半周积分法 傅氏变换算法

半周积分法  傅氏变换算法
半周积分法  傅氏变换算法

半周积分法傅氏变换算法;几种常用的数字滤波器:差分(减法)滤波器、加法滤波器、积分滤波器。监控系统功能:一、实时数据采集和处理。采集变电站电力运行实时数据和设备运行状态,包括各种状态量、模拟量、脉冲量(电能量)、数字量和保护信号,并将这些采集到的数据去伪存真后存于数据库供计算机处理之用。二、运行监视与报警功能。三、操作控制功能。四、数据处理与记录功能。五、事故顺序记录及事故追忆功能。六、故障录波与测距功能。七、人机联系功能(CRT显示器、鼠标、键盘)。八、制表打印功能。九、运行的技术管理功能。十、谐波的分析及监控功能

一、监控系统的结构

监控系统是由监控机、网络管理单元、测控单元、远动接口、打印机等部分组成。

根据完成的功能不同,变电站监控系统可分为信息收集和执行子系统、信息传输子系统、信息处理子系统和人机联系子系统。

微机保护装置的特点

1.智能化

微机保护装置除了硬件外,还必须具有相应的软件,因此微机保护可以实现智能化。

2. 高可靠性

微机保护可对其硬件和软件连续自检,有极强的综合分析和判断能力。

3. 易于获得附加功能

微机保护装置除了提供常规保护功能外,还可以提供一些附加功能。例如,保护动作时间和各部分的动作顺序记录,故障前后电压和电流的波形记录等。这将有助于运行部门对事故的分析和处理。

4. 调试维护方便

在微机保护应用之前,整流型或晶体管型继电保护装置的调试工作量很大,原因是这类保护装置都是布线逻辑的,保护的功能完全依赖硬件来实现。微机保护则不同,除了硬件外,各种复杂的功能均由相应的软件(程序)来实现。

5.完善的网络通信功能

6.可以采用一些新原理,改善保护的性能。

如:采用模糊识别原理或波形对称原理识别励磁涌流。采用自适应原理改善保护的性能等。

微机保护硬件部分包括:

1.数据采集系统,如:模拟量输入变换与低通滤波回路,采样保持与多路转换,模数转换系统,开关量输入通道等。

2.微机主系统,如CPU,存储器、实时时钟,Watchdog.

3.输入输出系统,如开关量的输出

4.人机接口,如:键盘、显示器、打印机。

五。输电线路微机距离保护

定义:距离保护是反映故障点至保护安装处的距离,并根据距离的远近而确定动作时间的一种保护装置。距离愈近,动作时间于短,以保证有选择地切除故障线路。

备用电源自动投入装置:是电力系统故障或其它原因使工作电源被切断后,能迅速将备用电源或其它正常工作的电源自动投入工作,使原来工作电源被断开的用户能迅速恢复供电的一种自动控制装置。

一、备用电源的配置方式

备用电源的配置一般分为明备用和暗备用。

系统正常时,备用电源不工作,称为明备用;

系统正常时,备用电源也投入运行,称为暗备用(实际上是两个工作电源互为备用。)

半周积分法 傅氏变换算法

半周积分法傅氏变换算法;几种常用的数字滤波器:差分(减法)滤波器、加法滤波器、积分滤波器。监控系统功能:一、实时数据采集和处理。采集变电站电力运行实时数据和设备运行状态,包括各种状态量、模拟量、脉冲量(电能量)、数字量和保护信号,并将这些采集到的数据去伪存真后存于数据库供计算机处理之用。二、运行监视与报警功能。三、操作控制功能。四、数据处理与记录功能。五、事故顺序记录及事故追忆功能。六、故障录波与测距功能。七、人机联系功能(CRT显示器、鼠标、键盘)。八、制表打印功能。九、运行的技术管理功能。十、谐波的分析及监控功能 一、监控系统的结构 监控系统是由监控机、网络管理单元、测控单元、远动接口、打印机等部分组成。 根据完成的功能不同,变电站监控系统可分为信息收集和执行子系统、信息传输子系统、信息处理子系统和人机联系子系统。 微机保护装置的特点 1.智能化 微机保护装置除了硬件外,还必须具有相应的软件,因此微机保护可以实现智能化。 2. 高可靠性 微机保护可对其硬件和软件连续自检,有极强的综合分析和判断能力。 3. 易于获得附加功能 微机保护装置除了提供常规保护功能外,还可以提供一些附加功能。例如,保护动作时间和各部分的动作顺序记录,故障前后电压和电流的波形记录等。这将有助于运行部门对事故的分析和处理。 4. 调试维护方便 在微机保护应用之前,整流型或晶体管型继电保护装置的调试工作量很大,原因是这类保护装置都是布线逻辑的,保护的功能完全依赖硬件来实现。微机保护则不同,除了硬件外,各种复杂的功能均由相应的软件(程序)来实现。 5.完善的网络通信功能 6.可以采用一些新原理,改善保护的性能。 如:采用模糊识别原理或波形对称原理识别励磁涌流。采用自适应原理改善保护的性能等。 微机保护硬件部分包括: 1.数据采集系统,如:模拟量输入变换与低通滤波回路,采样保持与多路转换,模数转换系统,开关量输入通道等。

