点阵LCD的显示原理(仅供参考)

点阵LCD的显示原理(仅供参考)
点阵LCD的显示原理(仅供参考)

本资料仅供参考

点阵LCD的显示原理

在数字电路中,所有的数据都是以0和1保存的,对LCD控制器进行不同的数据操作,可以得到不同的结果。对于显示英文操作,由于英文字母种类很少,只需要8位(一字节)即可。而对于中文,常用却有6000以上,于是我们的DOS前辈想了一个办法,就是将ASCII表的高128个很少用到的数值以两个为一组来表示汉字,即汉字的内码。而剩下的低128位则留给英文字符使用,即英文的内码。

那么,得到了汉字的内码后,还仅是一组数字,那又如何在屏幕上去显示呢?这就涉及到文字的字模,字模虽然也是一组数字,但它的意义却与数字的意义有了根本的变化,它是用数字的各位信息来记载英文或汉字的形状,如英文的'A'在字模的记载方式如图1所示:

图1 “A”字模图

而中文的“你”在字模中的记载却如图2所示:

图2 “你”字模图

12864点阵型LCD简介 12864是一种图形点阵液晶显示器,它主要由行驱动器/列驱动器及128×64全点阵液晶显示器组成。可完成图形显示,也可以显示8×4个(16×16点阵)汉字。

管脚号管脚名称LEVER 管脚功能描述

1 VSS 0 电源地

2 VDD +5.0V 电源电压

3 V0 - 液晶显示器驱动电压

4 D/I(RS) H/L D/I=“H”,表示DB7∽DB0为显示数据

D/I=“L”,表示DB7∽DB0为显示指令数据

5 R/W H/L R/W=“H”,E=“H”数据被读到DB7∽DB0

R/W=“L”,E=“H→L”数据被写到IR或DR

6 E H/L R/W=“L”,E信号下降沿锁存DB7∽DB0

R/W=“H”,E=“H”DDRAM数据读到DB7∽DB0

7 DB0 H/L 数据线

8 DB1 H/L 数据线

9 DB2 H/L 数据线

10 DB3 H/L 数据线

11 DB4 H/L 数据线

12 DB5 H/L 数据线

13 DB6 H/L 数据线

14 DB7 H/L 数据线

15 CS1 H/L H:选择芯片(右半屏)信号

16 CS2 H/L H:选择芯片(左半屏)信号

17 RET H/L 复位信号,低电平复位

18 VOUT -10V LCD驱动负电压

19 LED+ - LED背光板电源

20 LED- - LED背光板电源

表1:12864LCD的引脚说明在使用12864LCD前先必须了解以下功能器件才能进行编程。12864内部功能器件及相关功能如下:

1. 指令寄存器(IR) IR是用于寄存指令码,与数据寄存器数据相对应。当D/I=0时,在E信号下降沿的作用下,指令码写入IR。

2.数据寄存器(DR) DR是用于寄存数据的,与指令寄存器寄存指令相对应。当D/I=1时,在下降沿作用下,图形显示数据写入DR,或在E信号高电平作用下由DR读到DB7∽DB0数据总线。DR和DDRAM之间的数据传输是模块内部自动执行的。

3.忙标志:BF BF标志提供内部工作情况。BF=1表示模块在内部操作,此时模块不接受外部指令和数据。BF=0时,模块为准备状态,随时可接受外部指令和数据。利用STATUS READ指令,可以将BF读到DB7总线,从检验模块之工作状态。

4.显示控制触发器DFF此触发器是用于模块屏幕显示开和关的控制。DFF=1为开显示(DISPLAY ON),DDRAM 的内容就显示在屏幕上,DFF=0为关显示(DISPLAY OFF)。 DDF的状态是指令DISPLAY ON/OFF和RST 信号控制的。

5.XY地址计数器 XY地址计数器是一个9位计数器。高3位是X地址计数器,低6位为Y地址计数器,XY地址计数器实际上是作为DDRAM的地址指针,X地址计数器为DDRAM的页指针,Y地址计数器为DDRAM

的Y地址指针。 X地址计数器是没有记数功能的,只能用指令设置。 Y地址计数器具有循环记数功能,各显示数据写入后,Y地址自动加1,Y地址指针从0到63。

6.显示数据RAM(DDRAM) DDRAM是存储图形显示数据的。数据为1表示显示选择,数据为0表示显示非选择。DDRAM与地址和显示位置的关系见DDRAM地址表。

7.Z地址计数器 Z地址计数器是一个6位计数器,此计数器具备循环记数功能,它是用于显示行扫描同步。当一行扫描完成,此地址计数器自动加1,指向下一行扫描数据,RST复位后Z地址计数器为0。 Z 地址计数器可以用指令DISPLAY START LINE预置。因此,显示屏幕的起始行就由此指令控制,即DDRAM的数据从哪一行开始显示在屏幕的第一行。此模块的DDRAM共64行,屏幕可以循环滚动显示64行。

12864LCD的指令系统及时序该类液晶显示模块(即KS0108B及其兼容控制驱动器)的指令系统比较简单,总共只有七种。其指令表如表2所示:

指令名称控制信号控制代码

R/W RS DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

显示开关0 0 0 0 1 1 1 1 1 1/0

显示起始行设置0 0 1 1 X X X X X X

页设置0 0 1 0 1 1 1 X X X

列地址设置0 0 0 1 X X X X X X

读状态 1 0 BUSY 0 ON/OFF RST 0 0 0 0

写数据0 1 写数据

读数据 1 1 读数据

表2:12864LCD指令表各功能指令分别介绍如下。

显示开/关指令

R/WRS DB7 DB6 DB5 DB4 DB3DB2DB1 DB0

00 00111111/0

当DB0=1时,LCD显示RAM中的内容;DB0=0时,关闭显示。

2、显示起始行(ROW)设置指令

00 11显示起始行(0~63)

该指令设置了对应液晶屏最上一行的显示RAM的行号,有规律地改变显示起始行,可以使LCD实现显示滚屏的效果。

3、页(PAGE)设置指令

R/WRS DB7 DB6 DB5 DB4 DB3DB2DB1 DB0

00 10111页号(0~7)

显示RAM共64行,分8页,每页8行。

4、列地址(Y Address)设置指令

R/WRS DB7 DB6 DB5 DB4 DB3DB2DB1 DB0

00 01显示列地址(0~63)

设置了页地址和列地址,就唯一确定了显示RAM中的一个单元,这样MPU就可以

用读、写指令读出该单元中的内容或向该单元写进一个字节数据。

5、读状态指令

R/WRS DB7 DB6 DB5 DB4 DB3DB2DB1 DB0

10 BUSY0ON/OFFREST0000

该指令用来查询液晶显示模块内部控制器的状态,各参量含义如下:

