NiTi形状记忆合金的相变温度滞后

NiTi形状记忆合金的相变温度滞后
NiTi形状记忆合金的相变温度滞后

形状记忆合金的应用现状与发展趋势

形状记忆合金的应用现状与发展趋势 摘要:综述了形状记忆合金的发展概况,简要介绍了形状记忆合金在不同领域的应用现状,分析了当前形状记忆合金研究中存在的问题,指出了今后的发展前景与研究方向。 关键词:形状记忆合金、形状记忆合金效应、应用 一、引言 形状记忆合金(Shape Memory Alloy ,SMA) 是指具有一定初始形状的合金在低温下经塑性形变并固定成另一种形状后,通过加热到某一临界温度以上又可恢复成初始形状的一类合金。形状记忆合金具有的能够记住其原始形状的功能称为形状记忆效应(Shape Memory Effect ,SME) 。 形状记忆合金作为一种特殊的新型功能材料,是集感知与驱动于一体的智能材料,因其功能独特,可以制作小巧玲珑、高度自动化、性能可靠的元器件而备受瞩目,并获得了广泛应用。 二、形状记忆合金的发展史与现状 在金属中发现现状记忆效应最早追溯到20世纪30年代。1938年。当时美国的 Greningerh和Mooradian在Cu-Zn合金小发现了马氏体的热弹件转变。随后,前苏联的Kurdiumov对这种行为进行了研究。1951年美国的Chang相Read 在Au47·5Cd(%原子)合金中用光学显微镜观察到马氏体界面随温度的变化发生迁动。这是最早观察到金属形状记忆效应的报道。数年后,Burkhart 在In-Ti 合金中观察到同样的现象。然而在当时,这些现象的发现只被看作是个别材料的特殊现象而未能引起人们足够的兴趣和重视。直至1963年,美国海军武器实验室的Buehler等人发现了Ni-Ti合金中的的形状记忆效应,才开创了“形状记忆”的实用阶断[1]。

第四章-钛合金的相变及热处理

第四章-钛合金的相变及热处理

第4章钛合金的相变及热处理 可以利用钛合金相变诱发的超塑性进行钛合金的固态焊接,接头强度接近基体强度。 4.1 同素异晶转变 1.高纯钛的β相变点为88 2.5℃,对成分十分敏感。在882.5℃发生同素异晶转变:α(密排六方)→β(体心立方),α相与β相完全符合布拉格的取向关系。 2.扫描电镜的取向成像附件技术(Orientation-Imaging Microscopy , OIM) 3.α/β界面相是一种真实存在的相,不稳定,在受热情况下发生明显变化,严重影响合金的力学性能。 4.纯钛的β→α转变的过程容易进行,相变是以扩散方式完成的,相变阻力和所需要的过冷度均很小。冷却速度大于每秒200℃时,以无扩散发生马氏体转变,试样表面出现浮凸,显微组织中出现针状α′。转变温度会随所含合金元素的性质和数量的不同而不同。 5.钛和钛合金的同素异晶转变具有下列特点: (1)新相和母相存在严格的取向关系 (2)由于β相中原子扩散系数大,钛合金的加热温度超过相变点后,β相长大倾向特别大,极易形成粗大晶粒。 (3)钛及钛合金在β相区加热造成的粗大晶粒,不像铁那样,利用同素异晶转变进行重结晶使晶粒细化。钛及钛合金只有经过适当的形变再结晶消除粗晶组织。 4.2 β相在冷却时的转变 冷却速度在410℃/s以上时,只发生马氏体转变;冷速在410~20℃/s时,发生块状转变;冷却继续降低,将以扩散型转变为主。 1.β相在快冷过程中的转变 钛合金自高温快速冷却时,视合金成分不同,β相可以转变成马氏体α′或α"、ω或过冷β等亚稳定相。 (1)马氏体相变 ①在快速冷却过程中,由于β相析出α相的过程来不及进行,但是β相的晶体结构,不易为冷却所抑制,仍然发生了改变。这种原始β相的成分未发生变化,但晶体结构发生了变化的过饱和固溶体是马氏体。 ②如果合金的溶度高,马氏体转变点M S降低至室温一下,β相将被冻结到室温,这种β相称过冷β相或残留β相。 ③若β相稳定元素含量少,转变阻力小,β相由体心立方晶格直接转变为密排六方晶格,这种具有六方晶格的过饱和固溶体称六方马氏体,以α′表示。 ④若β相稳定元素含量高,晶格转变阻力大,不能直接转变为六方晶格,只能转变为斜方晶格,这种具有斜方晶格的马氏体称斜方马氏体,以α′′表示。 ⑤马氏体相变是一个切变相变,在转变时,β相中的原子作集体的、有规律的进程迁移,迁移距离较大时形成六方α′相,迁移距离较小时形成斜方α′′相。 ⑥马氏体相变开始温度M S ;马氏体相变终了温度M f 。 ⑦钛合金中加入Al、Sn、Zr将扩大α相区,使β相变点升高;V、Mo、Mn、Fe、Cr、Cu、Si将缩小α相区(扩大β相区),使β相变点降低。 ⑧β相中原子扩散系数很大,钛合金的加热温度一旦超过β相变点,β相将快速长大成粗晶组织,即β脆性,故钛合金淬火的加热温度一般均低于其β相变点。

