回热系统计算

回热系统计算
回热系统计算

二.回热系统的热力计算

1.进汽量的估算

D0=(3600N cc*m)/(△h t*ηrl*ηm*ηg)+△D=242.655 (t/h)

其中:D0 ——汽轮机的进气量(kg/h)

N cc——设计功率(kw),60000kw。

△h t——通流部分的理想比焓降(KJ/kg)

m——考虑回热抽气使进气量增大的系数,取m=1.23

△D——考虑前轴封及阀杆漏气以保证发出经济功率的流量,取△D=4% D0

ηrl 取0.84,ηm取0.99,ηg取0.982

2.近似热力过程线拟定

3.回热系统热平衡的初步计算

由G1/G0=P21/P2计算得各个抽气口压力如下:

8级后抽气口压力:1.5536MPa

10级后抽气口压力:1.0525MPa

14级后抽气口压力:0.3735MPa

16级后抽气口压力:0.1489MPa

18级后抽气口压力:0.0509MPa

(1)5级后抽气口

已知给水温度t gs=219.76℃。由端差得高加2的疏水温度为t e5=224.76℃,查得疏水压力为p e5=2.54MPa,疏水焓h e5=966KJ/kg,进口蒸汽焓h5=3193KJ/kg,p5=2.646MPa。

高加1的疏水压力p e8=1.49MPa,温度t e8=198℃,由端差得高加2的进口水温为t w1=193℃

由α1(h5-h e5)=4.187(t gs-t w1)

得α1=0.0503

(2)8级后抽气口

高加21的蒸汽进汽压力p e8=1.49MPa,进汽焓h8=3082 KJ/kg,疏水焓h e8=844KJ/kg。

ΑL2=0.01,h L2=3389.84 KJ/kg。

由除氧器压力0.588MPa查得t w1=158℃,出口水温t w2=193℃

由αL2(h l2-h e8)+α2(h8 -h e8)+α1(h e5-h e8)=4.187(t w2-t w1)

得α2= 0.0514

(3)10级后抽气口

除氧器的蒸汽进汽压力p e10=1.0104MPa,进汽焓h10=2996 KJ/kg,除氧器的出口焓

h e10’=667 KJ/kg

低加3的疏水压力p e14=0.35856MPa,温度t e14=139℃,h e14=588 KJ/kg,由端差得除氧器的进口水温为t w1=134℃, t w2=158℃

αv=0.0056,h v=3278.26 KJ/kg

由α3( h10-h e10)+αv (h v- h e10)+(α1+α2+αL2)(h e8- h e10)= 4.187( t w2- t w1)(1-α1-α2-α3-αl2-αv)得α3=0.0224

(4)14级后抽气口

低加3的进汽压力p e14=0.35856MPa,进汽焓h14=2824 KJ/kg,疏水焓h e14=588 KJ/kg。

低加2 的疏水压力p e16=0.142944MPa,温度t e16=109.5℃,由端差得低加1 的进水温度t w1=104.5℃,出口水温t w2=134℃

由α4(h14- h e14)=4.187(1-α1-α2-α3-αL2-αv)(t w2- t w1)

得α4=0.0472

(5)16,18级抽气口

低加2的进汽压力p e16=0.16512MPa,进汽焓h16=2708 KJ/kg,疏水焓h e16=479KJ/kg,疏水温度t e16=114℃,由端差得低加2的出口水温t w2=109℃,进口水温t w1。

低加3的进汽压力p e18=0.048864MPa,进汽焓h18=2549 KJ/kg,疏水焓h e18=338KJ/kg,疏水温度t e18=81℃,由端差得低加1的出口水温t w3=76℃

凝汽器后的温度t wc=34.2℃,αL3=0.0037,h L3=3389.84 KJ/kg

由α5(h16- h e16)+αL3(h L3- h e16)+α4(h e14- h e16)=4.187(1-α1-α2-α3-αL2-αv)(t w2- t w1)

(1-α1-α2-α3-αL2-αv)t w1=(1-α1-α2-α3-αL2-αv-α4-α5-α6-αL3)t w3+(α4+α5+α6+αL3)t e18

α6(h18-h e18)+(α4+α5+αL3)(h e16-h e18)=4.187(1-α1-α2-α3-αL2-αv-α4-α5-α6-αL3)(t w3-t wc)

三式联立得:α5=0.0378 α6=0.0509 t w1=81℃

4.各级抽气量的计算

D0=242.655 (t/h)

凝汽器的凝结水量D e=(1-α1-α2-α3-αL2-αv-α4-α5-α6-αL3) D0=174.881 (t/h)

阀杆漏气量D v= D0αv=1.359 (t/h)

轴封漏气量D L2= D0αL2=2.427 (t/h)

轴封漏气量D L3= D0αL3=0.898 (t/h)

各级抽气量D1=12.206 (t/h),D2=12.472 (t/h),D3=5.435 (t/h),D4=11.453 (t/h),D5=9.172 (t/h),D6=12.351 (t/h)

调节级流量D0'= D0- D v=241.296(t/h)

1至5级压力级流量D= D0'- D L2- D L3=237.971(t/h)

