数据库,高并发,死锁,解决方案

数据库,高并发,死锁,解决方案
数据库,高并发,死锁,解决方案

数据库,高并发,死锁,解决方案

篇一:读《MySQL性能调优与架构设计》笔记之MySQL 数据库锁定机制

1. MySQL锁定机制简介

MySQL 各存储引擎使用了三种类型(级别)的锁定机制:行级锁定,页级锁定和表级锁定。下面我们先分析一下MySQL 这三种锁定的特点和各自的优劣所在。

? 行级锁定(row-level)

行级锁定最大的特点就是锁定对象的颗粒度很小,也是目前各大数据库管理软件所实现的锁定颗粒度最小的。由于锁定颗粒度很小,所以发生锁定资源争用的概率也最小,能够给予应用程序尽可能大的并发处理能力而提高一些需要高并发应用系统的整体性能。

虽然能够在并发处理能力上面有较大的优势,但是行级锁定也因此带来了不少弊端。由于锁定资源的颗粒度很小,所以每次获取锁和释放锁需要做的事情也更多,带来的消耗自然也就更大了。此外,行级锁定也最容易发生死锁。 ? 表级锁定(table-level)

和行级锁定相反,表级别的锁定是MySQL 各存储引擎中最大颗粒度的锁定机制。该锁定机制最大的特点是实现逻辑非常简单,带来的系统负面影响最小。所以获取锁和释放锁的速度很快。由于表级锁一次会将整个表锁定,所以可以

很好的避免困扰我们的死锁问题。

当然,锁定颗粒度大所带来最大的负面影响就是出现锁定资源争用的概率也会最高,致使并大度大打折扣。

? 页级锁定(page-level)

页级锁定是MySQL 中比较独特的一种锁定级别,在其他数据库管理软件中

也并不是太常见。页级锁定的特点是锁定颗粒度介于行级锁定与表级锁之间,所以获取锁定所需要的资源开销,以及所能提供的并发处理能力也同样是介于上面二者之间。另外,页级锁定和行级锁定一样,会发生死锁。

在数据库实现资源锁定的过程中,随着锁定资源颗粒度的减小,锁定相同数据量的数据所需要消耗的内存数量是越来越多的,实现算法也会越来越复杂。不过,随着锁定资源颗粒度的减小,应用程序的访问请求遇到锁等待的可能性也会随之降低,系统整体并发度也随之提升。

在MySQL 数据库中,使用表级锁定的主要是MyISAM,Memory,CSV 等一些非事务性存储引擎,而使用行级锁定的主要是Innodb 存储引擎和NDB Cluster 存储引擎,页级锁定主要是BerkeleyDB存储引擎的锁定方式。

2. 合理利用锁机制优化MySQL

MyISAM表锁优化建议

对于MyISAM 存储引擎,虽然使用表级锁定在锁定实现

数据库死锁问题总结

数据库死锁问题总结 1、死锁(Deadlock) 所谓死锁:是指两个或两个以上的进程在执行过程中,因争夺资源而造 成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。此时称系 统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程称为死锁进程。由于资源占用是互斥的,当某个进程提出申请资源后,使得有关进程在无外力 协助下,永远分配不到必需的资源而无法继续运行,这就产生了一种特殊现象 死锁。一种情形,此时执行程序中两个或多个线程发生永久堵塞(等待),每 个线程都在等待被其他线程占用并堵塞了的资源。例如,如果线程A锁住了记 录1并等待记录2,而线程B锁住了记录2并等待记录1,这样两个线程就发 生了死锁现象。计算机系统中,如果系统的资源分配策略不当,更常见的可能是 程序员写的程序有错误等,则会导致进程因竞争资源不当而产生死锁的现象。 锁有多种实现方式,比如意向锁,共享-排他锁,锁表,树形协议,时间戳协 议等等。锁还有多种粒度,比如可以在表上加锁,也可以在记录上加锁。(回滚 一个,让另一个进程顺利进行) 产生死锁的原因主要是: (1)系统资源不足。 (2)进程运行推进的顺序不合适。 (3)资源分配不当等。 如果系统资源充足,进程的资源请求都能够得到满足,死锁出现的可能 性就很低,否则就会因争夺有限的资源而陷入死锁。其次,进程运行推进顺序 与速度不同,也可能产生死锁。 产生死锁的四个必要条件: (1)互斥条件:一个资源每次只能被一个进程使用。 (2)请求与保持条件:一个进程因请求资源而阻塞时,对已获得的资源保持不放。 破解:静态分配(分配全部资源) (3)不剥夺条件:进程已获得的资源,在末使用完之前,不能强行剥夺。 破解:可剥夺 (4)循环等待条件:若干进程之间形成一种头尾相接的循环等待资源关系。 破解:有序分配 这四个条件是死锁的必要条件,只要系统发生死锁,这些条件必然成立,而只要上述条件之一不满足,就不会发生死锁。 死锁的预防和解除:

死锁问题解决方法

Sqlcode -244 死锁问题解决 版本说明 事件日期作者说明 创建09年4月16日Alan 创建文档 一、分析产生死锁的原因 这个问题通常是因为锁表产生的。要么是多个用户同时访问数据库导致该问题,要么是因为某个进程死了以后资源未释放导致的。 如果是前一种情况,可以考虑将数据库表的锁级别改为行锁,来减少撞锁的机会;或在应用程序中,用set lock mode wait 3这样的语句,在撞锁后等待若干秒重试。 如果是后一种情况,可以在数据库端用onstat -g ses/onstat -g sql/onstat -k等命令找出锁表的进程,用onmode -z命令结束进程;如果不行,就需要重新启动数据库来释放资源。 二、方法一 onmode -u 将数据库服务器强行进入单用户模式,来释放被锁的表。注意:生产环境不适合。 三、方法二 1、onstat -k |grep HDR+X 说明:HDR+X为排他锁,HDR 头,X 互斥。返回信息里面的owner项是正持有锁的线程的共享内存地址。 2、onstat -u |grep c60a363c 说明:c60a363c为1中查到的owner内容。sessid是会话标识符编号。 3、onstat -g ses 20287 说明:20287为2中查到的sessid内容。Pid为与此会话的前端关联的进程标识符。 4、onstat -g sql 20287

说明:20287为2中查到的sessid内容。通过上面的命令可以查看执行的sql语句。 5、ps -ef |grep 409918 说明:409918为4中查到的pid内容。由此,我们可以得到锁表的进程。可以根据锁表进程的重要程度采取相应的处理方法。对于重要且该进程可以自动重联数据库的进程,可以用onmode -z sessid的方法杀掉锁表session。否则也可以直接杀掉锁表的进程 kill -9 pid。 四、避免锁表频繁发生的方法 4.1将页锁改为行锁 1、执行下面sql语句可以查询当前库中所有为页锁的表名: select tabname from systables where locklevel='P' and tabid > 99 2、执行下面语句将页锁改为行锁 alter table tabname lock mode(row) 4.2统计更新 UPDATE STATISTICS; 4.3修改数据库配置onconfig OPTCOMPIND参数帮助优化程序为应用选择合适的访问方法。 ?如果OPTCOMPIND等于0,优化程序给予现存索引优先权,即使在表扫描比较快时。 ?如果OPTCOMPIND设置为1,给定查询的隔离级设置为Repeatable Read时,优化程序才使用索引。 ?如果OPTCOMPIND等于2,优化程序选择基于开销选择查询方式。,即使表扫描可以临时锁定整个表。 *建议设置:OPTCOMPIND 0 # To hint the optimizer 五、起停informix数据库 停掉informix数据库 onmode -ky 启动informix数据库 oninit 注意千万别加-i参数,这样会初始化表空间,造成数据完全丢失且无法挽回。

实验三死锁的检测和解除

南华大学计算机科学与技术学院 实验报告 课程名称操作系统I 姓名 学号 专业班级 任课教师 日期

一、实验内容 死锁的检测与解除 二、实验目的 掌握操作系统的进程管理与资源分配原理,掌握对操作系统安全性检验和死锁的解除的原理和方法。 三、实验题目 系统中有m 个同类资源被n 个进程共享,每个进程对资源的最大需求数分别为S1,S2,…,Sn,且Max(Si)<=m, (i=1,2,…n)。进程可以动态地申请资源和释放资源。编写一个程序,实现银行家算法,当系统将资源分配给某一进程而不会死锁时,就分配之。否则,推迟分配,并显示适当的信息。 分别使用检测“进程—资源循环等待链”的方法和Coffman 的算法来检测进程的死锁状态。对于相同的进程资源分配、占用次序,比较两个算法的结果。 四、设计思路和流程图 1.输入系统进程数量n和资源类型数量m。 2.输入每类资源的数量。 3.输入每个进程每类资源的最大需求量和已获资源量。 4.检验系统的安全。 5.若检测结果为系统不安全,可以对死锁进行解除,直到安全为 止再检测。 6.重复5操作,直到所有进程运行完毕。

五、主要数据结构及其说明 int Max[100][100]={0}; //各进程所需各类资源的最大需求; int Available[100]={0}; //系统可用资源; char Name[100]={0}; //资源的名称; int Allocation[100][100]={0}; //系统已分配资源; int Need[100][100]={0}; //还需要资源 int Request[100]={0}; //请求资源向量; int Temp[100]={0}; //存放安全序列; int Work[100]={0}; //存放系统可提供资源; bool Finish[100]={0};//存放已完成的序列 六、源程序并附上注释 #include "stdafx.h" #include #define False 0 #define True 1 using namespace std; int Max[100][100]={0}; //各进程所需各类资源的最大需求; int Available[100]={0}; //系统可用资源; char Name[100]={0}; //资源的名称; int Allocation[100][100]={0}; //系统已分配资源; int Need[100][100]={0}; //还需要资源 int Request[100]={0}; //请求资源向量; int Temp[100]={0}; //存放安全序列; int Work[100]={0}; //存放系统可提供资源; bool Finish[100]={0}; int M=100; //作业的最大数 int N=100; //资源的最大数 int l=0;//记录安全进程的TEMP下标 void ShowData()//初始化资源矩阵