关于形状记忆合金在变体机翼方面的应用综述

关于形状记忆合金在变体机翼方面的应用综述 发表时间:2019-05-13T15:59:02.707Z 来源:《知识-力量》2019年8月26期作者:纪宇帆[导读] 形状记忆合金是目前很常用的一种智能材料,能够代替传统材料应用在广泛的工业领域。本文将通过综合比较分析不同文献及其理论依据,阐述形状记忆合金在航空航天领域的应用情况 (北京航空航天大学能源与动力工程学院,北京 100191) 摘要:形状记忆合金是目前很常用的一种智能材料,能够代替传统材料应用在广泛的工业领域。本文将通过综合比较分析不同文献及其理论依据,阐述形状记忆合金在航空航天领域的应用情况,并对目前存在的问题和未来发展的方向一一论述。在变体机翼方面,文章从中文文献和外文文献中分别选取了几篇有代表性的进行阐述,分析得到了国内外不同研究方向的侧重点以及未来的发展趋势。同时文章对形状记忆合金在航空航天领域的应用情况做了小结,提出了一些个人观点与评价,也指出了目前存在的问题与未来发展的方向。关键词:形状记忆合金;航空航天;国内外对比 引言 传统材料通常不能实时感知环境以及自身状态的变化,更不能做到自适应和自修复[1]。因此,在诸多工业领域,尤其是航空航天这样复杂多变的领域,需要越来越多智能材料才可以实现高精度控制。形状记忆合金就是其中一种常见的智能材料。它利用形状记忆效应可以实现不同于普通合金的优异性能,尤其是在高温环境下,抗疲劳性能和延展性能更加凸显。 1 问题提出 早在20世纪50-70年代,就有了变后掠翼技术。这使得飞机兼具低速、跨声速、超声速飞行性能,但也存在结构复杂、操纵困难等问题,变形形式也很单一[2]。随着科学技术的进步,智能变体机翼技术逐渐兴起。在美国的主导下,一系列智能变形技术验证试验得以展开:1979年,NASA与波音公司签订了任务自适应机翼技术合同;1985年,NASA与罗克韦尔公司合作开展主动柔性机翼计划;1996年,上述计划又扩展为主动气动弹性机翼计划。U.Icardi等人也提出了一种基于SMA的变弯度机翼方案[3]:依靠两个同轴的SMA驱动管,通过离合器与定位压电电机连接到翼肋的桁架上,内外管分别控制向上与向下的运动;工作时可以给其中一个加热,另一个隔离使其不参与工作,从而实现特定方向的变形[4]。总之,SMA在变体机翼上的应用很广泛,是值得深入研究的问题之一。 2 中文文献综述 就近几年的中文文献来说,有关SMA在变体机翼上的应用的文章有53篇,其中期刊论文16篇,博士论文5篇,其余为硕士论文。下面将选择一些进行深入分析。刘逸峰、徐志伟两人利用驱动器的两个驱动杆上下位移实现蒙皮的变形,通过控制流经SMA的电流大小和通电时间对驱动器进行测控,还进行了驱动器加载控制实验和机翼风洞吹风测试实验[5];雷鹏轩等人提出一种悬臂梁式柔性偏转结构,选择超临界翼型进行实验,并通过数学计算和折线图比较的办法给出了来流条件对SMA结构变形的影响[6];周本昊通过差动驱动方式设计驱动机构,对机翼的各个部位进行了应力分析,又设计了测控系统,利用离散化PID控制算法对被控量进行控制[7];刘俊兵等人根据实验分析出SMA卷簧的变形角与扭矩的关系,并对该驱动器承载能力进行了计算[8];董二宝将智能变形机翼结构按动力学特性分为非主动变形过程和主动变形过程,并据此求出了各参数的最优解,最后利用SMA的热-力耦合特性给出了仿真结果[9];聂瑞等人为了减小自适应机翼的波阻,对激波控制鼓包的特性进行了优化研究,在温度改变时,SMA能自动改变自身构型[10]。 3 外文文献综述 就近几年的外文文献来说,有关SMA在变体机翼上的应用的文章有81篇。不同作者对SMA的研究有不同的侧重点。Cees Bil等人主要研究的是三种不同的控制方法对机翼变形的影响,还在其中考虑了气动载荷下驱动器所需的功率与环境温度的影响[11];S.Barbarino等人将民用运输机机翼后缘处的翼型弯度通过无铰链的光滑变形襟翼控制,利用数值方法和实验研究对驱动性能进行了估计[12];J Colorado等人从仿生学的角度分析SMA在变体机翼中的驱动作用,并且利用SMA的传感功能实现了令人满意的跟踪误差,但在疲劳问题上还存在一定局限,SMA承受较大应力时寿命较短[13];Thomas Georges等人以设计具有柔性外拱的变形机翼为重点,通过应力应变关系计算SMA元件的横截面和长度,进而确定其他部件的尺寸,完成设计[14];Woo-Ram Kang等人为防止气动损失,利用SMA控制机翼形状,并用多种数值模拟软件将其与未变形机翼作比较,对尾翼偏转角与电流、压差之间的关系作了进一步分析[15];Salvatore Ameduri等人基于SMA技术对变形结构进行优化,由四个弹性元件构成可变形肋系统,利用有限元模型呈现其主要特征[16]。 结论 综合上述文献,可以看出SMA在变体机翼中应用广泛。不同学者从不同侧面研究SMA可以得到不同结果。国内研究更多是通过解析的办法分析驱动结构的可行性,计算和优化更准确,但有时会受到其他无法量化的因素影响,导致其结果偏离实际;国外研究则更加侧重数值模拟软件的应用,对驱动性能的分析综合考虑多种环境因素,在实验过程中也更加注重比较,并且对SMA的疲劳寿命有所估计。后续的SMA应用技术应该朝向更高的疲劳强度、更先进的数值模拟技术发展。与此同时,机翼的形状变化也应趋于平稳,以减少气流分离,使飞机拥有更好的气动性能。 未来形状记忆合金在航空航天领域将朝着更规范化、成熟化的方向前进:变体机翼的重量将进一步减轻,连接过渡将更加平缓,气流分离损失将进一步减少,机翼的颤振情况也将进一步改善;航空发动机中的结构将充分考虑其材料特性,不仅仅用于调节尾喷口、进气口,还可用于涡轮叶片,机匣等关键部件;卫星的发射也将更加可靠,连接分离装置运行也会更加平稳。参考文献 [1]杨正岩,张佳奇,高东岳,刘科海,武湛君.航空航天智能材料与智能结构研究进展[J].航空制造技术,2017(17):36-48. [2]朱倩.基于SMA的变体机翼精确控制研究[D].南京航空航天大学,2010. [3]Icardi,U.& Ferrero,L.(2010).SMA Actuated Mechanism for an Adaptive Wing. Journal of Aerospace Engineering - J AEROSP ENG. 24. 10.1061/(ASCE)AS.1943-5525.0000061. [4]张明德.变厚度机翼结构设计及精确控制[D].南京航空航天大学,2018. [5]刘逸峰,徐志伟.SMA驱动变厚度机翼结构设计及实验研究[J].江苏航空,2018(04):30-34.

