1.某型航空发动机燃油泵性能检测台的研制_吕孟军

1.某型航空发动机燃油泵性能检测台的研制_吕孟军
1.某型航空发动机燃油泵性能检测台的研制_吕孟军

北京化工大学离心泵性能实验报告

报告题目:离心泵性能试验 实验时间:2015年12月16日 报告人: 同组人: 报告摘要 本实验以水为工作流体,使用了额定扬程He为20m,转速为2900 r/min IS 型号的离心泵实验装置。实验通过调节阀门改变流量,测得不同流量下离心泵的各项性能参数,流量通过计量槽和秒表测量。实验中直接测量量有P真空表、P 压力表、电机功率N电、孔板压差ΔP、计量槽水位上升高度ΔL、时间t,根据上述测量量来计算泵的扬程He、泵的有效功率Ne、轴功率 N轴及效率η,从而绘制He-Q、Ne-Q和η-Q三条曲线即泵的特性曲线图,并根据此图求出泵的最佳操作范围;又由P、Q求出孔流系数C0、Re,从而绘制C0-Re曲线图,求出孔板孔流系数C0;最后绘制管路特性曲线H-Q曲线图。 本实验数据由EXCEL处理,所有图形的绘制由ORIGIN来完成 实验目的及任务 ①了解离心泵的构造,掌握其操作和调节方法。 ②测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。 ③熟悉孔板流量计的构造、性能及安装方法。 ④测定孔板流量计的孔流系数。 ⑤测定管路特性曲线。 基本理论 1.离心泵特性曲线测定 离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到,如图4-3中的曲线。由于流体流经泵时,不可避免地会遇到各种阻力,产生能量损失,诸如摩擦损失、环流损失等,因此,实际压头比理论压头小,且难以通过计算求得,因此通常采用实验方法,直接测定其参数间的关系,并将测出的He-Q、N-Q和η-Q三条曲线称为离心泵的特性曲线。另外,根据此曲线也可以求出泵的最佳操作范围,作为选泵的依据。

简易温度控制系统doc

目录 一、要求 (3) 二、摘要 (4) 三、前言 (5) 四、方案分析 (6) 五、实现 (10) 六、结论 (14) 七、附录 (15)

简易温度控制系统 设计并制作一个简易的单片机温度自动控制系统(见图一)。控制对象为自定。 图一 恒温箱控制系统 设计要求如下 (1)温度设定范围为40℃~90℃,最小区分度为1℃ (2)用十进制数码显示实际温度。 (3)被控对象温度采用发光二极管以光柱形式和数码形式显示。 (4)温度控制的静态误差≤2℃。 扩充功能: 控制温度可以在一定范围内设定,并能实现自动调整,以保持设定的温度基本保持不变(测量温度时只要求在现场任意设置一个检测点)。 可 编程 控制器 显示器 设置键盘 电源 执行器 恒温箱 温度传感器 变送器 220V AC

本次设计的主要目的是实现对温度的控制,其主要思路是通过温度传感器感应物体的温度,通过数码管显示出来,由于本此设计的温度设定范围是在40度到90度之间,因此如果物体的温度不在这个设定范围内,那么就需要通过加热或降温使物体的温度达到这个范围。另外本次设计设定了键盘,通过键盘输入设定的数,然后通过调温使该物体的温度达到设定的数值。本次设计采用单片机原理,共有温度感应模块、显示模块、键盘输入模块、比较模块四大块。通过温度动态显示,可以显示被测物体的温度,而通过键盘扫描可以求出设定的温度值,通过温度传感器可以感应物体的温度。那么,本次设计所能实现的功能就是可以测定物体的温度并能实现自动调整和手动键盘调整。

三、前言 随着社会的发展和科技的进步以及测温仪器在各个领域的应用,智能化是现代温控系统发展的主流方向,特别是今年来,温度控制系统已应用到生活的各个方面,但是温度控制一直是一个未开发的领域,是与人们息息相关的一个问题。针对这种实际情况,设计一个温度控制系统,具有广泛的应用前景和实际意义。 温度是科学技术中最基本的物理量之一。物理、化学、生物等学科都离不开温度,在工业生产等许多领域,温度常常是表征对象和过渡状态的重要物理量。各行各业对温度的要求越来越高,可见温度的测量和控制是非常重要的。 单片机在电子产品中的应用已经越来越广泛,在很多的电子产品中也用到了温度检测和温度控制。随着温度控制器应用越来越广泛,各种试用于不同场和的温度控制器应运而生。

水泵测试标准

4. 15 容积式泵(柱塞泵、活塞泵、活塞隔膜泵)性能试验 4. 1 5. 1试验条件 a) 采用开放式或封闭式试验系统,如图10、图11。 b) 室内试验指在额定转速和吸入条件下测出流量Q、功率N、总效率η随压力p的变化关系。并绘制出Q–p、N–p、η–p、η0–p等工作性能曲线;测定泵的吸入性能,并绘制Q–p S (p S为吸上真空度)性能曲线。 c) 泵试验前应试运转。 d) 泵在额定转速下进行试验。在用交流电机或因设备等原因不能在额定转速下试验时,允许试验转速在额定转速的±3%之内,试验结果应换算为额定转速。 图10 图11

