地铁隧道图像数据分析系统

地铁基坑监测总结

天津地铁6号线土建施工第八合同段施工监测 总结报告 编制: 审核: 审批: 2015年10月

1.总体概述 (1) 1.1工程位置 (1) 1.2工程简况 (1) 1.3 沿线周边环境 (1) 1.4 工程地质与水文地质 (1) 2.编制依据 (3) 3.监测范围及内容 (3) 4.车站基坑监测点位(孔)布设情况 (4) 4.1围护墙顶水平位移、沉降点位布设情况 (4) 4.2 围护结构变形布设情况 (4) 4.3 地面沉降点位布设 (4) 4.4地下水位点位布设 (4) 4.5 支撑轴力点位布设 (4) 4.6建筑物沉降监测点布设 (5) 4.7 管线监测点位布设 (5) 5.监测控制值 (6) 6.车站主体部分变形监测数据分析 (7) 6.1 基坑周围建筑物沉降监测数据 (7) 6.2 地下管线沉降监测 (7) 6.3 围护体顶部水平位移监测 (8) 6.4 围护体顶部垂直位移监测 (9) 6.5 地表沉降监测 (10) 6.6地下水位监测 (10)

6.7支撑轴力监测 (11) 6.8围护体、土体内部水平位移观测数据 (12) 7.结论 (16) 8.致谢 (17) 9.监测测点布置图 (17)

1.总体概述 1.1工程位置 车站位于中山北路路中,横跨养鱼池路,中山北路交通翻交至北侧导行,导行路距离基坑10m。养鱼池路交通导改至车站盖板上方。车站主体基坑西南侧距十四中学教学楼(四层、浅基础)16.9m。 1.2工程简况 基坑总长286.8m,其中:标准段基坑长256m,净宽21.1m,开挖深度17.5m;两端头井基坑长15.4m,净宽24.9m,开挖深度19.2m。围护结构采用800mm厚地下连续墙,地下连续墙长31.4m。地下连续墙与主体结构内衬墙组成复合结构,车站采用明挖顺筑法施工(局部采用盖挖顺筑法施工)。基坑监测等级为一级。 1.3 沿线周边环境 十四中教学楼(位于车站西南侧,距离端头井16.9m,条基,四层框架结构)。天津泰嘉热力管理中心中山北路供热站辅助房(位于车站西南侧,距离端头井9.7m,条基,一层砖混)。河北饭店(位于车站西南侧,距离端头井25m,条基,四层砖混)。 中山北路管线均距离基坑较远,养鱼池路横跨车站逆做顶板上方管线中DN1000铸铁水管与Φ1000钢筋砼雨水管为二级风险源,设计变形控制参考值为20mm。 1.4 工程地质与水文地质 1.4.1 工程地质

大数据分析平台技术要求

大数据平台技术要求 1.技术构架需求 采用平台化策略,全面建立先进、安全、可靠、灵活、方便扩展、便于部署、操作简单、易于维护、互联互通、信息共享的软件。 技术构架的基本要求: ?采用多层体系结构,应用软件系统具有相对的独立性,不依赖任何特定的操作系统、特定的数据库系统、特定的中间件应用服务器和特定的硬 件环境,便于系统今后的在不同的系统平台、不同的硬件环境下安装、 部署、升级移植,保证系统具有一定的可伸缩性和可扩展性。 ?实现B(浏览器)/A(应用服务器)/D(数据库服务器)应用模式。 ?采用平台化和构件化技术,实现系统能够根据需要方便地进行扩展。2. 功能指标需求 2.1基础平台 本项目的基础平台包括:元数据管理平台、数据交换平台、应用支撑平台。按照SOA的体系架构,实现对我校数据资源中心的服务化、构件化、定制化管理。 2.1.1元数据管理平台 根据我校的业务需求,制定统一的技术元数据和业务元数据标准,覆盖多种来源统计数据采集、加工、清洗、加载、多维生成、分析利用、发布、归档等各个环节,建立相应的管理维护机制,梳理并加载各种元数据。 具体实施内容包括: ●根据业务特点,制定元数据标准,要满足元数据在口径、分类等方面的 历史变化。 ●支持对元数据的管理,包括:定义、添加、删除、查询和修改等操作,

支持对派生元数据的管理,如派生指标、代码重新组合等,对元数据管 理实行权限控制。 ●通过元数据,实现对各类业务数据的统一管理和利用,包括: ?基础数据管理:建立各类业务数据与元数据的映射关系,实现统一的 数据查询、处理、报表管理。 ?ETL:通过元数据获取ETL规则的描述信息,包括字段映射、数据转 换、数据转换、数据清洗、数据加载规则以及错误处理等。 ?数据仓库:利用元数据实现对数据仓库结构的描述,包括仓库模式、 视图、维、层次结构维度描述、多维查询的描述、立方体(CUBE)的 结构等。 ●元数据版本控制及追溯、操作日志管理。 2.1.2数据交换平台 结合元数据管理模块并完成二次开发,构建统一的数据交换平台。实现统计数据从一套表采集平台,通过数据抽取、清洗和转换等操作,最终加载到数据仓库中,完成整个数据交换过程的配置、管理和监控功能。 具体要求包括: ●支持多种数据格式的数据交换,如关系型数据库:MS-SQLServer、MYSQL、 Oracle、DB2等;文件格式:DBF、Excel、Txt、Cvs等。 ●支持数据交换规则的描述,包括字段映射、数据转换、数据转换、数据 清洗、数据加载规则以及错误处理等。 ●支持数据交换任务的发布与执行监控,如任务的执行计划制定、定期执 行、人工执行、结果反馈、异常监控。 ●支持增量抽取的处理方式,增量加载的处理方式; ●支持元数据的管理,能提供动态的影响分析,能与前端报表系统结合, 分析报表到业务系统的血缘分析关系; ●具有灵活的可编程性、模块化的设计能力,数据处理流程,客户自定义 脚本和函数等具备可重用性; ●支持断点续传及异常数据审核、回滚等交换机制。

地铁隧道贯通测量

毕业设计(论文)题目地铁隧道贯通测量 英文题目Through Measurement of Subway Tunnel 摘要 为了使两个或多个掘进工作面按其设计要求在预定地点正确接通而进行的工作 叫做贯通测量,这是一项重要的地下隧道施工技术。贯通测量的基本任务是保证各 项掘进工作面均沿着设计的位置和方向掘进,使贯通后结合处不超过规定的限度。 贯通测量工作直接影响到地下工程的质量,因此有必要对其方法做系统的学习研究。 关键字:地下工程测量沈阳地铁贯通测量 Abstract