形状记忆合金论文

形状记忆合金 摘要:扼要地叙述了形状记忆合金及其机理, 介绍了形状记忆合金在工程中应用的现状以及发展前景。 关键词:形状记忆合金、形状记忆合金效应、应用 引言:有一种特殊的金属材料,经适当的热处理后即具有回复形状的能力,这种材料被称为形状记忆合金( Shape Memory Alloy ,简称为SMA) ,这种能力亦称为形状记忆效应(Shape Memory Effect , 简称为SME) 。通常,SMA 低温时因外加应力产生塑性变形,温度升高后,克服塑性变形回复到所记忆的形状。研究表明, 很多合金材料都具有SME ,但只有在形状变化过程中产生较大回复应变和较大形状回复力的,才具有利用价值。到目前为止,应用得最多的是Ni2Ti 合金和铜基合金(CuZnAl 和CuAlNi) 。 形状记忆合金(Shape Memory Alloys, SMA)是一种在加热升温后能完全消除其在较低的温度下发生的变形,恢复其变形前原始形状的合金材料。除上述形状记忆效应外,这种合金的另一个独特性质是在高温(奥氏体状态)下发生的“伪弹性”(又称“超弹性”,英文 pseudoelasticity)行为,表现为这种合金能承载比一般金属大几倍甚至几十倍的可恢复应变。形状记忆合金的这些独特性质源于其内部发生的一种独特的固态相变——热弹性马氏体相变。 一、形状记忆合金的发展史 最早关于形状记忆效应的报道是由Chang及Read等人在1952年作出的。他们观察到Au-Cd合金中相变的可逆性。后来在Cu-Zn合金中也发现了同样的现象,但当时并未引起人们的广泛注意。直到1962年,Buehler及其合作者在等原子比的TiNi合金中观察到具有宏观形状变化的记忆效应,才引起了材料科学界与工业界的重视。到70年代初,CuZn、CuZnAl、CuAlNi等合金中也发现了与马氏体相变有关的形状记忆效应。几十年来,有关形状记忆合金的研究已逐渐成为国际相变会议和材料会议的重要议题,并为此召开了多次专题讨论会,

形状记忆合金在医学领域的应用

形状记忆合金在医学领域的应用 1.形状记忆合金的特性 1.1形状记忆合金的结构特性 形状记忆效应(Shape memory effec,t SME)是由于马氏体相变而产生的。具有热弹性(半热弹性)或应力诱发马氏体相变(Stress inducedMartensitic trans-formation, SIM)的形状记忆合金(Shape memory al-loys, SMAs),在马氏体状态下进行一定限度的塑性变形,则在随后的加热过程中,当温度超过马氏体逆相变温度时,材料就能恢复到变形前的体积和形状。 1.2形状记忆合金的分类 形状记忆合金主要分为Ti-Ni基、Cu基及Fe基形状记忆合金。前两种合金主要为热弹性形状记忆合金,Fe基形状记忆合金为半热弹性形状记忆合金,其中用于医学领域的 TiNi 形状记忆合金,除了利用其形状记忆效应或超弹性外,还应满足化学和生物学等方面的要求,即良好的生物相容性。TiNi 可与生物体形成稳定的钝化膜。 形状记忆效应主要分为:单程记忆效应,双程记忆效应和全程记忆效应。 形状记忆合金在较低的温度下变形,加热后可恢复变形前的形状,这种只在加热过程中存在的形状记忆现象称为单程记忆效应。某些合金加热时恢复高温相形状,冷却时又能恢复低温相形状,称为双程记忆效应。加热时恢复高温相形状,冷却时变为形状相同而取向相反的低温相形状,称为全程记忆效应。 2.形状记忆合金的发展 首次被发现并公开报道某些合金中具有形状记忆效应这一现象的发现,可以追溯至1938年,美国哈佛大学的A.B.Greningerh和Mooradian在Cu-Zn合金中发现了马氏体的热弹性转变,即在加热与冷却过程中,马氏体会随之收缩与长大。1918年前苏联学者Kerdjumov曾预测到有一部分具有马氏体相变的合金会出现热弹性马氏体相变。1951年张禄经和T.A.Read报道了原子比为1∶1的CsCl 型AuCd合金在热循环中会反复出现可逆相变。数年后.T.A.Read又和M.W.Burkard在InTi合金中发现了同样纳可逆相变。一直到20世纪60年代初,这种观察到的形状记忆效应只看作是个别材料的特殊现象。甚至在1958年布鲁塞尔国际博览会上展出过用AuCd合金制作的重物升降机,都未引起足够的注意。 1963年,美国海军武器实验室W.J.Buchler等人在等原子比NiTi合金中发现了形状记忆效应后,才引起人们的重视,从此形状记忆合金进入了研究和应用的新阶段。到1975年左右,全世界相继开发出具有形状记忆效应的合金达20