BUSY:1-内部在工作0-正常状态

ON/OFF:1-显示关闭0-显示打开

RESET:1-复位状态0-正常状态

在BUSY和RESET状态时,除读状态指令外,其它指令均不对液晶显示模块产生作用。

在对液晶显示模块操作之前要查询BUSY状态,以确定是否可以对液晶显示模块进行操作。

6、写数据指令

R/WRS DB7 DB6 DB5 DB4 DB3DB2DB1 DB0

01 写数据

读数据指令

11 读显示数据

读、写数据指令每执行完一次读、写操作,列地址就自动增一。必须注意的是,进行读操作之前,必须有一次空读操作,紧接着再读才会读出所要读的单元中的数据。

12864点阵型LCD软硬件设计实例

通过以上学习,现在就来实际应用12864LCD的软硬件设计。本实例将在LCD上显示如图3所示内容:

图3 模拟显示效果图

在调试前先将显示切换开关切换到LCD显示状态。

图4 128*64LCD实验演示图硬件原理图

图5 硬件原理图

程序流程图

图6 软件流程图

软件代码

在编写软件代码之前必须要先掌握汉字取模的方法。要得到上表中的文字,我们可以借助取模软件来完成。目前点阵LCD的取模软件有很多,我们以本开发板配套的取模软件为例来介绍一下汉字的取模方法。

打开取模软件出现如下显示界面:

在文字输入区中输入文字,我们以输入一个欢迎的“欢”字为例,了解其取模过程。在文字输入区中输入“欢”后按CTRL+ENTER组合键后就看到“欢”字已经在模拟显示区显示出来了

在“取模方式”中选择“C51格式”就可以在“点阵生成区”得到你要的汉字“欢”的显示代码。

经过以上步骤后一个汉字就取模成功了,在程序中只要调用这段代码就可显示出汉字“欢”了,其它汉字也用同样的方法。取完要显示的全部汉字代码后我们就可以编程了。

1602字符液晶显示原理+实例详解

1602详细资料和实例 1602字符液晶在实际的产品中运用的也比较多了,前几天留意了一下,发现宿舍门前的自动售水机就是采 用的1602液晶进行显示的。而且对于单片机的学习而言,掌握1602的用法是每一个学习者必然要经历的过程。在此,我将使用1602过程中遇到的问题以及感受记录下来,希望能够给初学者带来一点指导,少走一点弯路。 所谓1602是指显示的内容为16*2,即可以显示两行,每行16个字符。目前市面上字符液晶绝大多 数是基于HD44780液晶芯片的,控制原理是完全相同的,因此基于HD44780写的控制程序可以很方便地应用于市面上大部分的字符型液晶。 1602液晶的正面(绿色背光,黑色字体) 1602液晶背面(绿色背光,黑色字体)

另一种1602液晶模块,显示屏是蓝色背光白色字体 字符型LCD1602通常有14条引脚线或16条引脚线的LCD,多出来的2条线是背光电源线VCC(15脚)和地线GND(16脚),其控制原理与14脚的LCD完全一样,引脚定义如下表所示:

HD44780内置了DDRAM、CGROM和CGRAM。 DDRAM就是显示数据RAM,用来寄存待显示的字符代码。共80个字节,其地址和屏幕的对应关系如下表:

也就是说想要在LCD1602屏幕的第一行第一列显示一个"A"字,就要向DDRAM的00H地址写入“A”字的代码(指A的字模代码,0x20~0x7F为标准的ASCII码,通过这个代码,在CGROM中查找到相应的字符显示)就行了。但具体的写入是要按LCD模块的指令格式来进行的,后面我会说到的。那么一行可有40个地址呀?是的,在1602中我们就用前16个就行了。第二行也一样用前16个地址。对应如下:DDRAM地址与显示位置的对应关系。 (事实上我们往DDRAM里的00H地址处送一个数据,譬如0x31(数字1的代码,见字模关系对照表)并不能显示1出来。这是一个令初学者很容易出错的地方,原因就是如果你要想在DDRAM的00H 地址处显示数据,则必须将00H加上80H,即80H,若要在DDRAM的01H处显示数据,则必须将01H 加上80H即81H。依次类推。大家看一下控制指令的的8条:DDRAM地址的设定,即可以明白是怎么样的一回事了),1602液晶模块内部的字符发生存储器(CGROM)已经存储了160个不同的点阵字符图形(无汉字),如下表所示,这些字符有:阿拉伯数字、英文字母的大小写、常用的符号、和日文假名等,每一个字符都有一个固定的代码,比如大写的英文字母“A”的代码是01000001B(41H)(其实是1个地址),显示时模块把地址41H中的点阵字符图形显示出来,我们就能看到字母“A”。

TFT-LCD液晶显示器的工作原理

TFT-LCD液晶显示器的工作原理 我一直记得,当初刚开始从事有关液晶显示器相关的工作时,常常遇到的困扰,就是不知道怎么跟人家解释,液晶显示器是什么? 只好随着不同的应用环境,来解释给人家听。在最早的时候是告诉人家,就是掌上型电动玩具上所用的显示屏,随着笔记型计算机开始普及,就可以告诉人家说,就是使用在笔记型计算机上的显示器。随着手机的流行,又可以告诉人家说,是使用在手机上的显示板。时至今日,液晶显示器,对于一般普罗大众,已经不再是生涩的名词。而它更是继半导体后另一种可以再创造大量营业额的新兴科技产品,更由于其轻薄的特性,因此它的应用范围比起原先使用阴极射线管(CRT,cathode-ray tube)所作成的显示器更多更广。 如同我前面所提到的,液晶显示器泛指一大堆利用液晶所制作出来的显示器。而今日对液晶显示器这个名称,大多是指使用于笔记型计算机,或是桌上型计算机应用方面的显示器。也就是薄膜晶体管液晶显示器。其英文名称为Thin-film transistor liquid crystal display,简称之TFT LCD。从它的英文名称中我们可以知道,这一种显示器它的构成主要有两个特征,一个是薄膜晶体管,另一个就是液晶本身。我们先谈谈液晶本身。 液晶(LC,liquid crystal)的分类 我们一般都认为物质像水一样都有三态,分别是固态液态跟气态。其实物质的三态是针对水而言,对于不同的物质,可能有其它不同的状态存在。以我们要谈到的液晶态而言,它是介于固体跟液体之间的一种状态,其实这种状态仅是材料的一种相变化的过程,只要材料具有上述的过程,即在固态及液态间有此一状态存在,物理学家便称之为液态晶体。

12864液晶显示图片原理(完整版)