The main target of through measurement is to make sure two or more heading face according to the design requirements connected at the correct point. Through measurement,one of the underground measurement methods, is an important technology of underground tunnel construction.Through measurement direct impact the quality of underground works. It is therefore necessary to make its way to study systems. Key word:underground measurement, Shenyang metro, through measurement

大数据分析的六大工具介绍

大数据分析的六大工具介绍 2016年12月 一、概述 来自传感器、购买交易记录、网络日志等的大量数据,通常是万亿或EB的大小,如此庞大的数据,寻找一个合适处理工具非常必要,今天我们为大家分学在大数据处理分析过程中六大最好用的工具。 我们的数据来自各个方面,在面对庞大而复杂的大数据,选择一个合适的处理工具显得很有必要,工欲善其事,必须利其器,一个好的工具不仅可以使我们的工作事半功倍,也可以让我们在竞争日益激烈的云计算时代,挖掘大数据价值,及时调整战略方向。 大数据是一个含义广泛的术语,是指数据集,如此庞大而复杂的,他们需要专门设il?的硬件和软件工具进行处理。该数据集通常是万亿或EB的大小。这些数据集收集自各种各样的来源:传感器、气候信息、公开的信息、如杂志、报纸、文章。大数据产生的其他例子包括购买交易记录、网络日志、病历、事监控、视频和图像档案、及大型电子商务。大数据分析是在研究大量的数据的过程中寻找模式, 相关性和其他有用的信息,可以帮助企业更好地适应变化,并做出更明智的决策。 二.第一种工具:Hadoop Hadoop是一个能够对大量数据进行分布式处理的软件框架。但是Hadoop是 以一种可黑、高效、可伸缩的方式进行处理的。Hadoop是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。Hadoop 是高效的,因为它以并行的方式工作,通过并行处理加快处理速度。Hadoop还是可伸缩的,能够处理PB级数据。此外,Hadoop依赖于社区服务器,因此它的成本比较低,任何人都可以使用。

Hadoop是一个能够让用户轻松架构和使用的分布式计算平台。用户可以轻松地 在Hadoop上开发和运行处理海量数据的应用程序。它主要有以下儿个优点: ,高可黑性。Hadoop按位存储和处理数据的能力值得人们信赖。,高扩展性。Hadoop是 在可用的计?算机集簇间分配数据并完成讣算任务 的,这些集簇可以方便地扩展到数以千计的节点中。 ,高效性。Hadoop能够在节点之间动态地移动数据,并保证各个节点的动 态平衡,因此处理速度非常快。 ,高容错性。Hadoop能够自动保存数据的多个副本,并且能够自动将失败 的任务重新分配。 ,Hadoop带有用Java语言编写的框架,因此运行在Linux生产平台上是非 常理想的。Hadoop上的应用程序也可以使用其他语言编写,比如C++。 第二种工具:HPCC HPCC, High Performance Computing and Communications(高性能计?算与通信)的缩写° 1993年,山美国科学、工程、技术联邦协调理事会向国会提交了“重大挑战项 U:高性能计算与通信”的报告,也就是被称为HPCC计划的报告,即美国总统科学战略项U ,其U的是通过加强研究与开发解决一批重要的科学与技术挑战 问题。HPCC是美国实施信息高速公路而上实施的计?划,该计划的实施将耗资百亿 美元,其主要U标要达到:开发可扩展的计算系统及相关软件,以支持太位级网络 传输性能,开发千兆比特网络技术,扩展研究和教育机构及网络连接能力。

大数据处理技术的总结与分析

数据分析处理需求分类 1 事务型处理 在我们实际生活中,事务型数据处理需求非常常见,例如:淘宝网站交易系统、12306网站火车票交易系统、超市POS系统等都属于事务型数据处理系统。这类系统数据处理特点包括以下几点: 一就是事务处理型操作都就是细粒度操作,每次事务处理涉及数据量都很小。 二就是计算相对简单,一般只有少数几步操作组成,比如修改某行得某列; 三就是事务型处理操作涉及数据得增、删、改、查,对事务完整性与数据一致性要求非常高。 四就是事务性操作都就是实时交互式操作,至少能在几秒内执行完成; 五就是基于以上特点,索引就是支撑事务型处理一个非常重要得技术. 在数据量与并发交易量不大情况下,一般依托单机版关系型数据库,例如ORACLE、MYSQL、SQLSERVER,再加数据复制(DataGurad、RMAN、MySQL数据复制等)等高可用措施即可满足业务需求。 在数据量与并发交易量增加情况下,一般可以采用ORALCERAC集群方式或者就是通过硬件升级(采用小型机、大型机等,如银行系统、运营商计费系统、证卷系统)来支撑. 事务型操作在淘宝、12306等互联网企业中,由于数据量大、访问并发量高,必然采用分布式技术来应对,这样就带来了分布式事务处理问题,而分布式事务处理很难做到高效,因此一般采用根据业务应用特点来开发专用得系统来解决本问题。

2数据统计分析 数据统计主要就是被各类企业通过分析自己得销售记录等企业日常得运营数据,以辅助企业管理层来进行运营决策。典型得使用场景有:周报表、月报表等固定时间提供给领导得各类统计报表;市场营销部门,通过各种维度组合进行统计分析,以制定相应得营销策略等. 数据统计分析特点包括以下几点: 一就是数据统计一般涉及大量数据得聚合运算,每次统计涉及数据量会比较大。二就是数据统计分析计算相对复杂,例如会涉及大量goupby、子查询、嵌套查询、窗口函数、聚合函数、排序等;有些复杂统计可能需要编写SQL脚本才能实现. 三就是数据统计分析实时性相对没有事务型操作要求高。但除固定报表外,目前越来越多得用户希望能做做到交互式实时统计; 传统得数据统计分析主要采用基于MPP并行数据库得数据仓库技术.主要采用维度模型,通过预计算等方法,把数据整理成适合统计分析得结构来实现高性能得数据统计分析,以支持可以通过下钻与上卷操作,实现各种维度组合以及各种粒度得统计分析。 另外目前在数据统计分析领域,为了满足交互式统计分析需求,基于内存计算得数据库仓库系统也成为一个发展趋势,例如SAP得HANA平台。 3 数据挖掘 数据挖掘主要就是根据商业目标,采用数据挖掘算法自动从海量数据中发现隐含在海量数据中得规律与知识。