钛合金材料

钛合金材料 《新型工程材料应用》课程论文

摘要:随着新技术革命浪潮的推进,继合金钢和金属铝之后,新崛起的第三金属——钛,越来越多地渗透到工业、技术和科学的各个领域,它的魅力向人类展示了它的美好前景。本文介绍了钛合金的合金化原理、性能特性,综述近年来国内外钛合金材料的发展应用和研发状况,对钛合金材料的发展前景进行了展望。 关键词:钛合金、合金化、特性、发展 概述: 钛是一种新型金属,钛的性能与所含碳、氮、氢、氧等杂质含量有关,最纯的碘化钛杂质含量不超过0.1%,但其强度低、塑性高。99.5%工业纯钛的性能为:密度ρ=4.5g/cm3,熔点为1725℃,导热系数λ=15.24W/(m.K),抗拉强度σb=539MPa,伸长率δ=25%,断面收缩率ψ=25%,弹性模量E=1.078×105MPa,硬度HB195。而钛合金是以钛为基加入其他元素组成的合金。 合金化原理: 钛有两种同质异晶体:882℃以下为密排六方结构α钛,882℃以上为体心立方的β钛。合金元素根据它们对相变温度的影响可分为三类:(1)稳定α相、提高相转变温度的元素为α稳定元素,有铝、碳、氧和氮等。其中铝是钛合金主要合金元素,它对提高合金的常温和高温强度、降低比重、增加弹性模量有明显效果。(2)稳定β相、降低相变温度的元素为β稳定元素,又可分同晶型和共析型二种。应用了钛合金的产品前者有钼、铌、钒等;后者有铬、锰、铜、铁、硅等。(3)对相变温度影响不大的元素为中性元素,有锆、锡等。氧、氮、碳和氢是钛合金的主要杂质。氧和氮在α相中有较大的溶解度,对钛合金有显著强化效果,但却使塑性下降。通常规定钛中氧和氮的含量分别在0.15~0.2%和0.04~0.05%以下。氢在α相中溶解度很小,钛合金中溶解过多的氢会产生氢化物,使合金变脆。通常钛合金中氢含量控制在 0.015%以下。氢在钛中的溶解是可逆的,可以用真空退火除去。室温下,钛合金有三种基体组织,钛合金也就分为以下三类:α合金,(α+β)合金和β合金。中国分别以TA、TC、TB表示。 TA是α相固溶体组成的单相合金,不论是在一般温度下还是在较高的实际应用温度下,均是α相,组织稳定,耐磨性高于纯钛,抗氧化能力强。在500℃~600℃的温度下,仍保持其强度和抗蠕变性能,但不能进行热处理强化,室温强度不高。TB是β相固溶体组成的单相合金,未热处理即具有较高的强度,淬火、时效后合金得到进一步强化,室温强度可达1372~1666 MPa;但热稳定性较差,不宜在高温下使用。TC是双相合金,具有良好的综合

形状记忆合金未来展望

形状记忆合金未来展望 一、引言 形状记忆合金是指具有一定初始形状的合金在低温下经塑性形变并固定成另一种形状后,通过加热到某一临界温度以上又可恢复成初始形状的一类合金。形状记忆合金具有的能够记住其原始形状的功能称为形状记忆效应。 形状记忆合金作为一种特殊的新型功能材料,是集感知与驱动于一体的智能材料,因其功能独特,可以制作小巧玲珑、高度自动化、性能可靠的元器件而备受瞩目,并获得了广泛应用。 二、形状记忆合金的发展史与现状 在金属中发现现状记忆效应最早追溯到20世纪30年代。1938年。当时美国的 Greningerh和Mooradian在Cu-Zn合金小发现了马氏体的热弹件转变。随后,前苏联的Kurdiumov对这种行为进行了研究。1951年美国的Chang相Read在Au47·5Cd合金中用光学显微镜观察到马氏体界面随温度的变化发生迁动。这是最早观察到金属形状记忆效应的报道。数年后,Burkhart 在In-Ti 合金中观察到同样的现象。然而在当时,这些现象的发现只被看作是个别材料的特殊现象而未能引起人们足够的兴趣和重视。直至1963年,美国海军武器实验室的Buehler等人发现了Ni-Ti合金中的的形状记忆效应,才开创了“形状记忆”的实用阶断。 1969年,Rsychem公司首次将Ni-Ti合金制成管接头应用于美国

F14 战斗机上;1970年,美国将Ti-Ni记忆合金丝制成宇宙飞船用天线。这些应用大大激励了国际上对形状记忆合金的研究与开发。20世纪7 年代,相继开发出了Ni-Ti 基、Cu-Al2-Ni 基和Cu-Zn-Al 基形状记忆合金;80 年代开发出了Fe-Mn-Si 基、不锈钢基等铁基形状记忆合金,由于其成本低廉、加工简便而引起材料工作者的极大兴趣。从20世纪90 年代至今,高温形状记忆合金、宽滞后记忆合金以及记忆合金薄膜等已成为研究热点。 从SMA 的发现至今已有四十余年历史,美国、日本等国家对SMA 的研究和应用开发已较为成熟,同时也较早地实现了SMA 的产业化。我国从上世纪70 年代末才开始对SMA 的研究工作,起步较晚,但起点较高。在材料冶金学方面,特别是实用形状记忆合金的炼制水平已得到国际学术界的公认,在应用开发上也有一些独到的成果。但是,由于研究条件的限制,在SMA 的基础理论和材料科学方面的研究我国与国际先进水平尚有一定差距,尤其是在SMA 产业化和工程应用方面与国外差距较大。近十年来,我国在SMA的应用和开发方面更是取得了长足进步。现在,我国的SMA产业化进程方兴未艾,国内涌现了一大批以SMA原料及产品为主要生产、经营项目的高科技公司。可以预见,未来几年我国SMA的研究和应用开发将会有令人瞩目的发展,甚至可能出现较大突破。 SMA的形状记忆效应源于热弹性马氏体相变,这种马氏体一旦形成,就会随着温度下降而继续生长,如果温度上升它又会减少,以完全相反的过程消失。两项自由能之差作为相变驱动力。两项自由能相

