fluent网格质量要求

fluent网格质量要求
fluent网格质量要求

1)网格质量参数:

Skewness (不能高于0.95,最好在0.90以下;越小越好)

Change in Cell-Size(也是Growth Rate,最好在1.20以内,最高不能超过1.40)

Aspect Ratio (一般控制在5:1以内,边界层网格可以适当放宽)

Alignment with the Flow(就是估计一下网格线与流动方向是否一致,要求尽量一致,以减少假扩散)

2)网格质量对于计算收敛的影响:

高Skewness的单元对计算收敛影响很大,很多时候计算发散的原因就是网格中的仅仅几个高Skewness的单元。

举个例子:共有112,000个单元,仅有7个单元的Skewness超过了0.95,在进行到73步迭代时计算就发散了!

高长宽比的单元使离散方程刚性增加,使迭代收敛减慢,甚至困难。也就是说,Aspect Ratio尽量控制在推荐值之内。

3)网格质量对精度的影响:

相邻网格单元尺寸变化较大,会大大降低计算精度,这也是为什么连续方程高残差的原因。

网格线与流动是否一致也会影响计算精度。

4)网格单元形状的影响:

非结构网格比结构网格的截断误差大,因此,为提高计算精度计,请大家尽量使用结构网格,对于复杂几何,在近壁这些对流动影响较大的地方尽量使用结构网格,在其他次要区域使用非结构网格。

FLUENT动网格讲解分析

题记:在学习使用Fluent的时候,有不少朋友需要使用动网格模型(Dynamic Mesh Model),因此,本版推出这个专题,进行大讨论,使大家在使用动网格时尽量少走弯路,更快更好地掌握;也欢迎使用过的版友积极参与讨论指导,谢谢! 该专题主要包括以下的主要内容: ##1.动网格的相关知识介绍; ##2.以NACA0012翼型俯仰振荡实例进行讲解动网格的应用过程; ##3. 与动网格应用有关的参考文献; ##4. 使用动网格进行计算的一些例子。 ##1.动网格的相关知识介绍 有关动网格基础方面的东西,请具体参考FLUENT User’s Guide或FLUENT全攻略的相关章节,这里只给出一些提要性的知识要点。 1、简介 动网格模型可以用来模拟流场形状由于边界运动而随时间改变的问题。边界的运动形式可以是预先定义的运动,即可以在计算前指定其速度或角速度;也可以是预先未做定义的运动,即边界的运动要由前一步的计算结果决定。网格的更新过程由FLUENT 根据每个迭代步中边界的变化情况自动完成。在使用动网格模型时,必须首先定义初始网格、边界运动的方式并指定参予运动的区域。可以用边界型函数或者UDF 定义边界的运动方式。FLUENT 要求将运动的描述定义在网格面或网格区域上。如果流场中包含运动与不运动两种区域,则需要将它们组合在初始网格中以对它们进行识别。那些由于周围区域运动而发生变形的区域必须被组合到各自的初始网格区域中。不同区域之间的网格不必是正则的,可以在模型设置中用FLUENT软件提供的非正则或者滑动界面功能将各区域连接起来。 注:一般来讲,在Fluent中使用动网格,基本上都要使用到UDF,所以你最好具备一定的C 语言编程基础。 2、动网格更新方法 动网格计算中网格的动态变化过程可以用三种模型进行计算,即弹簧近似光滑模型(spring-based smoothing)、动态分层模型(dynamic layering)和局部重划模型(local remeshing)。 弹簧近似光滑模型 在弹簧近似光滑模型中,网格的边被理想化为节点间相互连接的弹簧。移动前的网格间距相当于边界移动前由弹簧组成的系统处于平衡状态。在网格边界节点发生位移后,会产生与位移成比例的力,力量的大小根据胡克定律计算。边界节点位移形成的力虽然破坏了弹簧系统原有的平衡,但是在外力作用下,弹簧系统经过调整将达到新的平衡,也就是说由弹簧连接在一起的节点,将在新的位置上重新获得力的平衡。从网格划分的角度说,从边界节点的位移出发,采用虎克定律,经过迭代计算,最终可以得到使各节点上的合力等于零的、新的网格节点位置,这就是弹簧光顺法的核心思想。 原则上弹簧光顺模型可以用于任何一种网格体系,但是在非四面体网格区域(二维非三角形),最好在满足下列条件时使用弹簧光顺方法: (1)移动为单方向。 (2)移动方向垂直于边界。 如果两个条件不满足,可能使网格畸变率增大。另外,在系统缺省设置中,只有四面体网格 (三维)和三角形网格(二维)可以使用弹簧光顺法, 需要在dynamic-mesh-menu 下使用文字命令spring-on-all-shapes?,然后激活该选项即