e) 测量用仪器、仪表的系统误差应保证测定量的测量误差不大于下表的规定。 4. 1 5. 2试验方法 a) 根据仪器设备条件分别按图10或图11连接各仪表、装置。 b) 试前先记录所试验的泵、管路、工作液体及环境条件等原始资料,记入表15各栏中(干湿泡温度计误差±0.5℃,气压计误差±26.7 Pa)。 c) 泵试验时,在最大压力区间调节出水压力,测量点不得少于7点。也可以将测量点分得更细,但测点应均布在性能曲线上。 d) 试验时,对于每一排出压力下的流量、转速、功率、吸入压力、排出压力等参数,应同时测量和记录;如用计算机采样时各参数的采样应同步进行。 e) 流量的测定可以采用流量计法、质量法或容积法。采用质量法和容积法用手动操作时,向容器内注入和注完液体的动作要快,两次操作时间不超过0.5 s,向容器内注入液体的时间应在1 min以上,秒表的读数要精确到0.1 s。也可以在计时装置或计数装置与流量计、容器液位测定装置、液流换向装置之间用电器或机械联锁,以保证两者同步。测量的时间t 与水量q分别记入表15的3栏和4栏内。 用质量法测定时,衡器的感量应小于被测质量的0.5%。 用容积法测定时,容器标定的相对极限误差不大于0.5%。 采用流量计法测量时,应保证进入节流装置的液流是稳定流。 用容积法、质量法和数字流量计测量流量时,时间间隔至少20 s。 f) 出水口压力采用压力传感器或压力表测定。 压力指针的示度应在压力表刻度的1/3~2/3范围内。 压力表和泵的测压孔的连接管连接时,应完全排除空气,再读仪表示值。 压力表的指针摆动剧烈时,连接管间可装阻尼阀,压力波动值小于5%时,读其摆动范围2/3处的指示作为测量值p W,记入表15。 g) 吸入口的真空度用真空表或液柱(其刻度不大于1 mm)测定。连接管内允许充气,但不得存水,测得p B,记入表15。 h) 测压孔应靠近泵的进口和出口处,测压孔直径为3~5 mm,孔与管的内壁面垂直,孔周围应平坦,边缘无毛刺。 i) 转速测量用测速仪,测功机转速n1和泵的转速n i,记入表15的1、2栏内。 j) 功率用天平式测功机或转矩转速传感器及转矩转速显示仪测定: ——用转矩转速传感器及转矩转速显示仪时,必须注意传感器的量程、安装精度、零点

项目三 电动燃油泵线路检修

项目三电动燃油泵线路检修 一、实训内容与要求 1.掌握电动汽油泵线路的检测方法(电阻测试、电压测试)及工艺流程与技术规范。2.了解各电动汽油泵的线路连接方式。 3.了解电动汽油泵线路故障对整个电控系统的影响。 二、实训学时 实训共安排2课时,其中辅导教师讲解1课时,学生实训、实验、填写检测报告1课时。《实训报告》作为考评时的主要依据,分数记入个人实训总成绩。 三、实训器材 1.工具:数字万用表、常用工具一套。 2.设备:3VZ—FE丰田佳美发动机一台。 3.教具:3VZ—FE丰田佳美发动机电路图一份,电动汽油泵一个。 四、操作内容及步骤 1.线路检测 (1)起动发动机时,听燃油泵是否有工作声,如没有工作声,说明燃油泵电路有故障。(2)拔下油泵继电器,打开点火开关,将万用表档位调到20V(DC),用两个表笔,一个表笔车身搭铁,另一个表笔测量继电器连接器的4个端子,其中2个端子,应有12V电压,如没有电源电压,在测量保险丝和点火开关,以及从蓄电池到继电器端子1、2之间的线路是否完好。在测量线路3至6端子之间的线路应为导通,在测量线路4至5端子之间的线路为导通,最后在测量7端子与车身搭铁应为导通。 五、注意事项 1.测量第3至6端子时,应拔下蓄电池负极,防止损坏内部电路和元件。 2.在整车上测试电压时,请注意操作流程和相对应的测试线路。原则上只做本次实验相关的测试,其它无关的部位不要测试。 3.在实物台架上,测试端子与电控单元直接相连,不要将任何电压加在发动机实验台的测试端子上,以免损坏电控单元。 六、实训考核表

电喷发动机传感器故障诊断与排除 考生姓名:准考证号:传感器称: 技术标准: 1.发动机能顺利启动,怠速、中速、高速各工况良好; 2. 发动机无故障,代码输出为正常代码。 序号考核内容配分评分标准评分 记录 扣分得分 1 熟悉各传感器的名称、 安装位置及功用(口述) 10 不能回答或漏答,每个传感器 扣2分 3 正确调取故障代码10 调取方法不正确扣5分; 读码有误每处扣1分,最多扣5分;(少读或多读读错) 5 燃油泵电阻检测10 燃油泵电阻检测与标准数值不正确每次扣2分 6 燃油泵线路电压检测40 燃油泵电压检测与标准数值不正确每次扣2分 7 排除故障 5 不能排除扣5分 不能完全排除故障酌情扣分 8 验证排除效果及进行故 障码消除 5 不进行验证及消码扣5分 验证方法不当酌情扣分 11 遵守安全操作规程,正 确使用工量具,操作现 场整洁 10 每项扣1分,扣完为止 12 安全用电,防火,无人 身.设备事故 10 因违规操作发生重大人身和设 备事故,此题按0分计 考核时间:从至共分钟传感器考核时间为15分钟,发动机综合故障排除时间为30分钟,凡每超2分钟扣1分,共计10分。 13 分数总计100 监考人:年月日核分人:年月日

