆 B. 记录密度相同的同心圆 C. 阿基米德螺线 D. 随机同心圆 (2) A. 磁头移动到要找的磁道时间 B. 在磁道上找到扇区的时间 C. 在扇区中找到数据块的时间 D. 以上都不对 (3) A. 平均找道时间 B. 平均找道时间+平均等待时间 C. 平均等待时间 D. 以上都不对 (4) A. 相同 B.长的容量大 C. 短的容量大 D.计算机随机决定

沥青混合料组成设计

沥青混合料组成设计 热拌沥青混合料的配合比设计包括3个阶段: 1、目标配合比设计阶段——确定所用材料、计算矿料配合比、据马歇尔试验确定最佳沥青用量,把这个结果作为目标配合比进行试拌,确定拌合机各冷料仓的供料比例、进料速度。 2、生产配合比设计阶段——从二次筛分后进入各热料仓的材料取样筛分,确定各热料仓的材料比例(供控制室使用)。同时调整冷料仓的进料速度,确定生产配合比得最佳沥青用量(目标配合比的最佳沥青、±0.3%)。 3、生产配合比验证阶段——用生产配合比进行试拌、铺试验段,做马歇尔试验进行检验,确定生产用的标准配合比。标准配合比是生产控制的依据和质量检验的标准。矿料级配至少0.075、2.36、4.75三档的筛孔通过率接近要求的中值。 沥青混合料目标配合比设计阶段如何根据马歇尔试验确定沥青最佳用量1).首先根据选用矿料颗粒组成确定各种矿料的比例,使混合的矿料级配符合设计或规范要求。 2).根据规范和经验估计适宜的沥青用量,以此沥青用量为中值、0.5%为间隔取5个不同的沥青用量,分别拌和沥青混合料,制备5组马歇尔试验试件。3).测定试件的密度,计算孔隙率和饱和度。并进行马歇尔试验,测定稳定度和流值等物理力学指标。 4).整理试验结果。以沥青用量为横坐标,以密度、孔隙率、稳定度、流值和饱和度指标为纵坐标,分别点出试验结果,并绘制关系曲线图。 5).在图中求取密度最大值对应的沥青用量为a1,稳定度最大值对应的沥青用量为a2,规定空隙率范围的中值对应的沥青用量为a3。计算出沥青最佳用量的初始值OAC1=(a1+a2+a3)/3。 6).求出符合规范或设计的沥青用量范围OACmin~OACmax,并求取中值OAC2=(OACmin+OACmax)/2。 7).按沥青最佳用量初始值OAC1在曲线图上求取相应的各项指标值,当各项指标均符合要求时,OAC1和OAC2综合决定沥青最佳用量。若不满足要求时,

沥青混合料劈裂试验

沥青混合料劈裂试验 1 目的与适用范围 1.1本方法适用于测定沥青混合料在规定温度和加载速率时劈裂 破坏或处于弹性阶段时的力学性质,亦可供沥青路面结构设计选择沥 青混合料力学设计参数及评价沥青混合料低温抗裂性能时使用。试验 温度与加载速率可由当地气候条件根据试验目的或有关规定选用,但 试验温度不得高于30℃,如无特殊规定,宜采用试验温度15℃± 0.5℃,加载速率为50mm/min。当用于评价沥青混合料低温抗裂性能 时,宜采用试验温度—10℃±0.5℃及加载速率1mm/min。 1.2本方法测定时采用沥青混合料的泊松比υ值,但计算的υ必 须在0.2—0.5范围内。 劈裂试验使用的泊松比υ 表一 试验温度 ≤10 15 20 25 30 (℃) 泊松比u 0.25 0.30 0.35 0.40 0.45 值 1.3 本方法采用的圆柱体试件应符合下列要求 1.3.1 最大粒径不超过26.5mm(圆孔筛30mm)时,用马歇尔标 准击实法成型的直径为φ101.6mm±0.25mm试件,高为63.5mm± 1.3mm。 1.3.2 从轮碾机成型的板块试件或从道路现场钻取直径φ