Fluent动网格专题讨论

Fluent动网格专题讨论(-) 题记:在学习使用Fluent的时候,有不少朋友需要使用动网格模型(Dynamic Mesh Model),因此,本版推出这个专题,进行大讨论,使大家在使用动网格时尽量少走弯路,更快更好地掌握;也欢迎使用过的版友积极参与讨论指导,谢谢! 该专题主要包括以下的主要内容: ##1. 动网格的相关知识介绍; ##2. 以NACA0012翼型俯仰振荡实例进行讲解动网格的应用过程; ##3. 与动网格应用有关的参考文献; ##4. 使用动网格进行计算的一些例子。 ##1. 动网格的相关知识介绍 有关动网格基础方面的东西,请具体参考FLUENT User’s Guide或FLUENT全攻略的相关章节,这里只给出一些提要性的知识要点。 1、简介 动网格模型可以用来模拟流场形状由于边界运动而随时间改变的问题。边界的运动形式可以是预先定义的运动,即可以在计算前指定其速度或角速度;也可以是预先未做定义的运动,即边界的运动要由前一步的计算结果决定。网格的更新过程由FLUENT 根据每个迭代步中边界的变化情况自动完成。在使用动网格模型时,必须首先定义初始网格、边界运动的方式并指定参予运动的区域。可以用边界型函数或者UDF 定义边界的运动方式。FLUENT 要求将运动的描述定义在网格面或网格区域上。如果流场中包含运动与不运动两种区域,则需要将它们组合在初始网格中以对它们进行识别。那些由于周围区域运动而发生变形的区域必须被组合到各自的初始网格区域中。不同区域之间的网格不必是正则的,可以在模型设置中用FLUENT软件提供的非正则或者滑动界面功能将各区域连接起来。 注:一般来讲,在Fluent中使用动网格,基本上都要使用到UDF,所以你最好具备一定的C语言编程基础。 2、动网格更新方法 动网格计算中网格的动态变化过程可以用三种模型进行计算,即弹簧近似光滑模型(spring-based smoothing)、动态分层模型(dynamic layering)和局部重划模型(local remeshing)。 弹簧近似光滑模型 在弹簧近似光滑模型中,网格的边被理想化为节点间相互连接的弹簧。移动前的网格间距相当于边界移动前由弹簧组成的系统处于平衡状态。在网格边界节点发生位移后,会产生与位移成比例的力,力量的大小根据胡克定律计算。边界节点位移形成的力虽然破坏了弹簧系统原有的平衡,但是在外力作用下,弹簧系统经过调整将达到新的平衡,也就是说由弹簧连接在一起的节点,将在新的位置上重新获得力的平衡。从网格划分的角度说,从边界节点的位移出发,采用虎克定律,经过迭代计算,最终可以得到使各节点上的合力等于零的、新的网格节点位置,这就是弹簧光顺法的核心思想。 原则上弹簧光顺模型可以用于任何一种网格体系,但是在非四面体网格区域(二维非三角形),最好在满足下列条件时使用弹簧光顺方法: (1)移动为单方向。 (2)移动方向垂直于边界。 如果两个条件不满足,可能使网格畸变率增大。另外,在系统缺省设置中,只有四面体网格(三维)和三角形网格(二维)可以使用弹簧光顺法,如果想在其他网格类型中激活该模型,需要在dynamic-mesh-menu 下使用文字命令spring-on-all-shapes?,然后激活该选项即可。 动态层模型 对于棱柱型网格区域(六面体和或者楔形),可以应用动态层模型。动态层模型的中心思想是根据紧邻运动边界网格层高度的变化,添加或者减少动态层,即在边界发生运动时,如果紧邻边界的网格层高度增大到一定程度,就将其划分为两个网格层;如果网格层高度降低到一定程度,就将紧邻边界的两个网格层合并为一个层: 如果网格层j扩大,单元高度的变化有一临界值:

fluent网格质量检查

网格划分策略与网格质量检查 判断网格质量的方面有: Area单元面积,适用于2D单元,较为基本的单元质量特征。 Aspect Ratio长宽比,不同的网格单元有不同的计算方法,等于1是最好的单元,如正三角形,正四边形,正四面体,正六面体等;一般情况下不要超过5:1. Diagonal Ratio对角线之比,仅适用于四边形和六面体单元,默认是大于或等于1的,该值越高,说明单元越不规则,最好等于1,也就是正四边形或正六面体。 Edge Ratio长边与最短边长度之比,大于或等于1,最好等于1,解释同上。 EquiAngle Skew通过单元夹角计算的歪斜度,在0到1之间,0为质量最好,1为质量最差。最好是要控制在0到0.4之间。 EquiSize Skew通过单元大小计算的歪斜度,在0到1之间,0为质量最好,1为质量最差。2D质量好的单元该值最好在0.1以内,3D单元在0.4以内。 MidAngle Skew通过单元边中点连线夹角计算的歪斜度,仅适用于四边形和六面体单元,在0到1之间,0为质量最好,1为质量最差。 Size Chang e相邻单元大小之比,仅适用于3D单元,最好控制在2以内。 Stretch伸展度。通过单元的对角线长度与边长计算出来的,仅适用于四边形和六面体单元,在0到1之间,0为质量最好,1为质量最差。 Taper锥度。仅适用于四边形和六面体单元,在0到1之间,0为质量最好,1为质量最差。 Volume单元体积,仅适用于3D单元,划分网格时应避免出现负体积。 Warpage翘曲。仅适用于四边形和六面体单元,在0到1之间,0为质量最好,1为质量最差。 以上只是针对Gambit帮助文件的简单归纳,不同的软件有不同的评价单元质量的指标,使用时最好仔细阅读帮助文件。 另外,在Fluent中的窗口键入:grid quality 然后回车,Fluent能检查网格的质量,主要有以下三个指标: 1.Maxium cell squish: 如果该值等于1,表示得到了很坏的单元;

fluent经验

Fluent 问题集锦 问题1: 如果体网格做好后,感觉质量不好,然后将体网格删除,在其面上重新作网格,结果发现网格都脱离面,不再附体了,比其先前的网格质量更差了. 原因: 删除体网格时,也许连同较低层次的网格都删除了.上面的脱离面可能是需要的体的面. 解决方法: 重新生成了面,在重新划分网格 问题2: 在gambit下做一虚的曲面的网格,结果面上的网格线脱离曲面,由此产生的体网格出现负体积. 原因: 估计是曲面扭曲太严重造成的 解决方法: 可以试试分区域划分体网格,先将曲面分成几个小面,生成各自的面网格,再划体网格。 问题3: 当好网格文件的时候,并检查了网格质量满足要求,但输出*.msh时报错误. 原因: 应该不是网格数量和尺寸.可能是在定义边界条件或continuum type时出了问题. 解决方法: 先把边界条件删除重新导出看行不行.其二如果有两个几何信息重合在一起, 也可能出现上诉情况,将几何信息合并掉. 问题4: 当把两个面(其中一个实际是由若干小面组成,将若干小面定义为了group了)拼接在一起,也就是说两者之间有流体通过,两个面各属不同的体,网格导入到fluent时,使用interface时出现网格check的错误,将interface的边界条件删除,就不会发生网格检查的错误.如何将两个面的网格相连. 原因: interface后的两个体的交接面,fluent以将其作为内部流体处理(非重叠部分默认为wall,合并后网格会在某些地方发生畸变,导致合并失败.也可能准备合并的两个面几何位臵有误差,应该准确的在同一几何位臵(合并的面大小相等时),在合并之前要合理分块。 解决方法: 为了避免网格发生畸变(可能一个面上的网格跑到另外的面上了),可以一面网格粗,一面网格细,避免; 再者就是通过将一个面的网格直接映射到另一面上的,两个面默认为interior.也可以将网格拼接一起. 上述语言有些模糊不清,仅供参考,并希望高手批评指正,^_^

