绝对值多圈编码器并行输出形式的问题及对策

绝对值多圈编码器并行输出形式的问题及对策
绝对值多圈编码器并行输出形式的问题及对策

绝对值多圈编码器并行输出形式的问题及对策

62人阅读| 0条评论发布于:2011-8-5 12:15:27 绝对值编码器并行输出形式,在低位数的单圈绝对值中较多,这种输出,可直接连接各种PLC的多个开关输入点,每一位输出连接一个点,以电压的高低直接判断0,或1,不另外需要其它输入模块,通用及方便,受到用户使用的欢迎。但在绝对值多圈编码器的使用中,我不推荐这种输出形式,有客户来询问绝对值多圈编码器并行输出形式,我告知我们不做,并且国际上专业的编码器厂家如德国海德汉、德国Sick-Stegmann等,其绝对值多圈编码器都没有这种并行输出的形式。从产品技术角度来讲,并行输出的技术要比SSI、RS485、总线输出等容易做,可为什么专业的编码器厂家都不做这种形式?因为这种形式在多圈绝对值编码器上如使用,会有很多问题,最主要的是安全问题,很久以前我也不是很清楚的时候问过德国海德汉,回答的很直接:安全问题!现在我简单介绍这种形式的问题及推荐的对策:

一,编码器的功耗及损坏率问题

多圈绝对值编码器其输出位数较多,大多为二十多位,最少的也有16位,如作为并行形式输出,就是有20根左右的引出线对应每位输出,每位输出电流在20~30mA间(输出带载有效为1时),以保证信号的带载推动能力,以24Vdc工作电压计,最大输出功耗(编码器在某些位置)就有可能约在12-15瓦,加上多圈编码器本身空载功耗近5瓦,在编码器这么大小的一个空间里,要承受可能最大的近20瓦的功耗,相当于点了一个电灯泡,散热并不好做。这对于电源模块、编码器组件、输出零件都增加了损坏可能性,而且那么多位输出,只要有一个输出位损坏,这个编码器就不能正常工作了,这样的损坏概率随着输出位数的增加而增加。

二,编码器的输出电缆线问题

绝对值多圈编码器如以并行形式输出,就需要20多芯的电缆及接头,如编码器信号传递较远(如10米以上),这种电缆就要选择较粗的芯线,以保证信号的质量及电缆内芯不容易断,而这样的电缆成本就很高了,对于电缆的质量及连接可靠性的要求也就要高了。

三,使用成本问题

使用成本不仅仅是考虑到并行输出编码器自身的价格,还要考虑连接的电缆,接插件成本,及编码器的损坏更换率,根据上面一、二的介绍,这种形式的绝对值多圈编码器,其使用成本就不低了。

四,编码器的信号可靠性及安全问题

也有客户说,他过去也用过这种形式的,也没有出现坏。的确,上面说的是一种损坏可能性,这种形式是损坏可能性较大,我也碰到多次有用户使用这种形式的编码器损坏。而另一个很重要的问题是信号的可靠性的判断,并行输出形式,无论是某一位内部输出的损坏,还是某一根芯线的断头、连接的不良,其反映的只是电压低,数据始终为0,在格雷码转换为纯二进制码后,反映的就是乱码,而且很难判断出错位,相比较其它的输出形式,这种出错概率大很多,且无法判断,对实际使用就带来很大的安全性问题。

例如较长期时间停电后的再通电,由于不知道前次的数据,如20多位中,长距离多芯线的连接(或输出位),只要有一位以上的(或输出位)出现问题,根本无法判断而可能数据完全是错误的,由于芯线较多,这种概率大大加大,这在安全性设备中是绝对不允许的,而绝对值多圈编码器的使用,恰恰是停电后再工作的安全性要求。