傅里叶(Fourier)级数的指数形式与傅里叶变换

傅里叶(Fourier )级数的指数形式与傅里叶变换 专题摘要:根据欧拉(Euler )公式,将傅里叶级数三角表示转化为指数表示,进而得到傅里叶积分定理,在此基础上给出傅里叶变换的定义和数学表达式。 在通信与信息系统、交通信息与控制工程、信号与信息处理等学科中,都需要对各种信号与系统进行分析。通过对描述实际对象数学模型的数学分析、求解,对所得结果给以物理解释、赋予其物理意义,是解决实际问题的关键。这种数学分析方法主要针对确定性信号的时域和频域分析,线性时不变系统的描述以及信号通过线性时不变系统的时域分析与变换域分析。所有这些分析方法都离不开傅里叶变换、拉普拉斯变换和离散时间系统的z 变换。而傅里叶变换的理论基础是傅里叶积分定理。傅里叶积分定理的数学表达式就是傅里叶级数的指数形式。 不但傅里叶变换依赖于傅里叶级数,就是纯数学分支的调和分析也来源于函数的傅里叶级数。因此,傅里叶级数无论在理论研究还是在实际应用中都占有非常重要的地位。我们承认满足狄里克莱(Dirichlet )条件下傅里叶级数的收敛性结果,不去讨论和深究傅里叶展式的唯一性问题。 傅里叶级数的指数形式 一个以T 为周期的函数)(t f ,在]2 ,2[T T 上满足狄里克莱条件:1o

)(t f 连续或只有有限个第一类间断点;2o 只有有限个极值点。那么)(t f 在]2 ,2[T T - 上就可以展成傅里叶级数。在连续点处 ∑∞ =++=1 )sin cos (2)(n n n t n b t n a a t f ωω, (1) 其中 T πω2= , ),2,1,0(,cos )(2 22Λ==?-n dt t n t f T a T T n ω, (2) ),3,2,1(,sin )(2 22 Λ==?-n dt t n t f T b T T n ω, (3) 根据欧拉(Euler )公式:θθθsin cos j e j +=,(1)式化为 ∑∞=--?? ????-+++=10222)(n t jn t jn n t jn t jn n j e e b e e a a t f ωωωω ∑∞=-?? ? ???++-+=10222n t jn n n t jn n n e jb a e jb a a ωω, (4) 若令 dt t f T c T T ?-=22 0)(1 Λ,3,2,1,)(1 ]sin )[cos (1 sin )(1cos )(1222 2222 22==-=-=-=????-----n dt e t f T dt t n j t n t f T dt t n t f T j dt t n t f T jb a c T T t jn T T T T T T n n n ωωωωω Λ,3,2,1,)(1 22 ==?--n dt e t f T c T T t jn n ω 综合n n c c c -,,0,可合并成一个式子 Λ,2,1,0,)(1 22 ±±==?--n dt e t f T c T T t jn n ω, (5)

傅里叶变换拉普拉斯变换的物理解释及区别

傅里叶变换在物理学、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量)。 傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。 傅里叶变换是一种解决问题的方法,一种工具,一种看待问题的角度。理解的关键是:一个连续的信号可以看作是一个个小信号的叠加,从时域叠加与从频域叠加都可以组成原来的信号,将信号这么分解后有助于处理。 我们原来对一个信号其实是从时间的角度去理解的,不知不觉中,其实是按照时间把信号进行分割,每一部分只是一个时间点对应一个信号值,一个信号是一组这样的分量的叠加。傅里叶变换后,其实还是个叠加问题,只不过是从频率的角度去叠加,只不过每个小信号是一个时间域上覆盖整个区间的信号,但他确有固定的周期,或者说,给了一个周期,我们就能画出一个整个区间上的分信号,那么给定一组周期值(或频率值),我们就可以画出其对应的曲线,就像给出时域上每一点的信号值一样,不过如果信号是周期的话,频域的更简单,只需要几个甚至一个就可以了,时域则需要整个时间轴上每一点都映射出一个函数值。 傅里叶变换就是将一个信号的时域表示形式映射到一个频域表示形式;逆傅里叶变换恰好相反。这都是一个信号的不同表示形式。它的公式会用就可以,当然把证明看懂了更好。 对一个信号做傅里叶变换,可以得到其频域特性,包括幅度和相位两个方面。幅度是表示这个频率分量的大小,那么相位呢,它有什么物理意义频域的相位与时域的相位有关系吗信号前一段的相位(频域)与后一段的相位的变化是否与信号的频率成正比关系。 傅里叶变换就是把一个信号,分解成无数的正弦波(或者余弦波)信号。也就是说,用无数的正弦波,可以合成任何你所需要的信号。