FLUENT网格质量

答:我个人认为主要有三项: 网格的正交性,雅可比值,扭角,和光滑性。 对于一般的cfd程序,结构化网格要求正交性和光滑性(就是你说的 最大最小比率相差不大,想不出一个名次就用这个了)要比较好 但是对于fluent这样基于非结构网格的,尤其是其中程序中 加入了很多加快收敛速度的方法的软件,后者要求就不要太高 我觉得真正需要考虑网格影响的,一般应该在结构网格上才需要 基于非结构网格的有限体积法,计算通量的时候存在相邻节点的通量计算本身就可能存在计算误差,所以精度不会高到那儿, 顺便说一下,对于fluent,顶多二阶格式就够了,而且绰绰有余,一般我都用一阶 因为完全没有必要,其在计算中的误差远远达不到二阶的精度。 网格质量本身与具体问题的具体几何特性、流动特性及流场求解算法有关。因此,网格质量最终要由计算结果来评判,但是误差分析以及经验表明,CFD计算对计算网格有一些一般性的要求,例如光滑性、正交性、网格单元的正则性以及在流动变化剧烈的区域分布足够多的网格点等。对于复杂几何外形的网格生成,这些要求往往并不可能同时完全满足。例如,给定边界网格点分布,采用Laplace 方程生成的网格是最光滑的,但是最光滑的网格不一定满足物面边界正交性条件,其网格点分布也很有可能不能捕捉流动特征,因此,最光滑的网格不一定是最好的网格。 对计算网格的一个最基本的要求当然是所有网格点的Jacobian必须为正值,即网格体积必须为正,其他一些最常用的网格质量度量参数包括扭角(skew angle)、纵横比(aspect ratio、Laplacian、以及弧长(arclength)等。通过计算、检查这些参数,可以定性的甚至从某种程度上定量的对网格质量进行评判。 Parmley等给出了更多的基于网格元素和网格节点的网格质量度量参数。有限元素法关于插值逼近误差估计的理论,实际上也对网格单元的品质给出了基本的规定:即每个单元的内切球半径与外切球半径之比,应该是一个适当的,与网格疏密无关的常数。 如果import到fluent里,check一下,除了看体积不为负。 GAMBIT gambit中点最右下脚的放大镜,然后看百分数,百分数越大网格越好 以下转自马叉虫的个人空间 https://www.360docs.net/doc/d014381571.html,/?uid-64676-action-viewspace-itemid-43 要生成一套好的网格,我觉得以下几点是很必要的: 1.选择一款好的网格生成软件; 2.确保实体尽量简洁; 3.合理布置线上节点;

gambit网格质量检查

Area单元面积,适用于2D单元,较为基本的单元质量特征。 Aspect Ratio长宽比,不同的网格单元有不同的计算方法,等于1是最好的单元,如正三角形,正四边形,正四面体,正六面体等;一般情况下不要超过5:1. Diagonal Ratio对角线之比,仅适用于四边形和六面体单元,默认是大于或等于1的,该值越高,说明单元越不规则,最好等于1,也就是正四边形或正六面体。 Edge Ratio长边与最短边长度之比,大于或等于1,最好等于1,解释同上。 EquiAngle Skew通过单元夹角计算的歪斜度,在0到1之间,0为质量最好,1为质量最差。最好是要控制在0到0.4之间。 EquiSize Skew通过单元大小计算的歪斜度,在0到1之间,0为质量最好,1为质量最差。2D质量好的单元该值最好在0.1以内,3D单元在0.4以内。 MidAngle Skew通过单元边中点连线夹角计算的歪斜度,仅适用于四边形和六面体单元,在0到1之间,0为质量最好,1为质量最差。 Size Change相邻单元大小之比,仅适用于3D单元,最好控制在2以内。 Stretch伸展度。通过单元的对角线长度与边长计算出来的,仅适用于四边形和六面体单元,在0到1之间,0为质量最好,1为质量最差。 Taper锥度。仅适用于四边形和六面体单元,在0到1之间,0为质量最好,1为质量最差。Volume单元体积,仅适用于3D单元,划分网格时应避免出现负体积。 Warpage翘曲。仅适用于四边形和六面体单元,在0到1之间,0为质量最好,1为质量最差。 以上只是针对Gambit帮助文件的简单归纳,不同的软件有不同的评价单元质量的指标,使用时最好仔细阅读帮助文件。 另外,在Fluent中的窗口键入:grid quality 然后回车,Fluent能检查网格的质量,主要有以下三个指标: 1.Maxium cell squish: 如果该值等于1,表示得到了很坏的单元; 2.Maxium cell skewness: 该值在0到1之间,0表示最好,1表示最坏; 3.Maxium 'aspect-ratio': 1表示最好。