51单片机综合学习 12864液晶原理分析1 辛勤学习了好几天,终于对12864液晶有了些初步了解~没有视频教程学起来真有些累,基本上内部程序写入顺序都是根据程序自我变动,然后逆向反推出原理…… 芯片:YM12864R P-1 控制芯片:ST7920A带中文字库 初步小结: 1、控制芯片不同,寄存器定义会不同 2、显示方式有并行和串行,程序不同 3、含字库芯片显示字符时不必对字符取模了 4、对芯片的结构地址一定要理解清楚

5、显示汉字时液晶芯片写入数据的顺序(即显示的顺序)要清楚 6、显示图片时液晶芯片写入数据的顺序(即显示的顺序)要清楚 7、显示汉字时的二级单元(一级为八位数据写入单元)要清楚 8、显示图片时的二级单元(一级为八位数据写入单元)要清楚 12864点阵液晶显示模块(LCM)就是由128*64个液晶显示点组成的一个128列*64行的阵列。每个显示点对应一位二进制数,1表示亮,0表示灭。存储这些点阵信息的RAM称为显示数据存储器。要显示某个图形或汉字就是将相应的点阵信息写入

到相应的存储单元中。图形或汉字的点阵信息由自己设计,问题的关键就是显示点在液晶屏上的位置(行和列)与其在存储器中的地址之间的关系。由于多数液晶显示模块的驱动电路是由一片行驱动器和两片列驱动器构成,所以12864液晶屏实际上是由左右两块独立的64*64液晶屏拼接而成,每半屏有一个512*8 bits显示数据RAM。左右半屏驱动电路及存储器分别由片选信号CS1和CS2选择。显示点在64*64液晶屏上的位置由行号(line,0~63)与列号(column,0~63)确定。512*8 bits RAM中某个存储单元的地址由页地址(Xpage,0~7)和列地址(Yaddress,0~63)确定。每个存储单元存储8个液晶点的显示信息。

字模生成原理

字模生成原理 本设计中因为使用汉字的点阵显示,需要提取汉字字模,因此我们首先来了解汉字点阵字模的提取方法。 汉字的点阵字模是从点阵字库文件中提取出来的。例如常用的16×16点阵HZK16文件,12×12点阵HZK12文件等等,这些文件包括了GB 2312字符集中的所有汉字。现在只要弄清汉字点阵在字库文件中的格式,就可以按照自己的意愿去显示汉字了。 下面以HZK16文件为例,分析取得汉字点阵字模的方法。 HZK16文件是按照GB 2312-80标准,也就是通常所说的国标码或区位码的标准排列的。国标码分为94 个区(Section),每个区94 个位(Position),所以也称为区位码。其中01~09 区为符号、数字区,16~87 区为汉字区。而10~15 区、88~94 区是空白区域。 如何取得汉字的区位码呢?在计算机处理汉字和ASCII字符时,使每个ASCII字符占用1个字节,而一个汉字占用两个字节,其值称为汉字的内码。其中第一个字节的值为区号加上32(20H),第二个字节的值为位号加上32(20H)。为了与ASCII字符区别开,表示汉字的两个字节的最高位都是1,也就是两个字节的值都又加上了128(80H)。这样,通过汉字的内码,就可以计算出汉字的区位码。 具体算式如下: qh=c1-32-128=c1-160 wh=c2-32-128=c2-160 或 qh=c1-0xa0 wh=c2-0xa0 qh,wh为汉字的区号和位号,c1,c2为汉字的第一字节和第二字节。 根据区号和位号可以得到汉字字模在文件中的位置: location=(94*(qh-1)+(wh-1))*一个点阵字模的字节数。 那么一个点阵字模究竟占用多少字节数呢?我们来分析一下汉字字模的具体排列方式。 例如下图中显示的“汉”字,使用16×16点阵。字模中每一点使用一个二进制位(Bit)表示,如果是1,则说明此处有点,若是0,则说明没有。这样,一个16×16点阵的汉字总共需要16*16/8=32个字节表示。字模的表示顺序为:先从左到右,再从上到下,也就是先画左上方的8个点,再是右上方的8个点,然后是第二行左边8个点,右边8个点,依此类推,画满16×16个点。 对于其它点阵字库文件,则也是使用类似的方法进行显示。例如HZK12,但是HZK12文件的格式有些特别,如果你将它的字模当作12*12位计算的话,根本无法正常显示汉字。因为字库设计者为了使用的方便,字模每行的位数均补齐为8的整数倍,于是实际该字库的位长度是16*12,每个字模大小为24字节,虽然每行都多出了4位,但这4位都是0(不显示),并不影响显示效果。还有UCDOS下的HZK24S(宋体)、HZK24K(楷体)或HZK24H(黑体)这些打印字库文件,每个字模占用24*24/8=72字节,不过这类大字模汉字库为了打印的方便,将字模都放倒了,所以在显示时要注意把横纵方向颠倒过来就可以了。 这样我们就完全清楚了如何得到汉字的点阵字模,这样就可以在程序中随意的显示汉字了。 5.7.2 字模提取程序 如果在程序中使用的汉字数目不多,也可以不必总是在程序里带上几百K的字库文件,也

液晶显示器的工作原理

液晶显示器的工作原理 我们很早就知道物质有固态、液态、气态三种型态。液体分子质心的排列虽然不具有任何规律性,但是如果这些分子是长形的(或扁形的),它们的分子指向就可能有规律性。于是我们就可将液态又细分为许多型态。分子方向没有规律性的液体我们直接称为液体,而分子具有方向性的液体则称之为“液态晶体”,又简称“液晶”。液晶产品其实对我们来说并不陌生,我们常见到的手机、计算器都是属于液晶产品。液晶是在1888年,由奥地利植物学家Reinitzer发现的,是一种介于固体与液体之间,具有规则性分子排列的有机化合物。一般最常用的液晶型态为向列型液晶,分子形状为细长棒形,长宽约1nm~10nm,在不同电流电场作用下,液晶分子会做规则旋转90度排列,产生透光度的差别,如此在电源ON/OFF下产生明暗的区别,依此原理控制每个像素,便可构成所需图像。 1. 被动矩阵式LCD工作原理 TN-LCD、STN-LCD和DSTN-LCD之间的显示原理基本相同,不同之处是液晶分子的扭曲角度有些差别。下面以典型的TN-LCD为例,向大家介绍其结构及工作原理。 在厚度不到1厘米的TN-LCD液晶显示屏面板中,通常是由两片大玻璃基板,内夹着彩色滤光片、配向膜等制成的夹板? 外面再包裹着两片偏光板,它们可决定光通量的最大值与颜色的产生。彩色滤光片是由红、绿、蓝三种颜色构成的滤片,有规律地制作在一块大玻璃基