第四章 钛合金的相变及热处理

第4章钛合金的相变及热处理 可以利用钛合金相变诱发的超塑性进行钛合金的固态焊接,接头强度接近基体强度。 4.1 同素异晶转变 1.高纯钛的β相变点为88 2.5℃,对成分十分敏感。在882.5℃发生同素异晶转变:α(密排六方)→β(体心立方),α相与β相完全符合布拉格的取向关系。 2.扫描电镜的取向成像附件技术(Orientation-Imaging Microscopy , OIM) 3.α/β界面相是一种真实存在的相,不稳定,在受热情况下发生明显变化,严重影响合金的力学性能。 4.纯钛的β→α转变的过程容易进行,相变是以扩散方式完成的,相变阻力和所需要的过冷度均很小。冷却速度大于每秒200℃时,以无扩散发生马氏体转变,试样表面出现浮凸,显微组织中出现针状α′。转变温度会随所含合金元素的性质和数量的不同而不同。 5.钛和钛合金的同素异晶转变具有下列特点: (1)新相和母相存在严格的取向关系 (2)由于β相中原子扩散系数大,钛合金的加热温度超过相变点后,β相长大倾向特别大,极易形成粗大晶粒。 (3)钛及钛合金在β相区加热造成的粗大晶粒,不像铁那样,利用同素异晶转变进行重结晶使晶粒细化。钛及钛合金只有经过适当的形变再结晶消除粗晶组织。 4.2 β相在冷却时的转变 冷却速度在410℃/s以上时,只发生马氏体转变;冷速在410~20℃/s时,发生块状转变;冷却继续降低,将以扩散型转变为主。 1.β相在快冷过程中的转变 钛合金自高温快速冷却时,视合金成分不同,β相可以转变成马氏体α′或α"、ω或过冷β等亚稳定相。 (1)马氏体相变 ①在快速冷却过程中,由于β相析出α相的过程来不及进行,但是β相的晶体结构,不易为冷却所抑制,仍然发生了改变。这种原始β相的成分未发生变化,但晶体结构发生了变化的过饱和固溶体是马氏体。 ②如果合金的溶度高,马氏体转变点M S降低至室温一下,β相将被冻结到室温,这种β相称过冷β相或残留β相。 ③若β相稳定元素含量少,转变阻力小,β相由体心立方晶格直接转变为密排六方晶格,这种具有六方晶格的过饱和固溶体称六方马氏体,以α′表示。 ④若β相稳定元素含量高,晶格转变阻力大,不能直接转变为六方晶格,只能转变为斜方晶格,这种具有斜方晶格的马氏体称斜方马氏体,以α′′表示。 ⑤马氏体相变是一个切变相变,在转变时,β相中的原子作集体的、有规律的进程迁移,迁移距离较大时形成六方α′相,迁移距离较小时形成斜方α′′相。 ⑥马氏体相变开始温度M S ;马氏体相变终了温度M f 。 ⑦钛合金中加入Al、Sn、Zr将扩大α相区,使β相变点升高;V、Mo、Mn、Fe、Cr、Cu、Si将缩小α相区(扩大β相区),使β相变点降低。 ⑧β相中原子扩散系数很大,钛合金的加热温度一旦超过β相变点,β相将快速长大成粗晶组织,即β脆性,故钛合金淬火的加热温度一般均低于其β相变点。 ⑨β相稳定元素含量越高,相变过程中晶格改组的阻力就越大,因而转变所需

高分子形状记忆合金的发展及趋势

高分子形状记忆合金的发展及趋势 摘要:本论文主要讨论形状记忆合金相关内容,扼要地叙述了形状记忆合金的发现以及发展历史和分类, 介绍了形状记忆合金在工程中应用的现状以及发展前景。 关键词:形状记忆合金、形状记忆合金效应、应用 1.形状记忆分子材料的特性 形状记忆合金是指具有一定初始形状的合金在低温下经塑性形变并固定成另一种形状后,通过加热到某一临界温度以上又可恢复成初始形状的一类合金。形状记忆合金具有的能够记住其原始形状的功能称为形状记忆效应。研究表明, 很多合金材料都具有SME ,但只有在形状变化过程中产生较大回复应变和较大形状回复力的,才具有利用价值。到目前为止,应用得最多的是Ni2Ti 合金和铜基合金 形状记忆合金作为一种特殊的新型功能材料,是集感知与驱动于一体的智能材料,因其功能独特,可以制作小巧玲珑、高度自动化、性能可靠的元器件而备受瞩目,并获得了广泛应用。 1.1单程记忆效应: 形状记忆合金在较低的温度下变形,加热后可恢复变形前的形状,这种只在加热过程中存在的形状记忆现象称为单程记忆效应。 1.2双程记忆效应: 某些合金加热时恢复高温相形状,冷却时又能恢复低温相形状,称为双程记忆效应。 1.3全程记忆效应: 加热时恢复高温相形状,冷却时变为形状相同而取向相反的低温相形状,称为全程记忆效应。 2.形状记忆效应的应用 迄今为止,形状记忆合金在空间技术、医疗器械、机械器具、电子设备、能源开发、汽车工业及日常生活各方面都得到了广泛的应用,总的来说,按使用特性的不同,可归纳为下面几类: 2.1.自由回复 SMA 在马氏体相时产生塑性形变,温度升高自由回复到记忆的形状。自由回复的典型例子是人造卫星的天线和血栓过滤器。美国航空航天局(NASA) 将Ti2Ni