汽轮机抽汽回热系统运行

汽轮机抽汽回热系统运行 抽汽回热系统的正常投运与否,对电厂的安全、负荷率、经济性影响很大。在实际运行中,必须进行严格的管理,正确的操作方法和维护方法对保证该系统的正常运行起重要作用。除氧器的运行和维护将在第六章中详细介绍,本节只介绍高、低压加热器的运行和维护。 1、启动 高、低加启动前必须先投入加热器水位保护,放尽加热器内积水,各抽汽管道上各疏水阀处于开启状态。启动时先投水侧,再投汽侧。低加汽侧的投入一般采用随机启动的方式;当机组负荷达20%-30%额定负荷时,按3号、2号、1号的顺序投入高加汽侧运行。在投入初期应注意预暖加热器,控制出口水的温升速度。若低加因故不能随机启动,而是在机组达到某负荷后逐个投入,应按由低到高的顺序依次投入,抽汽管道应预先进行充分疏水暖管。 投入加热器运行时应先对水侧注水,待给水缓慢地充满加热器以后,将所有放气门和启动排气门关闭,然后缓慢投入蒸汽,同时开启连续排气阀,疏水品质经检验合格后可排回凝汽器(除氧器)。应该注意的是,在加热器刚启动时参数低,不能克服疏水系统阻力(包括疏水冷却段的阻力、上下级加热器的级间压差、管道阻力等),此时若打开正常疏水门进行疏水逐级自流是困难的,故当机组低负荷运行时需用事故疏水门来疏水,以保证疏水的畅通。 加热器投运基本操作过程如下: 1)启动前的检查和操作已完成。 2)关闭加热器水侧放水门,打开水侧所有排气门。 3)投入加热器的水位保护(疏水调门投自动),缓慢打开水侧进口阀向加热器注水。 注水的目的,一是排净水室侧的空气,二是使加热器金属温度缓慢加热到水温。注 水速度取决于水温和限定的升温率(≤2℃/min)。由于进入低压加热器的水来自凝 结水泵的低温水,因此启动时可直接投入低压加热器的水侧,但仍须缓慢投入,以 免造成较大的冲击,损坏换热管。 4)当水侧排气阀有水连续排出后,即可认为加热器水侧的气体已经排尽,关闭水侧的排气阀,完全打开给水进口阀。待压力升高稳定后观察汽侧水位是否上升,以判断 水侧与汽侧间是否存在泄漏。 5)检查抽汽逆止阀在自由状态,确认加热器已经具备投运条件。稍开抽汽电动阀,蒸汽逐渐进入管道和加热器,抽汽逆止阀自动开启,这时应进行充分的暖管、疏水; 逐渐开启抽汽电动阀,注意给水出口升温率在限制范围内。启动后,为了防止U 形管腐蚀,保证加热器的传热效果,须打开蒸汽侧的连续排气阀,连续不断将不凝 结气体排出。 6)当加热器水位上升后,加热器的正常疏水阀和紧急疏水阀动作情况应正常。 2、运行 正常运行中运行人员须随时对设备上的人孔法兰、管道法兰的密封状况及设备外观和阀门等进行检查,如发现泄漏、变形、异常声响等现象,须立即采取措施或检修。同时还应监视加热器、除氧器系统的各项参数,如除氧器的水位、工作水温及压力是否正常;加热器的水位、进出水温度和流量、蒸汽压力、端差、疏水阀自动控制是否正常,通过与相同负荷下运行工况的比较,判断加热器内部管束是否存在泄漏或其他缺陷,尽早发现问题,及时处理。

600MW机组抽汽回热系统

600MW机组抽汽回热系统 一、综述 对于加热器的性能要求,可归结为尽可能地缩小进入加热器的蒸汽饱和温度与加热器出口给水温度之间的差值,我们称之为加热器端差。为实现这一目的,目前主要通过两种途径。一种途径是采用混合式加热器,从汽轮机抽来的蒸汽在加热器内和进入加热器的给水直接混合,蒸汽凝结成水,其汽化潜热释放到水中,压力温度相同,端差为0,但这种方式需设置水泵为给水提供压力,使其与相应段的抽汽压力一致,这就会消耗一定的能源,除氧器即是一种混合式加热器。另一种途径是采用表面式加热器,在结构上采取必要措施,尽量提高加热器的效果。 某600MW机组汽轮机共设八段非调整抽汽。 第一段抽汽引自高压缸,在全机第6级后,供1号高加;第二段抽汽引自高压缸排汽,在全机第8级后,供给2号高加、给水泵汽轮机及辅汽系统的备用汽源;第三段抽汽引自中压缸,在全机第11级后,供给3号高加;第四段抽汽引自中压缸排汽,在全机第14级后,供给除氧器、给水泵汽轮机、辅汽系统;第五至第八段抽汽均引自低压缸A和低压缸B, 第五段抽汽引自全机第16级后,供给5号低加;第六段抽汽引自全机第17级后,供6号低加;第七段抽汽引自全机第18级后,引自低压缸A的抽汽供给 7A号低加,引自低压缸B 的抽汽供给7B号低加;第八段抽汽引自全机第19级后,引自低压缸A的抽汽供给供给8A 号,引自低压缸B的抽汽供给8B号低加。 除第七、八段抽汽外,各抽汽管道均装设有气动逆止阀和电动截止阀,前者作为防止汽轮机超速的一级保护,同时也作为防止汽轮机进水的辅助保护措施;后者是作为防止汽轮机进水的隔离措施。由于四抽连接到辅汽联箱、除氧器和给水泵汽轮机等,用户多且管道容积大,管道上设置两道逆止阀。四段抽汽各用汽点的管道上亦设置了一个气动逆止阀和电动截止阀。抽汽在表面式加热器中放热后的疏水,采用逐级自流方式。1号高加疏水借压力差自流入2号高加,2号高加的疏水自流入3号高加,3号高加的疏水流向除氧器。低压加热器逐级 自流后,最后由8号低加流向凝汽器。由于各级加热器均设有疏水冷却段,可将抽汽的凝结水在疏水冷却段内进一步冷却,使疏水的温度低于其饱和温度,故可以防止疏水的汽化对下级加热器抽汽的排挤。 二、高加系统 为了减小端差,提高表面式加热器的热经济性,现代大型机组的高压加热器和少量低压加热器采用了联合式表面加热器。 某600MW机组高加为卧式、表面凝结、U型换热器,采用三台高压加热器大旁路配置。此类加热器一般由过热蒸汽冷却段、凝结段、疏水冷却段三部分组成:

抽气回热系统五六段抽气

课程设计报告 ( 2012-- 2013 年度第 1 学期) 名称:过程参数检测及仪表课程设计题目:抽气回热系统的五,六段 院系:控制与计算机工程 班级:测控1001班 学号:1101160119 学生姓名:王亚为 指导教师:邱天 设计天数:一天半 成绩: 日期:2013 年 6 月27 日

一、课程设计的目的与要求 本课程设计为检测技术与仪器、自动化专业《过程参数检测及仪表》专业课的综合实践环节。通过本课程设计,使学生加深对抽气回热系统基本概念的理解,以及掌握一定关于抽气回热系统创新与改进的基本能力。 二、设计正文 抽气回热系统的五六段抽气回热 1.抽气回热系统的现代背景 2. 简述系统的工作原理 3.介绍设备及参数 4.画出热工检测图 5.列出仪表设备清册 具体解答过程 1. 抽气回热系统的背景 抽气回热系统指与汽轮机回热抽汽有关的管道及设备,在蒸汽热力循环中,通常是从汽轮机数个中间级抽出一部分蒸汽,送到给水加热器中用于锅炉给水的加热(即抽汽回热系统)及各种厂用汽等。抽汽回热系统是原则性热力系统最基本的组成部分,采用蒸汽加热锅炉给水的目的在于减少冷源损失,一定量的蒸汽作了部分功后不再至凝汽器中向空气放热,即避免了蒸汽的热量被空气带走,使蒸汽热量得到充分利用,热好率下降,同时由于利用了在汽轮机作过部分功的蒸汽加热给水,提高了给水温度,减少了锅炉受热面的传热温差,从而减少了给水加热工程中不可逆损失,在锅炉中的吸热量也相应减少提高工质在锅炉内吸热过程的平均温度。综合以上原因说明,抽汽回热系的正常投运对提高机组的热经济性具有决定性的影响。 2. 简介系统的基本工作原理 图7-1 原则性热力系统图 如图所示,在汽轮机高中低压气缸做完功的蒸汽凝结为水进入凝汽器,然后凝结水从凝汽器

热力发电厂,给水回热系统-习题4-1

习题4-1: 某汽轮机组0 3.5p MPa =,0435t C =?,0.006c p MPa =,回热系统的汽水比焓见 下图,求该机组的热经济性指标,已知0.97m η=, 0.98g η=, 1.00h η=,0.87b η=,0.99p η=,P 12e MW =。 解:加热器出口水焓:1719.7/w h kJ kg =,2574/w h kJ kg =,3437.1/w h kJ kg =, 4406.3/w h kJ kg =,5288.5/w h kJ kg = ;c 149.5/w h kJ kg = 疏水焓:' 1739/h kJ kg =,' 2591.6/h kJ kg =,'4418.6/h kJ kg =;' 5301/h kJ kg = 抽气焓: 13036/h kJ kg =,22866/h kJ kg =,32732/h kJ kg =,42656/h kJ kg =, 52506/h kJ kg =,c 2311/h kJ kg =。

由0 3.5p MPa =,0435t C =?用水蒸气程序求得03303.612/h kJ kg =。 为计算方便,1h η=,不影响计算结果,在下面各式中省略。 (1)1号高压加热器(H1) ' 11112()h w w h h h h αη-=- (1) 121' 11719.7574 0.063431()3036739 w w h h h h α--= ==-- H1的疏水系数110.063431s αα==。 (2)2号高压加热器(H2) ' ' ' 222s11223[()()]h w w h h h h h h ααη-+-=- (2) '' 231122' 22()()574437.10.063431(739591.6)0.056081()2866591.6 w w h h h h h h αα-----?-===-- H2的疏水系数2120.119512s ααα=+= 再热蒸汽系数1210.88049rh ααα=--= (3)除氧器(H3) 除氧器进水系数:c3s23=(1)ααα-- ' 333s22c34 ' 33122 1234=()(1)w w w h h h h h h h ααααααααα=+++++--- (3) ' 3122124 334 ()(1)437.10.119512591.60.880488406.3 2732406.3 0.0037212w w w h h h h h ααααα-+---= --?-?= -= 除氧器进水系数:c3s23=(1)0.87677ααα--= (4)4号高低加热器(H4) ()()() ()()()'444h c34w5c34w54'44h 0.8767668406.3-288.5= =2656-418.6 =0.0461621 w w h h h h h h h h αηαααη-=--?-() (4) H4的疏水系数:s34==0.046162αα

提高给水温度要点

利用精益的生产方式来提高 热电联产的经济效益 —浅谈我电厂应如何提高给水温度来降低发电煤耗 姓名:王哲辉 专业工种:汽轮机运行 申报级别:技师 单位:一汽集团动能分公司汽机车间 2009年度技师考评答辩论文

前言 火力发电厂中电能的生产,实质上是将燃料中储存的化学能,经过一系列中间环节的能量释放、传递、转换最终变为电能。为了使能量转换不间断的进行,就需要工质不停地进行朗肯循环。但由于朗肯循环中有巨大的冷源损失存在,热经济性较低,为了提高循环的热效率,在朗肯循环的基础上,发展了回热循环。现代火力发电厂都无例外地采用了回热循环,如给水回热循环,目前现代凝汽式或供热式汽轮机,容量在6000kw以上的都高有回热加热器进行给水的回热循环。 我动能公司电厂在热电联产的整个过程中给水回热循环是个非常重要的环节,其结果在于充分利用给水回热循环来提高锅炉给水温度,减少了锅炉的发电煤耗,增加了电厂的热经济性。但是由于设备陈旧、老化、缺陷较多,加之运行人员操控不当等诸多原因,使我电厂的给水回热循环效率较低,总体热经济性差。如何提高热效率是现代电厂的首要任务,也是我电厂一直以来追求的目标。