板上。每一个像素是由三种颜色的单元(或称为子像素)所组成。假如有一块面板的分辨率为1280×1024,则它实际拥有3840×1024个晶体管及子像素。每个子像素的左上角(灰色矩形)为不透光的薄膜晶体管,彩色滤光片能产生RGB三原色。每个夹层都包含电极和配向膜上形成的沟槽,上下夹层中填充了多层液晶分子(液晶空间不到5×10-6m)。在同一层内,液晶分子的位置虽不规则,但长轴取向都是平行于偏光板的。另一方面,在不同层之间,液晶分子的长轴沿偏光板平行平面连续扭转90度。其中,邻接偏光板的两层液晶分子长轴的取向,与所邻接的偏光板的偏振光方向一致。在接近上部夹层的液晶分子按照上部沟槽的方向来排列,而下部夹层的液晶分子按照下部沟槽的方向排列。最后再封装成一个液晶盒,并与驱动IC、控制IC 与印刷电路板相连接。 在正常情况下光线从上向下照射时,通常只有一个角度的光线能够穿透下来,通过上偏光板导入上部夹层的沟槽中,再通过液晶分子扭转排列的通路从下偏光板穿出,形成一个完整的光线穿透途径。而液晶显示器的夹层贴附了两块偏光板,这两块偏光板的排列和透光角度与上下夹层的沟槽排列相同。当液晶层施加某一电压时,由于受到外界电压的影响,液晶会改变它的初始状态,不再按照正常的方式排列,而变成竖立的状态。因此经过液晶的光会被第二层偏光板吸收而整个结构呈现不透光的状态,结果在显示屏上出现黑色。当液晶层不施任何电压时,液晶是在它的初始状态,会把入射光的方向扭转90度,因此让背光源的入射光能够通过整个结构,结果在显示屏上出现白

12864点阵型液晶显示屏的基本原理与使用方法(很详细)

12864点阵型液晶显示屏的基本原理与使用方法(很详细) 点阵LCD的显示原理 在数字电路中,所有的数据都是以0和1保存的,对LCD控制器进行不同的数据操作,可以得到不同的结果。对于显示英文操作,由于英文字母种类很少,只需要8位(一字节)即可。而对于中文,常用却有6000以上,于是我们的DOS前辈想了一个办法,就是将ASCII表的高128个很少用到的数值以两个为一组来表示汉字,即汉字的内码。而剩下的低128位则留给英文字符使用,即英文的内码。 那么,得到了汉字的内码后,还仅是一组数字,那又如何在屏幕上去显示呢?这就涉及到文字的字模,字模虽然也是一组数字,但它的意义却与数字的意义有了根本的变化,它是用数字的各位信息来记载英文或汉字的形状,如英文的'A'在字模的记载方式如图1所示: 图1“A”字模图 而中文的“你”在字模中的记载却如图2所示:

图2“你”字模图 12864点阵型LCD简介 12864是一种图形点阵液晶显示器,它主要由行驱动器/列驱动器及128×64全点阵液晶显示器组成。可完成图形显示,也可以显示8×4个(16×16点阵)汉字。 管脚号管脚名称LEVER管脚功能描述 1VSS0电源地 2VDD+5.0V电源电压 3V0-液晶显示器驱动电压 4D/I(RS)H/L D/I=“H”,表示DB7∽DB0为显示数据 D/I=“L”,表示DB7∽DB0为显示指令数据5R/W H/L R/W=“H”,E=“H”数据被读到DB7∽DB0 R/W=“L”,E=“H→L”数据被写到IR或DR 6E H/L R/W=“L”,E信号下降沿锁存DB7∽DB0 R/W=“H”,E=“H”DDRAM数据读到DB7∽DB0 7DB0H/L数据线 8DB1H/L数据线 9DB2H/L数据线 10DB3H/L数据线 11DB4H/L数据线 12DB5H/L数据线 13DB6H/L数据线 14DB7H/L数据线 15CS1H/L H:选择芯片(右半屏)信号 16CS2H/L H:选择芯片(左半屏)信号 17RET H/L复位信号,低电平复位

点阵字库的原理

点阵字库的原理 2010-12-06 17:12:46 分类: 点阵字库的原理(引文) 所有的汉字或者英文都是下面的原理, 由左至右,每8个点占用一个字节,最后不足8个字节的占用一个字节,而且从最高位向最低位排列。 生成的字库说明:(以12×12例子) 一个汉字占用字节数:12÷8=1····4也就是占用了2×12=24个字节。 编码排序A0A0→A0FE A1A0→A2FE依次排列。 以12×12字库的“我”为例:“我”的编码为CED2,所以在汉字排在CEH-AOH=2EH区的D2H-A0H=32H个。所以在12×12字库的起始位置就是[{FE-A0}*2EH+32H]*24=104976开始的24个字节就是我的点阵模。 其他的类推即可。 英文点阵也是如此推理。 在DOS程序中使用点阵字库的方法 首先需要理解的是点阵字库是一个数据文件,在这个数据文件里面保存了所有文字的点阵数据.至于什么是点阵,我想我不讲大家都知道的,使用过"文曲星"之类的电子辞典吧,那个的液晶显示器上面显示的汉子就能够明显的看出"点阵"的痕迹.在PC 机上也是如此,文字也是由点阵来组成了,不同的是,PC机显示器的显示分辨率更高,高到了我们肉眼无法区分的地步,因此"点阵"的痕迹也就不那么明显了. 点阵、矩阵、位图这三个概念在本质上是有联系的,从某种程度上来讲,这三个就是同义词.点阵从本质上讲就是单色位图,他使用一个比特来表示一个点,如果这个比特为0,表示某个位置没有点,如果为1表示某个位置有点.矩阵和位图有着密不可分的联系,矩阵其实是位图的数学抽象,是一个二维的阵列.位图就是这种二维的阵列,这个阵列中的(x,y) 位置上的数据代表的就是对原始图形进行采样量化后的颜色值.但是,另一方面,我们要面对的问题是,计算机中数据的存放都是一维的,线性的.因此,我们需要将二维的数据线性化到一维里面去.通常的做法就是将二维数据按行顺序的存放,这样就线性化到了一维. 那么点阵字的数据存放细节到底是怎么样的呢.其实也十分的简单,举个例子最能说明问题.比如说16*16 的点阵,也就是说每一行有16个点,由于一个点使用一个比特来表示,如果这个比特的值为1,则表示这个位置有点,如果这个比特的值为0,则表示这个位置没有点,那么一行也就需要16个比特,而8个比特就是一个字节,也就是说,这个点阵中,一行的数据需要两个字节来存放.第一行的前八个点的数据存放在点阵数据的第一个字节里面,第一行的后面八个点的数据存放在点阵数据的第二个字节里面,第二行的前八个点的数据存放在点阵数据的