合金成分影响相变温度

五、合金成分影响相变温度 大家知道,我国幅员广大,人口众多,各地有各地的生活习惯,各人有的爱好。一位高明的厨师,就要能够掌握多种不同的烹调技艺,善于做出各具特色的饭菜来,才能满足不同的顾客的要求。我们炼制记忆合金,和厨师烧莱一样,也是“众口难调”呀。

譬如,把记忆合金做成紧固铆钉,用来紧固飞机上的零部件,就必须在-55℃变形,才能保证飞机顺 利通过严寒的高空。如果用在航天飞 行器的控制系统,则必须保证记忆合 金部件能在0℃?60℃的范围内正常 工作。如果要想把记忆合金作为生物 工程材料,用到人体上去,那就要求 更严了。它必须在37℃左右,回复设计的形状,因为这是人体的正常温度。可以想一想,如果记忆合金部件,低于这个温度就开始逆转变,力图回复原来的形状,手术不是就没有办法顺利进行了吗?相反,如果记忆合金部件高于40℃才开始回复原形,把它埋在体内也就起不了任何特殊作用了。 正因为不同顾客的“众口难调”,金华瑞普也能像厨师一样,针

对用户不同的要求,做出可口的“饭莱”。技艺高超的冶金工作者,调节记忆合金相变温度的第一个办法,就是善于选择合金的成分,好像高明的厨师,精心选择做菜的配料一样。 经过各国冶金专家的研究试验,我们已经知道,合金成分对记忆合金相变温度的影响,是极其灵敏的。就拿我们熟悉的镍钛合金和铜基记忆合金来说吧,成分稍有一点变化,就能在很大程度上影响合金变形的温度。 对于镍钛合金来说,各国专家研 究的结果可能还有一些出入,但大致 有这样一个规律,就是合金中镍的含 量增加,合金的变形温度起始点和终 点都下降。相反,如果合金中钛的含 量增加,合金变形温度的起始点和终 点都上升。 比如有的专家研究的结果是这样的:当镍钛合金中,含镍和含钛的原子浓度相等时,也就是说合金中镍含量大约占55%的时候,在40℃开始生成马氏体。就是从40℃开始,合金逐渐变软,易于加工。如果把合金中的镍含量降低到54%,合金的马氏体开始生成的温度,一下子就上升到70℃。反过来,如果把合金中的镍含量增加1%,达到56%,那么,合金的马氏体开始生成温度,就会猛然下降到0℃。当镍含量再增加1%,达到57%的时候,马氏体开始生成的温度还会继续下降,达到-10℃。

形状记忆合金的应用现状与发展趋势

11 Santhanam A T,G odse R V,G rab G P et al.U.S.Patent. 1993(5):250,367 12 Nemeth B J,Santhanam A T,G rab G P.Proceed.10th Plansee Seminar,Plansee A.G.,Reutte/T yrol,1981:613~627 13 Santhanam A T,G rab G P,R olka G A et al.Proceed.con f. on High Productivity Machining-Materials and Processes. New Orleans,La,American S ociety for Metals,1985:113~121 14 Nemeth B J,G rab G P.U.S.Reissue Patent.1993,N o.34, 180 15 D oi H.Proceed.2nd Int.C on f.on the Science of Hard Mate2 rials,Adam Hilger Ltd.Ser.1986(75):489~523 16 Claussen N.Mater.Sci.Eng.1985(71):23~38 17 Wei G C,Becher P F.Am.Ceram.S oc.Bull.1985,64 (2):298~30418 Faber K T,Evans A G.Acta Metall.1983,31(4):565~576 19 N orth B,Baker R D.Int.J.of Refractory Hard Metals. 1984,3(1):46~51 20 Beeghly C W,Shuster A F.Proceed.S oc.of Carbide and T ool Engineers C on f.on Advances in T ool Materials for use in High S peed Machining,Scottsdale,AZ,AS M International, 1987,91~99 21 K ennametal Lathe T ooling Catalog4010.2004 22 Oles E J,Reiner K L,G ates et al.U.S.Patent.2003.6, 599,062 23 Inspektor A,Oles E J,Bauer C E.Int.J.of Refractory Met2 als and Hard Materials.1997(15):49~56 第一作者:M.S.G reen field,博士,美国肯纳金属公司材料总监 (胡红兵译) 收稿日期:2005年4月形状记忆合金的应用现状与发展趋势 肖恩忠 潍坊学院 摘 要:综述了形状记忆合金的发展概况,简要介绍了形状记忆合金在不同领域的应用现状,分析了当前形状记忆合金研究中存在的问题,指出了今后的发展前景与研究方向。 关键词:形状记忆合金, 形状记忆效应, 机理, 应用 Application Actuality and Development T rend of Shape Memory Alloy X iao Enzhong Abstract:The general development of the shape mem ory alloy(S M A)is summarized,and its applications in different fields are briefly introduced.Als o,problems in the study of S M A at present are analyzed.Finally,The development foreground and re2 search directions of S M A in the future are pointed out. K eyw ords:shape mem ory alloy, shape mem ory effect, mechanism, application 1 引言 形状记忆合金(Shape Mem ory Alloy,S MA)是指具有一定初始形状的合金在低温下经塑性形变并固定成另一种形状后,通过加热到某一临界温度以上又可恢复成初始形状的一类合金。形状记忆合金具有的能够记住其原始形状的功能称为形状记忆效应(Shape Mem ory E ffect,S ME)。 形状记忆合金作为一种特殊的新型功能材料,是集感知与驱动于一体的智能材料,因其功能独特,可以制作小巧玲珑、高度自动化、性能可靠的元器件而备受瞩目,并获得了广泛应用。 2 形状记忆合金的发展历史与现状 在金属中发现形状记忆效应最早可追溯到20世纪30年代。1938年,美国的G reningerh和M oora2 dian在Cu2Zn合金中发现了马氏体的热弹性转变。随后,前苏联的K urdium ov对这种现象进行了研究。1951年,Chang和Read在Au24715at%Cd合金中用光学显微镜观察到马氏体界面随温度的变化而发生迁动。这是最早观察到金属形状记忆效应的报道。数年后,Burkhart在In2T i合金中观察到同样的现象。然而在当时,这些现象的发现只被看作是个别材料的特殊现象而未能引起人们足够的兴趣和重视。直到1963年,美国海军武器实验室的Buehler等人发现等原子比的T i2Ni合金具有优良的形状记忆功能,

