碳化硅制品生产工艺技术改造

碳化硅制品生产工艺技术改造
碳化硅制品生产工艺技术改造

碳化硅的应用

碳化硅 碳化硅,又称为金钢砂或耐火砂,英文名Silicon Carbide,分子式SiC。 纯碳化硅是无色透明的晶体。工业碳化硅因所含杂质的种类和含量不同,而呈浅黄、绿、蓝乃至黑色,透明度随其纯度不同而异。碳化硅晶体结构分为六方或菱面体的α-SiC和立方体的β-SiC(称立方碳化硅)。α-SiC由于其晶体结构中碳和硅原子的堆垛序列不同而构成许多不同变体,已发现70余种。β-SiC于2100℃以上时转变为α-SiC。绿色至蓝黑色。介电常数7。硬度9Mobs。A-是半导体。迁移率(300 K), cm2 / (VS),400电子和50空穴,谱带间隙eV,303(0 K)和2.996(300 K);有效质量0.60电子和1.00空穴,电导性,耐高温氧化性能。相对密度3.16。熔点2830℃。导热系数(500℃)22. 5 , (1000℃)23.7 W / (m2K)。热膨胀系数:线性至100℃:5.2×10-6/ ℃,不溶于水、醇;溶于熔融碱金属氢氧化物。 碳化硅是用石英砂、石油焦(或煤焦)、木屑(生产绿色碳化硅时需要加食盐)等原料在电阻炉内经高温冶炼而成。目前我国工业生产的碳化硅分为黑色碳化硅和绿色碳化硅两种,均为六方晶体,比重为3.20~3.25,显微硬度为2840~3320kg/mm2。碳化硅为晶体,硬度高,切削能力较强,化学性能力稳定,导热性能好。 黑碳化硅是以石英砂,石油焦和优质硅石为主要原料,通过电阻炉高温冶炼而成。其硬度介于刚玉和金刚石之间,机械强度高于刚玉,性脆而锋利。绿碳化硅是以石油焦和优质硅石为主要原料,添加食盐作为添加剂,通过电阻炉高温冶炼而成。其硬度介于刚玉和金刚石之间,机械强度高于刚玉。常用的碳化硅磨料有两种不同的晶体,一种是绿碳化硅,含SiC 97%以上,主要用于磨硬质含金工具。另一种是黑碳化硅,有金属光泽,含SiC 95%以上,强度比绿碳化硅大,但硬度较低,主要用于磨铸铁和非金属材料。 碳化硅的用途是十分广泛的,目前主要是用作磨料和耐火材料,这两项用途占了碳化硅产量中的大部分。通常磨料用的颗粒粒级很窄,反之耐火材料不同。下面分几个方面介绍碳化处的主要用途。 一、磨料 由于碳化硅具有很高的硬度、化学稳定性和一定的韧性,所以是一种用途很广的磨料,可用以制造砂轮、油石、涂附磨具或自由研磨。它主要是用于研磨玻璃、陶瓷、石材等非金属材料、铸铁及某些非铁金属,它与这些材料之间的反应性很弱。由于它是普通废料中硬度最高的材料,所以包常用以加工硬质合金、钛合金、高速钢刀具等难磨材料及修正砂轮用。碳化硅硬度仅次于金刚石,具有较强的耐磨性能,是耐磨管道、叶轮、泵室、旋流器,矿斗内衬的理想材料,其耐磨性能是铸铁、橡胶使用寿命的5~20倍,也是航空飞行跑道的理想材料之一。 其中黑色碳化硅和绿色碳化硅的应用也有所差别。黑碳化硅制成的磨具,多用于切割和研磨抗张强度低的材队如玻璃、陶瓷、石料和耐火物氯同时也用于铸铁零件和有色金属材料的磨削。绿碳化硅制成的磨具,多用于硬质合金、钦合金、光学玻璃的磨削,同时也用于缸缸和高速钢刀具的精磨。 由于其优良的耐磨性,碳化硅在冶金选矿行业中也有应用。参见《碳化硅在选矿工艺中的应用》。 二、耐火材料和耐腐蚀材料 这一用途是由于它的高熔点(分解温度)、化学惰性和抗热震性。日前生产碳化硅耐火材料的主要方法包括压制和烧结碳化硅、压制和再结晶碳化硅、浇注和再结晶碳化硅、碳化硅