微机保护中基于DFT傅氏算法的频率特性研究_李吉德

0前言 计算机继电保护是用数学运算方法实现故障量的测量、分析和判断的。而当电力系统发生故障时,出现的最多的就是周期分量,按照傅立叶级数的定义,任何周期信号都可以描述成一种傅立叶级数形式,而利用傅氏算法[4],能够准确的得到周期信号傅立叶级数的所有系数。然而,为了保证保护的速动性,计算的时间就成为了我们首要考虑的问题。基于DFT的FFT算法,由于其具有的原位性,计算量小且易于流水操作等特点,所以非常适合用数字信号处理器进行处理。利用FFT来实现傅氏算法,可以大大减少计算量,进而加快计算速度,对加快保护动作速度,增强其速动性有明显的效果。 然而,要满足傅立叶算法的条件是比较困难的,因为电力系统发生故障的时候,信号并非只有故障的周期分量,与此同时,还有衰减的直流分量[7]、幅值不断变化的各次斜波和系统的频率偏移[3]等。如果不对这几种情况加以考虑,那么所得到的误差在保护装置中的影响是巨大的,特别是对于幅值比较型和相位比较型的保护,其动作判据就是傅立叶系数之间的关系,误差的增大会造成保护判据的失灵,达不到保护的可靠性要求。 因此,本文就电力系统故障中可能出现的几种情况,给出了基于DFT的傅氏算法应用所需要的必要条件,而后简要介绍了几种消除误差的方法。 1周期信号的傅氏算法及其频率特性按照文献[5]中的要求,将信号模型设定为余弦函数模型,即信号为如下形式 : (1) 参数如下: ω0-系统中的基频角频率; m-1-系统中的最高斜波次数; I k-各次斜波的幅值; φk-各次斜波的相位; A k-各次斜波余弦函数的幅值; B k-各次斜波正弦函数的幅值。 按照文献[5],得到各次斜波的幅值和相位表达 微机保护中基于DFT傅氏算法的频率特性研究Research on the Frequency Character of Fourier Algorithm based on DFT in Microprocessor-based Protection 李吉德赵作斌廖哓波 长岛县供电公司山东长岛265800 【摘要】为了保证微机保护的速动性,大部分微机保护的信号采集装置利用DFT来实现傅氏算 法的系数求解。本文由连续信号的频域出发,推导出了基于DFT的傅氏算法离散信号频率特 性。通过对该频率特性的研究,既给出了基于DFT的傅氏算法在微机保护中的理论依据,又得 到了基于傅立叶算法应用的必要条件。并在最后简要的介绍了某种剔除信号中衰减直流分量 的算法。 【关键词】微机保护DFT傅氏算法频率特性 【中图分类号】TM771【文献标识码】A ·电力工程·

傅里叶变换与傅里叶级数

重温傅里叶—笔记篇 本文记录的大多是基础的公式,还有一些我认为比较重要的有参考价值的说明。(如果对这些公式已经很熟悉,可以直接看第三部分:总结性说明) 重温傅里叶—笔记篇 一、傅里叶级数 $关于三角函数系的正交性: 三角函数系包括: 1,cos x,sinx,cos2x,sin 2x,……cos nx,sinnx,…… “正交性”是说,三角函数系中的任何一项与另一项的乘积,在(-π, π) 区间内的积分为0。(任何两相的积总可以展成两个频率为整数倍基频的正余弦函数之和或差,而这两个展开后的正余弦在(-π, π)上积分都为0)。 不同频率(但都是整数倍基频)的两个正弦函数之积,在(-π, π)上积分恒为0。 同频率的两个正弦函数之积,只有在这两个正弦的相位正交时,其在(-π, π)上积分才是0。 三角函数系中除“1”以外的任何一项的平方,在(-π, π)上的积分恒为π,“1”在这个区间上的积分为2π。

$ 上公式! ①当周期为2π时: 式(1): 上式成立的条件是f(x)满足狄立克雷充分条件: 1.在任意有限区间内连续,或只有有限多个第一类间断点; 2.任意的有限区间,都可被分成有限多个单调区间(另一种说法是:任意有限区间内只有有限多个极值点,其实是一样的)

式(1)第一行中的a0/2 就是f(x)的周期平均值,而且第一行的式子只对f(x)是连续函数的情况成立;如果f(x)不连续,则应表示成“(1/2) ×[f(x-0)+f(x+0)]”,即f(x)左右极限的算术平均。下面的类似情况都是这样,之后就不再专门说明,这些大家应该都懂。 第三、四行中,n的取值都是:1,2,3,4,……n,……(都为正,且不包含0)。 ②当周期为2L时(这也是最一般的情形): 式(2): 第一行中的a0/2 就是f(x)的周期平均值; 第三、四行中,n的取值都是:1,2,3,4,……n,……(都为正,且不包含0)。

傅里叶变换和傅里叶级数的收敛问题

1、傅里叶变换和傅里叶级数的收敛问题 由于傅里叶级数是一个无穷级数,因而存在收敛问题。这包含两方面的意思:是否任何周期信号都可以表示为傅里叶级数;如果一个信号能够表示为傅里叶级数,是否对任何t 值级数都收敛于原来的信号。关于傅里叶级数的收敛,有两组稍有不同的条件。 第一组条件:如果周期信号()t x 在一个周期内平方可积,即 ()∞

2、周期序列的傅里叶级数展开和傅里叶变换之间的问题 假定()t x 是一个长度为N 的有限长序列,将()t x 以N 为周期延拓而成的周期序列为()n x ~ ,则有 ()()∑∞ -∞ =-= r rN n x n x ~ 或表示为()()()N n x n x =~ 。于是()n x ~ 与()n x 的关系表示为: ()()()N n x n x =~ ()()()n R n x n x N ~ = 将()n x ~ 表示为离散时间傅里叶级数有: ()()kn N N n W k X N n x --=?= ∑1 0~ ~ 1 ()()kn N N n W n x k X ?= ∑-=10 ~ ~ 其中()k X ~ 是傅里叶级数的系数,这样做的目的是使其表达形式与离散时间傅里叶变换的形式相类似。如果将()k X ~ 的主值周期记为()k X ,10-≤≤N k ,由于以上两式中的求和范围均取为区间0~N-1,在次区间内()n x ~ =()n x ,因此可以得到: ()()kn N N n W n x k X ∑-== 10 ~ , 10-≤≤N k ()()kn N N n W k X N n x --=∑= 1 ~ 1, 10-≤≤N n 表明时域N 点有限长序列()n x 可以变换成频域N 点有限长序列()k X 。显然,DFT 与DFS 之间存在以下关系: ()()()N k X k X =~ ()()()k R k X k X N ~ =