地铁监测管理制度

杭州地铁5号线一期工程土建SG5-9标 施工监测 杭 州 地 铁 监 测 管 理 制 度 南京市测绘勘察研究院有限公司 SG5-9标施工监测项目部 2016年12月1日

目录 1总则 (3) 2准备工作 (3) 3 测量复核 (4) 4 协调施工与监测工作 (4) 5数据采集点的保护及监测对象的查看 (4) 6 监测数据的采集和整理 (4) 7 建立监测专业组 (5) 8 沉降监测的基本要求 (6) 9 监测的质量控制 (6) 10 监测资料管理 (8) 11 奖罚制度 (8)

监测管理制度 1. 总则 为加强工程测量管理,保证工程质量,提高施工安全系数,加快施工进度,使工程测量规范化,制度化,防止测量事故发生,更好地为工程建设服务,根据有关规定特制定本制度。监测工作是工程建设中的重要环节,是工程技术管理的重要组成部分,它既是工程建设施工阶段的重要技术基础工作,又为施工和运营安全提供必要的资料和技术依据,搞好监测工作,提高监测成果统计分析水平,是防止突发事故发生,确保工程质量,加快施工进度,提高经济效益的重要手段。 随着科学技术的进步和发展,企业改革的不断深化,单位在保持测量队伍相对稳定的同时,必须加强测量人员的知识更新,不断提高测量人员的技术素质。尽可能采用先进的仪器设备,使工程监测工作更好地适应社会发展和科技进步的需要。 监测工作是一项需要集体协作完成的工作,是一项可探讨分析的工作,更是一门学科,一个领域,是工程施工中重要的组成部分,项目测量人员要严格执行本制度,为打造精品工程尽职尽责。 2.准备工作 ①仪器校验,对进场的监测仪器进行校验,并形成清晰的记录,保证仪器工作状态良好,保持仪器的自检频率,形成仪器自检台帐。 ②交桩复测高程点,在设计院交桩完成后,由测量组长组织高程控制点的复测,严格按照二等水准的测量技术指标进行施测。 ③加密水准基点,在完成交桩复测后根据施工环境实际情况布设水

大数据分析平台技术要求

大数据平台技术要求 1. 技术构架需求 采用平台化策略,全面建立先进、安全、可靠、灵活、方便扩展、便于部署、操作简单、易于维护、互联互通、信息共享的软件。 技术构架的基本要求: 采用多层体系结构,应用软件系统具有相对的独立性,不依赖任何特定的操作系统、特定的数据库系统、特定的中间件应用服务器和特定的硬 件环境,便于系统今后的在不同的系统平台、不同的硬件环境下安装、 部署、升级移植,保证系统具有一定的可伸缩性和可扩展性。 实现B(浏览器)/A(应用服务器)/D(数据库服务器)应用模式。 采用平台化和构件化技术,实现系统能够根据需要方便地进行扩展。2. 功能指标需求 2.1基础平台 本项目的基础平台包括:元数据管理平台、数据交换平台、应用支撑平台。按照SOA的体系架构,实现对我校数据资源中心的服务化、构件化、定制化管理。 2.1.1元数据管理平台 根据我校的业务需求,制定统一的技术元数据和业务元数据标准,覆盖多种来源统计数据采集、加工、清洗、加载、多维生成、分析利用、发布、归档等各个环节,建立相应的管理维护机制,梳理并加载各种元数据。 具体实施内容包括: ●根据业务特点,制定元数据标准,要满足元数据在口径、分类等方面的 历史变化。 ●支持对元数据的管理,包括:定义、添加、删除、查询和修改等操作,

支持对派生元数据的管理,如派生指标、代码重新组合等,对元数据管 理实行权限控制。 ●通过元数据,实现对各类业务数据的统一管理和利用,包括: ?基础数据管理:建立各类业务数据与元数据的映射关系,实现统一 的数据查询、处理、报表管理。 ?ETL:通过元数据获取ETL规则的描述信息,包括字段映射、数据转 换、数据转换、数据清洗、数据加载规则以及错误处理等。 ?数据仓库:利用元数据实现对数据仓库结构的描述,包括仓库模式、 视图、维、层次结构维度描述、多维查询的描述、立方体(CUBE) 的结构等。 ●元数据版本控制及追溯、操作日志管理。 2.1.2数据交换平台 结合元数据管理模块并完成二次开发,构建统一的数据交换平台。实现统计数据从一套表采集平台,通过数据抽取、清洗和转换等操作,最终加载到数据仓库中,完成整个数据交换过程的配置、管理和监控功能。 具体要求包括: ●支持多种数据格式的数据交换,如关系型数据库:MS-SQLServer、MYSQL、 Oracle、DB2等;文件格式:DBF、Excel、Txt、Cvs等。 ●支持数据交换规则的描述,包括字段映射、数据转换、数据转换、数据 清洗、数据加载规则以及错误处理等。 ●支持数据交换任务的发布与执行监控,如任务的执行计划制定、定期执 行、人工执行、结果反馈、异常监控。 ●支持增量抽取的处理方式,增量加载的处理方式; ●支持元数据的管理,能提供动态的影响分析,能与前端报表系统结合, 分析报表到业务系统的血缘分析关系; ●具有灵活的可编程性、模块化的设计能力,数据处理流程,客户自定义 脚本和函数等具备可重用性; ●支持断点续传及异常数据审核、回滚等交换机制。