碳化硅粉体的制备及改性技术

随着科学技术的发展, 现代国防,空间技术以及汽车工业等领域不仅要求工程材料具备良好的机械性能,而且要求其具有良好的物理性能。碳化硅(SiC)陶瓷具有高温强度和抗氧化性好、耐磨性能和热稳定性高、热膨胀系数小、热导率高、化学稳定性好等优点,因而常常用于制造燃烧室、高温排气装置、耐温贴片、飞机引擎构件、化学反应容器、热交换器管等严酷条件下的机械构件,是一种应用广泛的先进工程材料。它不仅在正在开发的高新技术领域(如陶瓷发动机、航天器等)发挥重要作用,在目前的能源、冶金、机械、建材化工等[1]领域也具有广阔的市场和待开发的应用领域。为此,迫切需要生产不同层次、不同性能的各种碳化硅制品。碳化硅的强共价键导致其熔点很高,进而使SiC粉体的制备、烧结致密化等变得更加困难。本文综述了近些年碳化硅粉体的制备及改性、成型和烧结工艺三个方面的研究进展。 [1]蔡新民,武七德,刘伟安.反应烧结碳化硅过程的数学模型[J].武汉理工大学学报, 2002, 24(4): 48-50 1 碳化硅粉体的制备及改性技术 碳化硅粉体的制备技术就其原始原料状态主要可以分为三大类:固相法、液相法和气相法。 1.1 固相法 固相法主要有碳热还原法和硅碳直接反应法。碳热还原法又包括阿奇逊(Acheson)法、竖式炉法和高温转炉法。SiC粉体制备最初是采用Acheson法[2],用焦炭在高温下(2400 ℃左右)还原SiO2制备的,但此方法获得的粉末粒径较大(>1mm),耗费能量大、工艺复杂。20世纪70年代发展起来的ESK法对古典Acheson法进行了改进,80年代出现了竖式炉、高温转炉等合成β-SiC粉的新设备。随着微波与固体中的化学物质有效而特殊的聚合作用逐渐被弄清楚,微波加热合成SiC粉体技术也日趋成熟。最近,L N. Satapathy等[3]优化了微波合成SiC的工艺参数。他们以Si+2C为起始反应物,采用2.45 GHz的微波在1200-1300 ℃时保温5分钟即可实现完全反应,再通过650 ℃除碳即可获得纯的β-SiC,其平均粒径约0.4 μm。硅碳直接反应法又包括自蔓延高温合成法(SHS)和机械合金化法。SHS还原合成法利用SiO2与Mg之间的放热反应来弥补热量的不足,该方法得到的SiC粉末纯度高,粒度小,但需要酸洗等后续工序除去产物中的Mg。杨晓云等[4]将Si 粉与C 粉按照n(Si):n(C) = 1:1制成混合粉末,并封装在充满氩气的磨罐中,在WL-1 行星式球磨机上进行机械球磨,球磨25 h 后得到平均晶粒尺寸约为6 nm 的SiC 粉体。 [2] 宋春军,徐光亮. 碳化硅纳米粉体的合成、分散与烧结工艺技术研究进展[J].材料科学与工艺,2009,17(2):168~173 [3] L N. Satapathy,P D. Ramesh,Dinesh Agrawal,et al. Microwave synthesis of phase-pure, fine silicon carbide powder[J].Materials Research Bulletin, 2005, 40(10):1871-1882. [4] 杨晓云, 黄震威. 球磨Si, C 混合粉末合成纳米SiC 的高分辨电镜观察. 金属学报,2000, 36(7): 684-688. 1.2 液相法 液相法主要有溶胶-凝胶(Sol-gel)法和聚合物热分解法。溶胶凝胶法为利用含Si和含C的有机高分子物质,通过适当溶胶凝胶化工艺制取含有混合均匀的Si和C的凝胶,然后进行热解以及高温碳热还原而获得碳化硅的方法。Limin Shi等[5]以粒径9.415 μm的SiO2为起始原料,利用溶胶凝胶法在其表面包覆一层酚醛树脂,通过热解然后1500 ℃于Ar气氛下进行还原反应,获得了粒径在200 nm左右的SiC颗粒。有机聚合物的高温分解是制备碳化硅的有效技术:一类是加热凝胶聚硅氧烷,发生分解反应放出小单体,最终形成SiO2和C,再由碳还原反应制得SiC 粉;另一类是加热聚硅烷或聚碳硅烷放出小单体后生成骨架,最终形成SiC 粉末。

陶瓷制作工艺流程

陶瓷制作工艺流程 在陶瓷民俗博览区古窑景区错落有致的分布着古制瓷作坊、古镇窑、陶人画坊。在作坊里可见到“手随泥走,泥随手变”,巧夺天工的拉坯成型;在镇窑里,可看到神奇的松柴烧瓷技艺,从中领略到景德镇古代手工制瓷的魅力。在古窑,我们看到了练泥、拉坯、印坯、利坯、晒坯、刻花、施釉、烧窑、彩绘、釉色变化等 练泥:从矿区采取瓷石,先以人工用铁锤敲碎至鸡蛋大小的块状,再利用水碓舂打成粉状,淘洗,除去杂质,沉淀后制成砖状的泥块。然后再用水调和泥块,去掉渣质,用双手搓揉,或用脚踩踏,把泥团中的空气挤压出来,并使泥中的水分均匀。这一环节在古窑里我没有见到,深感遗憾,于是我在前往三宝村途中仔细寻觅,有幸亲眼目睹。这种瓷石加工方法历史悠久,应与景德镇制瓷历史同步。

拉坯:将泥团摔掷在辘轳车的转盘中心,随手法的屈伸收放拉制出坯体的大致模样。拉坯是成型的第一道工序。拉坯成型首先要熟悉泥料的收缩率。景德镇瓷土总收缩率大致为18—20%,根据大小品种和不同器型及泥料的软硬程度予以放尺。由于景德镇瓷泥的柔软性,拉制的坯体均比之其他黏土成型的要厚。拉坯不仅要注意到收缩率,而且还要注意到造型。如遇较大尺寸的制品,则要分段拉制,从各个分段部位,可看出拉坯师傅的技艺好坏和水平高低。景德镇陶瓷的特殊美感和瓷文化的形成是与其独特的材质、工艺等有着密不可分的联系,甚至在某种程度上说:景德镇瓷器名扬天下,除当地“天赐”的优质黏土之外,基本上是那些“鬼斧神工”的技艺将这些普通的“东西”变成了人类的“宠物”。由此,真正被“神灵”护佑着的正是这制瓷技艺的不断分工、进化和传承。这千年相传的技艺造就和组成了人类陶瓷史甚至是文明史上最耀眼的光环,这光环让人炫目,也让人敬畏。

碳化硅复合陶瓷的研究现状及其应用

碳化硅复合陶瓷的研究现状及其应用 曾星华 长安大学材料科学与工程学院 摘要碳/碳化硅(C/SiC)陶瓷基复合材料是重要的热结构材料体系之一。综述了近年来发展的有关制备C/SiC陶瓷基复合材料的各种技术及其在航空航天、光学系统、空间技术、交通Z-具(刹车片、阀)、能源技术等领域的应用,并且综述了烧结助剂含量对液相烧结SiC陶瓷抗氧化性的影响、三维针刺碳/碳化硅陶瓷基复合材料及其摩擦磨损性能以及二维C/SiC复合材料的拉伸损伤演变过程和微观结构特征等最新研究成果。 关键字碳化硅陶瓷基复合材料制备技术力学性能抗氧化性液相烧结1.引言 陶瓷基复合材料(CMC)是在陶瓷基体中引入第二相材料,使之增强、增韧的多相材料,又称为多相复合陶瓷或复相陶瓷.陶瓷基复合材料是2O世纪8O年代逐渐发展起来的新型陶瓷材料,包括纤维(或晶须)增韧(或增强)陶瓷基复合材料、异相颗粒弥散强化复相陶瓷、原位生长陶瓷复合材料、梯度功能复合陶瓷及纳米陶瓷复合材料。其因具有耐高温、耐磨、抗高温蠕变、热导率低、热膨胀系数低、耐化学腐蚀、强度高、硬度大及介电、透波等特点,在有机材料基和金属材料基不能满足性能要求的情况下可以得到广泛应用,成为理想的高温结构材料。陶瓷基复合材料正是人们预计在21世纪中可替代金属及其合金的发动机热端结构的首选材料。鉴于此,许多国家都在积极开展陶瓷基复合材料的研究,大大拓宽了其应用领域,并相继研究出各种制备新技术,其中,C/SiC陶瓷基复合材料是其中一个非常重要的体系。C/SiC陶瓷基复合材料主要有两种类型,即碳纤维/碳化硅和碳颗粒/碳化硅陶瓷基复合材料。碳纤维/碳化硅陶瓷基复合材料是利用碳纤维来增强增韧SiC陶瓷,从而改善陶瓷的脆性,实现高温结构材料所必需的性能,如抗氧化、耐高温、耐腐蚀等;碳颗粒/碳化硅陶瓷基复合材料是利用碳颗粒来降低SiC陶瓷的硬度,实现结构陶瓷的可加工性能,同时具有良好的抗氧