五,并行连接的解决方案

绝对值多圈编码器输出选择,根本的方法是不选用并行输出形式。但是,由于其他的输出形式(如SSI ,现场总线等)对PLC的模块选择有要求,而所有的PLC都可以通过多个开关输入点直接连接并行信号,以电压的高低直接判断0,或1,不另外需要其它输入模块,通用及方便,这就是客户希望选用并行输出的原因。有没有既避免或减少上面说的问题,又可以继续的并行信号连接,而继续“通用及方便”呢?我们推荐的方案是选用串行信号输出的编码器,在较长距离信号传输后,在PLC端通过一个35毫米导轨型“串转并”的模块(SSP),转换为并行信号,再连接PLC。这个方案的特点如下:

1.做绝对值多圈编码器的厂家,几乎都有SSI串行信号的输出,而且价格较低,产品成熟。

2.SSI串行输出形式,编码器本身的功耗低,连接线少(含电源线仅6芯线),对于前面的一、二、三的情况,就要好很多。

3.SSI串行信号的连接,只要有一个芯线连接不好,就出错或没有信号,而不是乱码影响判断。

4.“串转并”SSP模块紧邻PLC,尽管也有功耗及连接上的问题,但功耗远离编码器,可散热;连接紧邻PLC,可检查方便,可靠性大大提高了。

5.编码器对外的电气连接是通过SSP模块的,输入的电源隔离,输出的信号隔离,编码器损坏的概率大大降低,SSP模块的输出信号是推挽式,含短路保护,损坏概率再次降低,即使模块损坏,维修极为方便而节省成本。

6.从成本上计算,增加了一个SSP模块成本,但是SSI编码器价格下来了,电缆线成本节省了,SSP输出的信号PNP和NPN兼容,可连接几乎所有PLC的开关输入点,PLC的成本下来了,而可靠性大大增加,减少了可能的损坏更换成本,实际使用成本是合理的。

7.并行线连接PLC,连接的可靠性仍然存在安全隐患的,但是这种隐患在PLC旁的控制箱内,检查与排除相对较容易,隐患的因数就要小很多。

8. 在经过向客户推荐这种连接方式,包括进口编码器ROQ425,ATM60,和国产编码器GMX425等SSI信号连接SSP,转并行信号再连接各型PLC的开关I/O,多个客户实际使用效果很好,得到了用户的肯定。

多圈绝对值编码器工作原理

2010-04-30 08:14 传统的绝对编码器光码盘上有许多道光通道刻线,每道刻线依次以2线、4线、8线、16线。。。。。。编排,这样,在编码器的每一个位置,通过读取每道刻线的通、暗,获得一组从2的零次方到2的n-1次方的唯一的2进制编码(格雷码),这就称为n位绝对编码器。这样的编码器是由光电码盘的机械位置决定的,它不受停电、干扰的影响。 绝对编码器由机械位置决定的每个位置是唯一的,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它的位置。这样,编码器的抗干扰特性、数据的可靠性大大提高了。 单圈绝对值编码 多圈绝对值编码器 旋转单圈绝对值编码器,以转动中测量光电码盘各道刻线,以获取唯一的编码,当转动超过360度时,编码又回到原点,这样就不符合绝对编码唯一的原则,这样的编码只能用于旋转范围360度以内的测量,称为单圈绝对值编码器。 如果要测量旋转超过360度范围,就要用到多圈绝对值编码器。 编码器生产厂家运用钟表齿轮机械的原理,当中心码盘旋转时,通过齿轮传动另一组码盘(或多组齿轮,多组码盘),在单圈编码的基础上再增加圈数的编码,以扩大编码器的测量范围,这样的绝对编码器就称为多圈式绝对编码器,它同样是由机械位置确定编码,每个位置编码唯一不重复,而无需记忆。 多圈编码器另一个优点是由于测量范围大,实际使用往往富裕较多,这样在安装时不必要费劲找零点,将某一中间位置作为起始点就可以了,而大大简化了安装调试难度. 绝对值多圈有电子增量计圈与机械绝对计圈等多种,(还有其他几圈方式,但不多见)。机械绝对计圈,无论是每圈位置是绝对的,而且圈数也是绝对值的,但是,这样的话,圈数就有个范围,例如现在较多的4096圈和65536圈两种。这样,就有人提出来,超过圈数还算不算绝对的在一次加工中不超过圈数,或停电移动不超过1/2圈数,当然是绝对的。 电子增量计圈,通过电池记忆圈数,实际上是单圈绝对,多圈增量,好处是省掉了一组机械齿轮,经济、体积小且没有圈数限制,似乎也不错,但是他毕竟是多圈增量的,不能算真正意义上的绝对值,什么是真正意义上的绝对值就是不依赖于前次历史的直接读数。它在停电后,由于电池低功耗的要求,移动的速度与范围其实是有限制的,另外加上电池的因数,可靠性方面还是要有疑问的。尤其是如果计圈的失误,反而无法找到原来的绝对位置。 事实上,很多人理解用绝对值,都是停电后移动的问题,却不了解德国人在运动控制中用机械真多圈绝对值的真正用意,由于真正的绝对值是不依赖于前次历史

