936焊台的原理

936焊台的原理
936焊台的原理

自制936焊台的原理分析和测试报告

自制936焊台的原理分析和测试报告

(国产控制板+二手白光手柄+二手白光头)原创:wxleasyland

日期:2009年7月-8月

本文引用了部分SHENGMG、别人或其它论坛的图片。

一、各个部分分析

1.控制板原理分析

控制板是向论坛或淘宝的SHENGMG买的,板30元,航空插头7元,邮费10元。

这个板的原理和HAOSEN 936B型恒温铬铁原理图是一样的。

下面是网上流传的HAOSEN 936B型恒温铬铁的原理图(可放大),画得很乱,看不懂吧:

下面是我画的SHENGMG板原理图(可放大),容易看懂了吧:

SHENGMG板的R13未接(实际是不好的,应该要接)。R10是150欧。ZD4是4.3V的。

原理分析:

由双向可控硅BT137控制对烙铁芯中加热丝的通电,由烙铁芯的热电阻Rx 反馈温度。

温度检测是通过电压比较来实现,ZD2提供稳压电压,通过R4、Rx分压。烙

铁温度越高,热电阻Rx越大,Rx上的电压越大。

Rx上的电压被第一个LM358放大,放大倍数由微调电阻VR2控制。再进入第二个LM358进行电压比较。ZD2和ZD4之间提供设定电压,由电位器W控制。我们通过调节W,来设定焊台的温度。

温度低时,Rx上电压不高,第二个LM358输出为负电压,Q2导通,BT137

导通,对芯加热。达到设定温度时,第二个LM358输出为正电压,Q2截止,BT1 37截止,停止加热。

注意,这里ZD2和ZD1给LM358提供正负电压,相当于是双电压供电,ZD2的正极可认为是零点。

R8的作用是:触发BT137导通。C2上的电压通过R8、BT137的T1端、BT13 7的G端、Q2、R17,再回到C2,这样使BT137控制端G导通,从而BT137的T2、T1端得以导通。

2.白光手柄和分析

二手白光手柄是在TAOBAO上给ROOR买的,加一个二手白光3C头,加邮费,一百多元了。手柄锈迹斑斑,橡胶套烂得不成样子,上面的K头也已经很烂了,也生锈了。用WD40处理了一遍,好了一些。后来又去电子城买了一个10元的“白光”B头。

手柄和头是这样子的:

K头结构,最前面是二个斜面的,挺怪的。

烙铁芯是这样子的:(应该是原装二手的芯吧?)

尺寸测量:

白光K头内孔孔径4.4mm,外径6.5mm,内孔深25mm,外径长25.7mm

白光3C头内孔孔径4.1mm,外径6.4mm,内孔深24mm,外径长25.5mm

“白光”B头内孔孔径4.1mm,外径6.4mm,内孔深24.5mm,外径长25.9mm 烙铁芯直径是3.8mm。加热后,烙铁芯直径变化很小。

烙铁头内孔与烙铁芯之间有0.3mm的空隙,并没有完全匹配。(如果是旧的K头,就是0.6mm了,超级大)

套管与螺纹头之间有一定的间隙。

烙铁头可以被磁铁吸起来,3C的内孔有光亮铜色。符合白光头性质。

发热丝在常温下测电阻是3Ω多,加热后,拔下来再测电阻是6Ω多。电阻不大,可能温度还不够高。

936烙铁芯A1321,里面的温度传感器是热电阻,不是热电偶,特性符合热电阻的性质。(国产焊台有的是用1322芯,就不一样了)

测出的数据:(个人实验条件所限,温度、电阻测出的值均存在一些误差)常温 29℃下,热电阻约50.6Ω

常温 28℃下,热电阻约49.9Ω

冰水 3℃下,热电阻约45.3Ω

冰水 2℃下,热电阻约45.1Ω

沸水100℃下,热电阻约63.6Ω

调和油153℃下,热电阻约73Ω(油的温度一直在变,故测的会不太准,有滞后)

调和油250-260℃下,热电阻约90-91Ω左右(油的温度一直在变,故测的会不太准,有滞后,看个大概了)

可以看出,阻值基本符合铂热电阻的性质。0℃时电阻大约在45-46Ω左右。

(1+At+Bt2) 注:铂热电阻的计算公式为:在0~850℃范围内:R=R

为0℃时的电阻值,t为温A=3.90802×10^-3 B=-5.802×10^-7 (R

度℃)

注:铜热电阻计算公式就不一样了。听说国产便宜的A1321芯不是用铂材质的,不知道是用铜,还是用别的什么材质?高温用铜是不好的,温度高了会氧化,测不准了。

3.变压器

在厦门电子城买的,24V 100VA的控制变压器,55元一个。

卡尺测了一下变压器次级线径,约1.2mm,这样估计次级电流约2.3-2.8A,估计变压器实际功率是60-70W左右。

4.外壳

在厦门电子城,要啥没啥,一个小外壳就要10元了,只能放下电路板,变压器放不了。后来在沃尔玛买了一个透明的塑料盒子,10元,比较大个,还能手提,哈。

这样,一整套加起来250元了,还没有烙铁架。

最终成品图:

UR1: 11.2-11.6V

UZD2: 7.31V

UZD1: 7.51V

UZD4: 4.37V

UZD3: 1.33V

UC2: 10.65V

UC3: 8.13V

本报告基本完成,总体来说,这个电路板原理简单,功能还不错,维修容易。

附加:

网上流传的白光936焊台原理图要么原理难以看懂,要么有些错误,我重新整理了一下,简单明了,很容易进行原理分析,并修正了一些错误。原理图如下(可放大):

ZD2和ZD1为324运放提供双电压供电,相当于ZD2的正极是零点。324的8脚对正电压进行跟随,给后续电路使用。

烙铁芯的热电阻经过324运放一次放大,再经过二次放大,从1脚输出,经R14进入C1701C的4脚。这个电压与烙铁芯的热电阻Rx是成比例的,烙铁头温度越高时,Rx越大,则C1701C的4脚的电压越高,这样达到对热电阻检测的目的。

VR1用作温度调节,它取出电压分压,经324运放跟随后,从7脚输出,进入C1701C的3脚。

C1701C是过零同步IC,它的4、3脚是一个运放,这里进行电压比较。如果烙铁未加热到设定值,则4脚电压比3脚低,则2脚输出为低,使LED点亮。6脚有触发低脉冲输出,使Q1可控硅导通,从而烙铁芯进行加热。8脚是交流电同步信号输入检测端。

相关主题
相关文档
最新文档