傅氏级数与傅氏变换

傅里叶级数与傅里叶变换 一、对于周期信号离散谱的理解 对于时域非周期函数,其包含(?∞,+∞)的所有频谱信息。 对于时域周期函数,每个周期的时域图像都完全相同,每个周期所包含的频谱信息也相同,因此在(?∞,+∞)范围内对于周期函数其频谱的频率完全由任意一周期的频谱的频率决定;其幅值则为各周期频谱幅值的叠加,其有无穷多个周期因此其幅值为无穷。 而周期信号的一个周期可以看作是在一个非周期信号上截下的一段,因此它一定不能包含所有的频谱信息(包含所有频谱信息即他的频谱在各频率点幅值均不为0);其频谱表现为一系列离散的谱。 也就是说,周期信号的傅氏变换为其各个周期傅氏级数的叠加,其结果为在一系列离散频率点的冲击。 二、对傅里叶级数的理解 将所有函数看做一个线性空间,在空间内必可找到一组相互正交的基;以正交的三角函数系为基。在此基的基础上对任意一周期函f 数在一个周期内沿基展开就是傅里叶级数。基的各个元素的分量就是线性空间内函数f 在正交三角函数系上的的坐标。 而这一正交三角函数系也不能任意选取,其基频由时域信号本身决定,实际上是由有其周期决定。 即,ω=2π/T 三、对傅里叶变换的理解 傅里叶变换反映的是时域信号的幅频特性,仅包含幅值信息。 f t =12π F(j ω)+∞ ?∞ e j ωt d ω 其中e j ωt 包含正弦信息,12πF(j ω)d ω包含幅值信息。因此,F(j ω)描述信号在频域不同频率下的幅度,称其为幅频特性或f(t)的频谱。 频谱仅考虑幅值的大小;与正负、相位无关。 四、周期信号的傅里叶变换 F j ω =2π F n +∞n=?∞δ(ω?n ω1) 其中,F n =1T f(t)e ?jn ω1t dt T/2?T/2

第5篇 傅里叶递推算法

第5篇 傅里叶递推算法 一个以T 为周期的函数()t f T ,若在[]0,T -上满足狄氏条件(电网中的电压、电流满足),那么,在[]0,T -上就可以展成傅氏级数。 在计算电网中的电压、电流的基波时,存在两种算法:一种随截取不同时刻的窗(积分区间),得到不同的初相角;另一种维持初相角不变。 例如,[]11---k k t T t ,的基波值 ()tdt t f T a k k t T t T k ωcos 2111?----= ,()tdt t f T b k k t T t T k ωsin 21 11 ?----=。 计算[]k k t T t ,-的基波值 第一种算法 ()tdt T t f T a S t T t T k k k ωcos 211+= ?---,()tdt T t f T b S t T t T k k k ωsin 21 1+=?---。 ()()dt t t f T a S t T t T k k k ?ω-=?-cos 2,()()dt t t f T b S t T t T k k k ?ω-=?-sin 2。 ()1 第二种算法 ()()dt T t T t f T a S S t T t T k k k ++= ?---ωcos 211,()()dt T t T t f T b S S t T t T k k k ++=?---ωsin 21 1 。 ()tdt t f T a k k t T t T k ωcos 2?-=,()tdt t f T b k k t T t T k ωsin 2?-=。 ()2 k k k b j a c 2 1 21+= 比较()1式与()2式,初相角差()1--==k k S S t t T ωω?。这是由于被分解函数()t f T 与相关函数t ωcos ,t ωsin 的时间差引起的。被分解函数()t f T 后移S T ,而相关函数t ωcos , t ωsin 未移。若相关函数同步后移S T ,就消除了初相角差S ?。 电网的应用中并不关心相量的绝对初相角,只关心它们之间的相对相角(相位差)。因 此,同时刻的相量运算,只要截取相同的窗,采用相同的算法,得到的相位差是正确的。但是,不同时刻的相量运算,也必须坚持正确的相角关系。第一种算法的窗只能相差T n ?,而第二种算法无此要求。例如计算突变量,第一种算法故障前窗超前故障后窗T n ?且随故障后窗同步推移。第二种算法固定故障前窗且靠近故障时刻,故障后窗随时间推移。直观上 ()2式比()1式简单、规整,例如采用第二种算法计算 ()()[]tdt T t f t f T a a k k t t T T k k ωcos 211?---= --,()()[]tdt T t f t f T b b k k t t T T k k ωsin 21 1?---=-- ()3

傅里叶级数与傅里叶变换关系与应用

论文题目傅里叶级数与傅里叶变换的关系与应用 目录 摘要: 0 关键词 0 Abstract 0 1绪论 (1) 2傅里叶级数的概念 (1) 2.1周期函数 (2) 2.2傅里叶级数的定义 (2) 3 傅里叶变换的概念及性质 (10) 3.1傅里叶变换的概念 (10) 3.2傅立叶变换的性质 (11) 4傅里叶变换与傅里叶级数之间的区别与联系 (12) 5傅里叶级数和傅里叶变换的应用 (12) 5.1傅里叶级数的应用 (12) 5.2傅里叶变换的应用 (13) 参考文献 (15)