12864点阵液晶显示模块的原理

12864点阵液晶显示模块的原理 12864 点阵液晶显示模块的原理12864 点阵液晶显示模块(LCM)就是由128*64 个液晶显示点组成的一个128 列*64 行的阵列。每个显示点对应一位二 进制数,1 表示亮,0 表示灭。存储这些点阵信息的RAM 称为显示数据存储器。要显示某个图形或汉字就是将相应的点阵信息写入到相应的存储单元中。图形 或汉字的点阵信息当然由自己设计,问题的关键就是显示点在液晶屏上的位置(行和列)与其在存储器中的地址之间的关系。由于多数液晶显示模块的驱动 电路是由一片行驱动器和两片列驱动器构成,所以12864 液晶屏实际上是由左 右两块独立的64*64 液晶屏拼接而成,每半屏有一个512*8 bits 显示数据RAM。左右半屏驱动电路及存储器分别由片选信号CS1 和CS2 选择。(少数厂 商为了简化用户设计,在模块中增加译码电路,使得128*64 液晶屏就是一个 整屏,只需一个片选信号。)显示点在64*64 液晶屏上的位置由行号 (line,0~63)与列号(column,0~63)确定。512*8 bits RAM 中某个存储单元的地址由页地址(Xpage,0~7)和列地址(Yaddress,0~63)确定。每个存储单元存储8 个液晶点的显示信息。为了使液晶点位置信息与存储地址的对应关系更直 观关,将64*64 液晶屏从上至下8 等分为8 个显示块,每块包括8 行*64 列个 点阵。每列中的8 行点阵信息构成一个8bits 二进制数,存储在一个存储单元 中。(需要注意:二进制的高低有效位顺序与行号对应关系因不同商家而不同) 存放一个显示块的RAM 区称为存储页。即64*64 液晶屏的点阵信息存储在8 个存储页中,每页64 个字节,每个字节存储一列(8 行)点阵信息。因此存储单 元地址包括页地址(Xpage,0~7)和列地址(Yaddress,0~63)。例如点亮128*64 的屏中(20,30)位置上的液晶点,因列地址30 小于64,该点在左半屏第29 列,所以CS1 有效;行地址20 除以8 取整得2,取余得4,该点在RAM 中页

点阵式汉字LED显示屏的原理与制作(精)

单片机应用 电子报 /2004年 /08月 /08日 /第 011版 / 点阵式汉字 L ED 显示屏的原理与制作 深圳石学军 本文介绍一种实用汉字显示屏的制作。该显示屏使用 256只高亮度发光二极管组成 16×16点阵。为降低制作难度 , 此处仅作了一个字的轮流显示。 每个字由 16×16点阵组成 , 每点为一个像素 , 每个字的字形为一幅图像 , 故此屏既可以显示汉字 , 也可以显示 256像素范围内的任何图形。下面以显示“大” 字为例说明其扫描原理。 在 UCDOS 宋体字库中 , 每个字由 16×16, , 一个字要拆分为上、下两部分 , 由两个 8×16 部分 , 即第 0列的 P00~, 时 , 只有 P05点亮 , 即 04H 。 , 即从 P27向 P20方向扫描 , 这一 , , , 依照这个方法 , 扫描 32个 8位 , 得出汉字“大” :04H、 00H 、 04H 、 02H 、 04H 、 02H 、 04H 、 04H 、 04H 、 08H 、 04H 、 30H 、 05H 、0C0H 、 0FEH 、 00H 、 05H 、 80H 、 04H 、 60H 、 04H 、 10H 、 04H 、 08H 、 04H 、 04H 、 0CH 、 06H 、 04H 、 04H 、 00H 、 00H 。 无论显示何种字体或图像 , 都可以用这个方法分析扫描代码。目前有很多现成的汉字字模生成软件 , 软件打开后输入汉字 , 点“检取” 键 , 即可自动生成十六进制汉字代码。此例使用 4-16线译码器 74L S154完成列显示 , 行的 16条线接 P0口和 P2口。源程序清单如下 : OR G 00H LOOP :MOVA , #0FFH ; 初始化

Lcd12864点阵液晶屏显示原理

https://www.360docs.net/doc/cf2987985.html, Lcd12864点阵液晶屏显示原理 Lcd12864,它就是128列+64行的阵列。每个型号的液晶模块都有它的一些参数,下面看下lcd12864显示的一些原理吧。 lcd12864,每个显示点对应一位二进制数,1表示亮,0表示灭。存储这些点阵信息的RAM称为显示数据存储器。要显示某个图形或汉字就是将相应的点阵信息写入到相应的存储单元中。图形或汉字的点阵信息当然由自己设计,问题的关键就是显示点在液晶屏上的位置与其在存储器中的地址之间的关系。 由于多数液晶显示模块的驱动电路是由一片行驱动器和两片列驱动器构成,所以12864液晶屏实际上是由左右两块独立的64*64液晶屏拼接而成,每半屏有一个512*8 bits 显示数据RAM。左右半屏驱动电路及存储器分别由片选信号CS1和CS2选择。 显示点在64*64液晶屏上的位置由行号(line,0~63)与列号(column,0~63)确定。512*8 bits RAM中某个存储单元的地址由页地址(Xpage,0~7)和列地址(Yaddress,0~63)确定。每个存储单元存储8个液晶点的显示信息。 为了使液晶点位置信息与存储地址的对应关系更直观关,将64*64液晶屏从上至下8等分为8个显示块,每块包括8行*64列个点阵。每列中的8行点阵信息构成一个8bits二进制数,存储在一个存储单元中。需要注意:二进制的高低有效位顺序与行号对应关系因不同商家而不同。 存放一个显示块的RAM区称为存储页。即64*64液晶屏的点阵信息存储在8个存储页中,每页64个字节,每个字节存储一列(8行)点阵信息。因此存储单元地址包括页地址(Xpage,0~7)和列地址(Yaddress,0~63)。 例如点亮128*64的屏中(20,30)位置上的液晶点,因列地址30小于64,该点在左半屏第29列,所以CS1有效;行地址20除以8取整得2,取余得4,该点在RAM中页地址为2,在字节中的序号为4;所以将二进制数据00010000(也可能是00001000,高低顺序取决于制造商)写入Xpage=2,Yaddress=29的存储单元中即点亮(20,30)上的液晶点。 1