100mm±2mm或φ150mm±2.5mm,高为40mm±5mm的圆柱体试件。 2仪具与材料 2.1 试验机:能保持规定的加载速率及试验温度的材料试验机,当采用50mm/min的加载速率时,也可采用具有相当传感器的自动马歇尔试验仪代替。但均必须配置有荷载及试件变形的测定记录装置。荷载由传感器测定,应满足最大测定荷载不超过其量程的80%且不小于其量程的20%的要求,一般宜采用40RN或60RN传感器,测定精密度为10N。 2.2 位移传感器厅采用LVDT或电测百分表:水平变形宜用非接触式位移传感器测定,其量程应大于预计最大变形的1.2倍,通常不小于5mm,测定垂直变形精密度不低于0.01mm,测定水平变形的精密度不低于0.005mm。 2.3 数据采集系统或X-Y记录仪:能自动采集传感器及位移计的电测信号,在数据采集系统 中储存或在Z、Y记录仪上绘制荷载与跨中挠度曲线。 2.4 恒温水槽或冰箱、烘箱:用于试件保温,温度范围能满足试验要求,控温程度±0.5c。当试验温度低于0℃时,恒温水槽可采用1:1的甲醇水溶液或防冻液作冷媒介质.恒温水槽中的液体应能循环回流. 2.5 压条:如图1所示,上下各一根,试件直径为100mm±2mm或101.6mm±0.25mm时,压条宽度为12.7,内则曲率半径50.8mm,试件直径为150mm±2.5mm时,压条宽度为19mm,内侧曲率半径75mm,压条两

沥青混凝土路面有哪些试验

沥青混凝土路面有哪些试验 最佳答案 沥青材料试验有:必检:1、针入度试验;2、软化点试验;3、延度试验;按需要检测:4、闪燃点试验;5、含蜡量试验;6、溶解度试验、7、密度试验;8、沥青老化性能试验;9、沥青粘附性试验。 沥青混合料试验有:必检1、马歇尔稳定度试验(包括密度、比重、饱和度等指标测定,2、沥青含量及混合料级配试验(沥青混合料抽提)按必要检测:);3、车辙试验;4、低温弯曲试验;5残留稳定度等 现场测试试验有:1、摆式摩擦试验(要取消);2、渗水性试验;3、取芯压实度试验;4、构造深度试验。5平整度试验 6弯沉试验

高速公路沥青混凝土路面上面层关键施工试验控制技术 RSS 打印复制链接大中小发布时间:2011-03-08 10:05:13 0、前言 高速公路由于行车密度大、车速快,并且随着车辆轴载明显增加以及重车比例增大,给沥青路面带来了明显的早期损坏(如辙槽、泛油、推拥等)这也对沥青路面的级配情况、抗滑性、平整度、密实性等提出了更高的要求。其中上面层是影响路面质量最直接的因素,也是最主要的因素,要提高路面的工程质量,上面层的施工质量必须保证,笔者将从沥青砼上面层配合比设计和施工,谈谈保证高速公路路面上面层工程质量的几个关键因素。 1、沥青砼上面层配合比设计 沥青砼路面上面层配合比的设计过程包括目标配合比设计阶段、生产配合比设计阶段和生产配合比验证阶段。 目标配合比设计阶段 原材料的选择 沥青 a.由于我省属于热区,所以沥青应选用稠度大且软化点高的沥青,以免夏季泛油。 b.修筑高速公路路面的沥青,在高温时要具有较低的感温性,低温时又具有较好的形变能力,所以选择沥青时应尽量选择溶—凝胶型结构的环烷基稠油直馏沥青。其中沥青质的含量为15%~25%,针入度指数在-2~+2之间,PVN值宜在0~之间。 c.同时为了提高使用沥青的品质,特别是对重交通量沥青砼表层,更应该采用进口的沥青如壳牌、埃索、阿尔巴尔亚,标号宜为AH-50或AH-70. 集料 a.骨料最大粒径的确定:级配中的粗集料粒径大小与沥青混合料的抗疲劳强度和抗车辙能力有密切的关系。从国内外相关科研资料表明,当沥青混合料厚h与最大粒径D的比

相关文档
最新文档