摘要 回热循环是热力循环系统中热效率比较高的一种循环方式,热电联合生产系统中给水回热循环是最经济的典型的回热循环方式。 我电厂中的给水回热循环正是利用这种高效的回热循环方式来加热给水,使之利用机组抽汽加热给水来提高给水温度,提高了热效率和热经济性,降低了煤耗。但是由于设备老化、系统中存在着不完善等诸多因素,使我电厂中的给水回热循环未达到理想的效果。 通过2007-2008年度冬季高峰负荷期的试验性调整后,发现给水温度比历年来的平均给水温度提高了近10℃左右,降低了煤耗,节约了资金,并且针对于我电厂给水系统中的缺陷提出几项切实可行的改进方案,以改善给水系统的完整性,灵活性,从而能够更好、更高效、更快捷的满足锅炉对用水的需求。 关键词:

汽轮机抽汽回热系统组成

汽轮机抽汽回热系统组成 二期机组汽轮机共设7段非调整抽汽(一期机组抽汽为8段)。第一段抽汽引自高压缸,在全机第6级后,供#1高加;第二段抽汽引自高压缸排汽,在全机第8级后,供给#2高加;第三段抽汽引自中压缸,在全机第11级后,供给#3高加;第四段抽汽引自中压缸排汽,在全机第14级后,供给除氧器、辅汽系统;第五至第七段抽汽均引自低压缸A和低压缸B,第五段抽汽引自全机第16级后,供给#5低加;第六段抽汽引自全机第17级后,供#6低加;第七段抽汽引自全机第18级后,引自低压缸A的抽汽供给#7A低加,引自低压缸B 的抽汽供给#7B低加。 除第七段抽汽外,各抽汽管道均装设有气动逆止阀和电动截止阀,前者作为防止汽轮机超速的一级保护,同时也作为防止汽轮机进水的辅助保护措施;后者是作为防止汽轮机进水的隔离措施。由于四抽连接到辅汽联箱、除氧器、小机等,用户多且管道容积大,管道上设置两道逆止阀。四段抽汽各用汽点的管道上亦设置了一个气动逆止阀和电动截止阀。 抽汽在表面式加热器中放热后的疏水,采用逐级自流方式。#1高加疏水借压力差自流入#2高加,#2高加的疏水自流入#3高加,#3高加的疏水流向除氧器。低压加热器逐级自流后,最后由#7低加流向汽轮机本体疏水扩容器。由于各

级加热器均设有疏水冷却段,可将抽汽的凝结水在疏水冷却段内进一步冷却,使疏水的温度低于其饱和温度,故可以防止疏水的汽化对下级加热器抽汽的排挤。 为防止因加热器故障引起事故扩大,每一加热器均设有保护系统,其基本功能是防止因加热器原因引起的汽轮机进水、加热器爆破和锅炉断水事故,具有异常水位保护、超压保护和给水旁路联动操作的功能。 加热器的保护装置一般有如下几个:水位计,事故疏水门,给水自动旁路,抽汽电动截止门、抽汽逆止门联动关闭装置,汽侧及水侧安全门等。对于7号低加,蒸汽入口处设置防闪蒸的挡板。 各级设计抽汽参数 抽汽项目THA工况T-MCR工况 抽汽级数流量 kg/h 压力 MPa 温 度℃ 流量 kg/h 压力 MPa 温 度℃ 第一级(至1号高加)13968 6 7.217 380. 8 15386 6 7.67 5 388. 2 第二级(至2号高加)16541 9 4.703 324. 3 17943 6 4.98 2 330. 5 第三级(至3号高加)78073 2.291 470. 8 84564 2.42 4 470. 5

热力循环比较.doc

斯特林循环Stirling cycle 所热气机(即斯特林发动机)的理想热力循环,为19 世纪苏格兰人 提出,因而得名。图[斯特林循环的- R.斯特林 和- 图 ]- 和 - 图" class=image> 为斯 特林循环在压 -容( - ) 图和温 -熵 (T-S)图上的表示。它是由两个定容吸热过程和两个定温膨胀过程组成的可逆循环,而且定容放热过程放出的热量恰好为定容吸热过程所吸收。热机在定温 (T1)膨胀过程中从高温热源吸热,而在定温 (T2)压缩过程中向低温热源放热。斯特林循环的热效率为 [0727-01] 式中W 为输出的净功; Q 1 为输入的热量。根据这个公式,只取决于 T1 和 T2,T1 越高、 T 2 越低时,则越 高,而且等于相同温度范围内的卡诺循环热效率。因此,斯特林发动机是一种很有前途的热力发动机。斯特林循环也可以反向操作,这时它就成为最有效的制冷机循环。 卡诺热机循环的效率 让我们分析以理想气体为工作物质的卡诺热机循环并求其效率。以v 表示理想气体的摩尔数,以 T1和2分别表示高温和低温热库的温度。气体的循环过 T 程如图 10.12 所示。它分为以下几个阶段,两个定温和两个绝热过程。 1→2:使温度为 T1的高温热库和气缸接触,气缸内的气体吸热作等温膨胀。 体积由 V1增大到2。由于气体内能不变,它吸收的热量就等于它对外界做的功。 利用公式 (10.3) V 可得

2→3:将高温热库移开,气缸内的气体作绝热膨胀,体积变为V3,温度降到T2。 3→4:使温度为 T2的低温热库和气缸接触,缸内的气体等温地被压缩到体积 V4,使状态4和状态1位于同一条绝热线上,在这一过程中,气体向低温热库放 出的热量为 4→1:将低温热库移开,缸内的气体绝热地被压缩到起始状态 1,完成一次循环。 在一次循环中,气体对外做的净功为 W=Q1-Q2 卡诺循环中的能量交换与转化关系可用图10.13 那样的能流图表示。 根据热机效率的定义公式(10.23) ,可得理想气体卡诺热机循环的效率为 根据理想气体的绝热过程方程,对两条绝热线应分别有 两式相比,可得 从而有