地铁隧道贯通测量

地铁隧道贯通测量 林正庆 上海地铁一号线纵贯市区,全长14.7km,是上海目前较大的市政施工项目之一。上海隧道一号线全线采用盾构机械施工,施工时要进行跟踪测量,即贯通测量。隧道贯通测量精度指标有多种,其中横向和竖向精度指标最为重要,是衡量隧道掘进的准确程度的标准。贯通测量指导盾构到达竖井预留门洞,要求准确贯通,因此贯通测量在盾构施工中起到很重要的作用。 地铁隧道贯通测量的目的,是使盾构准确地沿着设计轴线开挖推进,并进入接收井的预留门洞。盾构机头中心与预留门洞中心的偏差值称为贯通误差。预留门洞的大小,应该是盾构内径、隧道内衬管径厚度、施工误差、测量误差这四个方面的总和。测量误差如能达到设计所要求的±5cm,就能达到贯通测量规定的要求。但一般情况下,建设单位为了保证质量起见,对测量精度提出更高的要求。 上海地铁一号线平面首级控制为四等空中导线,一般点位设置在区间隧道附近较稳定的高大建筑物上,观测视线由空中传递,并采取强制归心测角测距。高程控制点为二等几何水准网进行联测,点位远离施工区,较稳定。地面坐标传递到进下隧道的方法,一般采用方向线法、投点法两种;高程控制传递至井下采用钢尺悬挂观测法进行。 常熟路站至陕西南路站区间隧道工程,由于受施工现场条件的限制,采用常规的地面坐标传递到井下的方向线法和投点法已不能保证精度,而采用经纬仪加光电测距仪直接进行传递,这是首次。 1工程概况 地铁一号线常熟路站至陕西南路站区间隧道工程全长742m,为上、下两平行隧道,位于淮海中路下面。该区间隧道采用逆向施工技术进行掘进,先埋设地下管线,在隧道轴线上预留门洞,再进行路面铺装,而后进入地下施工。 两车站各预留施工沉井,井口边长仅8m,且偏离隧道轴线设置。沉井深15m,施工出土、进料都由井口通过。同时控制点受施工现场限制,控制点所在的建筑物在施工区沉井旁,建筑物沉降使控制点产生位移,由此给确保隧道贯通测量的精度带来很大难度。 隧道贯通测量误差,是指纵、横向和竖向误差。纵向误差影响掘进长度,横向、竖向误差则影响贯通的准确性。 2 横向贯通测量 横向贯通测量一般包括:地面控制测量;竖井联系测量;井下导线测量。 如图1,Ⅳ424甲控制点设置在常熟路附近建筑物上,距井口170m。Ⅳ423在瑞金路比较稳定的建筑物上,距井口约180m。这两点是该地铁区段上、下行线隧道贯通测量的起始点。 图1 控制点分布图 2.1 误差源 (1)Ⅳ424甲~Ⅳ423方向与隧道轴线近似平行,故起始边长度误差对横向贯通误差的影响可忽略不计。

大大数据可视化分析资料报告平台介绍

大数据可视化分析平台 一、背景与目标 基于邳州市电子政务建设的基础支撑环境,以基础信息资源库(人口库、法人库、宏观经济、地理库)为基础,建设融合业务展示系统,提供综合信息查询展示、信息简报呈现、数据分析、数据开放等资源服务应用。实现市府领导及相关委办的融合数据资源视角,实现数据信息资源融合服务与创新服务,通过系统达到及时了解本市发展的综合情况,及时掌握发展动态,为政策拟定提供依据。 充分运用云计算、大数据等信息技术,建设融合分析平台、展示平台,整合现有数据资源,结合政务大数据的分析能力与业务编排展示能力,以人口、法人、地理,人口与地理,法人与地理,实现基础展示与分析,融合公安、交通、工业、教育、旅游等重点行业的数据综合分析,为城市管理、产业升级、民生保障提供有效支撑。 二、政务大数据平台 1、数据采集和交换需求:通过对各个委办局的指定业务数据进行汇聚,将分散的数据进行物理集中和整合管理,为实现对数据的分析提供数据支撑。将为跨机构的各类业务系统之间的业务协同,提供统一和集中的数据交互共享服务。包括数据交换、共享和ETL等功能。 2、海量数据存储管理需求:大数据平台从各个委办局的业务系统里抽取的数据量巨大,数据类型繁杂,数据需要持久化的存储和访问。不论是结构化数据、半结构化数据,还是非结构化数据,经过数据存储引擎进行建模后,持久化保存在存储系统上。存储系统要具备高可靠性、快速查询能力。

3、数据计算分析需求:包括海量数据的离线计算能力、高效即席数据查询需求和低时延的实时计算能力。随着数据量的不断增加,需要数据平台具备线性扩展能力和强大的分析能力,支撑不断增长的数据量,满足未来政务各类业务工作的发展需要,确保业务系统的不间断且有效地工作。 4、数据关联集中需求:对集中存储在数据管理平台的数据,通过正确的技术手段将这些离散的数据进行数据关联,即:通过分析数据间的业务关系,建立关键数据之间的关联关系,将离散的数据串联起来形成能表达更多含义信息集合,以形成基础库、业务库、知识库等数据集。 5、应用开发需求:依靠集中数据集,快速开发创新应用,支撑实际分析业务需要。 6、大数据分析挖掘需求:通过对海量的政务业务大数据进行分析与挖掘,辅助政务决策,提供资源配置分析优化等辅助决策功能,促进民生的发展。

地铁监控量测的内容和方法

监控量测的内容和方法 根据合同段地下工程埋深、地质条件、结构类型、施工方法、工程规模、工程的重要程度以及周边环境条件等因素,将现场监控量测的内容和方法按明挖法进行分类设计与规划。 明挖车站与区间应测项目 目测内容 开挖后对无支护围岩的目测内容包括: (1)围岩类型及分布特征,结构面位置和产状,节理裂隙发育程度和几何特征、节理裂隙填充物性质和状态等。 (2)开挖工作面的围岩稳定状态,顶板有无剥落掉块现象。 (3)是否有涌水,涌水量大小、涌水位置以及地下水的性质(如颜色、气味等)。 开挖后已支护段的目测内容包括: (1)有无锚杆被拉断或垫板陷入围岩内部的现象。 (2)喷锚混凝土是否产生裂隙或剥落,特别注意观察喷锚混凝土的剪切破坏现象。 (3)是否有底鼓现象。 目测异常处理 目测观察中如发现异常现象,需详细记录发现的时间和到开挖工作面的距离以及附近监控量测点的各项监控量测数据,并进行围岩稳定性分析与判断。 周边地表土体沉降和水平位移 1.测点布设 对于基坑,其监控量测范围是1~2倍基坑开挖深度影响范围内。 在基坑长、短边的中轴线布设观测主断面,每断面6~8个观测点。在观测主断面上,从里向外,按等距离原则布置测点,测点间距一般为沿着基坑的长边4m。若基坑较长,则沿长边每25m增设一个观测断面。在基坑外,沿基坑长轴方向布设3个观测断面,基坑长边与3个观测断面见两两相邻,距离为25m。沿基坑短轴方向,在基坑外部设1个观测断面,观测断面与基坑短边的间距为2m。 监控量测仪器和设备 地表沉降采用徕卡Sprinter 250M-CN电子精密水准仪进行测量,所用的

