高考数学专题-函数的单调性和最值(原卷版),题题经典!

高考数学专题-函数的单调性和最值(原卷版),题题经典!
高考数学专题-函数的单调性和最值(原卷版),题题经典!

一、函数单调性的判断

方法一 定义法

例1 证明函数()(0)a

f x x a x

=+>在区间)+∞是增函数。

例2 判断并证明:2

1

()1f x x =+在(,0)-∞上的单调性.

【变式演练1】已知()f x 是定义在R 上的奇函数,且当0x <时,2

1()f x x x

=+. (1)求()f x 的表达式;

(2)判断并证明函数()f x 在区间(0,)+∞上的单调性.

例3 定义在[1,1]-上的奇函数()f x ,对任意,0m n ≠时,恒有()()

0f m f n m n

+>+.

(1)比较1()2f 与1()3

f 大小;

(2)判断()f x 在[1,1]-上的单调性,并用定义证明;

(3)若810a x -+>对满足不等式11()(2)024

f x f x -+-<的任意x 恒成立,求a 的取值范围.

【变式演练2】已知函数2

()1ax b f x x +=+是定义在()1,1-上的奇函数,且12

()25

f =. (1)求()f x 的解析式;

(2)用定义证明()f x 在(1,1)-上是增函数; (3)解不等式(1)()0f t f t -+<.

方法二 导数法

例4 已知函数1ln )1()(2+++=ax x a x f ,讨论函数)(x f 的单调性;

【变式演练3】已知函数32()39f x x x x a =-+++.求()f x 的单调递减区间;

方法三 复合函数分析法

例5 求函数2

0.7log (32)y x x =-+的单调区间;

【变式演练4】已知定义在R 上的函数)(x f y =是偶函数,且0≥x 时,)22ln()(2

+-=x x x f . (1)当0

方法四 图像法

例6 求函数2()||f x x x =-+的单调区间。

二、利用函数的单调性求最值 例7 已知函数2

()1

f x x =-,求函数在区间[2,4]上的最值.

【变式演练5】函数2

()21f x x ax =-+在闭区间[1,1]-上的最小值记为()g a . (1)求()g a 的解析式;(2)求()g a 的最大值.

【高考再现】

1. 【2016高考天津理数】已知函数f (x )=2(4,0,

log (1)13,0

3)a x a x a x x x ?+0,且a ≠1)在R 上单调递减,

且关于x 的方程|()|2f x x =-恰好有两个不相等的实数解,则a 的取值范围是( ) (A )(0,

23] (B )[23,3

4

] (C )[13,23]

{

3

4

}(D )[13,23)

{

3

4

} 2.【2016高考天津理数】已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 足

1

(2

)(a f f ->,则a 的取值范围是______.

3.【2016年高考北京理数】设函数错误!未找到引用源。 ①若0a =,则()f x 的最大值为______________; ②若()f x 无最大值,则实数a 的取值范围是________.

4.【2015高考浙江,理10】已知函数223,1()lg(1),1x x f x x

x x ?+-≥?

=??+

,则((3))f f -= ,()f x 的最小值是 .

5. 【2015高考湖北,理6】已知符号函数1,0,sgn 0,0,1,0.x x x x >??

==??-

()()()(1)g x f x f ax a =->,则( )

A .sgn[()]sgn g x x =

B .sgn[()]sgn g x x =-

C .sgn[()]sgn[()]g x f x =

D .sgn[()]sgn[()]g x f x =-

6.【2015高考北京,理14】设函数()()()2142 1.x a x f x x a x a x ?-

=?--??

???≥

①若1a =,则()f x 的最小值为

②若()f x 恰有2个零点,则实数a 的取值范围是

7. 【2015高考天津,理7】已知定义在R 上的函数()2

1x m

f x -=- (m 为实数)为偶函数,记

()()0.52(log 3),log 5,2a f b f c f m === ,则,,a b c 的大小关系为( )

(A )a b c << (B )a c b << (C )c a b << (D )c b a <<

8.【2015湖南,理2】设函数()ln(1)ln(1)f x x x =+--,则()f x 是( ) A.奇函数,且在(0,1)上是增函数 B. 奇函数,且在(0,1)上是减函数 C. 偶函数,且在(0,1)上是增函数 D. 偶函数,且在(0,1)上是减函数

9.【2015高考北京,理14】设函数()(

)()2142 1.x a x f x x a x a x ?-

=?--?????≥

①若1a =,则()f x 的最小值为

②若()f x 恰有2个零点,则实数a 的取值范围是 .

10. 【2014高考陕西,理7】下列函数中,满足“()()()f x y f x f y +=”的单调递增函数是( )

(A )()1

2f x x

= (B )

()3f x x = (C )()12x

f x ??

= ???

(D )()3x f x =

11. 【2014山东.理5】 已知实数,x y 满足(01)x

y a

a a <<<,则下列关系式恒成立的是( )

A.3

3x

y > B.sin sin x y >

C.2

2ln(1)ln(1)x y +>+ D.

22

11

11

x y >++

【反馈练习】

1. 【2017届山西康杰中学高三10月月考数学(理)试卷】已知(12),1()1

log ,1

3x a a x f x x x ?-≤?

=?+>??,当12x x ≠时,1221

()()

0f x f x x x ->-,则a 的取值集合是( )

A .?

B .1

(0,]3 C .11,32

??

????

D .1

(0,)3

2. 【2017届山西康杰中学高三10月月考数学(理)试卷】若函数2

()2(2)||f x x x a x a =+--在区间(3,1)-上不是单调函数,则实数a 的取值范围是( )

A .[]4,1-

B .[]

3,1- C .()6,2- D .()6,1- 3. 【2017届山东寿光现代中学高三10月月考数学(文)试卷】设函数x x x f ln 92

1)(2

-=

在区间]1,1[+-a a 上单调递减,则实数a 的取值范围是( )

A .21≤

B .4≥a

C .2≤a

D .30≤

4. 【2017届湖南衡阳八中高三10月月考数学(理)试卷】下列函数中,在区间()1,+∞上为增函数的是( )

A .21x

y =-+ B .1x y x

=

- C .()12

log 1y x =- D .()2

1y x =--

5. 【2017届云南曲靖一中高三上月考二数学(理)试卷】若曲线x x x f ln 2

1)(2

+-=在其定义域内的一个子区间)2,2(+-k k 内不是单调函数,则实数k 的取值范围是______.