Fluent的自适应网格问题

加密网格的话有两种参考标准一种是y+值,一种是y*值,一般来说,要加密网格主要是为了是y+值满足需求,具体的情况看楼主你的需要... 根据y+值来加密网格的步骤如下:运行fluent,导入cas and dat 文件后,点击adapt——Yplus/Ystar..。,之后出现选择界面,一般情况可以保持默认界面,当然也可以根据自己的需求选择选项,一般type项选择Yplus,然后点击compute,在min及max项会出现你的选择壁面的Y+值,在其下方,有minallowed 和maxallowed,输入你所需要的Y+值范围,点击Mark按钮,会标记出不符合要求的部分,然后点击adapt,就可以了,这部分区域的网格会加密,以适应你的要求 Y*的步骤也是这样的 但是前提是要知道你的计算的y+值范围,而这个值一般是估计值,且跟计算有关的,是个不确定量,所以一般只作参考用 希望能帮到你......另外,希望给加分啊,呵呵 追问 我点完adpat,Yplus/Ystar这个是灰的,不能点。。 回答 额,你计算了吗或者说你导入的是cas & dat 文件吗如果不是,你都没 有一个y+值的范围,怎么可能让软件给你加密网格...(这是基本条件)追问 当然计算了,我保存完再导入cas& dat也不行 回答 那你试试计算完,直接点adapt试试.....还真没遇到过你说的情况 追问 adapt都能点只是里面的Yplus/Ystar不能点,是灰色的 fluent里的常见问题(一) (2011-02-26 09:44:43) 1什么叫松弛因子松弛因子对计算结果有什么样的影响它对计算的收敛情况又有什么样的影响? 1、亚松驰(Under Relaxation):所谓亚松驰就是将本层次计算结果与上一层次结果的差值作适当缩减,以避免由于差值过大而引起非线性迭代过程的发散。用通用变量来写出时,为松驰因子(Relaxation Factors)。《数值传热学-214》

网格质量检查

1. Fluent检查网格质量的方法,网格导入Fluent中之后,grid->check,可以看看网格大致情况,有无负体积,等等;在Fluent窗口输入,grid quality然后回车,Fluent会显示最主要的几个网格质量。 Fluent计算对网格质量的几个主要要求: 1)网格质量参数: Skewness(不能高于0.95,最好在0.90以下;越小越好) Change in Cell-Size (也是Growth Rate,最好在1.20以内,最高不能超过1.40)Aspect Ratio (一般控制在5:1以内,边界层网格可以适当放宽) Alignment with the Flow(就是估计一下网格线与流动方向是否一致,要求尽量一致,以减少假扩散) 2)网格质量对于计算收敛的影响: 高Skewness的单元对计算收敛影响很大,很多时候计算发散的原因就是网格中的仅仅几个高Skewness的单元。 举个例子:共有112,000个单元,仅有7个单元的Skewness超过了0.95,在进行到73步迭代时计算就发散了! 高长宽比的单元使离散方程刚性增加,使迭代收敛减慢,甚至困难。也就是说,Aspect Ratio尽量控制在推荐值之内。 3)网格质量对精度的影响: 相邻网格单元尺寸变化较大,会大大降低计算精度,这也是为什么连续方程高残差的原因。 网格线与流动是否一致也会影响计算精度。 4)网格单元形状的影响: 非结构网格比结构网格的截断误差大,因此,为提高计算精度计,请大家尽量使用结构网格,对于复杂几何,在近壁这些对流动影响较大的地方尽量使用结构网格,在其他次要区域使用非结构网格。 2. 不要使用那些书上写的y+与yp的计算公式,那个公式一般只能提供数量级上的参考。推荐大家使用NASA的粘性网格间距计算器,设定你想要的y+值,它就能给你计算出第一层网格高度,与计算结果的y+很接近。 3. 关于边界层网格高度与长度的比例,有本CFD书上说,大概在1/sqrt(Re)就可以;另外,也有这种说法,在做粘性计算时,这个比值可以在100-1000之间,无粘有激波计算时,这个比值要相应小点儿,在10-100之间,因为要考虑激波捕捉精度问题。

学习Fluent必备经验

学习Fluent必备经验(转贴) 1 现在用FLUENT的UDF来加入模块,但是用compiled udf时,共享库老是连不上? 解决办法: 1〉你的计算机必须安装C语言编译器。 2〉请你按照以下结构构建文件夹和存放文件: libudf/src/*.c (*.c为你的源程序); libudf/ntx86/2d(二维为2d,三维为3d)/makefile(由makefile_nt.udf改过来的)libudf/ntx86/2d(二维为2d,三维为3d)/user_nt.udf(对文件中的SOURCE,VERSION,PARALLEL_NODE进行相应地编辑) 3〉通过命令提示符进入文件夹libudf/ntx86/2d/中,运行C语言命令 nmake,如果C语言编译器按装正确和你的源程序无错误,那么此时会编译出Fluent需要的库文件(*.lib)这时再启动Fluent就不会出错了。 2 在使用UDF中用编译连接,按照帮助文件中给出的步骤去做了,结果在连接中报错“系统找不到指定文件”。 udf 文件可能不在工作目录中,应该把它拷到工作目录下,或者输入它的全部路径. 3这个1e-3或者1e-4的收敛标准是相对而言的。在FLUENT中残差是以开始5步的平均值为基准进行比较的。如果你的初值取得好,你的迭代会很快收敛,但是你的残差却依然很高;但是当你改变初场到比较不同的值时,你的残差开始会很大,但随后却可以很快降低到很低的水平,让你看起来心情很好。其实两种情况下流场是基本相同的。 由此来看,判断是否收敛并不是严格根据残差的走向而定的。可以选定流场中具有特征意义的点,监测其速度,压力,温度等的变化情况。如果变化很小,符合你的要求,即可认为是收敛了。 一般来说,压力的收敛相对比较慢一些的。 是否收敛不能简单看残差图,还有许多其他的重要标准,比如进出口流量差、压力系数波动等等 尽管残差仍然维持在较高数值,但凭其他监测也可判断是否收敛。最重要的就是是否符合物理事实或试验结论。 残差曲线是否满足只是一个表面的现象,还要看进口和出口总量差不得大于1%,而且即使这样子,收敛解也不一定准确,它和网格划分/离散化误差,以及屋里模型的准确性都有关系.所