设备还有铟钢尺和分层沉降仪等。 监控量测方法和频率 地面沉降的监控量测方法,即通过监控量测地面的固定测点在不同时间相对于参考点(基点)的标高,求出两次监控量测的差值,即为该测点的沉降值。监控量测的频率:基坑开挖期间,基坑开挖深度5m以内时,每两天1次;开挖深度5~10m时,每天1次;开挖深度10m以上时,每天2次;同时,监测频率还受底板浇筑时间限制,底板浇筑后7天,每天2次;底板浇筑后7~14天,每天1次;底板浇筑后14~28天,每两天1次;底板浇筑后28天以上,每三天1次。如出现位移值明显增大时,应加密监控量测次数。 应用表3.2时必须注意以下要点: (1)由位移变化速率到开挖面的距离确定的监控量测频率,原则上采用监控量测次数多的值。 (2)在同一监控量测断面的各测线或测点,应采用相同的且由最大位移变化速率的测点位置确定的监控量测频率。 (3)位移基本稳定后,仍应以每两天1次的频率监控量测一至三周,以确定位移是否最终稳定。 (4)在膨胀性围岩中,位移长期(开挖后两个月以上)不能收敛时,监控量测要一直继续进行,直到修建二次模筑衬砌,使位移变化速率不大于1mm/月为止。 (5)位移变化速率过大时,在加强初期支护的同时,也应加强监控量测频率,尤其要重视开挖前后(放炮前后)的监控量测,并观测此时的动态影响规律。 观测条件 监控量测的实施,应在水准仪和标尺检验合格后方能进行观测,且应注意以下事项: (1)不得在测站和标尺处有震动时进行观测。 (2)尽量选择在每天同一时间内进行观测,选择在阴天和气温变化小的时间内进行观测;若必须在阳光下进行观测时,测站应配备测伞。 (3)观测应坚持“四固定”原则,即观测人员固定、测站固定、测量延续时间固定和施测顺序固定。 地下水位观测 1. 测点布设

大数据处理平台构架设计说明书

大数据处理平台及可视化架构设计说明书 版本:1.0 变更记录

目录 1 1. 文档介绍 (3) 1.1文档目的 (3) 1.2文档范围 (3) 1.3读者对象 (3) 1.4参考文献 (3) 1.5术语与缩写解释 (3) 2系统概述 (4) 3设计约束 (5) 4设计策略 (6) 5系统总体结构 (7) 5.1大数据集成分析平台系统架构设计 (7) 5.2可视化平台系统架构设计 (11) 6其它 (14) 6.1数据库设计 (14) 6.2系统管理 (14) 6.3日志管理 (14)

1 1. 文档介绍 1.1 文档目的 设计大数据集成分析平台,主要功能是多种数据库及文件数据;访问;采集;解析,清洗,ETL,同时可以编写模型支持后台统计分析算法。 设计数据可视化平台,应用于大数据的可视化和互动操作。 为此,根据“先进实用、稳定可靠”的原则设计本大数据处理平台及可视化平台。 1.2 文档范围 大数据的处理,包括ETL、分析、可视化、使用。 1.3 读者对象 管理人员、开发人员 1.4 参考文献 1.5 术语与缩写解释

2 系统概述 大数据集成分析平台,分为9个层次,主要功能是对多种数据库及网页等数据进行访采集、解析,清洗,整合、ETL,同时编写模型支持后台统计分析算法,提供可信的数据。 设计数据可视化平台 ,分为3个层次,在大数据集成分析平台的基础上实现大实现数据的可视化和互动操作。

3 设计约束 1.系统必须遵循国家软件开发的标准。 2.系统用java开发,采用开源的中间件。 3.系统必须稳定可靠,性能高,满足每天千万次的访问。 4.保证数据的成功抽取、转换、分析,实现高可信和高可用。

地铁隧道联系测量方法及精度控制讲解

地铁隧道联系测量方法及精度控制 (王伟中交隧道盾构公司江西南昌30029) [摘要] 本文以南昌地铁一号线青山湖站至高新大道站为例,对盾构隧道区间联系测量方法进行详细的介绍。同时对数据的处理方法,对投点方法及两井定向精度进行了相关分析。 [关键词] 联系测量两井定向精度分析数据处理 1前言 随着中国的城市化进程的加快,城市人口的增加给城市交通带来的压力日渐明显。然而,城市化的发展绝不可以被交通压力所约束。因而与我们传统的地上交通相对应的地下交通就成为缓解城市交通压力的新渠道。这就是目前的大、中城市正在极力发展的地铁交通。地铁的发展主要依赖与地下工程隧道开挖等的相关技术的进步,了解相关的主要技术就会知道地铁测量对地铁隧道尤为重要,这是地铁施工的最重要的基本条件。 2工程背景概况 青山湖大道站~高新大道站区间里程范围:SK20+052.554~SK20+902.822,区间长度为850.268双线延米,下行线在XK20+840.204里程处设置XK20+840.000长链(XK20+840.204=XK20+840.000 长链0.204),区间线路间距13.4~15.0m,线路包括2个曲线,曲线半径均为3000m。区间最大坡度为22‰,区间隧道覆土厚度在10.0m~16.5m。本区间设置一处联络通道(兼泵站),中心里程在为:SK20+502.007和XK20+502.042。区间西端为青山湖大道站,东端为高新大道站。青山湖大道站~高新大道站区间区间隧道,线路在北京东路下方。隧道结构距离地面319#、320#、321#、371#(19层)建筑物建筑物均在14m以上,地面建构筑物无需采取特殊处理和保护措施。 根据盾构工程筹划,两台盾构机从青山湖大道站东端出发,向东掘进到高新大道站西端结束。 3联系测量 在地铁隧道推进前必须要进行联系测量,即将车站地面平面坐标系统和高程系统传递到井下,使车站上下能采用同一坐标系统所进行的测量工作;两井定向有物理定向、几何定向等,这里主要阐述两井几何定向。联系测量须独立进行两次,在互差不超过限差时采用均值作为联系测量的最终结果。