6. 【2017届山西康杰中学高三10月月考数学(文)试卷】已知函数2

()f x x bx =+,若函数(())y f f x =的最小值与函数()y f x =的最小值相等,则实数b 的取值范围是 .

7. 【2016-2017学年河北邢台市高一上学期月考一数学试卷】已知函数2

1()f x ax x =-

,且11

()4()32

f f -=.(1)用定义法证明:函数()f x 在区间(0,)+∞上单调递增;(2)若存在[1,3]x ∈,使得()|2|f x x m <-+,求实数m 的取值范围

8. 【2017届山东潍坊临朐县高三10月月考数学(文)试卷】设函数31

()2log 1x f x x ax

-=+-为奇函数,a 为常数.(Ⅰ)求实数a 的值;(Ⅱ)讨论函数()f x 的单调性,并写出单调区间;

9. 【2017届河北武邑中学高三上周考8.14数学(理)试卷】函数9()log (8)a f x x x

=+-在[)1,+∞上是增函数,求a 的取值范围.

10. 【2016-2017学年重庆市十八中高一上学期第一次月考数学试卷】已知二次函数bx ax x f +=2

)(满足:①0)2(=f ,②关于x 的方程x x f =)(有两个相等的实数根.(1)求函数)(x f 的解析式;(2)求函数)(x f 在[0,3]上的最大值。

11.【2016-2017学年江西省上高二中高一上学期第一次月考数学试卷】已知函数22

1,1

()1,1

x ax x f x ax x x ?++≥?=?++

函数的定义域与值域单调性与奇偶性三角函数典型例题

函数的定义域与值域、单调性与奇偶性 一、知识归纳: 1. 求函数的解析式 (1)求函数解析式的常用方法: ①换元法( 注意新元的取值范围) ②待定系数法(已知函数类型如:一次、二次函数、反比例函数等) ③整体代换(配凑法) ④构造方程组(如自变量互为倒数、已知f (x )为奇函数且g (x )为偶函数等) (2)求函数的解析式应指明函数的定义域,函数的定义域是使式子有意义的自变量的取值范围,同时也要注意变量的实际意义。 (3)理解轨迹思想在求对称曲线中的应用。 2. 求函数的定义域 求用解析式y =f (x )表示的函数的定义域时,常有以下几种情况: ①若f (x )是整式,则函数的定义域是实数集R ; ②若f (x )是分式,则函数的定义域是使分母不等于0的实数集; ③若f (x )是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合; ④若f (x )是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合; ⑤若f (x )是由实际问题抽象出来的函数,则函数的定义域应符合实际问题. 3. 求函数值域(最值)的一般方法: (1)利用基本初等函数的值域; (2)配方法(二次函数或可转化为二次函数的函数); (3)不等式法(利用基本不等式,尤其注意形如)0(>+=k x k x y 型的函数) (4)函数的单调性:特别关注)0(>+ =k x k x y 的图象及性质 (5)部分分式法、判别式法(分式函数) (6)换元法(无理函数) (7)导数法(高次函数) (8)反函数法 (9)数形结合法 4. 求函数的单调性 (1)定义法: (2)导数法: (3)利用复合函数的单调性: (4)关于函数单调性还有以下一些常见结论: ①两个增(减)函数的和为_____;一个增(减)函数与一个减(增)函数的差是______; ②奇函数在对称的两个区间上有_____的单调性;偶函数在对称的两个区间上有_____的单调性; ③互为反函数的两个函数在各自定义域上有______的单调性; (5)求函数单调区间的常用方法:定义法、图象法、复合函数法、导数法等 (6)应用:比较大小,证明不等式,解不等式。 5. 函数的奇偶性 奇偶性:定义:注意区间是否关于原点对称,比较f (x ) 与f (-x )的关系。f (x ) -

函数的单调性知识点总结与题型归纳

函数的单调性 知识梳理 1. 单调性概念 一般地,设函数()f x 的定义域为I : (1)如果对于定义域I 内的某个区间D 上的任意两个自变量的值12,x x ,当12x x <时,都有12()()f x f x <,那么就说函数()f x 在区间D 上是增函数; (2)如果对于定义域I 内的某个区间D 上的任意两个自变量的值12,x x ,当12x x <时,都有12()()f x f x >,那么就说函数()f x 在区间D 上是减函数. 2. 单调性的判定方法 (1)图像法:从左往右,图像上升即为增函数,从左往右,图像下降即为减函数。 (2)定义法步骤; ①取值:设12,x x 是给定区间内的两个任意值,且12x x < (或12x x >); ②作差:作差12()()f x f x -,并将此差式变形(注意变形到能判断整个差式符号为止); ③定号:判断12()()f x f x -的正负(要注意说理的充分性),必要时要讨论; ④下结论:根据定义得出其单调性. (3)复合函数的单调性: 当内外层函数的单调性相同时则复合函数为增函数;当内外层函数的单调性相反时则复合函数为减函数。也就是说:同增异减(类似于“负负得正”) 3. 单调区间的定义 如果函数()y f x =,在区间D 上是增函数或减函数,那么就说函数在这个区间上具有单调性,区间D 叫做()y f x =的单调区间. 例题精讲 【例1】下图为某地区24小时内的气温变化图. (1)从左向右看,图形是如何变化的? (2)在哪些区间上升哪些区间下降? 解:(1)从左向右看,图形先下降,后上升,再下降; (2)在区间[0,4]和[14,24]下降,在区间[4,14]下降。 【例2】画出下列函数的图象,观察其变化规律: (1)f (x )=x ; ①从左至右图象上升还是下降 ②在区间(-∞,+∞)上,随着x 的增大,f (x )的值随着怎么变化?