碳化硅工艺过程

生产技术 一、生产工艺 1.碳化硅 原理:通过石英砂、石油胶和木屑为原料通过电阻炉高温冶炼而成,主要反应机理是SiO2+3C----SiC+2CO。 碳化硅电阻炉制炼工艺:炉料装在间歇式电阻炉内,电阻炉两端端墙,近中心处是石墨电极。炉芯体连接于两电极之间。炉芯周围装的是参加反应的炉料,外部则是保温料。冶炼时,给电炉供电,炉芯温度上升,达到2600~2700℃。电热通过炉芯表面传给炉料,使之逐渐加热,达到1450℃以上时,即发尘化学反应,生成碳化硅,并逸出一氧化碳。随着时间的推移,炉料高温范围不断扩大,形成碳化硅愈来愈多。碳化硅在炉内不断形成,蒸发移动,晶体长大,聚集成为—个圆筒形的结晶筒。结晶筒的内壁因受高温,超过2600℃的部分就开始分解。分解出的硅又与炉料中的碳结合而成为新的碳化硅。 破碎:把碳化硅砂破碎为微粉,国内目前采用两种方法,一种是间歇的湿式球磨机破碎,一种是用气流粉末磨粉机破碎。我公司已由气流粉末磨碎机代替湿式球磨机破碎。 湿式球磨机破碎时用是用湿式球磨机将碳化硅砂磨成微粉原料,每次需磨6-8小时。所磨出的微粉原料中,微粉约占60%左右。磨的时间越长,则微粉所占的比例越大。但过粉碎也越严重,回收率就会下降。具体的时间,应该与球磨比、球径给配、料浆浓度等工艺参数一起经实验优选确定。该方法最大的优点就是设备简单,缺点是破碎效率较低,后续工序较复杂。

雷蒙磨粉机工作原理是:颚式破碎机将大块物料破碎到所需的粒度后,由提升机将物料输送到储料仓,然后由电磁振动给料机均匀连续地送到主机的磨腔内,由于旋转时离心力作用,磨辊向外摆动,紧压于磨环,铲刀与磨辊同转过程中把物料铲起抛入磨辊与辊环之间,形成填料层,物料在磨辊与磨环之间进行研磨。粉磨后的粉子随风机气流带到分级机进行分选,不合要求的粉子被叶片抛向外壁与气流脱离,粗大颗粒在重力的作用F落入磨腔进行重磨,达到细度要求的细粉随气流经管道进入大旋风收集器,进行分离收集,再经卸料器排出即为成品粉子,气流由大旋风收集器上端回风管吸入鼓风机。在磨腔内因被磨物料中有—定的水分,研磨时发热,水气蒸发,以及各管道接口不严密,外界气体被吸入,使循环风量增高,为保证磨机在负压吠态下工作,增加的气流通过余风管排入除尘器,被净化后排入大气。整个气流系统是密闭循环的,并且是在正负压状态下循环流动的。该法最大的优点是效率较高。而且后续工序较简单。 2、碳化硅微粉 (一)、碳化硅微粉的生产

陶瓷工艺彩绘技法制作经历及

浅谈陶瓷工艺彩绘技法制作经历及研究摘要:江西景德镇陶瓷艺术。是世界闻名的文化工艺作品,历史悠久。从古至今陶瓷彩绘工艺是我国宝贵的艺术形式之一,对引领艺术发展有着重要的意义。陶瓷彩绘艺术是我国社会文化符号的一种表现。本研究通过对陶瓷工艺彩绘技法与制作经历的研究,为我们更好地认识和研究陶瓷工艺彩绘,提供理论参考。 关键词:高温色釉彩绘技法亚光颜色釉 引言 中华红釉修改“铮骨傲梅”瓶(清香满乾坤)高30厘米,作为我国陶瓷彩绘工艺的代表作品。其傲尽寒霜透铮骨,芬香馥郁惹人醉的文化性和工艺美,成为文化符号之一。“铮骨傲梅”瓶介绍:“兹瓶以高温色釉施绘,是于1330度高温还原焰烧製而成,萃集绘、刻、堆、填等诸多工艺於一身,面目臻臻,予人满目琳琅之感。中华红釉发色鲜秾悦目,光澄若镜,骄灿若阳,虽明丽亦不艳媚,热火邈不张扬,炳炳麟麟,莫不懿哉。梅枝虬干俱以窑变花釉为之,黟黑若铁,苍劲嶙峋,兼之白梅皓洁似雪、历历鲜目,真乃富丽雍容之雅阁陈设也。” 1、陶瓷彩绘的工艺技法特征分析 我国传统的彩绘主要有:彩绘、粉彩绘、颜色釉等几种形式,这几种形式的彩绘体现了我国陶瓷文化和技法的成就。陶瓷彩绘其瓷器细腻、胎骨晶莹;青花清新、高雅。其釉光亮洁净,白中泛青。颜色青翠欲滴,永久保持。陶瓷彩绘作为我国的艺术瑰宝,受到了

中外人们的广泛欢迎。常见的彩绘工艺有:手绘、贴花、印花等三种形式。手绘的陶瓷,其画面表现的生动活泼,属于陶瓷中的珍品。贴花的彩绘陶瓷,图样非常清晰,而且有着统一的规格。印花的陶瓷,其线条简练、画面非常规整,整个陶瓷的纹饰丰富,品种全面。 新中国成立以后,尤其是70年代以后,通过使用色釉作釉料进行具体形象和内容的表达,成为重要的创新技法。综合装饰指的是使用各种类型的坯、釉、彩等类型的材料。通过喷、涂、绘、刮等手段,创造出崭新的多种样式和风格的装饰艺术。其特点为“形式多样,灵活,互为补充,映衬,各臻奇妙,蕴含丰富”。综合装饰就是利用各种坯、釉、彩等多种材料,运用喷、涂、绘、刮等多种手法,创造出崭新的多种样式和风格的装饰艺术。其特点为“形式多样,灵活,互为补充,映衬,各臻奇妙,蕴含丰富”。 2、陶瓷工艺彩绘技法制作过程分析 2.1 绘制装饰图稿 陶艺的装饰,为了准确地描绘形象,可用铅笔或红、蓝墨水打轮廓稿,待定稿之后再用颜色釉或陶瓷颜料进行装饰,用陶瓷釉料进行装饰时,不可随便修改。 2.2 按稿绘制步骤 根据绘制用的颜色釉特点及色泽,可先用较薄的色釉画出一个大体的画面。先把颜色浅的花瓣画出,然后再用黑料画出主干和梅枝,当画面上色绘制定稿后,就可以逐渐加厚。 2.3 颜色填绘