汽轮机抽汽回热系统

汽机抽汽回热系统 1、概述:回热抽气系统指与汽轮机回热抽汽有关的管道及设备,在蒸汽热力循环中,通常是从汽轮机数个中间级抽出一部分蒸汽,送到给水加热器中用于锅炉给水的加热(即抽汽回热系统)及各种厂用汽等。采用回热循环的主要目的是:提高工质在锅炉内吸热过程的平均温度,以提高级组的热经济性。 2、抽汽回热系统作用:抽汽回热系统是原则性热力系统最基本的组成部分,采用蒸汽加热锅炉给水的目的在于减少冷源损失,一定量的蒸汽作了部分功后不再至凝汽器中向空气放热,即避免了蒸汽的热量被空气带走,使蒸汽热量得到充分利用,热好率下降,同时由于利用了在汽轮机作过部分功的蒸汽加热给水,提高了给水温度,减少了锅炉受热面的传热温差,从而减少了给水加热工程中不可逆损失,在锅炉中的吸热量也相应减少。综合以上原因说明抽汽回热系提高了机组循环热效率。因此,抽汽回热系的正常投运对提高机组的热经济性具有决定性的影响。 3、影响抽汽回热系统经济型地主要参数:影响给水回热加热经济性的主要参数为回热加热分配、相应的最佳给水温度和回热级数,三者紧密联系,互有影响。 在求解最佳回热分配的计算分析中,以Z级理想回热循环的循环效率最大值求其最佳回热分配,(所谓理想回热循环,即假定为混合式加热器,端差为零,不计新蒸汽,抽汽压损和泵功、忽略散热损失)求得理想回热循环的最佳回热分配通式后,根据忽略一些次要因素,进一步简化,即可获得其它近似的最佳回热分配通式。如“焓降分配法”,这种分配方法是将每一级加热器的焓升取作等于前一级至本级的蒸汽在汽轮机中的焓降;又如“平均分配法”,这种回热分配方法的原则是每一级加热器的焓升相等;其他还有“等焓降分配法”等。可见给水回热总加热量在各级中的分配是在一定的给水温度和一定级数的条件下,使循环热效率最高为原则,由此对应的各级抽汽回热参数,即为最有利分配的参数。 4、提高系统循环热效率的措施:将给水加热到多少温度,才能使循环热效率达到最高值?以单级抽汽回热为例,回热时给水温度从汽轮机排汽压力下的饱和温度开始逐渐增加,热效率也逐渐增加,热效率达最大值时的给水温度称为最佳给水温度,再提高给水加热温度时,热效率反会减小,热经济性就降低。这是因为给水加热温度提高后,相应的抽汽压力也提高,对该部分的抽汽而言,每千克抽汽在汽轮机中热变功的量减少了,若发电量不变,则要增加进入汽轮机中的新蒸汽量,以弥补因抽汽而减少的发电量,抽汽压力愈高,增加的新蒸汽量就愈多,因而汽耗率也愈大,相应的排向低温热源的热量也就越大,锅炉加热的数值虽不断降低,但汽耗率增加较快,以致使热耗率相应增大,从而使循环热效率降低。理论上,加热级数愈多,最佳给水温度愈高。 在实际应用中,给水温度并非加热到最佳给水温度,这是因为还必须要全盘考虑技术经济性,一方面,给水温度的提高,使排烟温度升高,锅炉效率降低,或需增大锅炉尾部受热面,使锅炉投资增加;另一方面,由于回热使得锅炉的蒸发量和汽轮

毕业设计电子版(回热加热系统)资料

摘要 热系统变工况是指系统的工况发生变动,偏离设计工况或者偏离某个基准工况。热系统工况发生变动的原因是多方面的,比如机组热、电负荷变化,热系统及设备发生变动(含改造)以及蒸汽初、终参数发生变动等等都将引起热系统工况发生变化。因为变工况的影响因素很多,并且这些因素又互相制约,这就使得汽轮机的变工况特性非常复杂。 热系统的变工况,无论它产生的原因如何,其表现出的特点均是汽轮机的进汽流量或级组通过的蒸汽流量发生变动,其产生的直接结果是级组的各抽汽参数和热系统的有关参数发生变化,并表现为汽轮机膨胀过程线的变化。 热系统变工况特性分析的目的在于确定汽轮机各抽汽口和排汽端的蒸汽参数以及 回热系统的各相应参数,其实质是确定汽轮机新的膨胀过程线和系统参数,这是热系统变工况的安全性与可靠性分析以及经济指标计算分析的基础。 关键词: 变工况热负荷热经济性

Abstract Off-heat system is the system operating conditions change, the status of or deviation from the design operating conditions deviate from a benchmark. Thermal system operating conditions change are many reasons, such as the Heat, electricity load changes, thermal changes in systems and equipment (including transformation), as well as the early steam, and finally change the parameters so the system will be caused by thermal changes in working conditions . Because of the impact of variable condition of a number of factors, and these factors and each other, making the variable condition of steam turbine characteristics is very complicated. Thermal system with variable working condition, no matter how it causes, its manifestations are the characteristics of the turbine steam flow into the group or class of steam flow through the changes, the generated class group is a direct result of the extraction parameters and thermal system parameters change, and performance for the turbine expansion process line changes. Thermal Systems Analysis of changes in working conditions to determine the extraction steam turbine and the exhaust port side of the steam heat system parameters, as well as all corresponding parameters, and its essence is to determine the turbine expansion process of the new line and system parameters, which change the thermal system condition of the safety and reliability analysis and the analysis of economic indicators based on the calculation. Key words:Off-heat system heat load Thermal economy