微机控制水泵综合性能测试系统

微机控制水泵综合性能测试系统(水泵测试台)[作者:泰姆电气转贴自:本站原创点击数:1918 更新时间:2009-7-9 文章录入:qingxue628 ] ■设计依据 GB/T 1032-2005 《三相异步电动机试验方法》 GB/T 3214-2007 《水泵流量的测定方法》 GB 3216-2005 《回转动力泵水力性能验收试验1级和2级》 GB/T 12785-2002 《潜水电泵试验方法》 JB/T 8092-2006 《小型潜水电泵》 JB/T 5118-2001 《潜水排污泵》 ■测试方法 测试系统对流量信号、压力信号、温度、频率、转速直流电阻、电参数等信号采用一套智能数显仪表集中显示所有的测试参数,方便直观。同时,通过RS485系统总线技术,应用ModBus和Profi bus通讯协议由微机自动测试软件实时采集各种试验数据,并对试验数据进行计算和绘图。根据各种

试验类型,可以进行电机性能试验和水泵性能试验,对试验结果进行打印、绘图,以方便技术存档和对试验结果进行分析。 微机自动测试软件适用微机操作系统Windows98、Windows me、Windows XP等各种版本。通过通讯软件,计算机和各种智能仪表能够进行双向通讯,可以很方便地更改仪表参数等各种数据,有友好的人机界面、系统整体性能高,可扩展性强,能够大大提高企业的质量控制水平,是企业严格控制产品质量、不断改进产品性能的不可缺少的重要手段。 ■系统构成 测试系统由系统配电柜、降压起动柜(软启柜)、测试转换保护柜等强电部分和各种信号传感器、信号转换装置、智能显示仪表等弱电部分,以及净化电源、信号传感器供电部分、微机、打印机等执行部分组成。各部分之间在硬件上互相连接,在逻辑上彼此控制。从设计上符合人们的操作习惯,易用好操作。 系统集成了强电、弱电、传感器、仪器仪表、软件、水泵测试等各种技术,系统稳定性强。 系统构成见系统框图。 ■测试系统的测试精度 达到国家标准GB 3216-2005 《回转动力泵水力性能验收试验1级和2级》中1级精度要求和国家标准GB/T 12785-2002 《潜水电泵试验方法》中1级精度要求。 ■试验项目 1潜水(潜污)水电泵型式试验: a.三相潜水电机空载试验; b.三相潜水电机负载试验; c.三相潜水电机温升试验; d.三相潜水电机堵转试验; e.三相潜水电泵泵性能试验 f. 耐电压、闸间冲击试验 2小型潜水电泵试验:

离心泵实验

一、 实验题目 离心泵性能实验 二、 实验摘要 本实验使用转速为2900 r/min ,WB70/055型号的离心泵实验装置,以水为工作流体,通过调节阀门改变流量,测得不同流量下离心泵的性能参数,并画出特性曲线同时标定孔板流量计的孔流系数C 0,测定管路的特性曲线。实验中直接测量量有q v 、P 出、P 入、电机输入功率N 电、孔板压差ΔP 、水温T 、频率f ,根据上述测量量来计算泵的扬程He 、泵的有效功率Ne 、轴功率N 轴及效率η,从而绘制泵的特性曲线图;又由P 、q v 求出孔流系数C 0、Re ,从而绘制C 0-Re 曲线图,求出孔板孔流系数C 0;最后绘制管路特性曲线图。 关键词: 特性曲线图、孔流系数、He 、N 轴、η、q v 三、 实验目的及内容 1、解离心泵的构造,掌握其操作和调节方法。 2、定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。 3、熟悉孔板流量计的构造、性能及安装方法。 4、测定孔板流量计的孔流系数。 5、测定管路特性曲线。 四、实验原理 1、离心泵特性曲线测定 离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到,如下图的曲线。由于流体流经泵时,不可避免地会遇到各种阻力,产生能量损失,诸如摩擦损失、环流损失等,因此,实际压头比理论压头笑,且难以通过计算求得,因此通常采用实验方法,直接测定其参数间的关系,并将测出的He-Q 、N-Q 和η-Q 三条曲线称为离心泵的特性曲线。另外,曲线也可以求出泵的最佳操作范围,作为选泵的依据。 (1)泵的扬程He 式中: ——泵出口处的压力,mH 2O ; ——泵出口处的压力, mH 2O ; ——出口压力表与入口压力表的垂直距离, =0.2m 。 (2)泵的有效功率和效率 由于泵在运转过程中存在种种能量损失,使泵的实际压头和流量较理论值为低,而输入泵的功率又比理论值高,所以泵的总效率为 轴 N Ne = η 102 e ρ QHe N = 式中 Ne ——泵的有效效率,kW ;

水泵性能测试系统设计

摘要 本文对水泵性能参数测试方法进行了分析和研究,提出了基于虚拟仪器技术的水泵性能参数测试系统的解决方案。在研究过程中,分析讨论了数据采集卡与虚拟仪器软件的接口方法;分析了光电传感器法、感应线圈法和霍尔传感器法三种转速测量方法在水泵转速测量中的优缺点;提出了在LabVIEW 虚拟仪器软件平台上,采用模块化设计方法开发应用程序的方法;分析讨论了对采集数据的软件滤波处理及应用最小二乘法对水泵参数数据的拟合。 试验结果表明这种基于虚拟仪器技术的水泵测试系统,可以适用于科研院校和水泵厂的使用要求,具有一定的推广应用价值。 关键词:水泵性能、虚拟仪器技术、转速测量、数据处理