傅里叶级数与傅里叶变换的关系与应用 摘要:傅里叶级数是对周期性现象做数学上的分析,而傅里叶变换则可以看作傅里叶级数的极限形式,它也可以看作是对周期现象进行数学上的分析。除此之外,傅里叶变换还是处理信号领域的一种很重要的算法。 傅里叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。很多波形可以作为信号的成分,例如余弦波,方波,锯齿波等等,傅里叶变换作为信号的成分。在电子类学科,物理学科,信号处理学科等众多领域都有着广泛的应用。 傅里叶级数针对的是周期性函数,傅里叶变换针对的是非周期性函数,它们在本质上都是一种把信号表示成复正选信号的叠加,存在相似的特性。 关键词:傅里叶级数;傅里叶变换;周期性 Fourier series And Fourier Transforms Abstract: Fourier series is made mathematical analysis to cyclical phenomenon, and Fourier transform can be seen as the limit form of Fourier series, it also can be regarded as a mathematical analysis of cycle phenomenon. In addition, the Fourier transform is a kind of very important in the field of signal processing algorithms. Fourier transform is a method of signal analysis, it can analyze signal component, also can use these ingredients synthetic signal. Many waveform can be used as a signal of ingredients, such as cosine wave, square wave, sawtooth wave, etc., the Fourier transform as a signal of composition. In electronics disciplines, physics, signal processing disciplines etc many fields have a wide range of applications. Fourier series is for periodic function, Fourier transform for is a periodic function, they are in essence a kind of papers said the signal into a complex signal superposition, similar features. Key words: Fourier series; Fourier Transform; Periodic

半波傅氏算法的改进

半波傅氏算法的改进 ——一种新的微机保护交流采样快速算法 丁书文张承学龚庆武肖迎元 摘要提出一种利用半波傅氏算法消除衰减非周期分量对基波分量影响的快速算法,新算法的数据窗是半个周期的采样值加两个采样点,而其滤波效果远远优于半波傅氏算法。该算法理论上可以完全消除任意衰减时间常数τ的非周期分量对基波分量的影响。通过大量的仿真试验表明,新算法滤除衰减非周期分量能力强,计算简单,速度快,具有实际应用价值。 关键词微机保护衰减非周期分量半波傅氏算法快速算法 分类号TM 77 O 174.2 0 引言 大多数微机保护算法的计算可视为对交流信号中参数的估算过程,对算法性能的评价也取决于其是否能在较短数据窗中,从信号的若干采样值中获得基波分量或某次谐波分量的精确估计值。目前广泛采用全波傅氏算法和最小二乘算法作为电力系统微机保护提取基波分量的算法。全波傅氏算法能滤除所有整次谐波分量,且稳定性好,但其数据窗需要1个周期,若再计及微机保护判断和保护出口的延时,一般快速微机保护的动作时间为1~1.5个周期,所以响应速度较慢;最小二乘算法需已知故障信号的模型和干扰信号的分布特性[1,2]。为了克服数据窗暂态带来的附加延时,已有半波傅氏算法[3]和卡尔曼滤波算法[4],但由于半波傅氏算法只用半个周期的采样数据,响应快,但滤波能力相对较弱,故只能用于保护切除出口或近处故障;卡尔曼滤波算法在数据窗暂态条件下能给出基波分量的最优估计,但计算过于复杂,限制了实际应用。为使保护快速动作,选择数据窗较短的快速算法就成为关键。本文从衰减非周期分量对半波傅氏算法的影响分析入手,提出新的计算方法,可完全滤除衰减非周期分量及奇次谐波分量,以提高其滤波能力。 1 半波傅氏算法 为了分析衰减非周期分量对半波傅氏算法的影响,设电力系统故障电流有如下形式: (1) 式中I m (n),φ n 分别为n次谐波的幅值和初相角。

傅里叶Fourier级数的指数形式与傅里叶变换

(4) 2 T 2 T f (t)dt 傅里叶(Fourier )级数的指数形式与傅里叶变换 专题摘要:根据欧拉(Euler )公式,将傅里叶级数三角表示转化为指数表示,进而得到傅 里叶积分定理,在此基础上给出傅里叶变换的定义和数学表达式。 在通信与信息系统、交通信息与控制工程、信号与信息处理等学科中,都需要对各种 信号与系统进行分析。 通过对描述实际对象数学模型的数学分析、 求解,对所得结果给以物 理解释、赋予其物理意义,是解决实际问题的关键。这种数学分析方法主要针对确定性信号 的时域和频域分析,线性时不变系统的描述以及信号通过线性时不变系统的时域分析与变换 域分析。所有这些分析方法都离不开傅里叶变换、拉普拉斯变换和离散时间系统的 z 变换。 而傅里叶变换的理论基础是傅里叶积分定理。 傅里叶积分定理的数学表达式就是傅里叶级数 的指数形式。 不但傅里叶变换依赖于傅里叶级数,就是纯数学分支的调和分析也来源于函数的傅里 叶级数。因此,傅里叶级数无论在理论研究还是在实际应用中都占有非常重要的地位。 我们 承认满足狄里克莱(Dirichlet )条件下傅里叶级数的收敛性结果,不去讨论和深究傅里叶展 式的唯一性问题。 傅里叶级数的指数形式 一个以T 为周期的函数f (t ),在[-T ,T ]上满足狄里克莱条件:1o f (t )连续或只有 2 2 数。在连续点处 有限个第一类间断点; 2。 只有有限个极值点。 那么f (t )在nT,T ]上就可以展成傅里叶级 f(t) a 0 ,. (a n cosn ?t b n sin n ?t) (1) 其中 a n T 2 f (t) cosn tdt, (n 二 0,1,2,), _2 根据欧拉(Euler )公式: b n ;认)州艸(n=1,2,3,), (3) e" - cos : j si , (1)式化为 f(t)二色二 a 2 J e jn e" n jn ? £ j jn ? t +b e —e M n 2j 若令 a n - j b n 一 2 jn ;.-:t . a n jb n ?弓曲 2 」,