绝对值编码器的工作原理

******************************************************************************* 从编码器使用的计数来分类,有二进制编码、二进制循环编码(葛莱码)、二-十进制吗等编码器。 从结构原理来分类,有接触式、光电式和电磁式等几种。最常用的是光电式二进制循环码编码器。码盘上有许多同心圆,它代表某种计数制的一位,每个同心圆上有透光与不透光的部分,透光部分为1,不透光部分为0,这样组成了不同的图案。每一径向,若干同心圆组成的图案带标了某一绝对计数值。二进制码盘每转一个角度,计数图案的改变按二进制规律变化。葛莱码的计数图案的切换每次只改变一位,误差可以控制在一个单位内。精度受到最低位分段宽度的限制。要求更大计数长度,可采用粗精测量组合码盘。 接触式码盘可以做到9位二进制,它的优点是简单、体积小输出信号强,不需要放大;缺点是电刷摩擦是、寿命低、转速不能太高。 光电式码盘没有接触磨损寿命长,转速高,最外层每片宽度可以做得更小,因而精度高。每个码盘可以做到18位进制。缺点是结构复杂价格高。 电磁码盘是在导磁性好的软铁和坡莫合金原盘上,用腐蚀的办法作成相位码制的凹凸图形,当磁通通过码盘时,由于磁导大小不一样,其感应电势也不同,因而可区分0和1,到达测量的目的。该种码盘是一种无接触式码盘,具有寿命长‘转速高等优点。它是一种发展前途的直接编码式测量元件。 工作原理,接触式码盘,每个码道上有一个电刷与之接触,最里面一层有一导电公用区,与各码道到点部分连在一起,而与绝缘部分分开。导电公用区接到电源负极。当被测对象带动码盘一起转动时,与电刷串联的电阻上将会出现电流流过或没有电流流过两种情况,带标二进制的1或0.若码盘顺时针转动,就可依次得到按规定编码的数字信输出。如果电刷安装不准就会照成误差。葛莱码没转换一个数字编码,只改变一位,故照成的误差不会超过一个单位。 *******************************************************************************