fluent划分网格经验

首先,在网格划分之前,你最好从数值仿真的全局出发,比如精度要求,计算时间要求,机子配置等等,思考一下是使用结构网格,还是非结构网格,抑或是混合网格;因为这关系到接下来的网格划分布置和划分策略。 然后,在确定了网格类型之后,就是根据模型情况,构思一下网格拓扑,就是自己要明确最终想得到什么样的网格,比如翼型网格,是C型,还是O型;一个圆面是想得到“内方外圆”的铜钱币类型的网格,还是一般的网格,等等。这一步有时可能不太清楚,自己有时都不知道什么样的网格拓扑是合适的,那就需要平时多看看这方面的帖子,收集一些划分比较好的网格图片,体会体会。确定了网格拓扑之后,对模型进行划分网格前的准备,比如分割啊,对尺度小对计算结果影响不大的次要几何进行简化,等等。 接着,划分网格。划分网格都是从线网格,面网格,到体网格的;线网格的划分,也就是网格节点的布置,对网格的质量影响比较大,比如歪斜,长宽比,等等,节点密度在GAMBIT中可以通过很多的方法进行控制调整,大家可以看相关的资料。面网格的划分,非结构的网格咱就不说了,结构网格可能有时比较麻烦,这就要求大家最好对那几种网格策略比较了解,比如Quad-Map划分方法所适用的模型形状,在划分的时候对顶点类型及网格节点数的要求(Quad-Map,适用于边数大于或等于4的面,顶点要求为4个End类型,其他为Side类型,对应边的网格节点数必须相等),以此类推,其他的划分方法也有这方面的要求以及适合的形状。当出现了不能划分的时候,可以根据GAMBIT给的提示进行修改顶点类型或网格节点数来满足划分方法的要求。如果实在不能划分,则退而求其次,改用其他方法进行划分或者对面进行分割;等等。关于体网格的划分,与面网格划分所要注意的东西类似。 另外,根据我个人的经验,如果模型比较简单规则,大家最好尽量使用结构网格,比较容易划分,计算结果也比较好,计算时间也相对较短;对于复杂的几何,在尽量少的损失精度的前提下,尽量使用分块混合网格。在使用分块混合网格时注意两点:1)近壁使用边界层网格,这对于近壁区的计算精度很有帮助,尽管使用足够多的非结构网格可以得到相同的结果(倘若在近壁区使用网格不当,那个湍流粘性比超过限定值的警告就可能出现);2)分块网格在分块相邻的地方一定要注意网格的衔接要平滑,相邻网格的尺寸不能相差太大,尽量控制在1.2左右。否则在计算时容易出现不收敛或者高连续方程残差的问题。 最后,一定要记得预览检查网格的质量。如果网格的质量不好,你就不要抱着侥幸的心理交给Fluent计算了,那肯定是算不好的。所以划分网格要有耐心,不断地调整,直到满足要求为止。原本我以为这一条大家都很在意,经过一段时间的论坛问题观察,其实不然,有很多版友随便划分个网格就急切地导入到Fluent中计算,出问题是理所当然的,但提出的很多问题,有时实在让人无能为力,帮不上忙。再说一遍,一定要检查网格质量,如果不满足要求,就不要导入到Fluent中计算了。 一点小知识: 1. Fluent检查网格质量的方法,网格导入Fluent中之后,grid->check,可以看看网格大致情况,有无负体积,等等;在Fluent 窗口输入,grid quality然后回车,Fluent会显示最主要的几个网格质量。 Fluent计算对网格质量的几个主要要求: 1)网格质量参数: Skewness (不能高于0.95,最好在0.90以下;越小越好) Change in Cell-Size (也是Growth Rate,最好在1.20以内,最高不能超过1.40) Aspect Ratio (一般控制在5:1以内,边界层网格可以适当放宽) Alignment with the Flow(就是估计一下网格线与流动方向是否一致,要求尽量一致,以减少假扩散) 2)网格质量对于计算收敛的影响: 高Skewness的单元对计算收敛影响很大,很多时候计算发散的原因就是网格中的仅仅几个高Skewness的单元。

检查网格质量好坏的标准

如何检查网格质量,用什么指标来说明网格好不好呢?怎么控制?一般是什么原因造成的? 一般也就是,网格的角度,网格变形的梯度等等吧 下面总结的是针对Gambit帮助文件的简单归纳,不同的软件有不同的评价单元质量的指标,使用时最好仔细阅读帮助文件。 Area单元面积,适用于2D单元,较为基本的单元质量特征。 Aspect Ratio长宽比,不同的网格单元有不同的计算方法,等于1是最好的单元,如正三角形,正四边形,正四面体,正六面体等;一般情况下不要超过5:1. Diagonal Ratio对角线之比,仅适用于四边形和六面体单元,默认是大于或等于1的,该值越高,说明单元越不规则,最好等于1,也就是正四边形或正六面体。 Edge Ratio长边与最短边长度之比,大于或等于1,最好等于1,解释同上。EquiAngle Skew通过单元夹角计算的歪斜度,在0到1之间,0为质量最好,1为质量最差。最好是要控制在0到0.4之间。 EquiSize Skew通过单元大小计算的歪斜度,在0到1之间,0为质量最好,1为质量最差。2D质量好的单元该值最好在0.1以内,3D单元在0.4以内。 MidAngle Skew通过单元边中点连线夹角计算的歪斜度,仅适用于四边形和六面体单元,在0到1之间,0为质量最好,1为质量最差。 Size Change相邻单元大小之比,仅适用于3D单元,最好控制在2以内。 Stretch伸展度。通过单元的对角线长度与边长计算出来的,仅适用于四边形和六面体单元,在0到1之间,0为质量最好,1为质量最差。 Taper锥度。仅适用于四边形和六面体单元,在0到1之间,0为质量最好,1为质量最差。Volume单元体积,仅适用于3D单元,划分网格时应避免出现负体积。 Warpage翘曲。仅适用于四边形和六面体单元,在0到1之间,0为质量最好,1为质量最差。 另外,在Fluent中的窗口键入:grid quality 然后回车,Fluent能检查网格的质量,主要有以下三个指标: 1.Maxium cell squish: 如果该值等于1,表示得到了很坏的单元; 2.Maxium cell skewness: 该值在0到1之间,0表示最好,1表示最坏; 3.Maxium 'aspect-ratio': 1表示最好。