NiTiHf高温形状记忆合金研究进展

综述 NiTi Hf高温形状记忆合金研究进展 孟祥龙 王 中 赵连城 ( 哈尔滨工业大学材料科学与工程学院 哈尔滨 150001 ) 伊胜宁 ( 江苏钢绳集团公司 江阴 214433 ) 文 摘 介绍了Ni T i H f高温形状记忆合金的研究状况,重点评述了Ni T i H f合金的设计以及Hf的添加和热处理对合金的相变、力学行为和形状记忆效应的影响,并对它们所对应的微观机制作了一定的分析。 关键词 NiTiHf高温合金,形状记忆合金,合金设计,相变,力学行为,形状记忆效应 Development of Ni Ti Hf High Temperature Shape Memory Alloys Meng Xianglong Wang Zhong Zhao Liancheng ( School of Materials Science and Eng i neering,Harbin Insti tute of Technology Harbin 150001 ) Yi Shengning ( Jiangsu Steel Wire Rope Bloc Crop. Jiangyin 214433 ) Abstract The research on Ni T i H f high te mperature shape me mory alloys is revie wed with emphasis on the design of NiTiHf alloys,and the effect of Hf addition and heat treatment on the alloys transformation,mechanical behavior and shape memory effect.Its micro mechanism is also briefly analyzed in this paper. Key words NiTiHf high te mperature alloys,Shape memory alloys,Design of the alloys,Transformation,Mechan ical behavior,Shape memory effect 1 引言 形状记忆合金是现代智能材料的主要代表之一,具有丰富的马氏体相变现象、奇特的形状记忆效应和良好的超弹性性能。目前开发应用的主要是NiTi基形状记忆合金和Cu基形状记忆合金,其M s 点一般不高于150!,因而只能在低于150!的条件下使用。而在实际应用中的许多场合,如火灾或过热情形的预警及自动防护系统、卫星发射塔、火箭发动机、电流过载保护器等装置中都需要在更高的温度下使用形状记忆合金,特别是在核反应堆工程中,要求记忆合金热敏驱动器的动作温度高达600![1]。因此,为了满足实际应用的需要,人们对高温形状记忆合金进行了一系列的开发和研究。 目前,国内外主要开发出三类高温形状记忆合金:CuAlNi基五元合金CuAlNiMn X(X=Ti,B,V )[2],NiAl基金属间化合物NiAl X(X=Fe,Mn,B )[3~4],Ni T i基三元合金NiTi X(X=Pd,Pt,Au,Zr, Hf)[5~7]。其中,C uAlNi基记忆合金中存在着室温塑性差,相变点不稳定及抗热能力低等问题不易解决;NiAl基记忆合金中则存在室温脆性和Ni5Al3时 收稿日期:1998-10-06 孟祥龙,1977年出生,硕士研究生,主要从事Ni Ti基高温形状记忆合金的研究工作

形状记忆合金文献综述

形状记忆合金性能及其应用 摘要:形状记忆合金具有形状记忆效应、超弹性效应、高阻尼特性、电阻突变效应以 及弹性模量随温度变化等一般金属不具备的力学特性,使其在仪器仪表、自动控制、机器人、机械制造、汽车、航天航空、生物医学等工程领域都能发挥重要的作用,对其本 构性能和在工程应用中的性能的研究十分必要。形状记忆合金作为一种特殊的新型功能 材料,是集感知与驱动于一体的智能材料,因其功能独特,可以制作小巧玲珑、高度自动化、性能可靠的元器件而备受瞩目,并获得了广泛应用。 关键字:形状记忆合金形状记忆合金效应分类应用 1形状记忆合金简介 1.1 形状记忆材料是指具有形状记忆效应(shape memory effect,简称SME)的材料。形 状记忆效应是指将材料在一定条件下进行一定限度以内的变形后,再对材料施加适当的 外界条件,材料的变形随之消失而回复到变形前的形状的现象。通常称有SME的金属材料为形状记忆合金(shape memory alloys,简称SMA)。研究表明, 很多合金材料都具有SME ,但只有在形状变化过程中产生较大回复应变和较大形状回复力的,才具有利用价值。到目前为止,应用得最多的是Ni2Ti 合金和铜基合金(CuZnAl 和CuAlNi) 。 1.2 至今为止发现的记忆合金体系: Au-Cd、Ag-Cd、Cu-Zn、Cu-Zn-Al、Cu-Zn-Sn、Cu-Zn-Si、Cu-Sn、Cu-Zn-Ga、In-Ti、Au-Cu-Zn、Fe-Pt、Ti-Ni、Ti-Ni-Pd、Ti-Nb、U-Nb和Fe-Mn-Si等。 1.3 形状记忆合金的历史只有70多年,开发迄今不过20余年,但由于其在各领域的特效应用,正广为世人所瞩目,被誉为"神奇的功能材料",其实用价值相当广泛,其应用范围涉及机械、电子、化工、宇航、能源和医疗等许多领域。 2形状记忆合金效应分类 2.1 单程记忆效应 形状记忆合金在较低的温度下变形,加热后可恢复变形前的形状,这种只在加热过