绝对值编码器 选型

@Q发表于:2013/10/14 16:50:08 标签(TAG):编码器绝对值编码器选型 (绝对值编码器问答集节选) 本人正在编写一部《绝对值编码器问答集》的小册子,以下是部分节选。——根据实际使用要求判断是否需要选用绝对值编码器,根据已有的设备信号接口选择选什么样的编码器 1,使用绝对值编码器一定会比用增量式编码器贵吗? 没有!从编码器器件成本上说增量编码器内部器件少,成本价格确实低,但是从编码器的如何使用并产生效果的角度说,绝对值编码器如果选型得当,其使用的效果带来的综合成本,会低于选用增量值编码器,为使用者大大节省成本。2,什么情况下要选绝对值编码器? a.停电移动、惯性滑动的数据安全可靠性问题,对于一些需要高度、长度测量的安全性设备、较大型设备、起重类工程类设备,安全性是很重要的因素,为确保编码器数据的稳定可靠性,必须选用全行程绝对值编码器。这类应用如果发生编码器数据错误可能引起的损失远远超过了编码器成本本身。例如水闸、工程机械、起重机、电梯、门机等等的高度、长度测量。 b.信号抗干扰问题,有时所化的人工成本远远大于一个编码器成本,增量信号较易受到各种干扰,数据采集不稳定,对于各种现场不可预知的干扰会花很多精力去排查,并要设法避开干扰,此情况下应考虑更换绝对值编码器。例如各种自动化工程项目,对于现场的变频器、开关电源、接地状况不明的情抗下,无从判断干扰情况,选用绝对值编码器可以确保应对各种工况条件。 c.后续设备节省资源,增量编码器需要高速计数不停的计数,耗费CPU资源,有时多个编码器连接没有更多的高速计数口,此时选用绝对值编码器的串行输出(如RS485)或总线型输出,其实是节省了后续设备的资源而节省费用。例如需要多个编码器比较的同步纠偏、多个编码器联动操作的流水线、加工机械等。 d.环境较恶劣的选择,增量编码器绝大部分是光学式的,易受水气灰尘及振动影响而损坏,选用磁电式绝对值编码器(单圈或真多圈)的可以避免这种损坏,而大大提高产品使用的寿命,而得到综合效果更佳,使用成本更低。例如户外使用的港口矿山机械、工厂的快速开门机等。 e.节省综合成本,在一些不便于停机修正、更换、维修,或停机修正、更换、维修成本很高的场合下,用绝对值编码器,因其数据的可靠性、产品的耐用性,可以大大减少售后服务人工成本,产品可长时间的使用效果,直接的是产品使用的综合成本大大的节省了。例如一些高速运转的流水线、较远地区的管网系统(电动执行器)。 。。。。。 3.按绝对值编码器输出信号接口有哪些信号输出可选? 选择使用绝对值编码器,首先要根据自身所有的后续接受设备(例如PLC)有什么样的信号接口,根据已有的信号接口选择编码器:

编码器工作原理及特点介绍

1. 编码器的特点及用途 编码器是通过把机械角度物理量的变化转变成电信号的一种装置;在传感器的分类中,他归属于角位移传感器。 根据编码器的这一特性,编码器主要用于测量转动物体的角位移量,角速度,角加速度,通过编码器把这些物理量转变成电信号输出给控制系统或仪表,控制系统或仪表根据这些量来控制驱动装置。 2. 编码器的主要应用场合: 2.1数控机床及机械附件。 2.2 机器人、自动装配机、自动生产线。 2.3 电梯、纺织机械、缝制机械、包装机械(定长)、印刷机械(同步)、木工机械、塑料机械(定数)、橡塑机械。 2.4 制图仪、测角仪、疗养器雷达等。 最常用的有两种:绝对值编码器和增量式编码器。 信号输出有正弦波(电流或电压),方波(TTL、HTL),集电极开路(PNP、NPN),推拉式多种形式,其中TTL为长线差分驱动(对称A,A-;B,B-;Z,Z-),HTL也称推拉式、推挽式输出,编码器的信号接收设备接口应与编码器对应。 传感器电源电压一般分为:5V和24V。信号类型: 1、A/B/Z型 2、RS422差分 3、SSI(格雷码) 信号有正弦波的,有方波的。 信号有电流型的,有电压型的 另外SSI编码器输出除了格雷码,也有二进制码的。电压的范围也不仅限于5V和24V 3. 基本原理