碳化硅陶瓷的发展与应用

碳化硅陶瓷的发展与应用 1073112 王苗 摘要:碳化硅陶瓷以其优异的抗热震、耐高温、抗氧化和耐化学腐蚀等特性而广泛地应用于石油、化学、汽车、机械和宇航等工业领域中,并日益引起人们的重视。本文对各种SiC 陶瓷的制备方法、性能特点及其应用现状进行了综合评述。 关键词:碳化硅陶瓷发展与应用 Abstract: Silicon carbide ceramics have been widely used in petroleum, chemical, automotive,mechanical and aerospace industries because of their excellent resistance to thermal shock, high temperatures, oxidation and chemical corrosion. In this paper, the fabricating methods, mechanical properties and current applications of various SiC ceramics are revicwed. Key Words: SiC Ceramics Development and Application 1 前言 现代国防、核能和空间技术以及汽车工业、海洋工程的迅速发展, 对火箭燃烧室内衬、飞机涡轮发动机叶片、核反应堆结构部件、高速气动轴承和机械密封零件等材料的要求愈来愈高, 迫切需要开发各种新型高性能结构材料。碳化硅陶瓷具有高温强度大、抗氧化性强、耐磨损性好、热稳定性佳、热膨胀系数小、热导率大、硬度高以及抗热震和耐化学腐蚀等优良特性, 因此, 已经在许多领域大显身手, 并日益受到人们的重视。例如, SiC陶瓷在石油化学工业中已被广泛地用作各种耐腐蚀用容器及管道在机械工业中已被成功地用作各种轴承、切削刀具和机械密封部件在宇航和汽车工业中也被认为是未来制造燃气轮机、火箭喷嘴和发动机部件的最有希望的候选材料。 本文首先对SiC 的基本性质及SiC粉末的合成方法进行了简单介绍, 接着重点综述了SiC陶瓷的性能特点, 最后对SiC陶瓷的应用现状与未来发展进行了概括和分析。 2 碳化硅的基本特性 2.1、化学属性 抗化合性:碳化硅材料在氧气中反应温度达到1300℃时,在其碳化硅晶体表层已经生成二氧化硅保护层。随着保护层的加厚,抵制了里面碳化硅继续被化合,这使碳化硅有较好的抗化合性。当气温达到1900K(1627℃)以上时,二氧化硅保护膜已经被破坏,碳化硅化合效应加重,从而1900K是碳化硅在氧化剂氛围下的最高工作气温。 耐酸碱性:在耐酸、碱及化合物的效用方面,因为二氧化硅保护膜的效用,碳化硅的抗酸能力非常非常强,抗碱性稍差。 2.2、物理性能 密度:各样碳化硅晶形的颗粒密度十分相近,通常情况下,应该是3.20 g/ m m3,其碳化硅磨料的堆砌密度在1.2--1.6 g/ m m3之间,其高矮取决于其粒度号、粒度合成和颗粒形状的大小。 硬度:碳化硅的硬度为:莫氏9.5级。单晶硅的硬度为:莫氏7级。多晶硅的硬度为:莫氏7级。都是硬度相对较高的物料。努普硬度为2670—2815公斤/毫米,在磨料中高于刚玉而仅次于金刚石、立方氮化硼和碳化硼。 导热率:碳化硅制品的导热率非常高,热膨胀参数小,抗热震性非常高,是优质的耐火材料。 2.3、电学属性 恒温下工业碳化硅是一种半导体,属杂质导电性。高纯度碳化硅随着气温的升高内阻率降低,含杂质碳化硅按照其含杂质不一样,导电性能也不一样。

碳化硅电子器件发展分析报告

碳化硅电力电子器件的发展现状分析 目录 1.SiC器件的材料与制造工艺 (2) 1.1 SiC单晶 (2) 1.2 SiC外延 (3) 1.3 SiC器件工艺 (4) 2. SiC二极管实现产业化 (5) 3. SiC JFET器件的产业化发展 (7) 4. SiC MOSFET器件实用化取得突破 (7) 5. SiC IGBT器件 (8) 6. SiC功率双极器件 (9) 7. SiC 功率模块 (10) 8. 国内的发展现状 (11) 9. SiC电力电子器件面对的挑战 (11) 9.1 芯片制造成本过高 (11) 9.2 材料缺陷多,单个芯片电流小 (12) 9.3 器件封装材料与技术有待提高 (12) 10. 小结 (12)

在过去的十五到二十年中,碳化硅电力电子器件领域取得了令人瞩目的成就,所研发的碳化硅器件的性能指标远超当前硅基器件,并且成功实现了部分碳化硅器件的产业化,在一些重要的能源领域开始逐步取代硅基电力电子器件,并初步展现出其巨大的潜力。碳化硅电力电子器件的持续进步将对电力电子技术领域的发展起到革命性的推动作用。随着SiC单晶和外延材料技术的进步,各种类型的SiC器件被开发出来。SiC器件主要包括二极管和开关管。SiC二极管主要包括肖特基势垒二极管及其新型结构和PiN 型二极管。SiC开关管的种类较多,具有代表性的开关管有金属氧化物半导体场效应开关管(MOSFET)、结型场效应开关管(JFET)、绝缘栅双极开关管(IGBT)三种。 1.SiC器件的材料与制造工艺 1.1 SiC单晶 碳化硅早在1842年就被发现了,但直到1955年,飞利浦(荷兰)实验室的Lely 才开发出生长高品质碳化硅晶体材料的方法。到了1987年,商业化生产的SiC衬底进入市场,进入21世纪后,SiC衬底的商业应用才算全面铺开。碳化硅分为立方相(闪锌矿结构)、六方相(纤锌矿结构)和菱方相3大类共260多种结构,目前只有六方相中的4H-SiC、6H-SiC才有商业价值,美国科锐(Cree)等公司已经批量生产这类衬底。立方相(3C-SiC)还不能获得有商业价值的成品。 SiC单晶生长经历了3个阶段, 即Acheson法、Lely法、改良Lely法。利用SiC 高温升华分解这一特性,可采用升华法即Lely法来生长SiC晶体。升华法是目前商业生产SiC单晶最常用的方法,它是把SiC粉料放在石墨坩埚和多孔石墨管之间,在惰性气体(氩气)环境温度为2 500℃的条件下进行升华生长,可以生成片状SiC晶体。由于Lely法为自发成核生长方法,不容易控制所生长SiC晶体的晶型,且得到的晶体尺寸很小,后来又出现了改良的Lely法。改良的Lely法也被称为采用籽晶的升华法或物理气相输运法 (简称PVT法)。PVT法的优点在于:采用 SiC籽晶控制所生长晶体的晶型,克服了Lely法自发成核生长的缺点,可得到单一晶型的SiC单晶,且可生长较大尺寸的SiC单晶。国际上基本上采用PVT法制备碳化硅单晶。目前能提供4H-SiC晶片的企业主要集中在欧美和日本。其中Cree产量占全球市场的85%以上,占领着SiC晶体生长及相关器件制作研究的前沿。目前,Cree的6英寸SiC晶片已经商品化,可以小批量供货。此外,国内外还有一些初具规模的SiC晶片供应商,年销售量在1万片上下。Cree生产的SiC晶片有80%以上是自己消化的,用于LED衬底材料,所以Cree是全球