拉氏变换和傅里叶变换的关系

拉氏变换和傅里叶变换的关系 一、拉氏变换 1、拉氏变换的定义: 如果有一个以时间t 为自变量的实变函数 ()t f ,它的定义域是 0≥t ,,那么()t f 的的拉普拉斯变换定义为 ()()()0e d st F s L f t f t t ∞ -=?????? (2.10) s 是复变数, ωσj +=s (σ、ω均为实数), ?∞-0e st 称为拉普拉斯积分; )(s F 是函数 )(t f 的拉普拉斯变换,它是一个复变函数,通常也称 )(s F 为 )(t f 的象函数,而称 )(t f 为 )(s F 的原函数;L 是表示进行拉普拉斯变换的符号。 式(2.10)表明:拉氏变换是这样一种变换,即在一定条件下,它能把一实数域中的实变函数变换为一个在复数域内与之等价的复变函数 )(s F 。 2、拉氏变换的意义 工程数学中常用的一种积分变换。它是为简化计算而建立的实变量函数和复变量函数间的一种函数变换。对一个实变量函数作拉普拉斯变换,并在复数域中作各种运算,再将运算结果作拉普拉斯反变换来求得实数域中的相应结果,往往比直接在实数域中求出同样的结果在计算上容易得多。拉普拉斯变换的这种运算步骤对于求解线性微分方程尤为有效,它可把微分方程化为容易求解的代数方程来处理,从而使计算简化。在经典控制理论中,对控制系统的分析和综合,都是建立在拉普拉斯变换的基础上的。 在工程学上,拉普拉斯变换的重大意义在于:将一个信号从时域上,转换为复频域(s 域)上来表示;在线性系统,控制自动化上都有广泛的应用 二、傅里叶变换 1、傅里叶变换的定义: f(t )是t 的函数,如果t 满足狄里赫莱条件:具有有限个间断点;具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t )的傅立叶变换, ②式的积分运算叫做F (ω)的傅立叶逆变换。F (ω)叫做f(t )的像函数,f(t )叫做 F (ω)的像原函数。F (ω)是f(t )的像。f(t )是F (ω)原像。 ① 傅里叶变换 ②

拉氏傅氏变换变换的区别物理解释

2010-12-07 19:25:26来自: Brad(要理解递归,你先要理解递归) 傅里叶变换在物理学、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量)。 傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。 傅里叶变换是一种解决问题的方法,一种工具,一种看待问题的角度。理解的关键是:一个连续的信号可以看作是一个个小信号的叠加,从时域叠加与从频域叠加都可以组成原来的信号,将信号这么分解后有助于处理。 我们原来对一个信号其实是从时间的角度去理解的,不知不觉中,其实是按照时间把信号进行分割,每一部分只是一个时间点对应一个信号值,一个信号是一组这样的分量的叠加。傅里叶变换后,其实还是个叠加问题,只不过是从频率的角度去叠加,只不过每个小信号是一个时间域上覆盖整个区间的信号,但他确有固定的周期,或者说,给了一个周期,我们就能画出一个整个区间上的分信号,那么给定一组周期值(或频率值),我们就可以画出其对应的曲线,就像给出时域上每一点的信号值一样,不过如果信号是周期的话,频域的更简单,只需要几个甚至一个就可以了,时域则需要整个时间轴上每一点都映射出一个函数值。 傅里叶变换就是将一个信号的时域表示形式映射到一个频域表示形式;逆傅里叶变换恰好相反。这都是一个信号的不同表示形式。它的公式会用就可以,当然把

证明看懂了更好。 对一个信号做傅里叶变换,可以得到其频域特性,包括幅度和相位两个方面。幅度是表示这个频率分量的大小,那么相位呢,它有什么物理意义?频域的相位与时域的相位有关系吗?信号前一段的相位(频域)与后一段的相位的变化是否与信号的频率成正比关系。 傅里叶变换就是把一个信号,分解成无数的正弦波(或者余弦波)信号。也就是说,用无数的正弦波,可以合成任何你所需要的信号。 想一想这个问题:给你很多正弦信号,你怎样才能合成你需要的信号呢?答案是要两个条件,一个是每个正弦波的幅度,另一个就是每个正弦波之间的相位差。所以现在应该明白了吧,频域上的相位,就是每个正弦波之间的相位。 傅里叶变换用于信号的频率域分析,一般我们把电信号描述成时间域的数学模型,而数字信号处理对信号的频率特性更感兴趣,而通过傅立叶变换很容易得到信号的频率域特性。 傅里叶变换简单通俗理解就是把看似杂乱无章的信号考虑成由一定振幅、相位、频率的基本正弦(余弦)信号组合而成,傅里叶变换的目的就是找出这些基本正弦(余弦)信号中振幅较大(能量较高)信号对应的频率,从而找出杂乱无章的信号中的主要振动频率特点。如减速机故障时,通过傅里叶变换做频谱分析,根据各级齿轮转速、齿数与杂音频谱中振幅大的对比,可以快速判断哪级齿轮损伤。 拉普拉斯变换,是工程数学中常用的一种积分变换。 它是为简化计算而建立的实变量函数和复变量函数间的一种函数变换。对一个实变量函数作拉普拉斯变换,并在复数域中作各种运算,再将运算结果作拉普拉斯