Fluent动网格实例具体操作步骤

目录 实例: Profile 定义运动 (2) I、参数说明 (2) II、操作步骤 (3) 一、将计算域离散为网格 (3) 二、 Fluent 操作步骤 (4) 1. 启动Fluent 14.5 求解器 (4) 2. 初始设置 (4) 3. 选择湍流模型 (5) 4. 设置流体物性 (6) 5. 设置边界条件 (7) 6. 动网格设置 (8) 7. 设置其它选项 (12)

在Flue nt中,动网格模型可以用来模拟由于流域边界运动引起流域形状随时间变化的 流动情况,动网格在求解过程中计算网格要重构,例如汽车发动机中的气缸运动、阀门的开启与关闭、机翼的运动、飞机投弹等等。 CFD中的动网格大体分为两类:(1)显式规定的网格节点速度。配合瞬态时间,即可很方便的得出位移。当然一些求解器(如FLUENT )也支持稳态动网格,这时候可以直接 指定节点位移。(2)网格节点速度是通过求解得到的。如6DOF模型基本上都属于此类。用 户将力换算成加速度,然后将其积分成速度。 在Flue nt中,动网格涉及的内容包括: (1)运动的定义。主要是PROFILE文件与UDF中的动网格宏。 (2)网格更新。FLUENT中关于网格更新方法有三种:网格光顺、动态层、网格重构。需要详细了解这些网格更新方法的运作机理,每个参数所代表的具体含义及设置 方法,每种方法的适用范围。 动网格的最在挑战来自于网格更新后的质量,避免负体积是动网格调试的主要目标。在避免负网格的同时,努力提高运动更新后的网格质量。 拉格朗日网格(固体有限元计算) 网格 欧拉网格(流体计算) 实例:Profile定义运动 I、参数说明 本次实例采用的场景来自于流体中高速飞行的物体。如子弹、火箭、导弹等。这里只是 为了说明profile在动网格运动定义中的应用,因此为了计算方便不考虑高速问题。问题描述如下图所示: 图1 (1为运动刚体,2为计算域)

谈谈FLUENT中网格质量的问题

谈谈Fluent中网格质量的问题 中网格质量的问题 我们在fluent计算中经常碰到网格划分质量的问题,如果要得到高质量的网格划分需要注意哪些问题?其具体的依据是什么啊? 个人认为主要有三项: 网格的正交性,雅可比值,扭角,和光滑性。 对于一般的CFD程序,结构化网格要求正交性和光滑性要比较好,但是对于FLUENT这样基于非结构网格的,尤其是其中程序中加入了很多加快收敛速度的方法的软件,后者要求就不要太高。因此真正需要考虑网格影响的,一般应该在基于结构网格的软件上才需要。基于非结构网格的有限体积法,计算通量的时候存在相邻节点的通量计算本身就可能存在计算误差,所以精度始终有限,顺便说一下,对于FLUENT,顶多二阶离散格式就够了,而且绰绰有余。甚至诸多工程师认为一阶精度足够用于工程计算,因为FLUENT的内核算法缺陷在于,其在计算中的误差远远达不到二阶的精度。 网格质量本身与具体问题的具体几何特性、流动特性及流场求解算法有关。 因此,网格质量最终要由计算结果来评判,但是误差分析以及经验表明,CFD计算对计算网格有一些一般性的要求,例如光滑性、正交性、网格单元的正则性以及在流动变化剧烈的区域分布足够多的网格点等。对于复杂几何外形的网格生成,这些要求往往并不可能同时完全满足。例如,给定边界网格点分布,采用Laplace方程生成的网格是最光滑的,但是最光滑的网格不一定满足物面边界正交性条件,其网格点分布也很有可能不能捕捉流动特征,因此,最光滑的网格不一定是最好的网格。 对计算网格的一个最基本的要求当然是所有网格点的Jacobian必须为正值,即网格体积必须为正,其他一些最常用的网格质量度量参数包括扭角(skew angle)、纵横比(aspect ratio、Laplacian、以及弧长(arc length)等。通过计算、检查这些参数,可以定性的甚至从某种程度上定量的对网格质量进行评判。Parmley等给出了更多的基于网格元素和网格节点的网格质量度量参数。有限元素法关于插值逼近误差估计的理论,实际上也对网格单元的品质给出了基本的规定:即每个单元的内切球半径与外切球半径之比,应该是一个适当的,与网格疏密无关的常数。 网格质量对计算精度和稳定性有很大的影响。网格质量包括:节点分布,光滑性,以及歪斜的角度(skewness)。 节点密度和聚集度 连续性区域被离散化使得流动的特征解(剪切层,分离区域,激波,边界层和混合区域)与网格上节点的密度和分布直接相关。在很多情况下,关键区域的弱解反倒戏剧化的成了流动的主要特征。比如:由逆压梯度造成的分离流强烈的依靠边界层上游分离点的解。 边界层解(即网格近壁面间距)在计算壁面剪切应力和热传导系数的精度时有重要意义。这一结论在层流流动中尤其准确,网格接近壁面需要满足:

fluent 动网格

Remeshing方法中的一些参数设定:Remeshing中的参数Minimum length scale和Maximum Length Scale,这两个参数你可以参考mesh scale info中的值,仅是参考,因为mesh scale info中的值是整个网格的评价值,设置的时候看一下动网格附近的网格和整个网格区域的大小比较,然后确定这两个参数,一般来讲,动网格附近的网格较密,这些值都比整体的小,所以在设置时通常设置为比mesh scale info中的Minimum length scale大一点,比Maximum Length Scale小一点。 以上是一般来讲的设置思路。下面是我在NACA0012翼型动网格例子中的设置: Remeshing中的参数设定: 为了得到较好的网格更新,本例在使用局部网格重新划分方法时,使用尺寸函数,也就是Remeshing+Must Improve Skewness+Size Function的策略。 将Minimum Length Scale及Maximum Length Scale均设置为0,为了使所有的区域都被标记重新划分; Maximum Cell Skewness(最大单元畸变),参考Mesh Scale Info…中的参考值0.51,将其设定为0.4,以保证更新后的单元质量; Size Remesh Interval(依照尺寸标准重新划分的间隔),将这个值设定为1,在FLUENT,不满足最大网格畸变的网格在每个时间步都会被标记,而后重新划分,而不满足最小,最大及尺寸函数的网格,只有在Current Time=(Size Remesh Interval)*delta t的时候,才根据这些尺寸的标准标记不合格的单元进行重新划分,为了保证每步的更新质量,将其修改为1,就是每个时间都根据尺寸的标准标记及更新网格。 Size Function Resolution(尺寸函数分辨率),保持默认的3; Size Function Variation(尺寸函数变量):建议使用一个小值,在0.1到0.5之间,本例将其设置为0.3;Size Function Rate(尺寸函数变化率),保持默认的0.3。 动网格(dynamic mesh)是CFD中专有的概念。由于当前流体计算多采用欧拉坐标系,该坐标系区别于拉格朗日坐标系的一个最直观特点是:计算过程中网格保持静止。因此,在CFD计算中应用动网格,具有其特别的难处。 1、动网格控制方式 最主要的困难在于边界运动后的网格质量控制。由于边界的运动,不可避免的导致网格变形。我们知道,求解器对于网格质量的容忍是有限度的。当网格扭曲过大引起网格质量的急剧下降,可能导致计算发散、形成负网格,进而终止计算。因此,在边界运动过程中,对网格质量进行控制尤为重要。在fluent软件中动网格主要有三种控制方式:smoothing,layering,remeshing。其中layering主要应用与四边形网格及六面体网格,remeshing主要应用于三角形网格及四面体网格等费结构网格中,至于smoothing方法则在各类网格中均可应用。 layering方法应用于结构网格也是有条件限制的:边界运动最好是沿着某单一方向。如若是旋转,最好还是采用非结构网格配合remeshing方式。 非结构网格是最适合应用动网格模型的,但是网格质量不好控制,通常需要仔细调节。结构网格采用layering 方法,能够很好的控制网格质量,但是几何适应性差。具体采用何种网格类型以及何种控制方式,还是要

gambit网格检查及优化方法

(转自网络) Fluent计算对网格质量的几个主要要求: 1)网格质量参数: Skewness (不能高于0.95,最好在0.90以下;越小越好) Change in Cell-Size (也是Growth Rate,最好在1.20以内,最高不能超过1.40) Aspect Ratio (一般控制在5:1以内,边界层网格可以适当放宽) Alignment with the Flow(就是估计一下网格线与流动方向是否一致,要求尽量一致,以减少假扩散) 2)网格质量对于计算收敛的影响: 高Skewness的单元对计算收敛影响很大,很多时候计算发散的原因就是网格中的仅仅几个高Skewness的单元。 高长宽比的单元使离散方程刚性增加,使迭代收敛减慢,甚至困难。也就是说,Aspect Ratio尽量控制在推荐值之内。 3)网格质量对精度的影响: 相邻网格单元尺寸变化较大,会大大降低计算精度,这也是为什么连续方程高残差的原因。 网格线与流动是否一致也会影响计算精度。 4)网格单元形状的影响: 非结构网格比结构网格的截断误差大,因此,为提高计算精度计,请大家尽量使用结构网格,对于复杂几何,在近壁这些对流动影响较大的地方尽量使用结构网格,在其他次要区域使用非结构网格。 2. 不要使用那些书上写的y+与yp的计算公式,那个公式一般只能提供数量级上的参考。推荐大家使用NASA的粘性网格间距计算器,设定你想要的y+值,它就能给你计算出第一层网格高度,与计算结果的y+很接近。 3.Fluent检查网格质量的方法,网格导入Fluent中之后,grid->check,可以看看网格大致情况,有无负体积,等等;在Fluent窗口输入,grid quality然后回车,Fluent会显示最主要的几个网格质量。 3. 关于边界层网格高度与长度的比例,有本CFD书上说,大概在1/sqrt(Re)就可以;另外,也有这种说法,在做粘性计算时,这个比值可以在100-1000之间,无粘有激波计算时,这个比值要相应小点儿,在10-100之间,因为要考虑激波捕捉精度问题。