碳化硅陶瓷及制备工艺

碳化硅陶瓷性能及制造工艺 碳化硅(SiC)陶瓷,具有抗氧化性强,耐磨性能好,硬度高,热稳定性好,高温强度大,热膨胀系数小,热导率大以及抗热震和耐化学腐蚀等优良特性。因此,已经在石油、化工、机械、航天、核能等领域大显身手,日益受到人们的重视。例如,SiC陶瓷可用作各类轴承、滚珠、喷嘴、密封件、切削工具、燃汽涡轮机叶片、涡轮增压器转子、反射屏和火箭燃烧室内衬等等。 SiC陶瓷的优异性能与其独特结构密切相关。SiC是共价键很强 的化合物,SiC中Si-C键的离子性仅12%左右。因此,SiC强度高、弹性模量大,具有优良的耐磨损性能。纯SiC不会被HCl、HNO3、H2SO4和HF等酸溶液以及NaOH等碱 溶液侵蚀。在空气中加热时易发生氧化,但氧化时表面形成的 SiO2会抑制氧的进一步扩散,故氧化速率并不高。在电性 能方面,SiC具有半导体性,少量杂质的引入会表现出良好的导电性。此外,SiC还有优良的导热性。 SiC具有α和β两种晶型。β-SiC的晶体结构为立方晶系,Si和C分别组成面心立方晶格;α-SiC存在着4H、15R和6H等100余种多型体,其中,6H多型体为工业应用上最为普遍的一种。在

SiC的多种型体之间存在着一定的热稳定性关系。在温度低于1600℃时,SiC以β-SiC形式存在。当高于1600℃时,β-SiC缓慢转变成α-SiC的各种多型体。4H-SiC在2000℃左右容易生成;15R和6H多型体均需在2100℃以上的高温才易生成;对于6H-SiC,即使温度超过2200℃,也是非常稳定的。SiC中各种多型体之间的自由能相差很小,因此,微量杂质的固溶也会引起多型体之间的热稳定关系变化。 现就SiC陶瓷的生产工艺简述如下: 一、SiC粉末的合成: SiC在地球上几乎不存在,仅在陨石中有所发现,因此,工业上应用的SiC粉末都为人工合成。目前,合成SiC粉末的主要方法有:1、Acheson法: 这是工业上采用最多的合成方法,即用电将石英砂和焦炭的混合物加热至2500℃左右高温反应制得。因石英砂和焦炭中通常含有Al和Fe等杂质,在制成的SiC中都固溶有少量杂质。其中,杂质少的呈绿色,杂质多的呈黑色。 2、化合法: 在一定的温度下,使高纯的硅与碳黑直接发生反应。由此可合

景德镇瓷器特点

景德镇瓷器的特点(转载)万壶堂 景德镇瓷器名扬天下,但真正了解其瓷器特点的人却不多,景德镇瓷究竟有那些特点?凭什么称雄天下? 景德镇主要产品青花、粉彩、高温颜色釉、雕塑瓷、以及派生出来的一些产品天下无敌,全世界任何一个厂家的瓷器产品景德镇都能仿制,而景德镇产品全世界都没有可能全面仿制。几百年里世界各地都想仿制景德镇瓷,但几百年过去了仍然无法达到景德镇的工艺水平,景德镇瓷品种几乎涵盖所有瓷器品种,过去引为自豪的“薄如纸、明如镜------”的卖点在今天的陶瓷业中已是“昨日黄花”制瓷行业基本都能达到这种水平,而景德镇的几项传统技术是任何地区永远无法做到,这几项技术是“利坯”“干接”“雕刻”“填彩”“边角”;这几项技术是制作高档瓷器的根本保证。 利坯就是用特制的利坯刀车削旋转的坯,使坯规整光洁,是景德镇专有的一项工艺,表面看各地都有这道工序,但在景德镇分成三个工种,既修坯、呙足、利坯,各司其职,不能互换,修坯工只车削碗盘等一次拉坯成型的器物外壁,形状变化小此外坯内有模具支撑,技术相对简单,呙足工只车削碗外底,足圈内部,在历史部分时期技术难度较大,如“过肩足”(底部胎大大薄于足圈外碗壁的厚度),利坯工则需要车削器物的所有部位,包括器物的内壁,和琢器的分段接口,这项技术难度最大,因此又分成大器利坯和小器利坯两行,这两个工种只有景德镇存在。 大器利坯先将干燥后的底座、瓶身、颈部三段里外上下车削达到要求后用特制泥浆在接口处涂匀,再将三段粘合,干燥后再将内外接口车削平整,车削时由于坯体有弧度,无法了解坯体的厚度全凭利坯工用手指弹击坯体,听声音判断壁厚再决定是否继续车削,因为口部的厚度与弧度部位的厚度不一样,传统泥料耐火度低,如果坯的厚度不一致高温烧成时会向一侧歪倒。 小器利坯敞口类内外车削达到要求,特别在车削碗、杯类坯体薄如蝉翼,车削时完全靠感觉,稍有不慎前功尽弃,琢器瓶罐同样分段拉坯,干燥后车削,最后车削外壁,如此轻薄难度可想而知,与世界各地车削修坯不可等同而论。 制瓷成型什么叫精致,简单说就是要见角见线,圆弧处要自然流畅,圆滑渐变,硬角处要线条明快清晰,不能含糊,特别是足底内角跟,明清精品基本都是清楚干净,不像仿品足跟转角处基本呈圆弧状,景德镇精品因为利坯分工细致,专业,传统产品都必须运用这项工艺,因此不仅造型漂亮,更重要釉面光洁度也大大提高,各地瓷器从成型开始就已经比不上景德镇产品,瓷器如果不利坯表面会起伏不平,虽然看上去不会发现,但釉面整体效果感觉不好。干接,也是景德镇瓷的一项特有的工艺,琢器上的一些附加装饰如瓶耳、壶嘴、杯把等,各地瓷厂都是不等坯干燥,趁着坯湿就把附加装饰粘合,这样做的目的是避免接口泥和主体与附加装饰收缩不一致而发生裂痕或变形,但是粘接后无法进行利坯,只能采用打磨的方法进行修饰,现代多采用素烧后再抛光工艺,但仍然不可能达到利坯后的质量水平,景德镇是在坯体彻底干燥以后经过利坯之后再由雕削工将粘接面修整严密后,先在接口内侧涂抹用坯泥调制的粘接泥,在接口的外侧涂抹自己祖传秘方配制的外口泥,将附加装饰对准按压,再将挤出的外口泥抹平,接口处转角要见角见线,雕削工负责制作附加装饰以避免粘接时出现问题,使用的外口泥自己配制,就是在国营工厂工作时也是自己制备,工厂每月支付给一定的费用,外口泥不会干裂,但粘结力低因此必须同时使用两种接口泥。由于雕削工专业操作附加装饰质量较高