地铁隧道贯通测量方法的改进与精度分析

地铁隧道贯通测量方法的改进与精度分析 发表时间:2018-06-06T10:37:55.260Z 来源:《基层建设》2018年第10期作者:李徐亮 [导读] 摘要:随着社会的进步和国民经济的发展,人们对于出行的质量要求越来越高,这就促使大量的公共基础设施投入的建设。 河北省煤田地质局物测地质队河北邢台 054000 摘要:随着社会的进步和国民经济的发展,人们对于出行的质量要求越来越高,这就促使大量的公共基础设施投入的建设。地铁作为城市当中最为重要的交通基础设施,在其轨道的布设时经常会因为种种原因需要穿越隧道。地铁工程施工的过程当中确保隧道贯通是在地铁测量工作中的一个非常重要的任务,其贯通误差的程度将会对地铁工程的整体施工质量以及工程造价形成直接的影响。 关键词:地铁隧道贯通;测量方法;精度 引言 地铁施工过程中保证隧道贯通是地铁测量的一项主要任务,其贯通误差的大小将直接影响到地铁建设质量和工程造价。因此,在地铁工程测量精度设计中,为用尽可能小的成本保证隧道按设计要求进行贯通,合理地规定隧道贯通误差及其允许值,以便制定在技术、经济上合理的贯通测量方案,是地铁测量的一项重要的研究任务。 1概述 1.1贯通测量研究的现状 中国是一个多山国家,其中山地、丘陵、高原占大部分,平原只占12%,大小山脉纵横全国。隧道建设在我国公路工程,铁路工程,引水工程等工程建设中占有重要地位。据统计,目前全国公路隧道达2889处,总长1527km。其中特长隧道43处,占166km,长隧道381处,占625km。 1.2工程概况 某隧道工程,其隧道是一座左、右线分离的四车道高速公路特长隧道,隧道设计时速80km/h。隧道长度见表1。 表1 礼让隧道长度表 2贯通测量误差分析 地铁隧道贯通测量误差主要有3种:纵向贯通误差,即贯通误差在隧道施工中线方向上的投影;横向贯通误差,即贯通误差在垂直于隧道施工中线的水平方向上的投影;高程贯通误差,即贯通误差在垂直于隧道施工中线的竖直方向上的投影。总体来看,纵向贯通误差和高程贯通误差不会严重影响隧道施工质量,高程贯通误差只影响地铁接轨点的坡度。但在实际测量中,当横向贯通误差超出一定范围时,除影响隧道施工质量外,还会使隧道无法准确贯通,严重时会导致隧道重建,影响工程进度,浪费人力物力资源。因此,为了避免此类误差,地铁隧道在施工过程中,除需要利用一定测量工具外,还需要使用一些控制方法才能减小贯通误差。一般认为,矿山隧道施工中会在3个环节出现误差。第一环节,地面控制测量,误差为m1;第二环节,竖井测量,误差为m2;第三环节,地下导线测量,误差为m3。结合实际经验,每一项的允许误差为m1=1m,m2=2m,m3=3m,那么区间隧道允许的横向贯通误差为: 因此,对于在地铁隧道贯通中易出现误差的3个环节,应采取相应的测量方法,增加检核条件,减小误差。 3隧道贯通测量的预计方法 在隧道测量中,由于隧道施工测量在隧道洞内和洞外进行,受场地与测量作业的限制,隧道洞内施工测量使用导线测量方法进行测量时,容易导致测量误差的积累,使得隧道贯通位置和设计位置的预计误差变化明显,降低了隧道贯通质量。因此在隧道贯通工程设计阶段,必须做好所选测量方案与方案的误差预计工作,对测量方案中设定精度进行计算,确保修正后的测量方案和方法满足工程施工的精度要求。随着测量仪器测距精度的提升,隧道施工测量在纵向上所出现的贯通预计误差会小于测量限差要求,使用常规的水准测量均可满足工程精度要求。但由于隧道横向贯通误差的大小直接关系到隧道整体的施工质量,严重者会导致整个隧道报废,因此必须加强与控制横向贯通的误差参数,确保误差预计在限定范围内。 4改进措施以及应用成果 4.1CORS用在地铁控制网的解算 将撑死高等级的控制点当作地铁平面的控制网,这是我们国家在早期地铁的施工建设过程当中所应用最主要的做法,而且现在有很多城市也在使用这种方法。要是城市之中不具备足够范围以及密度的高等级控制点,那么久要耗费很多精力在市区的范围之内对控制网加以布设,不过因为城市建设进程的逐步加快,所布设出的高等级控制点经常会受到破坏,遭受破坏的频率相当高。本文结合某地铁线路建设工程实例进行探讨,该线路的GPS控制网一共新埋设了二十九个,包括地面点十四个,搂定点十五个,对三个城市的高等级控制点加以联测。GPS观测利用静态作业的形式,利用六台Trim-ble5700型的双频接收机实现观测,同时选取网中的A1、A11、A15、A25、B1以及三个CORS起算点Ⅰ站,Ⅱ站以及Ⅲ站构成框架网实施长时间的观测。然后把所获得的数据信息加以基线质量的检核、二维约束平差以及三维约束平差,将对结果加以检验之后发现能够满足规范当中的要求。 4.2地下导线测量的改进 隧道内控制导线是随着隧道开挖而向前延伸的,一般布设成支导线。在隧道,受到条件的限制导致导线的图形强度较弱,其点位精度也会随着隧道掘进距离的延长而变差。尤其是在城市地铁建设中,外界环境对联系测量的影响越来越大,极大地限制了在洞内引测方位角的条件,很难保证洞内定向的精度。利用陀螺经纬仪定向时,定向精度达到了要求,验证了原一井定向测量资料的可靠性。与传统的几何定向相比,陀螺经纬仪定向具有操作简单,占用井筒和平巷的时间,精度高等优点。同时,在导线传递过程中,加测一条陀螺经纬仪定向