ABSTRACT The paper does some research and analysis on the measurement methods of the Pump performance parameters. During the researching, the methods of interface between data acquisition card and visual instrument software are discussed; analyzing the difference among the methods of rotate measurement of asynchronous motor using photo electricity sensor, induce and hall sensor; using the style in the programming of system application software; analyzing the method of the median filter and using the conic approach technique in dealing with the measuring data; Experiment results approve that the pump performance measurement system based on visual instrument technology can be used in the institutes and small-scale Pump manufactory. Key words: pump testing research, visual instrument technology, rotational velocity measurement, data processing.

实训项目05电动燃油泵的检测

实训项目05 电动燃油泵的检测 燃油喷射系统均采用电动燃油泵,其功用是为喷油器提供油压高于进气歧管压力250~300kPa的燃油。因为燃油是从油箱内泵出,经过压缩或动量转换将油压提高后,经输油管送到喷油器,所以油泵的最高输出油压需要450~600kPa,其供油量比发动机最大耗油量大得多,多余的汽油将从回油管返回油箱。设计燃油泵供油量大于发动机耗油量的目的有两个:一是防止发动机供油不足;二是燃油流动量增大可以散发供油系统的热量,从而防止油路产生气阻。 一、实训目的和要求 1、了解电动燃油泵的结构及工作原理; 2、掌握电动燃油泵的检测方法和检测项目。 3、掌握燃油压力表的正确使用和燃油系统油压的测量。 二、实训课时 实训共安排2课时。 三、器材工具 1、工具:数字万用表、K81故障诊断仪、组合工具一套; 2、设备:桑塔纳AJR发动机故障实验台; 3、教具:STN—AJR发动机教学挂图一套,桑塔纳2000Gsi型轿车燃油泵5只。 四、成绩评定 成绩评定的等级为优、良、中、及格和不及格。 四、实训原理 1、电动燃油泵的结构 电动燃油泵的结构如图5-1所示,主要由永磁式直流电动机、油泵、限压阀、单向阀和泵壳等组成。电动机由永久磁铁、电枢、换向器和电刷等组成。油泵由泵转子和泵体组成。泵转子固定在电动机轴上,随电动机转动而转动。 当点火开关接通时,直流电动机电路接通,电枢受电磁力的作用而开始转动,泵转子便随电动机一同转动,将燃油从油箱,经输油管和进油口泵入燃油泵。当油泵内油压超过单向阀处弹簧压力时,燃油便从出油口经输油管泵入供油总管,再分配给各个喷油器。 当油泵停止工作时,在油泵出口单向阀处弹簧压力作用下,单向阀将阻止汽油回流,使供油系统中保存的燃油具有一定压力,以便于发动机再次启动。 当油泵中的燃油压力超过规定值(一般为320kPa)时,油压克服泵体上限压阀弹簧的压力将限压阀顶开,部分汽油返回到进油口一侧,使油压不致过高而损害油泵。 点火开关一旦接通,电动燃油泵就会工作1秒钟。此时如果发动机转速高于30r/min,电动燃油泵才连续运转。如果发动机转速低于30r/min,那么即使点火开关接通,电动燃油泵也不会转动。 图5-1 电动燃油泵的结构 1-进油口 2-限压阀 3-电枢 4-泵壳 5-接线插头

燃油泵综合性能测试台设备操作规范模板

1.设备基本原理 设备通过对温度、压力、流量、电压的输出控制,实现燃油泵在不同的实验条件下的性能测试及耐 久试验。 2?试验前准备工作 2.1在试验进行之前,需准备好以下物品(或文件) :燃油泵对应电源接插件、燃油泵安装夹具、燃油 泵试验计划大纲(试验申请单)。 3.设备开机及设置 3.1到真油试验室-温度控制室,找到设备供电的主电柜 3.2进入真油试验室,打开设备电源开关并按下启动按键( 设备电源开 关,当前状态 为 开启 启动按钮,长 按至右侧黄 灯亮 图3开机按键区域 设备操作规范 Equipme nt Operati on Specificati on Equipme nt Name Docume nt No. 油泵综合性能试验 台 In tegrated Fuel Pump Test Bench 设备编号 Equipme nt No. 页码 Page 第1页共5页 Page: 1 Of 5 1,确认相应控制开关处于开启状态(如图 如图3所示); 1所示),接着确认一侧的电源转换箱处于开启状态( 图1设备供电柜 如图2所示); 图2电源转换箱

3.3设备上电后,开启电脑主机电源(如图4所示),进入操作界面选择对应设备操作程序。(如图4所示) 图4选择设备操作程序 3.4进入操作程序,选择第四项选项,键入密码(jtr )如图5所示。 图5选择操作程序