碳化硅陶瓷 论文

新型功能材料 专业化学类 班级应化1101 学生郭珊 学号20110222056 小组成员丁超凡付文静韩丹丹韩双任课教师李村成 平时成绩 论文成绩 课程成绩

课程论文要求 结合自己学习兴趣,通过小组调研,查阅相关资料,撰写一篇与新型功能材料有关的课程论文。 论文要求:1.论文题目科学规范,调研方向具体明确、题目不能过大;2.字数要在5000字左右(不计参考文献);3.论文撰写要使用自己的语言,要有自己见解及评论,不能拷贝、翻译;4.文字简练,层次分明,逻辑性强,条理清晰,引用数据准确、真实、可靠,结论明确;5.文中涉及的图表需自己画;6.引用的参考文献需在文中用数字标出并在文后列出; 7. 量和单位必须采用中华人民共和国的国家标准GB3100~GB3102-93; 8. 字体及格式统一要求:论文标题用居中加粗宋体三号字;小标题用加粗宋体小四号字;图表说明用居中宋体五号字;正文及引用文献用宋体小四号字(英文和数字用Times New Roman);1.25倍行距,A4纸,上、下、左、右页边距均为2.5 cm;9. 提交论文双面打印。 本课程成绩评定说明: 该课程总成绩由平时成绩与课程论文成绩两部分组成,其中平时考勤、课堂表现、课堂报告等成绩占总成绩50%;课程论文成绩占总成绩的50 %。 平时成绩与课程论文成绩均按满分100分评定。

新型陶瓷-碳化硅陶瓷制备技术及应用 摘要:阐述了碳化硅陶瓷的制备技术及应用,介绍了SiC粉末的合成方法(如Acheson法、化合法、热分解法、气相反相法)、SiC的烧结方法(如无压烧结、热压烧结、热等静压烧结、反应烧结)、反应烧结碳化硅的成型工艺(如模压成型、等静压成型、注浆成型)以及碳化硅陶瓷在各个方面的广泛应用,并展望了碳化硅陶瓷的发展应用前景。 关键词:新型陶瓷;碳化硅陶瓷;SiC粉末合成;SiC烧结;成型工艺 一、引言 传统陶瓷是用天然或人工合成的粉状化合物,经过成型和高温烧结制成的,由无机化合物构成的多相固体材料。新型陶瓷以精致的高纯天然无机物或人工合成的无机化合物为原料,采用精密控制的加工工艺烧结,具有优异的性能。在各个方面,新型陶瓷和传统陶瓷有诸多的不同之处。 在原料使用上方面,新型陶瓷突破传统陶瓷以黏土为主,使用精选或提纯的氧化物、硅化物、氮化物、硼化物等原料。成分方面,传统陶瓷的组成与黏土的成分相关,不同产地料对产品组成与结构影响很大;新型陶瓷原料是提纯化合物,性质由原料的纯度和制备工艺决定,与产地原料无关。在制备工艺方面,传统陶瓷以窑炉为主;新型陶瓷用真空烧结、气氛烧结、热压、热静压等手段实现。在性能与用途方面,传统陶瓷体现日常应用;新型陶瓷具有高强度、高硬度、耐磨、耐蚀、感应性等特殊性能、使用在特殊场合,在高温,机械电子计算机航天医学工程广泛应用。 依据材料功能,新型陶瓷分类如表一: 表一新型陶瓷分类

碳化硅工艺过程简述

碳化硅磨料通常以石英、石油焦炭为主要原料。它们在备料工序中经过机械加工,成为 合适的粒度,然后按照化学计算,混合成为炉料。磨料调节炉料的透气性,在配炉料时要加适量的木屑。制炼绿碳化硅时,炉料中还要加适量的食盐。 炉料装在间歇式电阻炉内。电阻炉两端是端墙,近中心处有石墨电极。炉芯体即连于两电极之间。炉芯周围装的是参加反应的炉料,外部则是保温料。制炼时,电炉供电,炉芯体温度上升,达到2600~2700℃。电热通过炉芯表面传给炉料,使之逐渐加热,达到1450℃以上时,即发生化学反应,生成碳化硅,并逸出一氧化碳。随着时间的推移,炉料高温范围不断扩大,形成的碳化硅也越来越多。它在炉内不断形成,蒸发移动,结晶长大,聚集成为一个圆筒形的结晶筒。结晶筒的内壁因受高温,超过2600℃的部分就开始分解。分解出的硅又与炉料中的碳结合而成为新的碳化硅。炉自送电初期,电热主要部分用于加热炉料,而用以形成碳化硅的热量只是较少的一部分。送电中期,形成碳化硅所用的热量所占比例较大。送电后期,热损失占主要部分。调整送电功率与时间的关系,优选出最有利的停电时间,以期获得最好的电热利用率。大功率电阻炉通常选择送电时间在24小时左右,以利作业安排。在此基础上,调整电炉功率与炉子规格的关系。 电阻炉送电过程中,除了形成碳化硅这一基本反应外,炉料中各种杂质也发生一系列化学的和物理的变化,并发生位移。食盐亦然。炉料在制炼过程中不断减少,炉料表面变形下沉。反应所形成的一氧化碳则弥漫于大气中,成为污染周围大气的有害成分。 停电后,反应过程基本结束。但由于炉子很大,蓄热量就很大,一时冷却不了,炉内温度还足以引起化学反应,因此,炉表面仍继续有少量一氧化碳逸出。对于大功率电炉来说,延续的残余反应可达3~4小时。这时的反应比起送电时的反应来说,是微不足道的。但因为当时 炉表面温度已经下降,一氧化碳燃烧更不彻底。从劳动保护角度来说,仍应予以足够重视。停电后经过一段时间冷却,就可以拆除炉墙,然后逐步取出炉内各种物料。 制炼后炉内的物料,从外到里,构成下列各物层: (1)未经反应的物料 这部分炉料在制炼时未达到反应温度,因而不起反应,只起保温作用,它在炉中所占的位置叫保温带。保温带炉料与反应带炉料的配制方法、制炼后该部位炉料的利用方法不尽相同。有一种工艺方法,在保温带的特定区域内装炉时装以新料,制炼后取出配到反应料中去,这就叫做焙烧料。若将保温带上未反应的料经再生处理,稍加焦炭及适量木屑,配制成保温料重新利用,就称之为乏料。 (2)氧碳化硅层