函数的单调性·典型例题精析

2.3.1 函数的单调性·例题解析【例1】求下列函数的增区间与减区间 (1)y=|x2+2x-3| (2)y (3)y = = x x x x x 2 2 2 11 23 - -- --+ || 解(1)令f(x)=x2+2x-3=(x+1)2-4. 先作出f(x)的图像,保留其在x轴及x轴上方部分,把它在x轴下方的图像翻到x轴就得到y=|x2+2x-3|的图像,如图2.3-1所示. 由图像易得: 递增区间是[-3,-1],[1,+∞) 递减区间是(-∞,-3],[-1,1] (2)分析:先去掉绝对值号,把函数式化简后再考虑求单调区间. 解当x-1≥0且x-1≠1时,得x≥1且x≠2,则函数y=-x. 当x-1<0且x-1≠-1时,得x<1且x≠0时,则函数y=x-2. ∴增区间是(-∞,0)和(0,1) 减区间是[1,2)和(2,+∞) (3)解:由-x2-2x+3≥0,得-3≤x≤1. 令u==g(x)=-x2-2x+3=-(x+1)2+4.在x∈[-3,-1] 上是在x∈[-1,1] 上是. 而=在≥上是增函数. y u0 u ∴函数y的增区间是[-3,-1],减区间是[-1,1]. 【例2】函数f(x)=ax2-(3a-1)x+a2在[-1,+∞]上是增函数,求实数a的取值范

围. 解 当a =0时,f(x)=x 在区间[1,+∞)上是增函数. 当≠时,对称轴= , 若>时,由>≤,得<≤. a 0x a 0a 0 3a 10a 131212a a a --??? ?? 若a <0时,无解. ∴a 的取值范围是0≤a ≤1. 【例3】已知二次函数y =f(x)(x ∈R )的图像是一条开口向下且对称轴为x =3的抛物线,试比较大小: (1)f(6)与f(4) (2)f(2)f(15)与 解 (1)∵y =f(x)的图像开口向下,且对称轴是x =3,∴x ≥3时,f(x)为减函数,又6>4>3,∴f(6)<f(4) (2)x 3f(2)f(4)34f(x)x 3∵对称轴=,∴=,而< <,函数在≥15 时为减函数. ∴>,即>.f(15)f(4)f(15)f(2) 【例4】判断函数= ≠在区间-,上的单调性.f(x)(a 0)(11)ax x 2 1 - 解 任取两个值x 1、x 2∈(-1,1),且x 1<x 2. ∵-= ∵-<<<,+>,->,-<,-<.∴ >f(x )f(x )1x x 1x x 10x x 0x 10x 100 12121221a x x x x x x x x x x x x ()()()() ()()()() 122112 22 12 12 122112 22 111111+---+--- 当a >0时,f(x)在(-1,1)上是减函数. 当a <0时,f(x)在(-1,1)上是增函数. 【例5】利用函数单调性定义证明函数f(x)=-x 3+1在(-∞,+∞)上是减函数. 证 取任意两个值x 1,x 2∈(-∞,+∞)且x 1<x 2. ∵-=-++这里有三种证法:当<时,++=+->当≥时,++>f(x )f(x )(x x )(x x x x )()x x 0x x x x (x x )x x 0x x 0x x x x 0 2112221212 1212 1222 122 121212 1222证法一

函数的单调性和奇偶性知识归纳和典型题型

单调性与最大(小)值 要点一、函数的单调性 1.增函数、减函数的概念 一般地,设函数f(x)的定义域为A ,区间D A ?: 如果对于D 内的任意两个自变量的值x 1、x 2,当x 1f(x 2),那么就说f(x)在区间D 上是减函数. 要点诠释: (1)属于定义域A 内某个区间上; (2)任意两个自变量12,x x 且12x x <; (3)都有1212()()(()())f x f x f x f x <>或; 2.单调性与单调区间 (1)单调区间的定义 如果函数f(x)在区间D 上是增函数或减函数,那么就说函数f(x)在区间D 上具有单调性,D 称为函数f(x)的单调区间. 函数的单调性是函数在某个区间上的性质. 要点诠释: ①单调区间与定义域的关系----单调区间可以是整个定义域,也可以是定义域的真子集; ②单调性是通过函数值变化与自变量的变化方向是否一致来描述函数性质的; ③不能随意合并两个单调区间; ④有的函数不具有单调性. (2)已知解析式,如何判断一个函数在所给区间上的单调性? 基本方法:观察图形或依据定义. 3.函数的最大(小)值 一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足: (1)对于任意的x I ∈,都有()f x M ≤(或()f x M ≥); (2) 存在0x I ∈,使得0()f x M =,那么,我们称M 是函数的最大值(或最小值). 要点诠释: ①最值首先是一个函数值,即存在一个自变量0x ,使0()f x 等于最值; ②对于定义域内的任意元素x ,都有0()()f x f x ≤(或0()()f x f x ≥),“任意”两字不可省; ③使函数()f x 取得最值的自变量的值有时可能不止一个; ④函数()f x 在其定义域(某个区间)内的最大值的几何意义是图象上最高点的纵坐标;最小值的几何意义是图象上最低点的纵坐标.