点阵汉字的原理及应用

点阵汉字原理与应用 一.汉字的编码 由于在电脑中,所有的数据都是以0和1保存的。因此,想要用计算机来显示汉字前提就是要将汉字以二进制,即0和1形式进行编码。 GBK内码 在英文的显示操作中,一个字母、数字及字符均由1个ASCII码表示,并且由于英文字符种类相对较少,故其ASCII码是小于等于127的。而汉字由于种类繁多,每个汉字有2个ASCII码构成,这两个ASCII码称为汉字的GBK内码,通常用十六进制表示。例如,“啊”的GBK内码=B0 A1。汉字的GBK内码一定大于A0H,即160,目的是为了防止与英文的ASCII码产生冲突。 区位码 为了使每一个汉字有一个全国统一的代码,1980年,我国颁布了第一个汉字编码的国家标准:GB2312-80《信息交换用汉字编码字符集》基本集,这个字符集是我国中文信息处理技术的发展基础,也是目前国内所有汉字系统的统一标准。由于国标码是四位十六进制,如汉字的GBK内码,为了便于交流,大家常用的是四位十进制的区位码。所有的国标汉字与符号组成一个94×94的矩阵(见图1所示)。在此方阵中,每一行称为一个"区",每一列称为一个"位",因此,这个方阵实际上组成了一个有94个区(区号分别为0 1到94)、每个区内有94个位(位号分别为01到94)的汉字字符集。一个汉字所在的区号和位号简单地组合在一起就构成了该汉字的"区位码"。区位码和GBK内码之间可以相互转换,区位码=GBK内码-A0H。例如:“啊”的GBK内码=B0 A1,则其区码=B0-A0=10H=16,而其位码=A1-A0=01,所以“啊”的区位码=16 01,为4位十进制码。 在区位码中,01-09区为682个特殊字符,16~87区为汉字区,包含6763个汉字。其中16-55区为一级汉字(3755个最常用的汉字,按拼音字母的次序排列),56-87区为二级汉字(3008个汉字,按部首次序排列)。因此利用区位码便可实现对6000多个汉字的提取。 图1汉字的区位码表

12点阵汉字在HD系列机型中的应用-汉字点阵字库原理

汉字点阵字库原理 一、汉字编码 1.区位码 在国标GD2312—80中规定,所有的国标汉字及符号分配在一个94行、94列的方阵中,方阵的每一行称为一个“区”,编号为01区到94区,每一列称为一个“位”,编号为01位到94位,方阵中的每一个汉字和符号所在的区号和位号组合在一起形成的四个阿拉伯数字就是它们的“区位码”。区位码的前两位是它的区号,后两位是它的位号。用区位码就可以唯一地确定一个汉字或符号,反过来说,任何一个汉字或符号也都对应着一个唯一的区位码。汉字“母”字的区位码是3624,表明它在方阵的36区24位,问号“?”的区位码为0331,则它在03区3l位。 2.机内码 汉字的机内码是指在计算机中表示一个汉字的编码。机内码与区位码稍有区别。如上所述,汉字区位码的区码和位码的取值均在1~94之间,如直接用区位码作为机内码,就会与基本ASCII码混淆。为了避免机内码与基本ASCII码的冲突,需要避开基本ASCII码中的控制码(00H~1FH),还需与基本ASCII码中的字符相区别。为了实现这两点,可以先在区码和位码分别加上20H,在此基础上再加80H(此处“H”表示前两位数字为十六进制数)。经过这些处理,用机内码表示一个汉字需要占两个字节,分别称为高位字节和低位字节,这两位字节的机内码按如下规则表示: 高位字节=区码+20H+80H(或区码+A0H) 低位字节=位码+20H+80H(或位码+AOH) 由于汉字的区码与位码的取值范围的十六进制数均为01H~5EH(即十进制的01~94),所以汉字的高位字节与低位字节的取值范围则为A1H~FEH(即十进制的161~254)。 例如,汉字“啊”的区位码为1601,区码和位码分别用十六进制表示即为1001H,它的机内码的高位字节为B0H,低位字节为A1H,机内码就是B0A1H。

液晶电视的显示原理

液晶电视的显示原理 摘要:系统的介绍了液晶显示器的显示原理,结合液晶电视的显示原理,对液晶电视的技术特点进行了分析。 关键词:高清电视;液晶显示技术;亮度;对比度。 引言 液晶电视技术的发展这些年来可谓突飞猛进,在许多消费者还没有完全弄懂它背后深含的技术理论时,液晶电视已飞入千万寻常百 姓家。本文结合液晶显示原理,对液晶电视 的技术特点进行分析与比对。 1 液晶显示原理 TFT-LCD 液晶屏的结构 TFT- LCD 液晶屏在结构上由里到 外主要由背光源、偏光片、透明电极 (控制电路)、液晶、彩色滤光片、偏 光片所构成,如图1 所示。 液晶的光学效果 液晶包含在两个槽状表面中间,且槽的方向互相垂直,如图2 所示。液晶分子的排列为:上表面分子沿a 方向,下表面分子沿b 方向,介于上下表面中间的分子产生旋转的效应,因此液晶分子在两槽状表面间产生90°的旋转。

当线性偏振光射入上层槽状表面时,此光线随着液晶分子的旋转也产生旋转;当线性偏振光射出下层槽状表面时,此光线已经产生了90°的旋转。 当在上下表面之间加电压时,液晶分子会顺着电场方向排列,形成直立排列的现象。此时入射光线不受液晶分子影响,直线射出下表面。不同电压值,决定液晶偏转的角度。 偏光片的光学效果 如图3 所示。第一片偏光片可以将非偏振光(一般光线)过滤成偏振光;第二片偏光片实现取向功能,即仅允许该偏光片方向分量的光线通过。当非偏振光通过第一片a 方向的偏光片时,光线被过滤成与a 方向平行的线性偏振光;当通过第二片偏光片时,如果两片偏光片放置方向一致时,如图3 左图所示,光线可以顺利通过。当两片偏光片放置方向相互垂直时,如图3 右图所示,光线被完全阻挡。改变偏振光与第二片偏光片的夹角,可实现透光率的控制。 彩色滤光膜的光学效果 彩色滤光膜的各像素对应液晶屏的各像素,每像素包含红、绿、蓝三个子像素,光线透过彩色滤光膜形成红、绿、蓝三基色分量,如图4 所示。