3.1 构造 编码器主要是由码盘(圆光栅、指示光栅)、机体、发光器件、感光器件等部件组成。 (1)圆光栅是由涂膜在透明材料或刻画在金属材料上的成放射状的明暗相间的条纹组成的。一个相邻条纹间距称为一个栅节,光栅整周栅节数就是编码器的脉冲数(分辨率)。(注:本公司码盘有三种金属、玻璃、菲林(类似塑料) 三种)。 (2)指示光栅是一片固定不动的,但窗口条纹刻线同圆光栅条纹刻线完全相同的光栅片。 (3)机体是装配圆光栅,指示光栅等部件的载体。 (4)发光器件一般是红外发光管。 (5)感光器件是高频光敏元件;一般有硅光电池和光敏三极管。 3.2 工作原理 由圆光栅和指示光栅组成一对扫描系统,在扫描系统的一侧投射一束红外光,在扫描系统的另一侧的感光器件就可以收到扫描光信号;当圆光栅转动时,感光器件接收到的扫描光信号会发生变化,感光器件可以把光信号转变成电信号并输出给控制系统或仪表。 一般编码器的输出信号为两列成90度相位差的Sin信号和Cos信号(这是由指示光栅的窗口条纹刻线保证的);这些信号的周期等于圆光栅转过一个栅节(P)的移动时间,对Sin信号和Cos信号进行放大及整形就可输出方波脉冲信号。 4. 应用举例 编码器的应用场合十分的广泛,在此列举几个简单事例: (1) 数控机床对加工工件自动检测就是通过编码器来进行检测的:数控机床刀架的对零校准也是通过编码器来实施的。 (2) 编码器在PLC上的应用:一般PLC上都有高速信号输入口,编码器可以作为高速信号输入元件,使PLC更加迅速和精准地实施闭环控制。而在变频器上其一般接变频器的PG卡上。

多圈绝对值增量编码器

电子增量计圈,通过电池记忆圈数,实际上是单圈绝对,多圈增量,好处是省掉了一组机械齿轮,经济、体积小且没有圈数限制,似乎也不错,但是他毕竟是多圈增量的,不能算真正意义上的绝对值,什么是真正意义上的绝对值?就是不依赖于前次历史的直接读数。它在停电后,由于电池低功耗的要求,移动的速度与范围其实是有限制的,另外加上电池的因数,可靠性方面还是要有疑问的,例如高速中的漏圈、干扰中的错圈、正好在12点钟位置的抖动错圈、电池失效错圈。尤其是如果计圈的失误,反而无法找到原来的绝对位置。 事实上,很多人理解用绝对值,都是停电后移动的问题,却不了解德国人在运动控制中用机械真多圈绝对值的真正用意,由于真正的绝对值是不依赖于前次历史的直接读数,那么,在高速中,跟本不用担心丢数据,在运动控制中,也不需要一直去跟读编码器的数值,再加上EnDat 等快速通讯,可以节省出大量的时间来完成其他的运算,从而来解决高速同步,多轴联动等问题。 另外,上面说到,机械多圈绝对值,其停电后可移动位置是1/2圈数,例如4096圈中的2048圈,而不是4096圈,因为停电后的移动是可能正转或反转,考虑到绝对值的唯一性,可移动位置是实际是2048圈。 关于传感器的分辨与精度的理解,可以用我们所用的机械指针式手表来打这样一个比喻:时针的 分辨率是小时,分针的分辨率是分钟,秒针的分辨率是秒。眼睛反应快的,通过秒针在秒间隙中运动 ,我们大概能分辨至约0.3秒,这是三针式机械手表都可能做到的。而精度是什么呢?就是每个手表 对标准时间的准确性,这是每个手表都不相同的(有越走越快的,有越走越慢的。大致都是精确在1 至30秒之间)。 同样的,在旋转编码器的使用中,分辨率与精度是完全不同的两个概念。 一、编码器的分辨率:是指编码可读取并输出的最小角度变化。对应参数有:每圈刻线数(Line)、每转脉冲数(PPR)、最小步距(Step)、位(Bit)等。 线(Line):就编码器的码盘光学刻线数(如图)。

编码器输出形式.