高考数学立体几何中探索性问题

立体几何中探索性问题 立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法. 【例1】(2018?全国三模)如图,在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,90BAC ∠=?,1AA BC ⊥, 124AA AC AB ===,且11BC AC ⊥. (1)求证:平面1ABC ⊥平面11A ACC ; (2)设D 是11A C 的中点,判断并证明在线段1BB 上是否存在点E ,使得//DE 平面1ABC .若存在,求二面角1E AC B --的余弦值. 【解答】证明:(1)在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,1AA AB ∴⊥, 又1AA BC ⊥,AB BC B =,1AA ∴⊥平面ABC ,1A A AC ∴⊥. 又1A A AC =,11AC AC ∴⊥.又11 BC AC ⊥,111BC AC C =,1 AC ∴⊥平面1ABC , 又1A C ?平面11A ACC ,∴平面1ABC ⊥平面11A ACC . (2)当E 为1B B 的中点时,连接AE ,1EC ,DE ,如图,取1A A 的中点F ,连接EF ,FD , //EF AB ,1//DF AC ,又EF DF F =,1AB AC A =, ∴平面//EFD 平面1ABC ,则有//DE 平面1ABC . 设点E 到平面1ABC 的距离为d , AB AC ⊥,且1AA AB ⊥,AB ∴⊥平面11A ACC ,1AB AC ∴⊥, ∴1 1 22 BAC S =?= 1A A AC ⊥,AB AC ⊥,AC ∴⊥平面11A ABB , 11//AC AC ,11AC ∴⊥平面11ABB , ∴111 1118 2243323 C ABE ABE V S AC -?=??=????=, 由118 3 E ABC C ABE V V --== ,解得1 88 3 33ABC d S =? == 以A 为原点,AB 为x 轴,AC 为y 轴,1AA 为z 轴,建立空间直角坐标系,

《函数的单调性和奇偶性》经典例题

经典例题透析 类型一、函数的单调性的证明 1.证明函数上的单调性. 证明:在(0,+∞)上任取x1、x2(x1≠x2),令△x=x2-x1>0 则 ∵x1>0,x2>0,∴∴上式<0,∴△y=f(x2)-f(x1)<0 ∴上递减. 总结升华: [1]证明函数单调性要求使用定义; [2]如何比较两个量的大小?(作差) [3]如何判断一个式子的符号?(对差适当变形) 举一反三: 【变式1】用定义证明函数上是减函数. 思路点拨:本题考查对单调性定义的理解,在现阶段,定义是证明单调性的唯一途径. 证明:设x1,x2是区间上的任意实数,且x10 ∴x1f(x2) 上是减函数. 总结升华:可以用同样的方法证明此函数在上是增函数;在今后的学习中经常会碰到这个函数,在此可以尝试利用函数的单调性大致给出函数的图象.

类型二、求函数的单调区间 2. 判断下列函数的单调区间; (1)y=x2-3|x|+2;(2) 解:(1)由图象对称性,画出草图 ∴f(x)在上递减,在上递减,在上递增. (2) ∴图象为 ∴f(x)在上递增. 举一反三: 【变式1】求下列函数的单调区间: (1)y=|x+1|;(2)(3). 解:(1)画出函数图象, ∴函数的减区间为,函数的增区间为(-1,+∞); (2)定义域为,其中u=2x-1为增函数,

在(-∞,0)与(0,+∞)为减函数,则上为减函数; (3)定义域为(-∞,0)∪(0,+∞),单调增区间为:(-∞,0),单调减区间为(0,+∞). 总结升华: [1]数形结合利用图象判断函数单调区间; [2]关于二次函数单调区间问题,单调性变化的点与对称轴相关. [3]复合函数的单调性分析:先求函数的定义域;再将复合函数分解为内、外层函数;利用已知函数的单调性解决.关注:内外层函数同向变化→复合函数为增函数;内外层函数反向变化→复合函数为减函数. 类型三、单调性的应用(比较函数值的大小,求函数值域,求函数的最大值或最小值) 3. 已知函数f(x)在(0,+∞)上是减函数,比较f(a2-a+1)与的大小. 解:又f(x)在(0,+∞)上是减函数,则. 4. 求下列函数值域: (1);1)x∈[5,10];2)x∈(-3,-2)∪(-2,1); (2)y=x2-2x+3;1)x∈[-1,1];2)x∈[-2,2]. 思路点拨:(1)可应用函数的单调性;(2)数形结合. 解:(1)2个单位,再上移2个单位得到,如图 1)f(x)在[5,10]上单增,;

1.3.1函数的单调性例题

1.3.1函数的单调性 题型一、利用函数的图象确定函数的单调区间 例1.作出下列函数的图象,并写出函数的单调区间 (1)12-=x y ; (2)322++-=x x y ; (3)2 )2(1-++=x x y ; (4)969622++++-=x x x x y 相应作业1:课本P32第3题. 题型二、用定义法证明函数的单调性 用定义法证明函数的单调性步骤:取值 作差变形 定号 下结论 ?取值,即_____________________________; ?作差变形,作差____________,变形手段有__________、_____、_____、_______等; ?定号,即____________________________________________________________; ④下结论,即______________________________________________________。 例2.用定义法证明下列函数的单调性 (1)证明:1)(3 +-=x x f 在()+∞∞-,上是减函数.

▲定义法证明单调性的等价形式: 设[]b a x x ,21∈、,21x x ≠,那么 [])(0) ()(0)()()(2 1212121x f x x x f x f x f x f x x ?>--? >--在[]b a ,上是增函数; [])(0) ()(0)()()(2 1212121x f x x x f x f x f x f x x ?<--? <--在[]b a ,上是减函数. (2)证明:x x x f -+=1)(2在其定义域内是减函数; (3)证明:21 )(x x f = 在()0,∞-上是增函数; 法一: 作差 法二:作商

高考数学专题04 立体几何的探索性问题(第三篇)(原卷版)

备战2020年高考数学大题精做之解答题题型全覆盖高端精品 第三篇 立体几何 专题04 立体几何的探索性问题 【典例1】【2020届江苏巅峰冲刺卷】 如图,在四棱锥P ABCD 中,P A ⊥平面ABCD ,∠ABC =∠BAD =90°,AD =AP =4,AB =BC =2,M 为PC 的中点. (1)求异面直线AP ,BM 所成角的余弦值; (2)点N 在线段AD 上,且AN =λ,若直线MN 与平面PBC 所成角的正弦值为4 5 ,求λ的值. 【典例2】【2020届江西省赣州市高三上学期期末考试】 如图,在平行四边形ABCD 中,2,4,60AB AD BAD ?==∠=,平面EBD ⊥平面ABD ,且 ,EB CB ED CD ==.