设备操作规范 Equipme nt Operati on Specificati on 油泵综合性能试验 台 In tegrated Fuel Pump Test Bench 设备编号 Equipme nt No. 页码 Page 第3页共5页 Page: 3 Of 5 3.5进入主程序界面,按需求键入试验信息,其中通道 1-5为测试通道,通道 6为设备自用通道。 3.5.1测试人员:按照测试人员姓的拼音首字母加三位数字代码组成,每个测试员均有一个固定的 代码,有重复的现象则按照入职先后依次增加数字代码; (如张三:Z001,赵四:Z002。) 3.5.2 测试产品:填写对应试验申请单的单号。 3.6 点击程序面板上的测试参数设置进入 如图4所示的界面设置相对应的参数。 3.6.1压力交变参数设置:最大压力、最小压力、测试频率、总循环次数均需从试验大纲或者试验 申请单获取。(如JY017 DVP 试验大纲要求:低压:0,高压:700KPa,每循环时间:0.2s 总循环次数:100,000b 则设置最大压力为 700KPa ,最小压力为 0KPa ,测试频率为循环时间的倒数即 1/0.2=5,总循环次数为 100000.) 3.6.2爆破参数设置:最大压力、压力增量、增量延时均需从试验大纲或试验申请单获取。 3.7完成上述操作后,确认做左侧选择为自动测试及上方各监控指示灯为 部分操作。 通道1-5 图3中所示后,进行第四 读取数据 依次为: 压力 电压 电流 转速 流量 kPa V A r/min L/h 试验参数 设置区域: 电压V 压力kPa 系统温度 循环开始 按键 系统温 度显示 框

电动燃油泵的构造及检修

电动燃油泵的构造及检修 1、作用: 给电控燃油喷射系统提供具有一定压力的燃油。电动燃油泵的电动机和燃油泵制成一体,密封在同一壳体内。 2、类型: (1)按安装位置不同分为内置式和外置式。 内置式:安装在油箱中,具有噪声小、不易产生气阻、不易泄漏、管路安装较简单等优点。 外置式:串接在油箱外部的输油管路中,优点是容易布置、安装自由度大,但噪声大,易产生气阻。 (2)按结构不同分为:涡轮式、滚柱式、转子式和侧槽式。 3、电动燃油泵的结构 (1)涡轮式电动燃油泵 1) 结构 主要由燃油泵电动机、涡轮泵、出油阀(单向阀)、卸压阀(安全阀)等组成,如下图所示。 图2 涡轮式电动燃油泵 叶轮 涡轮式电动燃油泵的结构及工作原理 组成:燃油泵电动机、 涡轮泵、出油阀(单向 阀)、卸压阀等。 泵壳体 出油口进油口 叶片 滤清器 叶轮前轴承电动机定子电动机转子单向出油阀 卸压阀出油口 2) 工作原理 油泵电动机通电时,燃油泵电动机驱动涡轮泵叶轮旋转,由于离心力的作用,使叶轮周围小槽内的叶片贴紧泵壳,将燃油从进油室带往出油室。由于进油室的燃油不断被带走,所以形成一定的真空度,将燃油从进油口吸入;而出油室燃油不断增多,燃油压力升高,当达到一定值时,则顶开出油阀经出油口输出。出油阀还可在油泵不工作时阻止燃油流回油箱,保持油路中有一定的残余压力,便于下次起动。 3) 优点 泵油量大、泵油压力较高、供油压力稳定、运转噪声小、使用寿命长等优点。 (2)滚柱式电动燃油泵 1)结构

主要由燃油泵电动机、滚柱式燃油泵、出油阀、安全阀等组成。 2)工作原理 当转子旋转时,位于转子槽内的滚柱在离心力的作用下,紧压在泵体内表面上,对周围起密封作用,在相邻两个滚柱之间形成工作腔。在燃油泵运转过程中,工作腔转过出油口后,其容积不断增大,形成一定的真空度 , 当转到与进油口连通时,将燃油吸入;而吸满燃油的工作腔转过进油口后,容积不断减小,使燃油压力提高,受压燃油流过电动机,从出油口输出。 结构和工作原理如下图所示。 图3 滚柱式电动燃油泵结构及工作原理 4.燃油泵的就车检查 (1)用专用导线将诊断座上的燃油泵测试端子跨接到 12V 电源上。 (2)将点火开关转至“ ON ”位置,但不要起动发动机。 (3)旋开油箱盖能听到燃油泵工作的声音,或用手捏进油软管应感觉有压力。 (4)若听不到燃油泵的工作声音或进油管无压力,应检修或更换燃油泵。 (5)若有燃油泵不工作故障,且上述检查正常,应检查燃油泵电路导线、继电器、易熔线和熔丝有无断路。 5.电动燃油泵的检测 拔下电动燃油泵的导线连接器,从车上拆下电动燃油泵进行检查。 1)电动燃油泵电阻的检测 用万用表Ω档测量电动燃油泵上两个接线端子间的电阻,即为电动燃油泵直流电动机线圈的电阻,其阻值应为 2 ~ 3 Ω( 20 ℃时)。如电阻值不符,则须更换电动燃油泵。 2)电动燃油泵工作状态的检查 按下图将电动燃油泵与蓄电池相接(正负极不能接错),并使电动燃油泵尽量远离蓄电池,每次接通不超过 10s (时间太长会烧坏电动燃油泵电动机的线圈)。如电动燃油泵不转动,则应更换电动燃油泵。 图4 电动燃油泵工作状态的检查 6.燃油泵的拆装与检测 拆装燃油泵时注意:应释放燃油系统压力,并关闭用电设备。拆下燃油泵后,测量燃油泵两