FFT离散傅氏变换的快速算法

FFT(离散傅氏变换的快速算法) FFT(离散傅氏变换的快速算法) 目录 1算法简介 2DFT算法 3源码表示 4MATLAB中FFT的使用方法 1算法简介编辑 FFT(Fast Fourier Transformation),即为快速傅氏变换,是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。它对傅氏变换的理论并没有新的 FFT算法图(Bufferfly算法) 发现,但是对于在计算机系统或者说数字系统中应用离散傅立叶变换,可以说是进了一大步。 设x(n)为N项的复数序列,由DFT变换,任一X(m)的计算都需要N次复数乘法和N-1次复数加法,而一次复数乘法等于四次实数乘法和两次实数加法,一次复数加法等于两次实数加法,即使把一次复数乘法和一次复数加法定义成一次“运算”(四次实数乘法和四次实数加法),那么求出N项复数序列的X (m),即N点DFT 变换大约就需要N^2次运算。当N=1024点甚至更多的时候,需要N2=1048576次运算,在FFT中,利用WN的周期性和对称性,把一个N项序列(设N=2k,k为正整数),分为两个N/2项的子序列,每个N/2点DFT变换需要(N/2)2次运算,再用N次运算把两个N/2点的DFT变换组合成一个N点的DFT变换。这样变换以后,总的运算次数就变成N+2*(N/2)^2=N+(N^2)/2。继续上面的例子, N=1024时,总的运算次数就变成了525312次,节省了大约50%的运算量。而如果我们将这种“一分为二” 的思想不断进行下去,直到分成两两一组的DFT运算单元,那么N点的DFT变换就只需要Nlog2N次的运算,N在1024点时,运算量仅有10240次,是先前的直接算法的1%,点数越多,运算量的节约就越大,这就是FFT的优越性。 2DFT算法编辑 For length N input vector x, the DFT is a length N vector X, with elements

傅里叶变换及拉普拉斯变换的比较研究

学号1109141006 论文 课题:拉氏变换和傅里叶变换的关系 学生姓名:陈兴宇 院系:电气工程学院 专业班级:2011级电气工程及其自动化(1)班指导教师:董德智 二0一三年六月

1 傅里叶变换与拉普拉斯变换简介 (2) 1.1 傅里叶变换 (2) 1.1.1 傅里叶变换的历史由来 (2) 1.1.2 傅里叶变换的定义 (2) 1.1.3 傅里叶变换与逆变换的性质 (3) 1.2 拉普拉斯变换 (4) 1.2.1 拉普拉斯变换的历史由来 (5) 1.2.2 拉普拉斯变换的定义 (5) 1.2.3 拉普拉斯变换与逆变换的性质 (6) 1.3 小结 (7) 2 傅氏变换与拉氏变换的比较研究 (7) 2.1 两种积分变换在求解广义积分中的应用 (7) 2.2 两种积分变换在求解积分、微分方程中的应用 (10) 2.3 两种积分变换在求解偏微分方程中的应用 (12) 2.4 两种积分变换在电路理论中的应用 (16) 3 总结 (20) 参考文献 (23)

1 傅里叶变换与拉普拉斯变换简介 人们在处理与分析工程实际中的一些问题时,常常采取某种手段将问题进行转换,从另一个角度进行处理与分析,这就是所谓的变换。在数学、物理、工程技术等领域中应用最多的是傅里叶变换与拉普拉斯变换。下面对傅氏变换与拉氏变换进行简单的介绍。 1.1 傅里叶变换 1.1.1 傅里叶变换的历史由来 17世纪和18世纪,在牛顿和莱布尼茨等科学巨人的推动下,数学获得了飞速的发展。随着函数、极限、微积分和级数理论的创立,法国数学家傅里叶在研究热传导问题时发表了《热的解析理论》的论文[1],提出并证明了将周期函数展开为正弦级数的原理,奠定了傅里叶变换的理论基础。其后,泊松、高斯等人最早把这一成果应用到电学中去。时至今日,傅里叶分析法不仅广泛应用与电力工程、通信和控制领域中,而且在力学、光学、量子物理和各种线性系统分析等许多有关数学、物理和工程技术领域中都得到了广泛而普遍的应用。 1.1.2 傅里叶变换的定义 由《数学物理方法》课程的知识可知,对于(),-∞+∞上的非周期函数()f t 有如下的傅里叶积分定理[2]: 设()f t 在(),-∞+∞上有定义,且 ①在任一有限区间上满足狄利克雷条件[3](即连续或有有限个第一类间断点,并且只有有限个极值点); ②在无限区间(),-∞+∞上绝对可积,即 ()f t +∞ -∞ <+∞? 则有傅里叶积分公式 1 ()()2i i t f t f e d e d ωτωττωπ +∞ +∞--∞ -∞??= ???? ? ? (1-1) 在()f t 的连续点x 处成立,而在()f t 的第一类间断点0x 处,右边的积分应以 ()001 0(0)2 f x f x ++-????代替。