地铁事故案例分析

地铁事故案例分析 地铁事故案例分析引发地铁事故因素分析我个人认为引发地铁事故的因素可以分为三种:第一:人为因素第二:设备因素第三:天气因素人为因素人为因素又可以分为一下几种情况:违章作业;业务不精;人为因素又可以分为一下几种情况:判断失误;身体因素;人为因素又可以分为一下几种情况:地外人员对地铁设备不了解;人群密集、客流量大;故意破坏、恐怖袭击。设备因素设备因素可以分为以下几种情况:设备故障;新设备状态不稳定;设备潜在的安全隐患。天气因素天气因素又可以分为以下几种情况:风、雨、雷、电、雾的影响;气温和湿度的影响。人为原因引起的地铁事故一、南京地铁列车连挂车钩发生碰撞事故时间地点时间:2005年12月1日6 时55分。地点:小行—安德门上行区间,距安德门站约300米处。事故后果此次事故造成2526车A端的防爬器轻微擦伤,2526车A端车头右侧的导流罩损坏。事故经过7:40,行调指令基地内1314车出库连挂故障车2526车;8:05,1314车出库,采用洗车模式与2526车连挂时,因列车处于小半径曲线位置,车钩对位不正,连挂失败,车钩发生碰撞。事故原因分析本案例事故的主要原因是编制技术文本时,考虑的不够充分,没有将“小曲率半径连挂作业要求”进行明确;当时车辆连挂时线路半径为150米,根据《南京地铁南北线一期工程车辆合同文件附件1》中对车钩连挂的规定,是不允许进行自动连挂的,合同中明确要求列车自动连挂时最小半径不得小于300米。同时也反应出调度人员和作业人员安全意识不强,经验不足,缺乏处理特殊情况的应变能力。事故原因分析(续) 经过此事故后,南京地铁在2007版《小行基地运作规则》中规定:小行基地内道岔区段及其它300 米以下曲线半径线路原则上不得进行电客车连挂作业。特殊情况下须进行连挂作业时,须确认车钩位置,如果车钩自动对中不能达到对中范围的要求,须进行手动调整。150米曲线半径的线路上进行连挂作业时,由车辆系统派专业人员进行现

复杂地质条件下地铁深基坑动态监测数据分析

四川建筑第32卷6期2012.12 复杂地质条件下地铁深基坑动态监测数据分析 白茂业 (中铁上海工程局华海工程有限公司,上海200436) 【摘要】通过结合宁波地铁2号线8标复杂地质条件下地铁深基坑工程,采用优化的基坑动态监测 方案,对基坑周边土体地表沉降、基坑外地下水位、建筑沉降、钢支撑轴力以及地下连续墙墙顶水平位移进行监测,得出基坑开挖与时间的变化规律曲线,分析这些变形曲线可为施工提供可靠的科学依据和技术指导,也为2期工程基坑的开挖提供参考。 【关键词】地铁; 基坑开挖; 施工监测; 数据分析 【中图分类号】TU94+2 【文献标识码】B [定稿日期] 2012-03-30[作者简介]白茂业(1983 ),男,助理工程师,从事轨道交通技术管理工作。 随着近年来城市轨道的飞速发展,目前在建的轨道工程很多,尤其是在长三角的发达城市更是处于建设的高潮期。然而长三角地区临近海岸,地质环境较为复杂,一般以淤泥粘土和粉砂夹粉质黏土为主,而且常常会有承压水的出现。对于这种复杂地质条件下的基坑开挖,具有技术难度高、工程周期长、隐蔽性、造价高、外界环境影响大等特点,无论对于设计还是施工都是一个艰难的挑战,所以采取设计、施工、监测的动态反馈是一个很好的解决方式。目前,对于深基坑变形的现场监测已经成为确保地铁深基坑施工工程安全可靠的必要和有效手段 [1-4] 。本文以宁波轨道交通2号线8标 的区间深基坑工程为例,对深基坑围护结构的内力及变形规律进行了现场监测研究。 1工程概况 宁波轨道交通2号线为西南—东北方向的基本骨干线,线路全长28.350km 。全线共设置车站22座,其中地下车站18座,高架车站4座。其中2号线8标汽车市场 甬江北站区间是宁波市轨道交通2号线一期工程的一个地下两层明挖区间,区间地下二层设有双列位停车线,地下一层为物业开发层。区间采用明挖顺作法施工,围护结构型式为0.8m 厚地下连续墙。区间总长337.132m ,宽17.8 19.3m ,明挖基坑开挖深度16.2 17.2m ,区间布置如图1所示。区间基坑开挖范围内地质为:①1填土、①2黏土、①3淤泥质黏土、②1黏土、 ②2b 层淤泥质黏土、②3层淤泥质粉质黏土、②4层淤泥质黏土、③1层粉土,粉砂夹粉质黏土、③2层粉质黏土、④2层黏土、 ⑤1层黏土、⑤2层粉质黏土、⑤3层粉土、⑥2层粉质黏土、⑥2a 层粉土、⑦1层粉质黏土和⑧1层粉砂、粉土等。地下水主要为第四系松散浅层孔隙潜水类型和深部松散岩类孔隙承压水。区间典型地质如图2所示。 2基坑围护方案 车站围护结构采用800mm 厚地下连续墙,标准段基坑 深约16.2m ,底板大部分位于③1粉土,粉砂夹粉质黏土层,局部位于③1b 粉质黏土层,墙趾位于⑤1层黏土中,入土比为0.86,基坑沿竖向共设置五道支撑,其中第一道为800 mm 图1 地铁区间布 置 图2 区间地质断面 ?1000mm 钢筋混凝土支撑,其余均为钢支撑,其中第二、第三道钢支撑直径为609mm (t =16mm ),第四、五道钢支撑直径为800mm (t =16mm )。端头井基坑深约17.8m ,底板位 于③1粉土, 粉砂夹粉质黏土层,局部位于③1b 粉质黏土层,墙趾位于⑤1层黏土中,入土比为0.87,基坑沿竖向共设置 六道支撑,其中第一道为800mm ?1000mm 钢筋混凝土支撑,其余均为钢支撑,其中第二 五道钢支撑直径为609mm 2 9·岩土工程与地下工程·