化工原理实验报告离心泵的性能试验北京化工大学

北京化工大学 化工原理实验报告 实验名称:离心泵性能实验 班级:化工13 姓名: 学号: 20130 序号: 同组人: 实验二:离心泵性能实验 摘要:本实验以水为介质,使用离心泵性能实验装置,测定了不同流速下,离心泵的性能、孔板流量计的孔流系数以及管路的性能曲线。实验验证了离心泵的扬程He随着流量的增大而减小,且呈2次方的关系;有效效率有一最大值,实际操作生产中可根据该值选取合适的工作范围;泵的轴功率随流量的增大而增大; 当Re大于某值时,C 0为一定值,使用该孔板流量计时,应使其在C 为定值的条 件下。 关键词:性能参数(N H Q, , , )离心泵特性曲线管路特性曲线C0一.目的及任务

1.了解离心泵的构造,掌握其操作和调节方法。 2.测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。 3.熟悉孔板流量计的构造,性能和安装方法。 4.测定孔板流量计的孔流系数。 5.测定管路特性曲线。 二. 实验原理 1.离心泵特性曲线测定 离心泵的性能参数取决于泵的内部结构,叶轮形式及转速。其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到,如图1中的曲线。由于流体流经泵时,不可避免的会遇到种种阻力,产生能量损失,诸如摩擦损失,环流损失等,因此通常采用实验方法,直接测定参数间的关系,并将测出的He-Q,N-Q 和η-Q 三条曲线称为离心泵的特性曲线。另外,根据此曲线也可以求出泵的最佳操作范围,作为泵的选择依据。 图1.离心泵的理论压头与实际压头 (1)泵的扬程He He=0真空表压力表H H H ++ 式中 H 压力表——泵出口处的压力,mH 2o ; H 真空表——泵入口处的真空度,mH 2o ; H 0——压力表和真空表测压口之间的垂直距离,H 0=。 (2)泵的有效功率和效率 由于泵在运转过程中存在种种能量损失,使泵的实际压头和流量较理论值为低,而输入泵的功率又比理论值为高,所以泵的总效率为 轴 ηN Ne = 102 QHe Ne ρ = 式中 Ne ——泵的有效功率,kW ;

离心泵的性能测试实验报告

实验名称:离心泵的性能测试 班级: 姓名: 学号: 一、 实验目的 1、 熟悉离心泵的操作,了解离心泵的结构和特性。 2、 学会离心泵特性曲线的测定方法。 3、了解单级离心泵在一定转速下的扬程、轴功率、效率和流量之间的关系。 二、 实验原理 离心泵的特性主要是指泵的流量、扬程、功率和效率,在一定转速下,离心泵的流量、扬程、功率和效率均随流量的大小改变。即扬程和流量的特性曲线H=f (Q );功率消耗和流量的特性曲线N 轴=f (Q e );及效率和流量的特性曲线?=f(Qe);这三条曲线为离心泵的特性曲线。他们与离心泵的设计、加工情况有关,必须由实验测定。 三条特性曲线中的Qe 和N 轴由实验测定。He 和?由以下各式计算,由伯努利方程可知: He=H 压强表+H 真空表+h 0+g u u 22 1 20- 式中: He ——泵的扬程(m ——液柱) H 压强表——压强表测得的表压(m ——液柱) H 真空表——真空表测得的真空度(m ——液柱) h 0——压强表和真空表中心的垂直距离(m ) u 0——泵的出口管内流体的速度(m/s ) u1——泵的进口管内流体的速度(m/s ) g ——重力加速度(m/s 2 ) 流体流过泵之后,实际得到的有效功率:Ne= 102ρ HeQe ;离心泵的效率:轴 N N e =η。在实验中,泵的周效率由所测得的电机的输入功率N 入计算:N 轴=η传η电N 入 式中: Ne ——离心泵的有效功率(kw ) Qe ——离心泵的输液量(m3/s) ρ——被输进液体的密度(kg/m3) N 入——电机的输入功率(kw ) N 轴——离心泵的轴效率(kw ) η——离心泵的效率 η传——传动效率,联轴器直接传动时取1.00 η电——电机效率,一般取0.90 三、 实验装置和流程