碳化硅陶瓷

碳化硅工艺流程 碳化硅(SiC)陶瓷,具有抗氧化性强,耐磨性能好,硬度高,热稳定性好,高温强度大,热膨胀系数小,热导率大以及抗热震和耐化学腐蚀等优良特性。因此,已经在石油、化工、机械、航天、核能等领域大显身手,日益受到人们的重视。例如,SiC陶瓷可用作各类轴承、滚珠、喷嘴、密封件、切削工具、燃汽涡轮机叶片、涡轮增压器转子、反射屏和火箭燃烧室内衬等等。 SiC陶瓷的优异性能与其独特结构密切相关。SiC是共价键很强的化合物,SiC中Si-C键的离子性仅12%左右。因此,SiC强度高、弹性模量大,具有优良的耐磨损性能。纯SiC 不会被HCl、HNO3、H2SO4和HF等酸溶液以及NaOH等碱溶液侵蚀。在空气中加热时易发生氧化,但氧化时表面形成的SiO2会抑制氧的进一步扩散,故氧化速率并不高。在电性能方面,SiC具有半导体性,少量杂质的引入会表现出良好的导电性。此外,SiC还有优良的导热性。 SiC具有α和β两种晶型。β-SiC的晶体结构为立方晶系,Si和C分别组成面心立方晶格;α-SiC存在着4H、15R和6H等100余种多型体,其中,6H多型体为工业应用上最为普遍的一种。在SiC的多种型体之间存在着一定的热稳定性关系。在温度低于1600℃时,SiC以β-SiC形式存在。当高于1600℃时,β-SiC缓慢转变成α-SiC的各种多型体。4H-SiC在2000℃左右容易生成;15R和6H多型体均需在2100℃以上的高温才易生成;对于6H-SiC,即使温度超过2200℃,也是非常稳定的。SiC中各种多型体之间的自由能相差很小,因此,微量杂质的固溶也会引起多型体之间的热稳定关系变化。 现就SiC陶瓷的生产工艺简述如下: 一、SiC粉末的合成: SiC在地球上几乎不存在,仅在陨石中有所发现,因此,工业上应用的SiC粉末都为人工合成。目前,合成SiC粉末的主要方法有: 1、Acheson法: 这是工业上采用最多的合成方法,即用电将石英砂和焦炭的混合物加热至2500℃左右高温反应制得。因石英砂和焦炭中通常含有Al和Fe等杂质,在制成的SiC中都固溶有少量杂质。其中,杂质少的呈绿色,杂质多的呈黑色。 2、化合法:

电子碳化硅芯片的设备制作方法与制作流程

本技术属于碳化硅芯片加工领域,尤其是一种电子碳化硅芯片的制备方法,针对现有的不便于对环氧树脂的浇筑量进行精准控制的问题,现提出如下方案,其包括以下步骤:S1:将需要制备的碳化硅芯片的尺寸数据录入电脑,在电脑上建模,根据碳化硅芯片的尺寸确定模具的尺寸;S2:在电脑上建立模具模型,将碳化硅电路板模拟放入模具模型中,对碳化硅电路板进行定位;S3:模拟向模具模型中浇筑环氧树脂,对浇筑的量的数据进行记录; S4:将碳化硅电路板放入实际的模具中,根据S3中所述的浇筑的量向模具中浇筑环氧树脂成型,本技术能够对环氧树脂的浇筑量进行精准控制,保证了加工的精度,同时可以防止环氧树脂凝结。 技术要求 1.一种电子碳化硅芯片的制备方法,包括以下步骤: S1:将需要制备的碳化硅芯片的尺寸数据录入电脑,在电脑上建模,根据碳化硅芯片的 尺寸确定模具的尺寸; S2:在电脑上建立模具模型,将碳化硅电路板模拟放入模具模型中,对碳化硅电路板进 行定位; S3:模拟向模具模型中浇筑环氧树脂,对浇筑的量的数据进行记录; S4:将碳化硅电路板放入实际的模具中,根据S3中所述的浇筑的量向模具中浇筑环氧树 脂成型,安装底座进行封装; S5:打开模具,将一体成型的电子芯片取出,即可制得电子碳化硅芯片。 2.根据权利要求1所述的一种电子碳化硅芯片的制备方法,其特征在于,所述S2中,将碳化硅电路板放入模具模型中时,对碳化硅电路板的位置进行调整,调整完成后在模具的 模腔内标注四个定位点。 3.根据权利要求2所述的一种电子碳化硅芯片的制备方法,其特征在于,将四个定位点在模具中的位置数据进行记录,并在实际的模具中布置四个定位柱,通过四个定位柱对碳 化硅电路板进行定位。