地铁隧道贯通前铺轨的测量条件探讨及分析

地铁隧道贯通前铺轨的测量条件探讨及分析 发表时间:2019-08-13T16:03:47.390Z 来源:《工程管理前沿》2019年第11期作者:张茂元 [导读] 对地铁隧道贯通前铺轨的测量条件进行探讨分析。 中交隧道局第四工程有限公司四川成都 610000 摘要:在对地铁进行建设施工的过程中,由于受到地下环境的各方面因素影响,必须要在隧道施工竣工之前完成轨道的铺设,以及进行一系列的部件安装工作。但是这个时候地下监控区间的监控范围还不确定,监控标准还存在一定的漏洞,因此,此时的铺轨施工工作存在一定的安全隐患问题。基于此,本文将对地铁隧道贯通前铺轨的测量条件进行探讨分析。 关键词:贯通测量:铺轨;控制测量 尽管地铁贯通隧道测量的标准有很多,但目前被广泛应用的主要是横向测量和竖向测量。贯通测量对于引导盾构顺利进入预留门洞具有有着重要的作用。因此,贯通测量在施工过程中十分必要。进行地铁隧道贯通测量主要是为了能够使盾构设计准确的按照既定的设计轴线推进运行,并且最终能够顺利进入到预留门洞。为了保证轨道能够顺利运行,就必须要应用严格的测量标准并进行后续检查。 一、隧道测量概述 隧道的建设主要是为了在山区和地上通行受阻碍的地区开辟出一条安全畅通的道路。建设隧道的主要工程就是挖开山体。为了使整个施工期限变短,目前大多都采用多截面的方式来增加工作面。在被挖开的截面中,如果出现对线无法真正重合的情况那么就是出现了贯通测量误差。贯通测量误差主要分为三大类型;纵向贯通误差,横向贯通误差以及竖向贯通误差。纵向贯通误差主要是指同隧道方向相一致出现的贯通误差。纵向误差是指与隧道方向垂直的贯通误差。而竖向误差是指在隧道竖直方向上所出现的贯通误差。横向误差将会导致中线左右方向出现位移,纵向误差将会导致隧道的坡度大小出现误差。因此,在隧道建设的过程中,最关键的就是把握好贯通测量的问题。只有保证贯通测量的准确性,才能使得轨道建设的安全性更强。 二、隧道建设的具体要求 1.隧道贯通测量的目的就是为了使得在施工的过程,能够确定精确标准的施工参数。同时各项基础设施和配件能按照既定的要求,在规定的施工期限内规范安装。这样既有利于施工如期完成,同时也有利于维护整个隧道施工的安全性。 2.要做好洞内洞外的数据参数测量工作。谨慎而精确的采集施工过程中的各种数据参数。同时在施工前要了解到施工过程中会出现的各项需求。有利于减少施工过程中的数据误差,对于后续工程维护也有一定的积极作用。 3.对隧道洞外的水准点以及基线要确定出明确的具体标准,在实施的过程当中,一定要按照既定标准顺利实施,确保工程的科学性以及精准性。同时必须要定时对施工进行检查和监督,重点要注意水准点以及期限的实时位置的具体情况。 4.地铁隧道贯通测量的主要目的就是为了确保在进行地铁铺轨施工的过程当中,能够准确实行一切的既定参数标准,并且使得规定航道能够如期实行。因此,隧道测量必须依据谨慎,科学严谨的标准进行。 三、洞内测量 在进行隧道测量的过程中,由于隧道的形状以及走位方式会限制隧道内导线的传递方向。最容易导致测量误差的因素主要来源于测角和测边这两大方面。而对于测量误差影响最大的通常是测角。因此,在寻找误差的过程当中,就可以将测角作为一定的误差依据来进行测量。那么最终可以通过计算得出结论的是,在洞内中所得到的测角误差都要比在导线内所测量的误差要偏大。因此,在进行调整的过程中,应当不断减少误差,改变测量精度,最终使得贯通测量的误差趋于零,使得贯通测量符合标准。 3.1洞内控制网点的布置设计 在相同参数标准的要求下,通常来说,隧道内部的测量误差往往会随着测量次数的增多而不断的增加。最终将会导致数据误差会趋于无限大。因此,在传导的过程中减少误差就变得十分必要。在隧道内部环境条件允许的情况下,应当尽可能地延伸导线内的传导空间,能够有效增加传递时间,最终以比较小的方位角,达到有效减小误差的目的。同时,为了适应相同标准的误差测量,应当使传导线的长度互相尽量保持一致,这样既有利于满足精度要求,在一定程度上又可以减少因远程观察而产生的误差。由于轨道施工时间通常来说是比较长的,因此导线点受施工影响的周期也会增加。所以,在进行设置导线端点的过程中,要尽可能地使导线端点保持相对稳定,这样就有利于避免在施工过程中发生各种环境变化,造成导线发生偏移。为了增强导线的稳定性,可以采用混凝土进行稳基固定。最后再将底部放入回填至一定高度。 3.2测量的特殊要求 由于洞内测量具有一定的危险性和差异化,因此必须要有一定的特殊方法和严格的要求进行测量。 (1)要重点关注洞口以及内站两个方位的测角。由于洞口位置较深,它的内外温差比较大,造成空气的气压不稳定。因此在进行测角的测量过程中,容易发生成像虚化的现象。这会对于施工的准确性有一定程度的影响。同时,光角度的影响会显得更加严重。这些问题都会对测角的测量造成一定的影响。同时对于不同测量地点之间而言,他们之间的距离通常都比较远,那么,这些测角之间的差异对于隧道贯通测量都有着不同程度的影响。因此,在进行测量内外两个测角时,应当选择适宜的天气状况下进行测量。这样就能够充分的减少测量误差,得到更加满意的测量结果。 (2)在隧道测量的过程当中,应当尽量保持测量的标准性和严谨性。适当的放宽误差的标准。因为在测量的过程中由于环境影响产生误差是不可避免的。那么就可以说有些误差是可以直接忽略的,而有些误差要计入一定的参考数据当中。因此,工作人员更要加强对于误差因素的判断,判断误差是否为可忽略误差如果是必要误差就必须要记入到实际的误差监测数据值中去。 (3)可以明显看出的是,水下测量仪器液与照相机的原理相同。所以在洞内对测量仪器进行测量时,应当保持干净卫生环境和稳定的底座。在测量截面要减少障碍物的阻挡。尽量在光线条件良好的条件下进行测量观察,在确定环境周围没有障碍的条件下,开始测量。 四、测量过程中应当注意的问题 4.1分工具体,职业明确 隧道测量并不仅仅关乎于测量人员的责任,这项工作更需要整个设计团队和施工人员的共同配合。第一步就是要做好工作资料的审核,确保一切施工处于一个相对安全和严谨的过程当中。测量人员要依据相关的测量标准要求准确如实地进行记录与反映。同时仔细排查施工现场是否存在一定安全隐患问题。有关人员一定要明确相关职责要求,严格按照各种的标准要求办事,确保每个工作人员都能够恪尽

相关文档
最新文档