点阵字库生成的原理

所有的汉字或者英文都是下面的原理, 由左至右,每8个点占用一个字节,最后不足8个字节的占用一个字节,而且从最高位向最低位排列。 生成的字库说明:(以12×12例子) 一个汉字占用字节数:12÷8=1····4也就是占用了2×12=24个字节。 编码排序A0A0→A0FE A1A0→A2FE依次排列。 以12×12字库的“我”为例:“我”的编码为CED2,所以在汉字排在CEH-AOH=2EH区的D2H-A0H=32H个。所以在12×12字库的起始位置就是[{FE-A0}*2EH+32H]*24=104976开始的24个字节就是我的点阵模。 其他的类推即可。 英文点阵也是如此推理。 51单片机的13×14点阵缩码汉卡 我们历时数载,开发成"51单片机13×14点阵缩码汉卡",适用于目前国内外应用最为广泛的MCSX-51及其兼容系列单片机. 与此同时,还开发了13×14点阵汉字字模.13×14点阵字模,可完全与目前通用的16×16点阵汉字字模媲美,其在单片机和嵌入式系统的汉字显示应用中也具有明显的经济价值和实用意义. 1.单片机目前的汉字显示 信息交流的最主要方式之一即文字交流,但由于我国方块汉字数量繁多,构形迥异,使汉字显示一直是我国计算机普及的障碍.随着计算机技术的迅速发展,PC机的汉字显示已不成问题.但对于成本低、体积小、应用灵活且用量极为巨大的单片机而言,因其结构简单,硬件资源十分有限,其汉字显示仍面对着捉襟见肘,力不从心的窘境. 目前单片机的汉字显示有三种基本方法. ①采用标准字库法.即将国标汉字库固人ROM中,将单片机的硬件和软件进行特别扩展后以显示汉字.众所周知,即使是16×16点阵标准字库,也须占用200KB以上的单元内存,而就目前主流5l系列单片机而言,最大寻址范围仅64KB,即使程序区与数据区合起来也仅128KB内存.因此,若不加特别的扩展设计,不要说检字程序和用户空间,仅字库都装不下.这种方法虽然可以方便地使用现成标准字库,但却需占用大量的硬件和软件资源,增加很大一部分成本和设计难度,所以不经常使用. ②字模直接固化法.即将所显示的汉字,依先后顺序将其字模一一从标准字库中提取后,重新固化,予以显示.此法虽为简捷,但只适于显示少量汉字,且字模的制取繁琐,软件的修改维护都很困难. ③带索引小字库法.即将欲显示文件中的汉字字模,从标准字库中逐一提取固化,制成小型字

16-16点阵LED显示汉字汇编语言

LED16X16点阵显示课程设计报告 学院 专业 班级 学生 指导老师

一、设计目的 本次课程设计目的剖析试验箱,利用微机接口芯片8255,并行控制LED点阵显示;其次就是掌握8088微机系统与LED点阵显示模块之间接口电路设计及编程,了解LED点阵显示的基本原理和如何来实现汉字的的循环左移显示。 二、设计容 利用598H试验系统扩展接口CZ7座,在控制板MC1上以并行通信的方式控制LED点阵显示。要求自建字库,编制程序实现点阵循环左移显示汉字,并要求通过protues仿真软件画出电路图,运行程序。 三、硬件电路设计 整个电路由8088CPU,两片8255,1个74ls373,1个74LS138,1个16×16的LED,5个7407。该电路可静态显示1个16*16位的汉字,也可循环显示。 1、8255 Intel8255A是一种通用的可编程序并行I/O接口芯片,又称“可编程外设接口芯片”,是为Intel8080/8085系列微处理据设计的,也可用于其它系列的微机系统。可由程序来改变其功能,通用性强、使用灵活。通过8255A,CPU可直接同外设相连接,是应用最广的并行I/O接口芯片。其中含3个独立的8位并行输入/输出端口,各端口均具有数据的控制和锁存能力。可通过编程设置各端口的工作方式和数据传送方向(入/出/双向)。 2、138译码器 译码器是组合逻辑电路的一个重要的器件,74LS138的输出是低电平有效,故实现逻辑功能时,输出端不可接或门及或非门,74LS138与前面不同,其有使能端,故使能端必须加以处理,否则无法实现需要的逻辑功能。发光二极管点亮只须使其正向导通即可,根据LED的公共极是阳极还是阴极分为两类译码器,即针对共阳极的低电平有效的译码器;针对共阴极LED的高电平输出有效的译码器。 3、373锁存器 74LS373是低功耗肖特基TTL8D锁存器,有8个相同的D型(三态同相)锁存器,由两个控制端(11脚G或EN;1脚OUT、CONT、OE)控制。当OE接地时,若G为高电平,74LS373接收由PPU输出的地址信号;如果G为低电平,则将地址信号锁存。工作原理:74LS373的输出端O0—O7可直接与总线相连。当三态允许控制端OE为低电平时,O0—O7为正常逻辑状态,可用来驱动负载或总线。当OE为高电平时,O0—O7呈高阻态,即不驱动总线,也不为总线的负载,但锁存器部的逻辑操作不受影响。当锁存允许端LE为高电平时,O随数据D而变。当LE为低电平时,O被锁存在已建立的数据电平。 4、LED 动态显示原理 LED点阵显示系统中各模块的显示方式:有静态和动态显示两种。静态显示原理简单、控制方便,但硬件接线复杂,在实际应用中一般采用动态显示方式,动态显示采用扫描的方式工作,由峰值较大的窄脉冲电压驱动,从上到下逐次不断地对显示屏的各行进行选通,同时又向各列送出表示图形或文字信息的列数据信号,反复循环以上操作,就可显示各种图形或文字信息。 点阵式LED绝大部分是采用动态扫描显示方式,这种显示方式巧妙地利用了人眼的视

液晶显示器电源工作原理及维修

液晶显示器电源工作原理及维修 详细介绍液晶显示器电源的作用、工作原理、维修及代换, 一、电源的作用 1、电源的基本知识 液晶电源的作用是为整机提供能量,常见的电源适配器外观如图所示 它的输入是220V交流电,输出为12V、4A直流电。电源适配器的内部电路结构如图所示

2、液晶电源的常见存在形式 常见的液晶电源有内置式和外置式两种。内置式电源一般是和高压板做在一起,形成二合一电源板,驱动板需要的各路电压均有电源板产生。外置式电源也就是通常所说的电源适配器,它一般是220V交流电输入,12V直流电输出,驱动板需要的其他电原在驱动板上进行变换。 二、电源的工作原理 由于LCD采用低电压工作,而一般市电提供提是110V或220V的交流电压,因此显示器需要配备电源。电源的作用是将市电的220V交流电压转变成12V或其它低压直流电,以向液晶显示器供电。 LCD显示器中的电源部分均采用开关电源。由于开关电源具有体积小、重量轻、变换效率高等优点,因此被广泛应用于各种电子产品中,特别是脉宽调制(PWM)型的开关电源。PW M型开关电源的特点是固定开关频率、通过改变脉冲宽度的占空比来调节电压。 PWM开关电源的基本工作原理是:交流电220V输入电源经整流滤波是路变成300V直流电压,再由开关功率管控制和高频变压器降压,得到高频矩形波电压,经整流滤波后获得显示器所需要的各种直流输出电压。脉宽调制器是这类开关电源的核心,它能产生频率固定具脉冲宽度可调的驱动信号,控制开关功率管的导通与截止的占空比,用来调节输出电压的高低,从而达到稳压的目的。 以下将要介绍的电源适配器就是此类开关电源,我们以采用UC3842脉宽调制集成控制器的电源为例讲解相关电路。 1、UC3842的性能特点 (1)它属于电流型单端PWM调制器,具有管脚数量少,外围是路简单、安装调试方便、性能优良、价格低廉等优点。而且通过高频变压器与电网隔离,适合构成无工频变压器的20-50W小功率开关电源。 (2)最高开关频率为500KHZ,频率稳定度高达0.2%。电源效率高,输出电流大,能直接驱动双极型功率晶体管或VMOS管、DMOS管、TMOS管工作。 (3)内部有高稳定的基准电压源,档准值为5V,允许有+0.1%的偏差,温度系数为