服务器高并发解决方案

服务器高并发解决方案 篇一:JAVA WEB高并发解决方案 java处理高并发高负载类网站中数据库的设计方法(java教程,java处理大量数据,java高负载数据)一:高并发高负载类网站关注点之数据库没错,首先是数据库,这是大多数应用所面临的首个SPOF。尤其是的应用,数据库的响应是首先要解决的。 一般来说MySQL是最常用的,可能最初是一个mysql 主机,当数据增加到100万以上,那么,MySQL的效能急剧下降。常用的优化措施是M-S(主-从)方式进行同步复制,将查询和操作和分别在不同的服务器上进行操作。我推荐的是M-M-Slaves方式,2个主Mysql,多个Slaves,需要注意的是,虽然有2个Master,但是同时只有1个是Active,我们可以在一定时候切换。之所以用2个M,是保证M不会又成为系统的SPOF。 Slaves可以进一步负载均衡,可以结合LVS,从而将select操作适当的平衡到不同的slaves上。 以上架构可以抗衡到一定量的负载,但是随着用户进一步增加,你的用户表数据超过1千万,这时那个M变成了SPOF。你不能任意扩充Slaves,否则复制同步的开销将直线上升,怎么办?我的方法是表分区,从业务层面上进行分区。最简单的,以用户数据为例。根据一定的切分方式,比如id,

切分到不同的数据库集群去。 全局数据库用于meta数据的查询。缺点是每次查询,会增加一次,比如你要查一个用户nightsailer,你首先要到全局数据库群找到nightsailer对应的cluster id,然后再到指定的cluster找到nightsailer的实际数据。 每个cluster可以用m-m方式,或者m-m-slaves方式。这是一个可以扩展的结构,随着负载的增加,你可以简单的增加新的mysql cluster进去。 需要注意的是: 1、禁用全部auto_increment的字段 2、id需要采用通用的算法集中分配 3、要具有比较好的方法来监控mysql主机的负载和服务的运行状态。如果你有30台以上的mysql数据库在跑就明白我的意思了。 4、不要使用持久性链接(不要用pconnect),相反,使用sqlrelay这种第三方的数据库链接池,或者干脆自己做,因为php4中mysql的链接池经常出问题。 二:高并发高负载网站的系统架构之HTML静态化 其实大家都知道,效率最高、消耗最小的就是纯静态化 /shtml/XX07/的html页面,所以我们尽可能使我们的网站上的页面采用静态页面来实现,这个最简单的方法其实

第三章习题(处理机调度与死锁)

一、单项选择题 1.在为多道程序所提供的可共享的系统资源不足时,可能出现死锁。但是,不适当的 c 也可能产生死锁。 A.进程优先权 B.资源的线性分配 C.进程推进顺序 D. 分配队列优先权 2.采用资源剥夺法可解除死锁,还可以采用 b 方法解除死锁。 A.执行并行操作 B.撤消进程 C.拒绝分配新资源 D.修改信号量 3.产生死锁的四个必要条件是:互斥、 b 、循环等待和不剥夺。 A. 请求与阻塞 B.请求与保持 C. 请求与释放 D.释放与阻塞 4.发生死锁的必要条件有四个,要防止死锁的发生,可以破坏这四个必要条件,但破坏 a 条件是不太实际的。 A. 互斥 B.不可抢占 C. 部分分配 D.循环等待 5.在分时操作系统中,进程调度经常采用 c 算法。 A.先来先服务 B.最高优先权 C.时间片轮转 D.随机 6.资源的按序分配策略可以破坏 D 条件。 A. 互斥使用资源 B.占有且等待资源 C.非抢夺资源 D. 循环等待资源 7.在 C 的情况下,系统出现死锁。 A. 计算机系统发生了重大故障 B.有多个封锁的进程同时存在 C.若干进程因竞争资源而无休止地相互等待他方释放已占有的资源 D.资源数大大小于进程数或进程同时申请的资源数大大超过资源总数 8.银行家算法是一种 B 算法。 A.死锁解除 B.死锁避免 C.死锁预防 D. 死锁检测 9.当进程数大于资源数时,进程竞争资源 B 会产生死锁。 A.一定 B.不一定 10. B 优先权是在创建进程时确定的,确定之后在整个进程运行期间不再改变。 A.先来先服务 B.静态 C.动态 D.短作业 11. 某系统中有3个并发进程,都需要同类资源4个,试问该系统不会发生死锁的最少资源数是 B A.9 B.10 C.11 D.12 答:B 13.当检测出发生死锁时,可以通过撤消一个进程解除死锁。上述描述是 B 。 A. 正确的 B.错误的 14.在下列解决死锁的方法中,属于死锁预防策略的是 B 。 A. 银行家算法 B. 资源有序分配法 C.死锁检测法 D.资源分配图化简法 15.以下叙述中正确的是 B 。 A. 调度原语主要是按照一定的算法,从阻塞队列中选择一个进程,将处理机分配 给它。 B.预防死锁的发生可以通过破坏产生死锁的四个必要条件之一来实现,但破坏互斥条件的可能性不大。 C.进程进入临界区时要执行开锁原语。 D.既考虑作业等待时间,又考虑作业执行时间的调度算法是先来先服务算法。