(1)在线段EA 上是否存在一点F ,使//EC 平面FBD ,证明你的结论; (2)求二面角A EC D --的余弦值. 【典例3】【北京市昌平区2020届高三期末】 如图,在四棱锥P ABCD -中,P A ⊥平面ABCD ,CD ⊥AD ,BC ∥AD ,1 2 BC CD AD == . (Ⅰ)求证:CD ⊥PD ; (Ⅰ)求证:BD ⊥平面P AB ; (Ⅰ)在棱PD 上是否存在点M ,使CM ∥平面P AB ,若存在,确定点M 的位置,若不存在,请说明理由. 【典例4】【2019届陕西省西安中学高三下学期第十二次重点考试】 在三棱锥P—ABC 中,PB ⊥平面ABC ,AB ⊥BC ,AB=PB =2,BC E 、G 分别为PC 、P A 的中点.

(1)求证:平面BCG ⊥平面P AC ; (2)假设在线段AC 上存在一点N ,使PN ⊥BE ,求 AN NC 的值; (3)在(2)的条件下,求直线BE 与平面PBN 所成角的正弦值 【典例5】【浙江省丽水市2020届模拟】 如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,AD BC ∥,90ABC ∠=?,1AB BC ==,2PA AD ==. (1)求证:CD ⊥平面PAC ; (2)在棱PC 上是否存在点H ,使得AH ⊥平面PCD ?若存在,确定点H 的位置;若不存在,说明理由. 【典例6】【江苏省苏州市实验中学2020届高三月考】 直四棱柱1111ABCD A B C D -中,2AB BC ==,90ABC ∠=?, E 、 F 分别为棱AB 、11B C 上的点,2AE EB =,112C F FB =.求证: (1)//EF 平面11AAC C ; (2)线段AC 上是否存在一点G ,使面EFG ⊥面11AAC C .若存在,求出AG 的长;若不存在,请说明理由. 【典例7】【山东省临沂市2019年普通高考模拟】 如图,底面ABCD 是边长为3的正方形,平面ADEF ⊥平面ABCD ,AF ∥DE ,AD ⊥DE ,AF =DE =

函数的单调性 知识点与题型归纳

1.理解函数的单调性、最大值、最小值及其几何意义. 2.会运用基本初等函数的图象分析函数的性质. ★备考知考情 1.函数的单调性是函数的一个重要性质,是高考的热点,常见问题有:求单调区间,判断函数的单调性,求参数的取值,利用函数单调性比较数的大小,以及解不等式等.客观题主要考查函数的单调性,最值的确定与简单应用. 2.题型多以选择题、填空题的形式出现,若与导数交汇命题,则以解答题的形式出现. 一、知识梳理《名师一号》P15 注意: 研究函数单调性必须先求函数的定义域, 函数的单调区间是定义域的子集 单调区间不能并! 知识点一函数的单调性 1.单调函数的定义 1

2 2.单调性、单调区间的定义 若函数f (x )在区间D 上是增函数或减函数,则称函数f (x )在这一区间上具有(严格的)单调性,区间D 叫做f (x )的单调区间. 注意: 1、《名师一号》P16 问题探究 问题1 关于函数单调性的定义应注意哪些问题? (1)定义中x 1,x 2具有任意性,不能是规定的特定值. (2)函数的单调区间必须是定义域的子集; (3)定义的两种变式: 设任意x 1,x 2∈[a ,b ]且x 1-f x f x x x ? f (x )在[a ,b ]上是增函数;

3 1212 ()() 0-<-f x f x x x ? f (x )在[a ,b ]上是减函数. ②(x 1-x 2)[f (x 1)-f (x 2)]>0?f (x )在[a ,b ]上是增函数; (x 1-x 2)[f (x 1)-f (x 2)]<0?f (x )在[a ,b ]上是减函数. 2、《名师一号》P16 问题探究 问题2 单调区间的表示注意哪些问题? 单调区间只能用区间表示,不能用集合或不等式表示; 如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结. 知识点二 单调性的证明方法:定义法及导数法 《名师一号》P16 高频考点 例1 规律方法 (1) 定义法: 利用定义证明函数单调性的一般步骤是: ①任取x 1、x 2∈D ,且x 10,则f (x )在区间D 内为增函数;如果f ′(x )<0,则f (x )在区间D 内为减函数. 注意:(补充) (1)若使得f ′(x )=0的x 的值只有有限个,