实践课04 LCD液晶显示原理和点阵图实验

LCD液晶显示原理和点阵图实验 1、LCD液晶显示 LCD,是英文Liquid Crystal Display的缩写,中文名称翻译为液晶显示器。目前常用的是薄膜晶体管液晶显示器,其英文名称为Thin-film transistor liquid crystal display,简称为TFT LCD。 TFT-LCD液晶显示器的显像原理是采用“背透式”照射方式。当光源照射时,先通过下偏光板向上透出,借助液晶分子来传导光线。由于上下夹层的电极改成FET电极和共通电极,在FET电极导通时,液晶分子的排列状态同样会发生改变,也通过遮光和透光来达到显示的目的。但不同的是,由于FET晶体管具有电容效应,能够保持电位状态,先前透光的液晶分子会一直保持这种状态,直到FET电极下一次再加电改变其排列方式为止。 2、TFT LCD的切面结构图

3、放大器下的液晶 4、液晶显示器的技术参数 ①可视面积 液晶显示器所标示的尺寸就是实际可以使用的屏幕范围一致。例如,一个15.1英寸的液晶显示器约等于17英吋CRT屏幕的可视范围。 ②可视角度 液晶显示器的可视角度左右对称,而上下则不一定对称。举个例子,当背光源的入射光通过偏光板、液晶及取向膜后,输出光便具备了特定的方向特性,也就是说,大多数从屏幕射出的光具备了垂直方向。假如从一个非常斜的角度观看一个全白的画面,我们可能会看到黑色或是色彩失真。一般来说,上下角度要小于或等于左右角度。如果可视角度为左右80度,表示在始于屏幕法线80度的位置时可以清晰地看见屏幕图像。 ③点距 举例来说一般14英寸LCD的可视面积为285.7mm×214.3mm,它的最大分辨率为1024×768,那么点距就等于:可视宽度/水平像素(或者可视高度/垂直像素),即285.7mm/1024=0.279mm(或者是214.3mm/768=0.279mm)。 ④色彩度 LCD重要的当然是的色彩表现度。我们知道自然界的任何一种色彩都是由红、绿、蓝三种基本色组成的。LCD面板上是由1024×768个像素点组成显像的,每个独立的像素色彩是由红、绿、蓝(R、G、B)三种基本色来控制。大部分厂商生产出来的液晶显示器,每个基本色(R、G、B)达到6位,即64种表现度,那么每个独立的像素就有64×64×64=262144种色彩。也有不少厂商使用了所谓的FRC (Frame Rate Control)技术以仿真的方式来表现出全彩的画面,也就是每个基本色(R、G、B)能达到8位,即256种表现度,那么每个独立的像素就有高达256×256×256=16777216种色彩了。 ⑤对比值 对比值是定义最大亮度值(全白)除以最小亮度值(全黑)的比值。 ⑥亮度值 液晶显示器的最大亮度,通常由冷阴极射线管(背光源)来决定,亮度值一般都在200~250 cd/m2间。

点阵LED显示原理与点阵汉字库的编码和从标准字库中提取汉字编码的方法

点阵L E D显示原理与点阵汉字库的编码和从标准字库中提取汉字编码的方法 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

点阵LED显示原理与点阵汉字库的编码和从标准字库中提取汉字编码的方法。2009年06月03日下午 04:27 一.实验要求 编程实现中英文字符的显示。 二.实验目的 1.了解LED点阵显示的基本原理和实现方法。 2.掌握 三.实验电路及连线 点阵显示模块WTD3088的(红色)列输入线接至内部LED的阴极端,行输入线接至内部LED的阳极端(若阳极端输入为高电平,阴极端输入低电平,则该LED点亮)。发光点的分布如图22-0所示。 Fig 22-0 WTD3088 LED分布 如图22-1示,本实验模块使用74LS374来控制列输入线的电平值。将74LS374的某输出置0,则对应的LED阴极端被置低。如图22-2示,本实验模块使用74LS273来控制行输入线,并通过9013提供电流驱动。将74LS273的某输出置1,则对应的LED阳极端被置高。每次系统重新开启或总清后,74LS273输出为全0,LED显示被关闭。 通过编程控制各显示点对应LED阳极和阴极端的电平,就可以有效的控制各显示点的亮灭。

Fig 22-1 LED模块及列扫描电路 Fig 22-2 行扫描电路

Fig 22-3地址译码电路 本实验模块使用4块WTD3088组成16×16点阵,以满足汉字显示的要求。为了方便的控制四个单元,使用了一片74LS139译码,产生四个地址片选信号:CLKR1= CSLED,CLKR2= CSLED+1,用于行控制的两片74LS273;CLKC1= CSLED+2,CLKC2= CSLED+3,用于列控制的两片74LS374。 实验接线:按示例程序,模块的CSLED接51/96地址的8000H。 四.实验说明 使用高亮度LED发光管构成点阵,通过编程控制可以显示中英文字符、图形及视频动态图形。LED显示以其组构方式灵活、亮度高、技术成熟、成本低廉等特点在证券、运动场馆及各种室内/外显示场合得到广泛的应用。 所显示字符的点阵数据可以自行编写(即直接点阵画图),也可从标准字库(如ASC16、HZ16)中提取。后者需要正确掌握字库的编码方法和字符定位的计算。 实验盘片中“字符转换”子目录下提供的,可方便的将单个字符的码表从标准字库Asc16,Hzk16中提取出来。具体使用方法是运行上述可执行程序,根据提示输入所需字符(如是汉字还需要先启动dos下的汉字环境,如ucdos,pdos95等)。程序将该字符的码表提取出来,存放在该字符ASC或区位码为文件名称的.dat文件中。用户只需将该文件中内容拷贝、粘贴到自己的程序中即可。但需要注意字节排列顺序、字节中每一位与具体显示点的一一对应关系,必要时还要对码表稍作修改。同一目录下还提供了上述可执行程序的源文件,使用编写,供用户参考。 五.实验程序框图

相关文档
最新文档