5-企业案例-网络安全审计系统(数据库审计)解决方案

数据库审计系统技术建议书

目次 1.综述 (1) 2.需求分析 (1) 2.1.内部人员面临的安全隐患 (2) 2.2.第三方维护人员的威胁 (2) 2.3.最高权限滥用风险 (2) 2.4.违规行为无法控制的风险 (2) 2.5.系统日志不能发现的安全隐患 (2) 2.6.系统崩溃带来审计结果的丢失 (3) 3.审计系统设计方案 (3) 3.1.设计思路和原则 (3) 3.2.系统设计原理 (4) 3.3.设计方案及系统配置 (14) 3.4.主要功能介绍 (5) 3.4.1.数据库审计........................ 错误!未定义书签。 3.4.2.网络运维审计 (9) 3.4.3.OA审计............................ 错误!未定义书签。 3.4.4.数据库响应时间及返回码的审计 (9) 3.4.5.业务系统三层关联 (9) 3.4.6.合规性规则和响应 (10) 3.4.7.审计报告输出 (12) 3.4.8.自身管理 (13) 3.4.9.系统安全性设计 (14) 3.5.负面影响评价 (16) 3.6.交换机性能影响评价 (17) 4.资质证书.......................... 错误!未定义书签。

1.综述 随着计算机和网络技术发展,信息系统的应用越来越广泛。数据库做为信息技术的核心和基础,承载着越来越多的关键业务系统,渐渐成为商业和公共安全中最具有战略性的资产,数据库的安全稳定运行也直接决定着业务系统能否正常使用。 围绕数据库的业务系统安全隐患如何得到有效解决,一直以来是IT治理人员和DBA们关注的焦点。做为资深信息安全厂商,结合多年的安全研究经验,提出如下解决思路: 管理层面:完善现有业务流程制度,明细人员职责和分工,规范内部员工的日常操作,严格监控第三方维护人员的操作。 技术层面:除了在业务网络部署相关的信息安全防护产品(如FW、IPS 等),还需要专门针对数据库部署独立安全审计产品,对关键的数据库操作行为进行审计,做到违规行为发生时及时告警,事故发生后精确溯源。 不过,审计关键应用程序和数据库不是一项简单工作。特别是数据库系统,服务于各有不同权限的大量用户,支持高并发的事务处理,还必须满足苛刻的服务水平要求。商业数据库软件内置的审计功能无法满足审计独立性的基本要求,还会降低数据库性能并增加管理费用。 2.需求分析 随着信息技术的发展,XXX已经建立了比较完善的信息系统,数据库中承载的信息越来越受到公司相关部门、领导的重视。同时数据库中储存着诸如XXX等极其重要和敏感的信息。这些信息一旦被篡改或者泄露,轻则造成企业或者社会的经济损失,重则影响企业形象甚至社会安全。 通过对XXX的深入调研,XXX面临的安全隐患归纳如下:

高并发下的接口幂等性解决方案

高并发下的接口幂等性解决方案 我们实际系统中有很多操作,是不管做多少次,都应该产生一样的效果或返回一样的结果。例如: 1.前端重复提交选中的数据,应该后台只产生对应这个数据的一个反应结果。 2.我们发起一笔付款请求,应该只扣用户账户一次钱,当遇到网络重发或系统 bug重发,也应该只扣一次钱; 3.发送消息,也应该只发一次,同样的短信发给用户,用户会哭的; 4.创建业务订单,一次业务请求只能创建一个,创建多个就会出大问题。 等等很多重要的情况,这些逻辑都需要幂等的特性来支持。 二、幂等性概念 幂等(idempotent、idempotence)是一个数学与计算机学概念,常见于抽象代数中。在编程中.一个幂等操作的特点是其任意多次执行所产生的影响均与一次执行的影响相同。幂等函数,或幂等方法,是指可以使用相同参数重复执行,并能获得相同结果的函数。这些函数不会影响系统状态,也不用担心重复执行会对系统造成改变。例如,“getUsername()和setTrue()”函数就是一个幂等函数.更复杂的操作幂等保证是利用唯一交易号(流水号)实现。我的理解:幂等就是一个操作,不论执行多少次,产生的效果和返回的结果都是一样的 三、技术方案 1. 查询操作查询一次和查询多次,在数据不变的情况下,查询结果是一样的。select是天然的幂等操作; 2. 删除操作删除操作也是幂等的,删除一次和多次删除都是把数据删除。(注意可能返回结果不一样,删除的数据不存在,返回0,删除的数据多条,返回结果多个); 3.唯一索引,防止新增脏数据比如:支付宝的资金账户,支付宝也有用户账户,每个用户只能有一个资金账户,怎么防止给用户创建资金账户多个,那么给资金账户表中的用户ID加唯一索引,所以一个用户新增成功一个资金账户记录。 要点:唯一索引或唯一组合索引来防止新增数据存在脏数据(当表存在唯一索引,并发时新增报错时,再查询一次就可以了,数据应该已经存在了,返回结果即可) 4. token机制,防止页面重复提交 业务要求: 页面的数据只能被点击提交一次。发生原因:由于重复点击或者网络重发,或者nginx重发等情况会导致数据被重复提交 解决办法:集群环境:采用token加redis(redis单线程的,处理需要排队)单JVM环境:采用token加redis或token加jvm内存。 处理流程: 1.数据提交前要向服务的申请token,token放到redis或jvm内存,token有效时间 2.提交后后台校验token,同时删除token,生成新的token返回; 3.token特点:要申请,一次有效性,可以限流; 4.注意:redis要用删除操作来判断token,删除成功代表token校验通过,如果用select+delete 来校验token,存在并发问题,不建议使用; 5. 悲观锁获取数据的时候加锁获取select * from table_xxx where id=3939 for update;注意:id 字段一定是主键或者唯一索引,不然是锁表,会死人的悲观锁使用时一般伴随事务一起使用,数据锁定时间可能会很长,根据实际情况选用。 6. 乐观锁乐观锁只是在更新数据那一刻锁表,其他时间不锁表,所以相对于悲观锁,效率更高。乐观锁的实现方式多种多样可以通过version或者其他状态条件:

sql server的死锁及处理方法

【转】处理sql server的死锁 --第一篇 --检测死锁 --如果发生死锁了,我们怎么去检测具体发生死锁的是哪条SQL语句或存储过程? --这时我们可以使用以下存储过程来检测,就可以查出引起死锁的进程和SQL语句。SQL Server自带的系统存储过程sp_who和sp_lock也可以用来查找阻塞和死锁, 但没有这里介绍的方法好用。 use master go create procedure sp_who_lock as begin declare @spid int,@bl int, @intTransactionCountOnEntry int, @intRowcount int, @intCountProperties int, @intCounter int create table #tmp_lock_who ( id int identity(1,1), spid smallint, bl smallint) IF @@ERROR<>0 RETURN @@ERROR insert into #tmp_lock_who(spid,bl) select 0 ,blocked from (select * from sysprocesses where blocked>0 ) a where not exists(select * from (select * from sysprocesses where blocked>0 ) b where a.blocked=spid) union select spid,blocked from sysprocesses where blocked>0 IF @@ERROR<>0 RETURN @@ERROR -- 找到临时表的记录数 select @intCountProperties = Count(*),@intCounter = 1 from #tmp_lock_who IF @@ERROR<>0 RETURN @@ERROR

死锁原因和解决方法

1 简单的死锁(不同表,相同资源竞争) 连接1 Set nocount on; Use testdb; Go Begin tran Update dbo.T1 set col1 = col1 + 1 where keycol = 2; 目前链接1获取排它锁,并且一直保持。 连接2 Set nocount on; Use testdb; Begin tran Update dbo.T2 set col1 = col1 + 1 where keycol = 2; 链接2获取排它锁,并且一直保持。 连接1 Select col1 from dbo.T2 where keycol = 2; Commit tran 连接1被阻塞,但是这样还不算死锁,可能连接2也许会在某一时刻结束事务,释放连接1需要资源上的锁。 连接2 Select col1 from dbo.T1 where keycol = 2; Commit tran 这样产生死锁,因为每个进程都在等待另外一个进程释放他们所需要的锁。 解决方法: 如果交换事务中访问表的顺序,并假定这种变化不影响应用程序的逻辑,就可以避免这种死锁。如果两个事务按相同的顺序访问表,就不会放生这样的死锁。当你开发以特定顺序访问表的事务时,可以联系这样做,只要有必要这样做而且不影响程序的逻辑就可以。

2 因缺少索引导致的死锁(不同表不同资源无索引竞争) 当筛选列上缺少索引时就会出现这种情况。如果被筛选列上没有索引,SQLSERVER 必须扫描所有的行。因此当一个进程保持了某一行的锁时,其他的进程扫描所有的行已检查他们是否符合筛选器,而不是通过索引直接找到期望的行,这样就会发生冲突。 T1.col1和T1.col2上都没有索引 连接1 Begin tran Update dbo.T1 set col2 = col2 + 1 where col1 = 101; 连接2 Begin tran Update dbo.T2 set col2 = col2 + 1 where col1 = 203; 连接 1 Select col2 from dbo.T2 where col1 = 201; Commit tran 由于col1没有索引,SQL SERVER必须扫描所有行并获取共享锁以检查这些行是否符合筛选器。所以被连接2阻塞。 连接2 Select col2 from dbo.T1 where col1 = 103; Commit tran 同样也给阻塞,并且发生死锁。 解决方法 通过在被筛选列上创建索引,你可以避免死锁。当然,如果两个进程尝试访问相同的资源还是可能发生死锁。

.net高并发解决方案_1

竭诚为您提供优质文档/双击可除.net高并发解决方案 篇一:开源企业级web高并发解决方案 开源企业级web高并发解决方案 主要介绍利用开源的解决方案,来为企业搭建web高并发服务器架构花了一个多小时,画了张图片,希望能先帮你理解整个架构,之后我在一一介绍.linux的大型架构其实是一点点小架构拼接起来的,笔者从各个应用开始配置,最后在完全整合起来,以实现效果。 笔者所使用的环境为Rhel5.4内核版本2.6.18实现过程在虚拟机中,所用到的安装包为dVd光盘自带rpm包装过developmentlibrariesdevelopmenttools包组 笔者所使用的环境为Rhel5.4内核版本2.6.18实现过程在虚拟机中,所用到的安装包为dVd光盘自带rpm包装过developmentlibrariesdevelopmenttools包组 笔者虚拟机有限,只演示单边varnish配置 一、配置前端lVs负载均衡 笔者选用lVs的dR模型来实现集群架构,如果对dR模型不太了了解的朋友建议先去看看相关资料。