04回热抽汽系统培训课件

五、回热抽气系统 1、回热抽汽系统概述: 回热抽气系统指与汽轮机回热抽汽有关的管道及设备,在蒸汽热力循环中,通常是从汽轮机数个中间级抽出一部分蒸汽,送到给水加热器中用于锅炉给水的加热(即抽汽回热系统)及各种厂用汽等。采用回热循环的主要目的是:提高工质在锅炉内吸热过程的平均温度,以提高级组的热经济性 回热抽汽系统作用:抽汽回热系统是原则性热力系统最基本的组成部分,采用蒸汽加热锅炉给水的目的在于减少冷源损失,一定量的蒸汽作了部分功后不再至凝汽器中向空气放热,即避免了蒸汽的热量被空气带走,使蒸汽热量得到充分利用,热好率下降,同时由于利用了在汽轮机作过部分功的蒸汽加热给水,提高了给水温度,减少了锅炉受热面的传热温差,从而减少了给水加热工程中不可逆损失,在锅炉中的吸热量也相应减少。综合以上原因说明抽汽回热系提高了机组循环热效率。因此,抽汽回热系的正常投运对提高机组的热经济性具有决定性的影响。 2、我厂各段回热抽汽系统介绍 本机组有六级回热抽汽,第一级抽汽作为中压工业抽汽;第二级抽汽送入#1高压加热器;第三级抽汽一部分送入#2高压加热器;一部分用作低压工业抽汽;第四级抽汽送入除氧器;第五级抽汽送入#1低压加热器;第六级抽汽送入#2低压加热器。第三级与第四级之间有联络电动门,作为第四级备用补助汽源。六级抽汽均装有止回阀,第一、三级抽汽还装有快关阀,当自动主汽门关闭后,快关阀迅速关闭,切断抽汽系统的运行。 3、汽轮机各段回热抽汽投用原则 一抽:正常不投运,快关阀保持关闭状态,逆止门前疏水开启,一抽外供汽电动门前疏水微开 二抽:#1高加正常要求机组负荷大于33MW或主汽流量大于120t/h后视情况投入运行,退出时在主汽流量低于100t/h时或疏水不稳时退出运行,按操作票进行投退。 三抽至高加:#2高加正常要求机组负荷大于28MW或主汽流量大于120t/h后视情况投入运行,退出时在主汽流量低于100t/h时或疏水不稳时退出运行,按操作票进行投退。

回热抽汽系统

回热抽汽系统 回热抽汽系统指与汽轮机回热抽汽有关的管道及设备。汽轮机采用回热循环的主要目的是提高工质在锅炉内吸热过程的平均温度以提高机组的热经济性。 本机组具有八级非调整抽汽。一段抽汽从高压缸的一段抽汽口抽汽至#1高加;二段抽汽从再热蒸汽冷段引出,为#2高加供汽;三段抽汽从中压缸三段抽汽口抽出,供给#3高加;四段抽汽从中压缸四段抽汽口至抽汽总管,然后再由总管上引出三路,分别供给除氧器、两台给水泵驱动汽轮机和辅助蒸汽系统;五、六、七、八段抽汽分别供汽至四台低压加热器。 除回热抽汽及给水泵汽轮机用汽外,机组能供给厂用蒸汽量: 低温再热蒸汽抽汽量暂按20t/h,四级抽汽量暂按50t/h,五级抽汽量暂按30t/h,此工况下汽轮机能带额定负荷(600MW)。汽轮机在带额定负荷(600MW)、平均背压0.0049MPa(a)时,单抽冷段最大值115t/h、单抽四段最大值170t/h、单抽五段最大值70t/h、抽四段和五段最大值分别为110t/h和70t/h。 一、系统的保护措施 汽轮机各段抽汽管道将汽机与各级加热器或除氧器相连。当汽轮机突降负荷或甩负荷时,蒸汽压力急剧降低,这些加热器和除氧器内的饱和水将闪蒸成蒸汽,与各抽汽管道内滞留的蒸汽一同返回汽机。

这些返回汽机的蒸汽可能在汽轮机内继续做功而造成汽机超速。另外,加热器管束破裂,管子与管板或联箱连接处泄漏,以及加热器疏水不畅造成水位过高等情况,都会使水倒入汽轮机,发生事故。 因此回热抽汽系统必须满足汽轮机超速保护、汽轮机进水保护和除氧器水箱及加热器水位过高的要求。 为防止汽机超速,除了最后两级抽汽管道外,其余的抽汽管上均装设气动控制逆止阀和电动隔离阀。四级抽汽管道上靠近汽轮机处装设一个电动隔离阀和两个气动控制逆止阀。由于除氧器水箱热容量大,一旦汽机甩负荷或除氧器满水事故时,防止汽水倒流入抽汽管道再灌入汽轮机。其它凡是从抽汽系统接出的管道去加热设备都装有逆止阀。抽汽逆止阀尽可能靠近汽轮机的抽汽口安装,以便当汽轮机跳闸时,可以降低抽汽系统能量的贮存,为防汽机超速保护。同时抽汽逆止阀亦作为防止汽轮机进水的二级保护。 具有快关功能的电动隔离阀的安装位置靠近加热器,作为防止汽轮机进水的一级保护,另一个作用是在加热器切除时,切断加热器的汽源。 在各抽汽管道的顶部和底部分别装有热电偶,作为防进水保护的预报警,便于运行人员预先判断事故的可能性。 给水泵汽轮机的正常工作汽源从四段抽汽管道上引出,装设有流量测量喷嘴、电动隔离阀和止回阀。逆止阀是为了防止高压汽源切换时,高压蒸汽串入抽汽系统。当给水泵汽轮机在低负荷运行使用高压汽源时,该管道亦将处于热备用状态。