傅里叶(Fourier)级数的指数形式与傅里叶变换复习过程

傅里叶(F o u r i e r)级数的指数形式与傅里 叶变换

傅里叶(Fourier )级数的指数形式与傅里叶变换 专题摘要:根据欧拉(Euler )公式,将傅里叶级数三角表示转化为指数表示,进而得到傅里叶积分定理,在此基础上给出傅里叶变换的定义和数学表达式。 在通信与信息系统、交通信息与控制工程、信号与信息处理等学科中,都需要对各种信号与系统进行分析。通过对描述实际对象数学模型的数学分析、求解,对所得结果给以物理解释、赋予其物理意义,是解决实际问题的关键。这种数学分析方法主要针对确定性信号的时域和频域分析,线性时不变系统的描述以及信号通过线性时不变系统的时域分析与变换域分析。所有这些分析方法都离不开傅里叶变换、拉普拉斯变换和离散时间系统的z 变换。而傅里叶变换的理论基础是傅里叶积分定理。傅里叶积分定理的数学表达式就是傅里叶级数的指数形式。 不但傅里叶变换依赖于傅里叶级数,就是纯数学分支的调和分析也来源于函数的傅里叶级数。因此,傅里叶级数无论在理论研究还是在实际应用中都占有非常重要的地位。我们承认满足狄里克莱(Dirichlet )条件下傅里叶级数的收敛性结果,不去讨论和深究傅里叶展式的唯一性问题。 傅里叶级数的指数形式 一个以T 为周期的函数)(t f ,在]2 ,2[T T -上满足狄里克莱条件:1o )(t f 连续或只有有限个第一类间断点;2o 只有有限个极值点。那么)(t f 在]2 ,2[T T -上就 可以展成傅里叶级数。在连续点处 ∑∞ =++=1 )sin cos (2)(n n n t n b t n a a t f ωω, (1) 其中 T πω2= ,

串行FFT递归算法(蝶式递归计算原理)求傅里叶变换

串行FFT递归算法(蝶式递归计算原理)求傅里叶变换 摘要 FFT,即为快速傅氏变换,是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。它对傅氏变换的理论并没有新的发现,但是对于在计算机系统或者说数字系统中应用离散傅立叶变换,可以说是进了一大步。 设x(n)为N项的复数序列,由DFT变换,任一X(m)的计算都需要N次复数乘法和N-1次复数加法,而一次复数乘法等于四次实数乘法和两次实数加法,一次复数加法等于两次实数加法,即使把一次复数乘法和一次复数加法定义成一次“运算”(四次实数乘法和四次实数加法),那么求出N项复数序列的X(m),即N点DFT变换大约就需要N^2次运算。当N=1024点甚至更多的时候,需要N2=1048576次运算,在FFT中,利用WN的周期性和对称性,把一个N项序列(设N=2k,k为正整数),分为两个N/2项的子序列,每个N/2点DFT变换需要(N/2)^2次运算,再用N次运算把两个N/2点的DFT变换组合成一个N点的DFT变换。这样变换以后,总的运算次数就变成N+2(N/2)^2=N+N^2/2。继续上面的例子,N=1024时,总的运算次数就变成了525312次,节省了大约50%的运算量。而如果我们将这种“一分为二”的思想不断进行下去,直到分成两两一组的DFT运算单元,那么N点的DFT变换就只需要Nlog(2)(N)次的运算,N在1024点时,运算量仅有10240次,是先前的直接算法的1%,点数越多,运算量的节约就越大,这就是FFT的优越性。 关键字:FFT 蝶式计算傅里叶变换

目录 一.题目及要求 (1) 1.1题目 (1) 二.设计算法、算法原理 (1) 2.1算法原理与设计 (1) 2.2设计步骤 (2) 三.算法描述、设计流程 (4) 3.1算法描述 (4) 3.2流程图 (6) 四.源程序代码及运行结果 (8) 4.1源程序代码 (8) 4.2运行结果 (13) 五.算法分析、优缺点 (15) 5.1算法分析 (15) 5.2优缺点 (16) 六.总结 (17) 七.参考文献 (18)

傅氏算法的探究

傅氏算法在数字保护中得到了广泛的应用,但关于傅氏算法中余弦正弦系数a,b是否是信号相量的实部和虚部,作者一直感到困惑。通过分析近年发表相关傅氏算法的文献,提出几个问题的质疑,结合实际的工程实例和信号的物理意义,认为信号的虚部是-b即相量用表示,才能正确计算出阻抗、负序分量等。 关键词:傅氏算法;相量表示;分量 Discussion on the Fourier algorithm application Yuan yubo, Lu yuping , Tang guoqing (Electrical Engineering Department of Southeast University Nanjing 210096) Abstract:Fourier Algorithm has been deeply applied in digital protection, however it was puzzled about whether coefficients a or b are real or image part of the phasor. After analyzing the document published in recent years, some problems query was put forward. It was concluded that the phasor could represented by form of a-jb and the correctly impedance or negative phase-sequence could be figure out by this form.. Key words: Fourier Algorithm, Digital Protection

相关文档
最新文档