本模型实例图为: 现在director 上安装ipvsadm,笔者yum配置指向有集群源所以直接 用yum安装。yuminstallipvsadm 下面是director配置: dip配置在接口上172.16.100.10 Vip配置在接口别名上:172.16.100.1 varnish服务器配置:Rip配置在接口上:172.16.100.11;Vip配置在lo别名上 如果你要用到下面的heartbeat的ldirectord来实现 资源转换,则下面的#director配置不用配置 1.#director配置 2.ifconfigeth0172.16.100.10/16 3.ifconfigeth0:0172.16.100.1broadcast172.16.100.1ne tmask255.25 5.255.255up 4.routeadd-host172.16.100.1deveth0:0 5.echo1>/proc/sys/net/ipv4/ip_forward 1.#varnish服务器修改内核参数来禁止响应对Vip的aRp广播请求 2.echo1>/proc/sys/net/ipv4/conf/lo/arp_ignore

黑马程序员:高并发解决方案

黑马程序员:高并发解决方案 一、什么是高并发 高并发(High Concurrency)是互联网分布式系统架构设计中必须考虑的因素之一,它通常是指,通过设计保证系统能够同时并行处理很多请求。高并发相关常用的一些指标有响应时间(Response Time),吞吐量(Throughput),每秒查询率QPS(Query Per Second),并发用户数等。 响应时间:系统对请求做出响应的时间。例如系统处理一个HTTP请求需要200ms,这个200ms就是系统的响应时间。 吞吐量:单位时间内处理的请求数量。 QPS:每秒响应请求数。在互联网领域,这个指标和吞吐量区分的没有这么明显。并发用户数:同时承载正常使用系统功能的用户数量。例如一个即时通讯系统,同时在线量一定程度上代表了系统的并发用户数。 二、什么是秒杀 秒杀场景一般会在电商网站举行一些活动或者节假日在12306网站上抢票时遇到。对于电商网站中一些稀缺或者特价商品,电商网站一般会在约定时间点对其进行限量销售,因为这些商品的特殊性,会吸引大量用户前来抢购,并且会在约定的时间点同时在秒杀页面进行抢购。

此种场景就是非常有特点的高并发场景,如果不对流量进行合理管控,肆意放任大流量冲击系统,那么将导致一系列的问题出现,比如一些可用的连接资源被耗尽、分布式缓存的容量被撑爆、数据库吞吐量降低,最终必然会导致系统产生雪崩效应。 一般来说,大型互联网站通常采用的做法是通过扩容、动静分离、缓存、服务降级及限流五种常规手段来保护系统的稳定运行。 三、扩容 由于单台服务器的处理能力有限,因此当一台服务器的处理能力接近或已超出其容量上限时,采用集群技术对服务器进行扩容,可以很好地提升系统整体的并行处理能力,在集群环境中,节点的数量越多,系统的并行能力和容错性就越强。在无状态服务下,扩容可能是迄今为止效果最明显的增加并发量的技巧之一。从扩容方式角度讲,分为垂直扩容(scale up)和水平扩容(scale out)。垂直扩容就是增加单机处理能力,怼硬件,但硬件能力毕竟还是有限;水平扩容说白了就是增加机器数量,怼机器,但随着机器数量的增加,单应用并发能力并不一定与其呈现线性关系,此时就可能需要进行应用服务化拆分了。 从数据角度讲,扩容可以分为无状态扩容和有状态扩容。无状态扩容一般就是指我们的应用服务器扩容;有状态扩容一般是指数据存储扩容,要么将一份数据拆分成不同的多份,即sharding,要么就整体复制n份,即副本。sharding遇

数据库死锁的解决办法

Posts - 31 Articles - 0 Comments - 817 数据库死锁的解决办法 近日在博客网站上,回复别人的数据库死锁避免问题,之前也曾经几次答复过同样的内容,觉得很有必要汇聚成一个博客文章,方便大家。 这里的办法,对所有的数据库都适用。 这个解决办法步骤如下: 1. 每个表中加updated_count (integer) 字段 2. 新增一行数据,updated_count =0 : insert into table_x (f1,f2,...,update_count) values(...,0); 3. 根据主键获取一行数据SQL,封装成一个DAO 函数(我的习惯是每个表一个uuid 字段做主键。从不用组合主键,组合主键在多表join 时SQL 写起来很麻烦;也不用用户录入的业务数据做主键,因为凡是用户录入的数据都可能错误,然后要更改,不适合做主键)。 select * from table_x where pk = ? 4. 删除一行数据 4.1 先通过主键获取此行数据, 见3. 4.2 delete from table_x where pk = ? and update_count=? , 这里where 中的update_count 通过4.1 中获取 4.3 检查4.2 执行影响数据行数,如果删除失败,则是别人已经删除或者更新过同一行数据,抛异常,在最外面rollback,并通过合适的词语提醒用户有并发操作,请稍候再试。 int count = cmd.ExecuteNonQuery(); if(udpatedCount < 1){ throw new Exception(“检测到并发操作,为防止死锁,已放弃当前操作,请稍候再试,表xxx, 数据key ….”); } 5. 更新一行数据 5.1 先通过主键获取此行数据, 见3. 5.2 update table_x set f1=?,f2=?, ...,update_count=update_count+1 where pk = ? and updat e_count=? , 这里where 中的update_count 通过5.1 中获取 5.3 检查5.2 执行影响数据行数,如果更新失败,则是别人已经删除或者更新过同一行数据,抛异常,在最外面rollback,并通过合适的词语提醒用户有并发操作,请稍候再试。 int count = cmd.ExecuteNonQuery(); if(udpatedCount < 1){ throw new Exception(“检测到并发操作,为防止死锁,已放弃当前操作,请稍候再试,表xxx, 数据