形状记忆合金材料的应用

形状记忆合金材料的性质与应用综述 【摘要】形状记忆合金是一种新型功能材料,在各个领域有着广泛的应用。本文简要介绍了形状记忆合金的特性、应用以及发展前景。 【关键词】形状记忆合金应用发展现状 【引言】形状记忆合金(Shape Memory Alloys, SMA),是一种在加热升温后能完全消除其在较低的温度下发生的变形,恢复其变形前原始形状的合金材料。最早关于形状记忆效应的报道是由Chang及Read等人在1952年做出的。他们观察到Au-Cd合金中相变的可逆性。[3]后来在Cu-Zn合金中也发现了同样的现象,但当时并未引起人们的广泛注意。直到1962年,Buehler及其合作者在等原子比的 Ti-Ni合金中观察到具有宏观形状变化的记忆效应,才引起了科学界与工业界的重视。这种新型功能材料目前已广泛用于电子仪器、汽车工业、医疗器械、空间技术和能源开发等领域。 一、形状记忆合金的分类 1、单程记忆效应:形状记忆合金在较低的温度下变形,加热后可恢复变形前的形状,这种只在加热过程中存在的形状记忆现象称为单程记忆效应。 2、双程记忆效应:某些合金加热时恢复高温相形状,冷却时又能恢复低温相形状,称为双程记忆效应。 3、全程记忆效应:加热时恢复高温相形状,冷却时变为形状相同而取向相反的低温相形状,称为全程记忆效应。 二、形状记忆合金的特性 1、形状记忆效应:合金在某一温度下受外力而变形,当外力去除后,仍保持其变形后的形状,但当温度上升到某一温度,材料会自动回复到变形前原有的形状,似乎对以前的形状保持记忆,这种效应称为形状记忆效应。 2、超弹性:在高于A f点、低于M d点的温度下施加外应力时产生应力诱发马氏体相变,卸载就产生逆相变,应变完全消失,回到母相状态,表观上呈现非线性拟弹性应变,这种现象称为超弹性。 3、高阻尼特性:形状记忆合金在低于Ms点的温度下进行热弹性马氏体相变,生成大量马氏体变体(结构相同、取向不同),变体间界面能和马氏体内部孪晶界面能都很低,易于迁移,能有效地衰减振动、冲击等外来的机械能,因此阻尼特性特别好。 4、耐磨性:在形状记忆合金中,Ti-Ni合金在高温(CsCl型体心立方结构)状态下同时具有很好的耐腐蚀性和耐磨性。可用作在化工介质中接触滑动部位的机械密封材料,原子能反应堆中用做冷却水泵机械密封件。 5、逆形状记忆特性:将Cu-Zn-Al记忆合金在Ms点上下的很小温度范围内进行大应变量变形,然后加热到高于Af点的温度时形状不完全恢复,但再加热到高于200oC时却逆向地恢复到变形后的形状,称为逆形状记忆特性。 三、形状记忆合金在各领域的应用 1、医疗方面: Ni-Ti合金是医用生物材料的佼佼者,在临床医学和医疗器械等方面广泛应用。 [1]如介入疗法,将各类人体腔内支架、经过预压缩变形后,能够经过很小的腔隙安放到人体血管、消化道、呼吸道、以及尿道等各种狭窄部位,支架扩展后,在人体腔内支撑起狭小的腔道。具有疗效可靠、使用方便、可大大缩短治疗时间和减

钛合金及其热处理工艺简述

钛合金及其热处理工艺简述 宝鸡钛业股份有限公司:杨新林 摘要:本文对钛及其合金的基本信息进行了简要介绍,对钛的几类固溶体划分进行了简述,对钛合金固态相变也进行了概述。重点概述了钛合金的热处理类型及工艺,为之后生产实习中对钛合金的热处理工艺认识提供指导。 关键词:钛合金,热处理 1 引言 钛在地壳中的蕴藏量位于结构金属的第四位,但其应用远比铜、铁、锡等金属滞后。钛合金中溶解的少量氧、氮、碳、氢等杂质元素,使其产生脆性,从而妨碍了早期人们对钛合金的开发和利用。直至二十世纪四五十年代,随着英、美及苏联等国钛合金熔炼技术的改进和提高,钛合金的应用才逐渐开展[5]。 纯钛的熔点为1668℃,高于铁的熔点。钛在固态下具有同素异构转变,在882.5℃以上为体心立方晶格的β相,在882.5℃以下为密排六方晶格的α相。钛合金根据其退火后的室温组织类型进行分类,退火组织为α相的钛合金记为TAX,也称为α型钛合金;退火组织为β相的钛合金记为TBX,也称为β型钛合金;退火组织为α+β两相的钛合金记为TCX,也称为α+β型钛合金,其中的“X”为顺序号。我国目前的钛合金牌号已超过50个,其中TA型26个,TB型8个以上,TC 型15个以上[5]。 钛合金具有如下特点: (1)与其他的合金相比,钛合金的屈强比很高,屈服强度与抗拉强度极为接近; (2)钛合金的密度为4g/cm3,大约为钢的一半,因此,它具有较高的比强度; (3)钛合金的耐腐蚀性能优良,在海水中其耐蚀性甚至比不锈钢还要好; (4)钛合金的导热系数小,摩擦系数大,因而机械加工性不好; (5)在焊接时,钛合金焊缝金属和高热影响区容易被氧、氢、碳、氮等元素污染,使接头性能变坏。 在熔炼和各种加工过程完成之后,为了消除材料中的加工应力,达到使用要求的性能水平,稳定零件尺寸以及去除热加工或化学处理过程中增加的有害元素(例如氢)等,往往要通过热处理工艺来实现。钛合金热处理工艺大体可分为退火、固溶处理和时效处理三个类型。由于钛合金高的化学活性,钛合金的最终热处理通常在真空的条件下进行。热处理是调整钛合金强度的重要手段之一。

相关文档
最新文档