泵性能试验报告

泵性能实验报告 实验人员: 曾骥敏03009427 王玺03009423 赵佳骏03009430 东南大学能源与环境学院 2012年6月

目录 标题页码一实验目的 2 二实验主要内容 2 三实验过程与步骤 2 四实验数据记录与处理 3 五实验思考题 7

一、实验目的 (1)帮助学生建立对泵及其基础理论知识的感性认识; (2)熟悉离心泵的运行操作; (3)掌握泵主要性能参数的测量,泵性能参数的修正,性能曲线的绘制等;(4)为将来使用泵、进行泵性能研究打下良好的实践基础。 二、实验主要内容 (1)泵的一般性能实验-包括在电机工频(50H Z)状态下,泵的流量、扬程、功率、效率、转速的测量、计算与修正,绘制额定转速下的扬程性能曲线、功率性能曲线、效率性能曲线。 (2)泵变速性能实验-通过调节各台泵的变频器,控制泵在不同转速下运行,测试各台泵在不同转速下的性能曲线,绘制泵的通用性能曲线,验证相似定律特例-比例定律的准确性。 (3)管路特性实验-测试各泵调节阀门在一定开度下的总管路特性,绘制相应的管路特性曲线。 (4)泵并联性能实验-测试#1、2泵并联运行时的性能,绘制泵并联运行性能曲线。 三、实验过程与步骤 以下过程在征得指导教师同意后由实验学生进行,如发现问题实验学生应首先及时通报指导教师。 (1)听实验指导教师讲解,熟悉实验现场、设备、表计(重点是实验泵、变频器调节器、调节阀门、参数显示表计)等,记录所实验泵及其电机的铭牌参数。(2)将#3、#4泵的变频器调节旋钮缓慢、顺时针旋转(不可快速旋转到底),使电动机电源频率逐渐增大到50Hz,此时两台泵将以最大出力泵送水流,使泵出口管路、回水管路等快速排气、充水。一段时间后,当听到水箱有较大水声时,表明水流开始大量回至水箱,再稳定2分钟左右,开始进行工况1测试,各工况参数记录在“实验原始数据记录表格”中。 (3)工况1结束后,将工况1的流量分为5等份,并在“实验原始数据记录表格” 中登记后续实验工况(工况2~6)的预调流量。 (4)逐渐关小泵出口阀门k3、k4至流量达到工况2的预调流量左右(与预调流量的偏差控制在1m3/h以下),稳定1~2分钟后,进行工况2参数记录。(5)如此顺序地进行工况3、工况4、工况5、工况6测试。在流量调节过程中应注意:由于泵出口调节阀门k3、k4的线性度较差,流量越小的工况(如工况5),其流量越难以调整到位。工况6是零流量工况,不应长时间在此状态下运行,工况6结束后,逐渐开启k3、k4阀门至全开。 (6)将变频器调整至40Hz,顺序进行工况7~工况12,调节与测试过程同上。(7)将变频器调整至30Hz,顺序进行工况13~工况18,调节与测试过程同上。(8)工况18结束后,则将变频器调整至0Hz,本组次的实验结束,实验数据请指导教师审核。 (9)当天全部实验结束后,最后一组学生应协作指导教师整理实验现场与设备,关断所有电源、水箱放水、关好实验室门窗等。

水泵试验

水泵试验

超声波流量计对直管段的安装方式 温度计安装 温度计的安装应主要考虑如下三点:感温元件应有足够的长度,以保证被测介质与测温元件之间有充分的接触面积;②对流态造成的影响尽可能地小;③在正常的测量过程中不会因气流冲刷等原因引起感温元件的折断或其它机械损伤。 声学噪声干扰 超声流量计是一种以声学原理为基础的测量仪表,因此现有的超声流量计对于噪声,特别是对来源于被测介质内部由于高速度、大压差等减压设备造成的超高频噪声,尤为敏感,从而影响到该种流量计的正常运行,为了确保超声流量计的正常工作,最为有效的方法就是远离噪声源或咨询制造厂家。 整流器的作用 一般来说,安装整流器可以在一定程度上改善超声流量计上下游的测量条件,因此也有助于提高测量结果的准确性,尤其是对单声道超声流量计而言,其效果可能会更为明显。但是,如果整流器造型不当,加工质量不高,或者安装及使用维护不妥,又有可能增大测量偏差而造成事与愿违的后果。因此,在超声流量计应用现场的设计及安装过程中,必须具体问题具体分析。也就是说,应当针对所选流量计的种类、上游流态的畸变形式、严重程度以及对流量测量准确性要求的高低来决定是否安装那种形式的整流器。 超声波流量计的安装方式 从理论上讲,气体超声流量计可以采用水平、垂直和倾斜等任意安装方式,并且可以配合双法兰液位变送器沿表体管道边轴线作任意旋转。但是,在实际的安装过程中应当主要考虑到以下3个方面的因素:①流量计(特别是其中的超声换能器)是否便于检测和维修;②超声换能器是否易受气流中杂质和积液的影响;③时至目前,任意安装方式是否可实现严格意义上的完全等精度测量尚未得到充分的实验验证。

水泵性能测试实验装置设计

摘要 水泵是人类把自然能转变为有用功的发明之一,水泵种类繁多、使用广泛,属于通用类机械。然而由于液体在泵内流动情况十分复杂,运行工况因时因地都有变化要确保水泵在较高的效率范围内安全经济的运行,就必须了解水泵基本原理、性能变化规律,及时检测水泵性能参数,掌握水泵的实际性能曲线,更好地为生产实践服务,以达到节能的目的。 目前获得水泵性能参数及这些参数之间的相互关系,主要依赖于性能试验。为了测定离心泵的各项性能参数,从而绘制离心泵性能曲线。我设计了离心泵性能测试开式试验台,通过此次试验可以熟悉离心泵试验装置的布置以及各种仪表仪器的原理及使用方法。通过该试验台对离心泵流量、扬程、轴功率、效率等的测定可以绘制出离心泵性能曲线,进而达到对离心泵性能的深入了解。 本文研究的系统符合国家标准GB/T3216《离心泵、混流泵、轴流泵和旋涡泵试验方法》。 关键词:水泵性能参数性能测试实验装置