死锁的检测与解除C语言代码

实验名称:死锁的检测与解除姓名:杨秀龙 学号:1107300432 专业班级:创新实验班111 指导老师:霍林

实验题目 死锁的检测与解除 实验目的 为了更清楚系统对死锁是如何检测和当死锁发生时如何解除死锁 设计思想 首先需要建立和银行家算法类似的数组结构,先把孤立的进程(没有占用资源的进程)放入一个数组中,根据死锁原理,找出既不阻塞又非独立的进程结点,使之成为孤立的结点并放入孤立数组中,再释放该进程的占用资源,继续寻找下一个孤立结点,如果所有进程都能放入孤立数组中,则系统不会发生死锁,如果有进程不能放入,则系统将发生死锁,并进行死锁解除,撤消所有的死锁进程,释放它们占用的资源。 主要数据结构 和银行家算法类似,需要建立相应的数组 int allocation[M][M]; int request[M][M]; int available[M]; int line[M]; //管理不占用资源的进程 int no[M]; //记录造成死锁的进程 int work[M];

流程图 否

运行结果 图(1)不会发生死锁时 图(1)当发生死锁时

附录 源代码如下: # include "stdio.h" # define M 50 int allocation[M][M]; int request[M][M]; int available[M]; int line[M]; int no[M]; intn,m,i,j,f,a=0; main() { void check(); void remove(); void show(); printf("输入进程总数:"); scanf("%d", &n); printf("输入资源种类数量:"); scanf("%d", &m); printf("输入进程已占用的资源Allocation:\n"); for(i=0;i

操作系统实验报告-死锁的检测与解除

操作系统实验报告 实验题目:死锁的检测与解除学生姓名:田凯飞 学生学号:1107300215 学生班级:计科111 指导老师:霍林

实验题目: 死锁的检测与解除。 实验目的: 在实验一中我们可以通过银行家算法和安全性检测来对系统对进程分配资源时进行安全性检测,这是避免系统发生死锁的有效方法,但是假如系统真的发生死锁的时候,系统也必须对此采取有效的措施,通过该实验我们可以深刻的认识系统对死锁的检测与解除的方法。 设计思想: 该程序是在银行家算法的基础上添加了死锁的解除模块得来的,死锁的解除采用的方法是:当系统发生死锁时,找到已分配资源最大的死锁进程,剥夺其已分配资源,再次检测是否发生死锁。 数据结构: 1)可用资源向量available: 这是一个含有m个元素的数组,其 中的每一个元素代表一类可利用资源数目。 2)最大需求矩阵max它是一个n m ?的矩阵,定义了系统中n个进程中得每一个进程对m类资源的最大需求。 3)可分配矩阵allocation: 这也一个n m ?的矩阵,定义了系统中每一类资源当前已分配给每一进程的资源数。 4)需求矩阵need: 这表示每一个进程尚需的各类资源数。 5)need[i][j]=max[i][j]-allocation[i][j]。 变量说明: 可用资源向量available[3]; 最大需求矩阵max[4][3]; 可分配矩阵allocation[4][3]; 需求矩阵need[4][3]; 进程状态标识finish[4]; 流程图:

否 是 否 是 运行结果: 无死锁: 算法开始 输入各进程的最大需求资源、 已分配资源和可利用资源数 显示各进程的最大需求资源、已分配资源和可利用资源数 选择进程并进行资源请求 请求是否合法 分配资源 是否死锁 输出进程序列以及该时刻的资源分配情况 解除占用资源最多的进程 算法结束

数据库高并发升级方案1

XXXXXXXXXXXX平台数据库升级方案 XXXXXXXXXXXXXXX有限公司2016年11月28日

目录 1. 概述 (4) 1.1. 背景 (4) 1.2. 目标与目的 (4) 1.3. 可行性分析 (4) 1.4. 参考依据 (5) 2. 数据库高并发方案 (5) 2.1. 数据库均衡负载(RAC) (5) 2.2. 数据库主从部署 (8) 2.3. 数据库垂直分割 (9) 2.4. 数据库水平分割 (10) 3. 二代办公平台数据库优化设计 (11) 3.1. 数据库集群 (11) 3.2. 重点业务表分区 (11) 3.3. 任务表历史数据分割 (12) 3.4. 数据库表结构优化 (12) 3.5. 数据访问优化 (12) 4. 实施方案 (13) 5. 工作量及预算评估 (14) 5.1. 工作量及预算评估 (14) 5.2. 其他费用 (15)

1.概述 1.1.背景 随着XXXXXX平台及其他子系统业务量增多,且用户已面向各地州市,用户数量增大,现有的二代办公平台及其他子系统在单一环境下的架构体系和数据库架构体系也无法高效的满足这样的场景。 当前XXXXXX平台及其子系统通过搭建多台WEB服务器和双机热备份的方式进行部署运行。虽已提高了整体效率,但对于部分的业务处理还是未解决。部分业务量并发处理多,业务关联多等因素,导致对数据库并发处理的业务量大,读写量大等也无法用双机热备份进行解决。 因此,在此背景下提高数据库访问效率,增大访问吞吐量等将成为二代办公平台及其子系统运行顺畅的关键因素。 1.2.目标与目的 目标:依托现有系统服务和设备环境,建立可扩容、高并发、高吞吐量的数据库架构体系。 目的:为缓解当前XXXXXX平台机器及其他子系统对数据库访问过大,造成的访问效率低下的问题,提升数据库访问效率和并发效率。对部分业务繁杂的表和访问进行优化设计,缓解因此造成的使用效率低下问题。 1.3.可行性分析 数据库性能分析:根据当前的数据库性能分析,当前硬件设备的提高也无法满足数据库性能的提升,因此应考虑数据库访问控制和数据访问方面进行优化。现有的数据库虽也实现双机热备份,但访问的效率未较大改善,因此应考虑各健全的数据库高并发访问方案。 数据库优化分析:当前的数据库采用的ORACLE数据库,同时,现有的均衡负载、读写分离、数据分割技术较为成熟,在对系统进行适当调整和优化的情况下,能保证系统的正常运行。