碳化硅陶瓷

太原工业学院 2015/2016学年第一学期 《特种陶瓷》课程论文 题目:碳化硅陶瓷的工艺与发展方向 班级: 122073219 姓名:刘鑫泽 学号: 19

1 前言 随着科技的发展,人们迫切需要开发各种新型高性能结构材料。碳化硅陶瓷由于具有多种良好的的性能,已经在许多领域大显身手,并且已经收到人们的高度重视。 2 晶体结构 SiC是共价键很强的化合物,SiC中 Si-C键的离子性仅12%左右。 SiC具有α和β两种晶型。β- SiC的晶体结构为闪锌矿晶体结构立方晶系,Si和 C 分别组成面心立方晶格;α-SiC纤锌矿型结构,六方晶系。存在着4H、15R和6H等100余种多型体,其中, 6H多型体为工业应用上最为普遍的一种。在温度低于1600℃时,SiC以β-SiC形式存在。当高于1600℃时,β- SiC缓慢转変成α-SiC的各种多型体。4H- SiC在2000℃左右容易生成;15R和6H多型体均需在2100℃以上的高温才易生成;对于6H- SiC,即使温度.超过2200℃,也是非常稳定的。SiC中各种多型体之间的自由能相差很小,因此,微量杂质的固溶也会引起多型体之间的热稳定关系变化。[1] 3 性能与应用 3.1 性能 (1)SiC陶瓷化学稳定性好、抗氧化性强。 (2)硬度高,耐磨性能好。 (3)SiC具有宽的能带间隙。 (4)优良的导电性。 (5)热稳定性好,高温强度大。 (6)热膨胀系数小、热导率大以及抗热振和耐化学腐蚀等。[4] 3.2 应用 碳化硅的最大特点是高温强度高,有很好的耐磨损、耐腐蚀、抗蠕变性能,其热传导能力很强,仅次子氧化铍陶瓷。碳化硅陶瓷用于制造火箭喷嘴、浇注金属的喉管、热电偶套管、炉管、燃气轮机叶片及轴承、泵的密封圈、拉丝成型模

关于烧结碳化硅的分类_烧结碳化硅工艺说明

关于烧结碳化硅的分类_烧结碳化硅工艺说明特陶领域的多数专家认为国内特陶产品质量提升不上去,很大程度与特陶粉体的制备水平有关系。“巧妇难为无米之炊”,当然没有好“米”,也烧不出“好饭”出来。有关于烧结碳化硅的话题,小编今天想跟大家聊一聊。烧结碳化硅有哪些分类呢?看文章吧! 烧结碳化硅分类: (1)无压烧结 无压烧结被认为是SiC烧结有前途的烧结方法,根据烧结机理的不同,无压烧结又可分为固相烧结和液相烧结。S.Proehazka通过在超细β-SiC粉体(含氧量小于2)中同时加入适量B和C的方法,在2020℃下常压烧结成密度高于98

的SiC烧结体。A.Mulla等以Al2O3和Y2O3为添加剂在1850-1950℃烧结0.5μm的β-SiC(颗粒表面含有少量SiO2),获得的SiC陶瓷相对密度大于理论密度的95,并且晶粒细小,平均尺寸为1.5μm。 (2)热压烧结 不添加任何烧结助剂,纯SiC只有在极高的温度下才能烧结致密,于是不少人对SiC实行热压烧结工艺。关于添加烧结助剂对SiC进行热压烧结的报道已有许多。Alliegro等研究了B、Al、Ni、Fe、Cr等金属添加物对SiC致密化的影响,发现Al和Fe是促进SiC热压烧结有效的添加剂。https://www.360docs.net/doc/d012202798.html,nge研究了添加不同量Al2O3对热压烧结SiC的性能影响,认为热压烧结致密是靠溶解--再沉淀机理。但是热压烧结工艺只能制备形状简单的SiC部件,而且一次热压烧结过程中所制备的产品数量很小,因此不利于工业化生产。 (3)反应烧结 反应烧结SiC又称自结合SiC, 是由a- SiC粉和石墨粉按一定比列混合压成坯体后,加热到1650℃左右,同时熔渗Si或通过气相Si渗入坯体,使之与石墨起反

碳化硅陶瓷工艺流程

碳化硅(SiC)陶瓷,具有抗氧化性强,耐磨性能好,硬度高,热稳定性好,高温强度大,热膨胀系数小,热导率大以及抗热震和耐化学腐蚀等优良特性。因此,已经在石油、化工、机械、航天、核能等领域大显身手,日益受到人们的重视。例如,SiC陶瓷可用作各类轴承、滚珠、喷嘴、密封件、切削工具、燃汽涡轮机叶片、涡轮增压器转子、反射屏和火箭燃烧室内衬等等。 SiC陶瓷的优异性能与其独特结构密切相关。SiC是共价键很强的化合物,SiC中Si-C键的离子性仅12%左右。因此,SiC强度高、弹性模量大,具有优良的耐磨损性能。纯SiC 不会被HCl、HNO3、H2SO4和HF等酸溶液以及NaOH等碱溶液侵蚀。在空气中加热时易发生氧化,但氧化时表面形成的SiO2会抑制氧的进一步扩散,故氧化速率并不高。在电性能方面,SiC具有半导体性,少量杂质的引入会表现出良好的导电性。此外,SiC还有优良的导热性。 SiC具有α和β两种晶型。β-SiC的晶体结构为立方晶系,Si和C分别组成面心立方晶格;α-SiC存在着4H、15R和6H等100余种多型体,其中,6H多型体为工业应用上最为普遍的一种。在SiC的多种型体之间存在着一定的热稳定性关系。在温度低于1600℃时,SiC以β-SiC形式存在。当高于1600℃时,β-SiC缓慢转变成α-SiC的各种多型体。4H-SiC在2000℃左右容易生成;15R和6H多型体均需在2100℃以上的高温才易生成;对于6H-SiC,即使温度超过2200℃,也是非常稳定的。SiC中各种多型体之间的自由能相差很小,因此,微量杂质的固溶也会引起多型体之间的热稳定关系变化。 现就SiC陶瓷的生产工艺简述如下: 一、SiC粉末的合成: SiC在地球上几乎不存在,仅在陨石中有所发现,因此,工业上应用的SiC粉末都为人工合成。目前,合成SiC粉末的主要方法有: 1、Acheson法: 这是工业上采用最多的合成方法,即用电将石英砂和焦炭的混合物加热至2500℃左右高温反应制得。因石英砂和焦炭中通常含有Al和Fe等杂质,在制成的SiC中都固溶有少量杂质。其中,杂质少的呈绿色,杂质多的呈黑色。 2、化合法: 在一定的温度下,使高纯的硅与碳黑直接发生反应。由此可合成高纯度的β-SiC粉末。 3、热分解法: 使聚碳硅烷或三氯甲基硅等有机硅聚合物在1200~1500℃的温度范围内发生分解反应,由此制得亚微米级的β-SiC粉末。

相关文档
最新文档