抽汽回热系统及热网系统

抽汽回热系统及热网系统 概述 以水为工质的热力发电厂,汽轮机排汽凝结放热的损失最大,抽汽回热将部分做完功的蒸汽抽出,这部分蒸汽的汽化潜热被凝结水吸收保留在了系统内,减少了冷源损失,提高了电厂热经济性。回热作为一个最普遍、对提高机组和全厂热经济性最有效的手段,被当今所有火电厂的汽轮机所采用。另外,为保证机组正常运行,抽汽还提供轴封用汽、锅炉辅助用汽、采暖及制冷用汽等。 回热系统既是汽轮机热力系统的基础,也是电厂热力系统的核心,它对机组和电厂的热经济性起着决定性的作用。 抽汽回热系统作用 抽汽回热系统是原则性热力系统最基本的组成部分,采用抽汽加热锅炉给水的目的在于减少冷源损失,一定抽汽量的蒸汽作了部分功后不再至凝汽器中向冷却水放热,既避免了蒸汽的热量被循环冷却水带走,使蒸汽热量得到充分利用,热耗率下降。同时由于利用了在汽轮机作过部分功的蒸汽来加热给水,提高了给水温度,减少了锅炉受热面的传热温差,从而减少了给水加热过程的不可逆损失,在锅炉中的吸热量也相应减少。综合以上原因说明抽汽回热系统提高了机组循环热效率,因此抽汽回热系统的正常投运对提高机组的热经济性具有决定性的影响。 抽汽系统组成 本机组汽轮机共设六段非调整抽汽和一段调整抽汽。其中,一、二、三段抽汽分别向三台高加和三号高加外置蒸汽冷却器供汽;四段抽汽向给水泵汽轮机和除氧器供汽,同时向辅助蒸汽联箱供汽。五段抽汽为调整抽汽,一部分至五号低加,另一部分至热网,同时还需具有提供不低于50t/h(暂定)厂用蒸汽的能力,五段抽汽共用2个抽汽口,并采用下排汽方案。;六、七段抽汽分别向六、七号低加供汽,除第六、七段抽汽外,各抽汽管道均装设有气动逆止阀和电动截止阀,前者作为防止汽轮机超速的一级保护,同时也作为防止汽轮机进

工程热力学版回热循环简介

回热循环 1.极限回热循环。 为了便于和卡诺循环对照分析,我们取初态为干饱和蒸汽的朗肯循环,如图19-4所示。由凝汽器出来的低温凝结水不是直接送到锅炉,而是首先进入汽轮机壳的夹层中,由汽轮机的排汽端向进汽端流动,并依次被汽轮机内的蒸汽所加热。这时蒸汽在汽轮机内膨胀作功的同时,通过机壳不断向凝结水放热,即膨胀过程将沿曲线1-2进行。假设传热过程是可逆的,即在机壳的每一点上,蒸汽与凝结水之间的温差为无限小,此时曲线1-2将与4-3平行,结果蒸汽通过机壳传出的热量(面积12781)将等于凝结水吸收的热量(面积34653),凝结水最终被加热到初压力下的饱和温度了T1,(即T4),然后再送人锅炉。由于面积l22'1等于面积343'3,所以面积12341与面积12'3'41相等。于是循环1-2-3-4-1将与相同温度T1、T2下的卡诺循环1-2'-3' -4-1等效,即它们将具有相同的热效率。这个循环称为极限回热循环。 显然,极限回热循环在实际上是无法实现的,因为蒸汽流过汽轮机时的速度很高,要在短时间内使蒸汽通遘机壳传热给水是不可能的,汽轮机构造上有困难,传热温差为零更是无法实现。 2.抽汽回热循环。 (a)工作原理图(b)T - s图 图19-4 极限回热循环图 尽管极限回热是无法实现的,但它给人们以利用膨胀作了功的蒸汽预热锅炉给水以提高循环热效率的启示,从而产生了用分级抽汽来加热给水的实际回热循环,即抽汽回热循环。图19-5所示为两级抽汽回热循环原理图及理论循环T-s图。设有1 kg过热蒸汽进入汽轮机膨胀作功。当压力降低至P6时,由汽轮机内抽取α1 kg蒸汽送入一号回热器,其余的(1-α

汽轮机抽汽回热系统运行和维护

汽轮机抽汽回热系统运行和维护 抽汽回热系统的正常投运与否,对电厂的安全、负荷率、经济性影响很大。在实际运行中,必须进行严格的管理,正确的操作方法和维护方法对保证该系统的正常运行起重要作用。 加热器的启动 高、低加启动前必须先投入加热器水位保护,放尽加热器内积水,各抽汽管道上各疏水阀处于开启状态。启动时先投水侧,再投汽侧。高、低加水侧一般机组上水即投入水侧。低加汽侧的投入一般采用随机启动的方式;当机组负荷达30%额定负荷时,按#3、#2、#1高加的顺序投入高加汽侧运行。在投入初期应注意预暖加热器,控制出口水的温升速度。若低加因故不能随机启动,而是在机组达到某负荷后逐个投入,应按由低到高的顺序依次投入,抽汽管道应预先进行疏水暖管。 投入加热器运行时应先对水侧注水,待给水缓慢地充满加热器以后,将所有放气门和启动排气门关闭,然后缓慢投入蒸汽,同时开启连续排气阀,疏水品质经检验合格后可排回本体疏水扩容器(除氧器)。应该注意的是,在加热器刚启动时参数低,不能克服疏水系统阻力(包括疏水冷却段的阻力、上下级加热器的级间压差、管道阻力等),此时若打开正常疏水门进行疏水逐级自流是困难的,故当机组低负荷运