高考热点问题和解题策略之探索性问题

二、探索性问题 近年来,随着社会主义经济建设的迅速发展,要求学校由“应试教育”向“素质教育”转化,培养全面发展的开拓型、创造型人才。在这种要求下,数学教学中开放型问题随之产生。于是,探索性问题成了近几年来高考命题中的热点问题,它既是高等学校选拔高素质人材的需要,也是中学数学教学培养学生具有创造能力、开拓能力的任务所要求的。实际上,学生在学习数学知识时,知识的形成过程也是观察、分析、归纳、类比、猜想、概括、推证的探索过程,其探索方法是学生应该学习和掌握的,是今后数学教育的重要方向。 一般地,对于虽给出了明确条件,但没有明确的结论,或者结论不稳定,需要探索者通过观察、分析、归纳出结论或判断结论的问题(探索结论);或者虽给出了问题的明确结论,但条件不足或未知,需要解题者寻找充分条件并加以证明的问题(探索条件),称为探索性问题。此外,有些探索性问题也可以改变条件,探讨结论相应发生的变化;或者改变结论,探讨条件相应发生的变化;或者给出一些实际中的数据,通过分析、探讨解决问题。 探索性问题一般有以下几种类型:猜想归纳型、存在型问题、分类讨论型。 猜想归纳型问题是指在问题没有给出结论时,需要从特殊情况入手,进行猜想后证明其猜想的一般性结论。它的思路是:从所给的条件出发,通过观察、试验、不完全归纳、猜想,探讨出结论,然后再利用完全归纳理论和要求对结论进行证明。其主要体现是解答数列中等与n有关数学问题。 存在型问题是指结论不确定的问题,即在数学命题中,结论常以“是否存在”的形式出现,其结果可能存在,需要找出来,可能不存在,则需要说明理由。解答这一类问题时,我们可以先假设结论不存在,若推论无矛盾,则结论确定存在;若推证出矛盾,则结论不存在。代数、三角、几何中,都可以出现此种探讨“是否存在”类型的问题。 分类讨论型问题是指条件或者结论不确定时,把所有的情况进行分类讨论后,找出满足条件的条件或结论。此种题型常见于含有参数的问题,或者情况多种的问题。 探索性问题,是从高层次上考查学生创造性思维能力的新题型,正确运用数学思想方法是解决这类问题的桥梁和向导,通常需要综合运用归纳与猜想、函数与方程、数形结合、分类讨论、等价转化与非等价转化等数学思想方法才能得到解决,我们在学习中要重视对这一问题的训练,以提高我们的思维能力和开拓能力。 Ⅰ、再现性题组: 1.是否存在常数a、b、c,使得等式1·22+2·32+…+n(n+1)2=n n() +1 12 (an2+ bn+c)对一切自然数n都成立?并证明你的结论。(89年全国理) 2.已知数列 81 13 22 · · , 82 35 22 · · …, 8 2121 22 · · n n n ()() -+ ,…。S n 为其前n项和,求 S 1、S 2 、S 3 、S 4 ,推测S n 公式,并用数学归纳法证明。(93年全国理) 【简解】1题:令n=1、2、3代入已知等式列出方程组,解得a=3、b=11、c=10, 猜测a、b、c的值对所有的n∈N都成立,再运用数学归纳法进行证明。(属于是否存在型问题,也可属于猜想归纳型问题) 2题:计算得到S 1= 8 9 、S 2 = 24 25 、S 3 = 48 49 、S 4 = 80 81 ,观察后猜测S n = () () 211 21 2 2 n n +- + , 再运用数学归纳法进行证明。 Ⅱ、示范性题组:

(完整版)函数单调性奇偶性经典例题

函数的性质的运用 1.若函数y f x x R =∈()()是奇函数,则下列坐标表示的点一定在函数 y f x =()图象上的是( ) A.(())a f a ,- B.(())--a f a , C.(())---a f a , D.(())a f a ,- 2. 已知函数)(1 22 2)(R x a a x f x x ∈+-+?= 是奇函数,则a 的值为( ) A .1- B .2- C .1 D .2 3.已知f (x )是偶函数,g (x )是奇函数,若1 1)()(-= +x x g x f ,则f (x ) 的解析式为_______. 4.已知函数f (x )为偶函数,且其图象与x 轴有四个交点,则方程f (x )=0的所有 实根之和为________. 5.定义在R 上的单调函数f (x )满足f (3)=log 23且对任意x ,y ∈R 都有f (x+y )=f (x )+f (y ). (1)求证f (x )为奇函数; (2)若f (k ·3x )+f (3x -9x -2)<0对任意x ∈R 恒成立, 求实数k 的取值范围. 6.已知定义在区间(0,+∞)上的函数f(x)满足f()2 1 x x =f(x 1)-f(x 2),且当x >1时,f(x)<0. (1)求f(1)的值; (2)判断f(x )的单调性; (3)若f(3)=-1,解不等式f(|x|)<-2.

7.函数f(x)对任意的a 、b ∈R,都有f(a+b)=f(a)+f(b)-1,并且当x >0时,f(x)>1. (1)求证:f(x)是R 上的增函数; (2)若f(4)=5,解不等式f(3m 2 -m-2)<3. 8.设f (x )的定义域为(0,+∞),且在(0,+∞)是递增的,)()()(y f x f y x f -= (1)求证:f (1)=0,f (xy )=f (x )+f (y ); (2)设f (2)=1,解不等式2)3 1 ( )(≤--x f x f 。 9.设函数()f x 对x R ∈都满足(3)(3)f x f x +=-,且方程()0f x =恰有6个不同 的实数根,则这6个实根的和为( ) A . 0 B .9 C .12 D .18 10.关于x 的方程 22(28)160x m x m --+-=的两个实根 1x 、2x 满足 123 2 x x <<, 则实数m 的取值范围 11.已知函数()()y f x x R =∈满足(3)(1)f x f x +=+,且x ∈[-1,1]时,()||f x x =, 则()y f x =与5log y x =的图象交点的个数是( ) A .3 B .4 C .5 D .6 12.已知函数()f x 满足:4x ≥,则()f x =1()2 x ;当4x <时()f x =(1)f x +,则 2(2log 3)f += A 124 B 112 C 18 D 38 13.已知函数f (x )在(-1,1)上有定义,f ( 2 1 )=-1,当且仅当0

函数的单调性和奇偶性典型例题

函数的单调性和奇偶性 例1(1)画出函数y=-x2+2|x|+3的图像,并指出函数的单调区间. 解:函数图像如下图所示,当x≥0时,y=-x2+2x+3=-(x-1)2+4;当x<0时,y=-x2-2x+3=-(x+1)2+4.在(-∞,-1]和[0,1]上,函数是增函数:在[-1,0]和[1,+∞)上,函数是减函数. 评析函数单调性是对某个区间而言的,对于单独一个点没有增减变化,所以对于区间端点只要函数有意义,都可以带上. (2)已知函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,求实数a的取值范围. 分析要充分运用函数的单调性是以对称轴为界线这一特征. 解:f(x)=x2+2(a-1)x+2=[x+(a-1)]2-(a-1)2+2,此二次函数的对称轴是x =1-a.因为在区间(-∞,1-a]上f(x)是单调递减的,若使f(x)在(-∞,4]上单调递减,对称轴x=1-a必须在x=4的右侧或与其重合,即1-a≥4,a≤-3. 评析这是涉及逆向思维的问题,即已知函数的单调性,求字母参数范围,要注意利用数形结合. 例2判断下列函数的奇偶性: (1)f(x)=- (2)f(x)=(x-1). 解:(1)f(x)的定义域为R.因为 f(-x)=|-x+1|-|-x-1| =|x-1|-|x+1|=-f(x). 所以f(x)为奇函数.