Abstract Human nature is the pump can turn into one of invention,pumps,phyletic,widely use belongs to. However,due to liquid flow within the pump is extremely complex,operating conditions are changing to ensure also describes in high efficiency water within the scope of the safe and economic operation,we must understand the basic principle,the performance of water pump,timely detection performance parameters of the pump,master of actual performance curve,better service for the production practice,in order to achieve the purpose of saving energy. Now get pump performance parameters and the relationship between these parameters,mainly rely on performance tests. To determine the performance parameters of the centrifugal pump,thus rendering centrifugal pump performance curve. I designed the centrifugal pump performance testing,through the test bench type can be familiar with centrifugal pump test equipment layout and various instrument principle and method of use. Through the test of centrifugal pump capacity and head,the shaft power,efficiency of determination can draw the centrifugal pump performance curves of centrifugal pump,and the deep understanding of the performance. This research system complies with the state standard of GB/T3216 the centrifugal pump,mixed flow pump,axial vortex pumps and test methods. Keywords:pumps performanceparameters performancetesting test equipment

主排水泵性能测试

贵州首黔资源开发有限公司 盘县杨山煤矿 主排水泵联合试运转 性能测试、 及安全技术措施 施工地点:主排水泵房 措施名称:主排水泵联合试运转性能测试及安全技术措施施工单位:机电科 负责人: 编制人: 编制日期:

报告会审意见 机电矿长安全矿长 生产矿长总工程师 矿长 会审日期:年月日

施工人员签到表 报告时间年月日 施工地点 记录人员 参加施工人员 签名工种签名工种

主排水泵性能测试、联合试运转安全技术措施 一、杨山煤矿水泵房概况 主排水泵设置在+1370标高位置,也是杨山煤矿井下最低标高。水泵房设置有主副水仓,设置安装3台离心式水泵,设置两趟6寸主排水管路到1445水平。具体参数如下: 1、主水仓容积704m3,副水仓容积576m3,总容积1280m3。 2、安装3台离心式水泵MD85-45×4,流量85m3/h,扬程180m,功率75KW/660V,汽蚀余量4.2m,效率72%。 3、应急潜水泵QY146-125-75,流量146m3/h,扬程125m,功率75KW/660V。 4、主排水泵房垂高75m,+1370——+1445 5、安装两趟主排水管路:DN150×4.5,长180m×2,配置闸阀及逆止阀DN150×25kg。 6、矿井安专涌水情况:最大涌水量99m3/h,正常涌水量66m3/h. 7、实际测试涌水情况:最大涌水量24m3/h,正常涌水量10m3/h. 二、施工原因和任务: 按照?煤矿安全规程?第281条规定,在每年雨季来临以前,必须全面检修一次,并对全部工作水泵和备用水泵进行性能测试和联合排水试验,特制定此措施。 二、施工时间:计划定在3月24日提前一天申请

换热器温度控制系统

1.E-0101B混合加热器设计 为确保混合加热器(E-0101B)中MN(亚硝酸甲酯),CO(一氧化碳)的出口温度为408K,选用0.68Mpa,408K的加热蒸汽加热入口温度为294K的工艺介质。为保证生成物的产量,质量,及最终生成物的转化率,且工艺介质较稳定,蒸汽源压力较小,变化不大,因此针对此实际情况,最后确定设计一个换热器的反馈控制方案。 1.1换热器概述 换热器工作状态如何,可用几项工作指标加以衡量。常用的工作指标主要有漏损率、换热效率和温度效率。它们比较全面的说明了换热器的特点和工作状态,在生产和科学试验中了解这些指标,对于换热器的管理和改进都是必不可少的。 换热器是将热流体的部分热量传递给冷流体的设备,又称热交换器。换热器在化工、石油、动力、食品及其它许多工业生产中占有重要地位,其在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用广泛。换热器是一种在不同温度的两种或两种以上流体间实现物料之间热量传递的节能设备,是使热量由温度较高的流体传递给温度较低的流体,使流体温度达到流程规定的指标,以满足工艺条件的需要,同时也是提高能源利用率的主要设备之一。 1.2换热器的分类 适用于不同介质、不同工况、不同温度、不同压力的换热器,结构型式也不同,换热器的具体分类如下:

一按传热原理分类:间壁式换热器,蓄热式换热器,流体连接间接式换热器,直接接触式换热器,复式换热器 二按用途分类:加热器,预热器,过热器,蒸发器 三、按结构分类:浮头式换热器,固定管板式换热器,U形管板换热器,板式换热器等 此设计要求是将进料温度都为297.99K的MN(亚硝酸甲酯)和CO(一氧化碳)加热到出口温度为473K,所以我们经过调查研究,综合比较之后选择了管壳式(又称列管式) 换热器。管壳式换热器主要有壳体、管束、管板和封头等部分组成,壳体多呈圆形,内部装有平行管束或者螺旋管,管束两端固定于管板上。在管壳换热器内进行换热的两种流体,一种在管内流动,其行程称为管程;一种在管外流动,其行程称为壳程。管束的壁面即为传热面。 1.3换热器的用途 换热器又叫做热交换器(heat exchanger),是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。进行换热的目的主要有下列四种:?.使工艺介质达到规定的温度,以使化学反应或其他工艺过程很好的进行;?.生产过程中加入吸收的热量或除去放出的热量,使工艺过程能在规定的温度范围内进行;?.某些工艺过程需要改变无聊的相态;④.回收热量。 由于换热目的的不同,其被控变量也不完全一样。在大多数情况下,被控变量是温度,为了使被加热的工艺介质达到规定的温度,常常取出温度问被控温度、调节加热蒸汽量使工艺介质出口温度恒定。对于不同的工艺要求,被控变量也可以是流量、压力、液位等。

相关文档
最新文档