行时需用事故疏水门来疏水,以保证疏水的畅通。 加热器投运基本操作过程如下: 启动前的检查和操作已完成。关闭加热器水侧放水门,打开水侧所有排气门。投入加热器的水位保护(疏水调门投自动),缓慢打开水侧进口阀向加热器注水。注水的目的,一是排净水室侧的空气,二是使加热器温度缓慢加热到水温。注水速度取决于水温和限定的升温率(≤3℃/min)。由于进入低压加热器的水来自凝结水泵的低温水,因此启动时可直接投入低压加热器的水侧,但仍须缓慢投入,以免造成较大的冲击,损坏换热管。 当水侧排气阀有水连续排出后,即可认为加热器水侧的气体已经排尽,关闭水侧的排气阀,完全打开给水进口阀。待压力升高稳定后观察汽侧水位是否上升,以判断水侧与汽侧间是否存在泄漏。 打开抽汽逆止门,检查抽汽逆止阀在自由状态,确认加热器已经具备投运条件。打开抽汽电动阀旁路手动门,稍开抽汽电动阀,蒸汽逐渐进入管道和加热器,抽汽逆止阀自动开启,这时应进行充分的暖管、疏水;逐渐开启抽汽电动阀,注意给水出口升温率在限制范围内。启动后,为了防止U形管腐蚀,保证加热器的传热效果,须打开蒸汽侧的连续排气阀,连续不断将不凝结气体排出。当加热器水位上升后,加热器的正常疏水阀和紧急疏水阀动作情况应正常。

回热抽汽

什么是回热抽汽系统? 为提高机组的热效率和经济性,减少凝汽器的能源损失,将部分已做过功的蒸汽从汽轮机内抽出,用来加热凝结水、给水以及供给除氧器及民用采暖。这些抽汽管道及相关设备:抽汽逆止门、电动门、快关门、高、低加及其相关疏水系统被称为回热抽汽系统。 什么是给水回热系统?8 `. ^& t; k7 X e; r& _; k 上面朋友已经解答了,其包括高加系统及其附属的疏水系统以及给水系统。严格来说给水回热系统应属于回热抽汽系统范围内,只不过给水回热系统一般还包括给水系统在内。, E9 c0 s/ t" P1 z7 G! O) u$ Z/ @ + s: x; G* G' y4 |; Q 其实在电厂实际生产中都不是按照这样分类的,而是都给细化了,比如抽汽系统、高低加疏水系统、给水系统、热网系统等。楼主所问的应该是理论上讨论的范畴,这和实际生产中的叫法不可等同,当然意思都是一样的。 1、概述:回热抽气系统指与汽轮机回热抽汽有关的管道及设备,在蒸汽热力循环中,通常是从汽轮机数个中间级抽出一部分蒸汽,送到给水加热器中用于锅炉给水的加热(即抽汽回热系统)及各种厂用汽等。采用回热循环的主要目的是:提高工质在锅炉内吸热过程的平均温度,以提高级组的热经济性。 2、抽汽回热系统作用:抽汽回热系统是原则性热力系统最基本的组成部分,采用蒸汽加热锅炉给水的目的在于减少冷源损失,一定量的蒸汽作了部分功后不再至凝汽器中向空气放热,即避免了蒸汽的热量被空气带走,使蒸汽热量得到充分利用,热好率下降,同时由于利用了在汽轮机作过部分功的蒸汽加热给水,提高了给水温度,减少了锅炉受热面的传热温差,从而减少了给水加热工程中不可逆损失,在锅炉中的吸热量也相应减少。综合以上原因说明抽汽回热系提高了机组循环热效率。因此,抽汽回热系的正常投运对提高机组的热经济性具有决定性的影响。 3、影响抽汽回热系统经济型地主要参数:影响给水回热加热经济性的主要参数为回热加热分配、相应的最佳给水温度和回热级数,三者紧密联系,互有影响。 在求解最佳回热分配的计算分析中,以Z级理想回热循环的循环效率最大值求其最佳回热分配,(所谓理想回热循环,即假定为混合式加热器,端差为零,不计新蒸汽,抽汽压损和泵功、忽略散热损失)求得理想回热循环的最佳回热分配通式后,根据忽略一些次要因素,进一步简化,即可获得其它近似的最佳回热分配通式。如“焓降分配法”,这种分配方法是将每一级加热器的焓升取作等于前一级至本级的蒸汽在汽轮机中的焓降;又如“平均分配法”,这种回热分配方法的原则是每一级加热器的焓升相等;其他还有“等焓降分配法”等。可见给水回热总加热量在各级中的分配是在一定的给水温度和一定级数的条件下,使循环热效率最高为原则,由此对应的各级抽汽回热参数,即为最有利分配的参数。 4、提高系统循环热效率的措施:将给水加热到多少温度,才能使循环热效率达到最高值?以单级抽汽回热为例,回热时给水温度从汽轮机排汽压力下的饱和温度开始逐渐增加,热效率也逐渐增加,热效率达最大值时的给水温度称为最佳给水温度,再提高给水加热温度时,热效率反会减小,热经济性就降低。这是因为给水加热温度提高后,相应的抽汽压力也提高,对该部分的抽汽而言,每千克抽汽在汽轮机中热变功的量减少了,若发电量不变,则要增加进入汽轮机中的新蒸汽量,以弥补因抽汽而减少的发电量,抽汽压力愈高,增加的新蒸汽量就愈多,因而汽耗率也愈大,相应的排向低温热源的热量也就越大,锅炉加热的数值虽不断降低,但汽耗率增加较快,以致使热耗率相应增大,从而使循环热效率降低。理论上,加热级数愈多,最佳给水温度愈高。 在实际应用中,给水温度并非加热到最佳给水温度,这是因为还必须要全盘考虑技术经济性,一方面,给水温度的提高,使排烟温度升高,锅炉效率降低,或需增大锅炉尾部受热面,使锅炉投资增加;另一方面,由于回热使得锅炉的蒸发量和汽轮机高压端的通流量都要增加,而汽轮机的低压端的通流量和蒸汽流量相应减少,因而不同程度地影响锅炉、汽轮机以及各相关辅助系统的投资、拆旧费和厂用电。通过技术经济比较确定的最佳给水温度,称为经济最佳给水温度。 理论上,给水回热的级数越多,汽轮机的热循环过程就越接近卡诺循环,汽热循环效率就越高,但加热级数增加时,热效率的增长逐渐放慢,相对得益不多,运行也更加复杂,同时回热抽汽的级数受投资和场地的制约,因此不可能设置

相关文档
最新文档