(2)f(x)的定义域为{x|-1≤x<1},不关于原点对称.所以f(x)既不是奇函数,也不是偶函数. 评析用定义判断函数的奇偶性的步骤与方法如下: (1)求函数的定义域,并考查定义域是否关于原点对称. (2)计算f(-x),并与f(x)比较,判断f(-x)=f(x)或f(-x)=-f(x)之一是否成立.f(-x)与-f(x)的关系并不明确时,可考查f(-x)±f(x)=0是否成立,从而判断函数的奇偶性. 例3已知函数f(x)=. (1)判断f(x)的奇偶性. (2)确定f(x)在(-∞,0)上是增函数还是减函数?在区间(0,+∞)上呢?证明你的结论. 解:因为f(x)的定义域为R,又 f(-x)===f(x), 所以f(x)为偶函数. (2)f(x)在(-∞,0)上是增函数,由于f(x)为偶函数,所以f(x)在(0,+∞)上为减函数. 其证明:取x1<x2<0, f(x1)-f(x2)=- ==. 因为x1<x2<0,所以 x2-x1>0,x1+x2<0, x21+1>0,x22+1>0, 得f(x1)-f(x2)<0,即f(x1)<f(x2). 所以f(x)在(-∞,0)上为增函数. 评析奇函数在(a,b)上的单调性与在(-b,-a)上的单调性相同,偶函数在(a,b)与(-b,-a)的单调性相反. 例4已知y=f(x)是奇函数,它在(0,+∞)上是增函数,且f(x)<0,试问F(x)=在(-∞,0)上是增函数还是减函数?证明你的结论.

(完整word版)高考导数题型归纳

高考压轴题:导数题型及解题方法 (自己总结供参考) 一.切线问题 题型1 求曲线)(x f y =在0x x =处的切线方程。 方法:)(0x f '为在0x x =处的切线的斜率。 题型2 过点),(b a 的直线与曲线)(x f y =的相切问题。 方法:设曲线)(x f y =的切点))(,(00x f x ,由b x f x f a x -='-)()()(000求出0x ,进而解决相关问题。 注意:曲线在某点处的切线若有则只有一,曲线过某点的切线往往不止一条。 例 已知函数f (x )=x 3﹣3x . (1)求曲线y=f (x )在点x=2处的切线方程;(答案:0169=--y x ) (2)若过点A )2)(,1(-≠m m A 可作曲线)(x f y =的三条切线,求实数m 的取值范围、 (提示:设曲线)(x f y =上的切点()(,00x f x );建立)(,00x f x 的等式关系。将问题转化为关于m x ,0的方程有三个不同实数根问题。(答案:m 的范围是()2,3--) 练习 1. 已知曲线x x y 33 -= (1)求过点(1,-3)与曲线x x y 33-=相切的直线方程。答案:(03=+y x 或027415=--y x ) (2)证明:过点(-2,5)与曲线x x y 33-=相切的直线有三条。 2.若直线0122=--+e y x e 与曲线x ae y -=1相切,求a 的值. (答案:1) 题型3 求两个曲线)(x f y =、)(x g y =的公切线。 方法:设曲线)(x f y =、)(x g y =的切点分别为()(,11x f x )。()(,22x f x );

2021新高考数学二轮总复习专题突破练18 立体几何中的翻折问题及探索性问题含解析

专题突破练18立体几何中的翻折问题及探索性问 题 1.(2020河北石家庄5月检测,18)如图1,在Rt△ABC中,∠C=90°,BC=AC=4,D,E分别是AC,AB边上的中点,将△ADE沿DE折起到△A1DE的位置,使A1C=A1D,如图 2. (1)求证:平面A1CD⊥平面A1BC; (2)求直线A1C与平面A1BE所成角的正弦值. 2. (2020贵州贵阳适应性训练,19)如图,在四棱锥P-ABCD中,四边形ABCD为正方形,且平面PAD⊥平面ABCD,F为棱PD的中点. (1)在棱BC上是否存在一点E,使得CF∥平面PAE?并说明理由; (2)若PA=PD=AB,求直线AF与平面PBC所成角的正弦值.

3.(2020浙江台州模拟,19)如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=3,AA1=2.以AB,BC 为邻边作平行四边形ABCD,连接DA1和DC1. (1)求证:A1D∥平面BCC1B1; (2)在线段BC上是否存在点F,使平面DA1C1与平面A1C1F垂直?若存在,求出BF的长;若不存在,请说明理由. 4.(2020云南昆明一中模拟,19)图1是由边长为4的正六边形AEFBCD,矩形DCGH组成的一个平面图形,将其沿AB,DC折起得几何体ABCD-EFGH,使得CG⊥AD,且平面EFGH∥平面ABCD,如图2.

(1)证明:在图2中,平面ACG⊥平面BCG; (2)设M为图2中线段CG上一点,且CM=1,若直线AG∥平面BMD,求图2中的直线BM与平面AHB 所成角的正弦值. 5.(2020北京通州一模,18)如图1,已知四边形ABCD为菱形,且∠A=60°,取AD中点为E.现将四边形EBCD沿BE折起至EBHG,使得∠AEG=90°,如图2. (1)求证:AE⊥平面EBHG; (2)求二面角A-GH-B的余弦值; (3)若点F满足=λ,当EF∥平面AGH时,求λ的值.