fluent加快收敛方法

①、一般首先是改变初值,尝试不同的初始化,事实上好像初始化很关键,对于收敛。 ②、FLUENT的收敛最基础的是网格的质量,计算的时候看怎样选择CFL数,这个靠经验 ③、首先查找网格问题,如果问题复杂比如多相流问题,与模型、边界、初始条件都有关系。 ④、有时初始条件和边界条件严重影响收敛性,曾经作过一个计算反反复复,通过修改网格,重新定义初始条件,包括具体的选择的模型,还有老师经常用的方法就是看看哪个因素不收敛,然后寻找和它有关的条件,改变相应参数。就收敛了 ⑤、A.检查是否哪里设定有误:比方用mm的unit建构的mesh,忘了scale;比方给定的边界条件不合理。B从算至发散前几步,看presure分布,看不出来的话,再算几步, 看看问题大概出在那个区域。C网格,配合第二点作修正,就重建个更漂亮的,或是更粗略的来处理。D再找不出来的话,换个solver。 ⑥、解决的办法是设几个监测点,比如出流或参数变化较大的地方,若这些地方的参数变化很小,就可以认为是收敛了,尽管此时残值曲线还没有降下来。 ⑦、调节松弛因子也能影响收敛,不过代价是收敛速度。 亚松弛因子对收敛的影响 所谓亚松驰就是将本层次计算结果与上一层次结果的差值作适当缩减,以避免由于差值过大而引起非线性迭代过程的发散。用通用变量来写出时,为松驰因子(Relaxation Factors)。《数值传热学-214》 FLUENT中的亚松驰:由于FLUENT所解方程组的非线性,我们有必要控制变化。一般用亚松驰方法来实现控制,该方法在每一部迭代中减少了变化量。亚松驰最简单的形式为:单元内变量等于原来的值加上亚松驰因子a与变化的积: 分离解算器使用亚松驰来控制每一步迭代中的计算变量的更新。这就意味着使用分离解算器解的方程,包括耦合解算器所解的非耦合方程(湍流和其他标量)都会有一个相关的亚松驰因子。 在FLUENT中,所有变量的默认亚松驰因子都是对大多数问题的最优值。这个值适合于很多问题,但是对于一些特殊的非线性问题(如:某

网格质量如何检查 各个参数的意义是什么

网格质量如何检查各个参数的意义是什么 判断网格质量的方面有: Area单元面积,适用于2D单元,较为基本的单元质量特征。 Aspect Ratio长宽比,不同的网格单元有不同的计算方法,等于1是最好的单元,如正三角形,正四边形,正四面体,正六面体等;一般情况下不要超过5:1. Diagonal Ratio对角线之比,仅适用于四边形和六面体单元,默认是大于或等于1的,该值越高,说明单元越不规则,最好等于1,也就是正四边形或正六面体。 Edge Ratio长边与最短边长度之比,大于或等于1,最好等于1,解释同上。 EquiAngle Skew通过单元夹角计算的歪斜度,在0到1之间,0为质量最好,1为质量最差。最好是要控制在0到0.4之间。 EquiSize Skew通过单元大小计算的歪斜度,在0到1之间,0为质量最好,1为质量最差。2D质量好的单元该值最好在0.1以内,3D单元在0.4以内。 MidAngle Skew通过单元边中点连线夹角计算的歪斜度,仅适用于四边形和六面体单元,在0到1之间,0为质量最好,1为质量最差。 Size Chang e相邻单元大小之比,仅适用于3D单元,最好控制在2以内。 Stretch伸展度。通过单元的对角线长度与边长计算出来的,仅适用于四边形和六面体单元,在0到1之间,0为质量最好,1为质量最差。 Taper锥度。仅适用于四边形和六面体单元,在0到1之间,0为质量最好,1为质量最差。 Volume单元体积,仅适用于3D单元,划分网格时应避免出现负体积。 Warpage翘曲。仅适用于四边形和六面体单元,在0到1之间,0为质量最好,1为质量最差。 以上只是针对Gambit帮助文件的简单归纳,不同的软件有不同的评价单元质量的指标,使用时最好仔细阅读帮助文件。 另外,在Fluent中的窗口键入:grid quality 然后回车,Fluent能检查网格的质量,主要有以下三个指标: 1.Maxium cell squish: 如果该值等于1,表示得到了很坏的单元;

fluent gambit网格检查及优化方法

Fluent计算对网格质量的几个主要要求: 1)网格质量参数: Skewness (不能高于0.95,最好在0.90以下;越小越好) Change in Cell-Size (也是Growth Rate,最好在1.20以内,最高不能超过1.40) Aspect Ratio (一般控制在5:1以内,边界层网格可以适当放宽) Alignment with the Flow(就是估计一下网格线与流动方向是否一致,要求尽量一致,以减少假扩散) 2)网格质量对于计算收敛的影响: 高Skewness的单元对计算收敛影响很大,很多时候计算发散的原因就是网格中的仅仅几个高Skewness的单元。 高长宽比的单元使离散方程刚性增加,使迭代收敛减慢,甚至困难。也就是说,Aspect Ratio尽量控制在推荐值之内。 3)网格质量对精度的影响: 相邻网格单元尺寸变化较大,会大大降低计算精度,这也是为什么连续方程高残差的原因。 网格线与流动是否一致也会影响计算精度。 4)网格单元形状的影响: 非结构网格比结构网格的截断误差大,因此,为提高计算精度计,请大家尽量使用结构网格,对于复杂几何,在近壁这些对流动影响较大的地方尽量使用结构网格,在其他次要区域使用非结构网格。 2. 不要使用那些书上写的y+与yp的计算公式,那个公式一般只能提供数量级上的参考。推荐大家使用NASA的粘性网格间距计算器,设定你想要的y+值,它就能给你计算出第一层网格高度,与计算结果的y+很接近。 3.Fluent检查网格质量的方法,网格导入Fluent中之后,grid->check,可以看看网格大致情况,有无负体积,等等;在Fluent窗口输入,grid quality然后回车,Fluent会显示最主要的几个网格质量。 3. 关于边界层网格高度与长度的比例,有本CFD书上说,大概在1/sqrt(Re)就可以;另外,也有这种说法,在做粘性计算时,这个比值可以在100-1000之间,无粘有激波计算时,这个比值要相应小点儿,在10-100之间,因为要考虑激波捕捉精度问题。

相关文档
最新文档