数据库解除死锁方法

先查看哪些表被锁住了: 杀进程中的会话: 如果有ora-00031错误,则在后面加immediate;alter system kill session '29,5497' immediate; 如何杀死oracle死锁进程

1.查哪个过程被锁: 查V$DB_OBJECT_CACHE视图: SELECT * FROM V$DB_OBJECT_CACHE WHERE OWNER='过程的所属用户' AND CLOCKS!='0'; 2. 查是哪一个SID,通过SID可知道是哪个SESSION: 查V$ACCESS视图: SELECT * FROM V$ACCESS WHERE OWNER='过程的所属用户' AND NAME='刚才查到的过程名'; 3. 查出SID和SERIAL#: 查V$SESSION视图: SELECT SID,SERIAL#,PADDR FROM V$SESSION WHERE SID='刚才查到的SID'; 查V$PROCESS视图: SELECT SPID FROM V$PROCESS WHERE ADDR='刚才查到的PADDR'; 4. 杀进程: (1)先杀ORACLE进程: ALTER SYSTEM KILL SESSION '查出的SID,查出的SERIAL#'; (2)再杀操作系统进程: KILL -9 刚才查出的SPID或ORAKILL 刚才查出的SID 刚才查出的SPID。 Oracle的死锁 查询数据库死锁:

查询出来的结果就是有死锁的session了,下面就是杀掉,拿到上面查询出来的SID和SERIAL#,填入到下面的语句中: alter system kill session 'sid,serial#'; 一般情况可以解决数据库存在的死锁了,或通过session id 查到对应的操作系统进程,在Unix中杀掉操作系统的进程。 然后采用kill (unix)或orakill(windows )。 在Unix中: 经常在Oracle的使用过程中碰到这个问题,所以也总结了一点解决方法。 1)查找死锁的进程: 2)kill掉这个死锁的进程: alter system kill session ‘sid,serial#’; (其中sid=l.session_id) 3)如果还不能解决:

高并发网站系统架构解决方案

高并发网站系统架构解决方案 一个小型的网站,比如个人网站,可以使用最简单的html静态页面就实现了,配合一些图片达到美化效果,所有的页面均存放在一个目录下,这样的网站对系统架构、性能的要求都很简单,随着互联网业务的不断丰富,网站相关的技术经过这些年的发展,已经细分到很细的方方面面,尤其对于大型网站来说,所采用的技术更是涉及面非常广,从硬件到软件、编程语言、数据库、WebServer、防火墙等各个领域都有了很高的要求,已经不是原来简单的html静态网站所能比拟的。 大型网站,比如门户网站。在面对大量用户访问、高并发请求方面,基本的解决方案集中在这样几个环节:使用高性能的服务器、高性能的数据库、高效率的编程语言、还有高性能的Web容器。但是除了这几个方面,还没法根本解决大型网站面临的高负载和高并发问题。 上面提供的几个解决思路在一定程度上也意味着更大的投入,并且这样的解决思路具备瓶颈,没有很好的扩展性,下面我从低成本、高性能和高扩张性的角度来说说我的一些经验。 1、HTML静态化 其实大家都知道,效率最高、消耗最小的就是纯静态化的html页面,所以我们尽可能使我们的网站上的页面采用静态页面来实现,这个最简单的方法其实也是最有效的方法。但是对于大量内容并且频繁更新的网站,我们无法全部手动去挨个实现,于是出现了我们常见的信息发布系统CMS,像我们常访问的各个门户站点的新闻频道,甚至他们的其他频道,都是通过信息发布系统来管理和实现的,信息发布系统可以实现最简单的信息录入自动生成静态页面,还能具备频道管理、权限管理、自动抓取等功能,对于一个大型网站来说,拥有一套高效、可管理的CMS是必不可少的。 除了门户和信息发布类型的网站,对于交互性要求很高的社区类型网站来说,尽可能的静态化也是提高性能的必要手段,将社区内的帖子、文章进行实时的静态化,有更新的时候再重新静态化也是大量使用的策略,像Mop的大杂烩就是使用了这样的策略,网易社区等也是如此。 同时,html静态化也是某些缓存策略使用的手段,对于系统中频繁使用数据库查询但是内容更新很小的应用,可以考虑使用html静态化来实现,比如论坛中论坛的公用设置信息,这些信息目前的主流论坛都可以进行后台管理并且存储再数据库中,这些信息其实大量被前台程序调用,但是更新频率很小,可以考虑将这部分内容进行后台更新的时候进行静态化,这样避免了大量的数据库访问请求。 2、图片服务器分离

相关文档
最新文档