(完整word版)函数的单调性典型例题.docx

函数的单调性及典型习题 一、函数的单调性 1、定义: (1)设函数y f (x) 的定义域为A,区间 M A ,如果取区间 M 中的任意两个值x1, x2 ,当改变量x 2 x1 时,都有f ( x 2) f ( x1 ) 0,那么就称函数y f ( x) 在区间M上是增函数,如图(1)当改变量x2x10 时,都有 f ( x2 ) f (x1) 0,那么就称函数y f (x) 在区间M上是减函数,如图(2) 注意:函数单调性定义中的x1,x2有三个特征,一是任意性,二是有大小,三是同属于一个单调区间.2、巩固概念: 1、定义的另一种表示方法 如果对于定义域I内某个区间 D 上的任意两个自变量x1,x2,若f ( x 1 ) f (x2 )0 即 x1x2 y ,则函数 y=f(x)是增函数,若f ( x1 ) f ( x2 ) 0 即y0 ,则函数y=f(x)为减函数。 x1x2 x x 判断题: ①已知 f (x)1 1) f(2) ,所以函数 f ( x) 是增函数. 因为 f ( x ②若函数 f ( x) 满足 f (2) f (3)则函数 f ( x) 在区间2,3 上为增函数. ③若函数 f ( x) 在区间 (1,2] 和 (2,3) 上均为增函数,则函数 f ( x) 在区间 (1,3) 上为增函数. ④ 因为函数 1 在区间,0),(0,) 上都是减函数,所以 f ( x) 1 f ( x)在 x x ( ,0)(0, ) 上是减函数. 通过判断题,强调几点: ①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性.

②对于某个具体函数的单调区间,可以是整个定义域 ( 如一次函数 ) ,可以是定义域内某个 区间 ( 如二次函数 ) ,也可以根本不单调 ( 如常函数 ) . ③单调性是对定义域的某个区间上的整体性质,不能用特殊值说明问题。 ④函数在定义域内的两个区间A,B 上都是增(或减)函数,一般不能认为函数在 A B 上 是增(或减)函数. 熟记以下结论,可迅速判断函数的单调性. 1.函数 y =- f ( x )与函数 y = f ( x )的单调性相反. 1 2.当 f ( x )恒为正或恒为负时,函数 y = f ( x) 与 y = f ( x )的单调性相反. 3.在公共区间内,增函数+增函数=增函数,增函数-减函数=增函数等 3.判断函数单调性的方法 ( 1)定义法. ( 2)直接法.运用已知的结论,直接得到函数的单调性,如一次函数,二次函数的单 调性均可直接说出. ( 3)图象法. 例 1、证明函数 f ( x) 1 )是减函数. 在( 0, + x 练习 1:证明函数 f ( x) x 在 0, 上是增函数. 1 1 x 例 2、设函数 f (x )= x 2 + lg 1 x ,试判断 f ( x )的单调性,并给出证明. 例 3、求下列函数的增区间与减区间 (1)y = |x 2 + 2x - 3| x 2 2x (2)y = 1| 1 |x (3)y = x 2 2x 3

高二数学选修2-2导数12种题型归纳(中等难度)

导数题型分类解析(中等难度) 一、变化率与导数 函数)(0x f y =在x 0到x 0+x ?之间的平均变化率,即)('0x f =0 lim →?x x y ??=0 lim →?x x x f x x f Δ)()Δ(00-+,表 示函数)(0x f y =在x 0点的斜率。注意增量的意义。 例1:若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000 ()() lim h f x h f x h h →+-- 的值为( ) A .'0()f x B .'02()f x C .' 02()f x - D .0 例2:若' 0()3f x =-,则000 ()(3) lim h f x h f x h h →+--=( ) A.3- B .6- C .9- D .12- 例3:求0lim →h h x f h x f ) ()(020-+ 二、“隐函数”的求值 将)('0x f 当作一个常数对)(0x f 进行求导,代入0x 进行求值。 例1:已知()()232 f x x x f '+=,则()='2f 例2:已知函数()x x f x f sin cos 4+?? ? ??'=π,则??? ??4πf 的值为 . 例3:已知函数)(x f 在R 上满足88)2(2)(2 -+--=x x x f x f ,则曲线)(x f y =在点))1(,1(f 处的切线方程为( ) A. 12-=x y B. x y = C. 23-=x y D. 32+-=x y 三、导数的物理应用 如果物体运动的规律是s=s (t ),那么该物体在时刻t 的瞬间速度v=s ′(t )。 如果物体运动的速度随时间的变化的规律是v=v (t ),则该物体在时刻t 的加速度a=v′(t )。 例1:一个物体的运动方程为2 1t t s +-=其中s 的单位是米,t 的单位是秒,求物体在3秒末的瞬时速度。 例2:汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )

高考数学必考知识点:数列问题篇

高考数学必考知识点:数列问题篇 ?高考数学之数列问题的题型与方法 数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。 近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。(3) 数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。 知识整合 1.在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合

题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题; 语文课本中的文章都是精选的比较优秀的文章,还有不少名 家名篇。如果有选择循序渐进地让学生背诵一些优秀篇目、精彩段落,对提高学生的水平会大有裨益。现在,不少语文教师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫。结果教师费劲,学生头疼。分析完之后,学生收效甚微,没过几天便忘的一干二净。造成这种事倍功半的尴尬局面的关键就是对文章读的不熟。常言道“书读百遍,其义自见”,如果有目的、有计划地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便可以在读中自然领悟文章的思想内容和写作技巧,可以在读中自然加强 语感,增强语言的感受力。久而久之,这种思想内容、写作技巧和语感就会自然渗透到学生的语言意识之中,就会在写作 中自觉不自觉地加以运用、创造和发展。2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力, “教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。只是更早的“先生”

相关文档
最新文档