1 编码器基础 1.1光电编码器 编码器是传感器的一种,主要用来检测机械运动的速度、位置、角度、距离和计数等,许多马达控制均需配备编码器以供马达控制器作为换相、速度及位置的检出等,应用范围相当广泛。按照不同的分类方法,编码器可以分为以下几种类型: 根据检测原理,可分为光学式、磁电式、感应式和电容式。 根据输出信号形式,可以分为模拟量编码器、数字量编码器。 根据编码器方式,分为增量式编码器、绝对式编码器和混合式编码器。 光电编码器是集光、机、电技术于一体的数字化传感器,主要利用光栅衍射的原理来实现位移——数字变换,通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。典型的光电编码器由码盘、检测光栅、光电转换电路(包括光源、光敏器件、信号转换电路)、机械部件等组成。光电编码器具有结构简单、精度高、寿命长等优点,广泛应用于精密定位、速度、长度、加速度、振动等方面。 这里我们主要介绍SIMATIC S7系列高速计数产品普遍支持的增量式编码器和绝对式编码器。 1.2增量式编码器 增量式编码器提供了一种对连续位移量离散化、增量化以及位移变化(速度)的传感方法。增量式编码器的特点是每产生一个输出脉冲信号就对应于一个增量位移,它能够产生与位移增量等值的脉冲信号。增量式编码器测量的是相对于某个基准点的相对位置增量,而不能够直接检测出绝对位置信息。 如图1-1所示,增量式编码器主要由光源、码盘、检测光栅、光电检测器件和转换电路组成。在码盘上刻有节距相等的辐射状透光缝隙,相邻两个透光缝隙之间代表一个增量周期。检测光栅上刻有A、B两组与码盘相对应的透光缝隙,用以通过或阻挡光源和光电检测器件之间的光线,它们的节距和码盘上的节距相等,并且两组透光缝隙错开1/4节距,使得光电检测器件输出的信号在相位上相差90°。当码盘随着被测转轴转动时,检测光栅不动,光线透过码盘和检测光栅上的透过缝隙照射到光电检测器件上,光电检测器件就输出两组相位相差90°的近似于正弦波的电信号,电信号经过转换电路的信号处理,就可以得到被测轴的转角或速度信息。

绝对值编码器工作原理

从增量值编码器到绝对值编码器 旋转增量值编码器以转动时输出脉冲,通过计数设备来计算其位置,当编码器不动或停电时,依靠计数设备的内部记忆来记住位置。这样,当停电后,编码器不能有任何的移动,当来电工作时,编码器输出脉冲过程中,也不能有干扰而丢失脉冲,不然,计 数设备计算并记忆的零点就会偏移,而且这种偏移的量是无从知道的,只有错误的生产结果出现后才能知道。 解决的方法是增加参考点,编码器每经过参考点,将参考位置修正进计数设备的记忆位置。在参考点以前,是不能保证位置的准确性的。为此,在工控中就有每次操作先找参考点,开机找零等方法。 这样的方法对有些工控项目比较麻烦,甚至不允许开机找零(开机后就要知道准确位置),于是就有了绝对编码器的出现。 绝对编码器光码盘上有许多道光通道刻线,每道刻线依次以2线、4线、8线、16线。。。。。。编排,这样,在编码器的每一个位置,通过读取每道刻线的通、暗,获得一 组从2的零次方到2的n-1次方的唯一的2进制编码(格雷码),这就称为n位绝对编码器。这样的编码器是由光电码盘的机械位置决定的,它不受停电、干扰的影响。 绝对编码器由机械位置决定的每个位置是唯一的,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它的位置。这样,编码器的抗干扰特性、数据的可靠性大大提高了。 从单圈绝对值编码器到多圈绝对值编码器 旋转单圈绝对值编码器,以转动中测量光电码盘各道刻线,以获取唯一的编码,当转动超过360度时,编码又回到原点,这样就不符合绝对编码唯一的原则,这样的编码只能用于旋转范围360度以内的测量,称为单圈绝对值编码器。 如果要测量旋转超过360度范围,就要用到多圈绝对值编码器。 编码器生产厂家运用钟表齿轮机械的原理,当中心码盘旋转时,通过齿轮传动另一组码盘(或多组齿轮,多组码盘),在单圈编码的基础上再增加圈数的编码,以扩大编 码器的测量范围,这样的绝对编码器就称为多圈式绝对编码器,它同样是由机械位置确定编码,每个位置编码唯一不重复,而无需记忆。

增量式编码器工作原理

增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。 编码器是把角位移或直线位移转换成电信号的一种装置。 前者成为码盘,后者称码尺。按照读出方式编码器可以分为接触式和非接触式两种。接触式采用电刷输出,以电刷接触导电区或绝缘区来表示代码的状态是“1”还是“0”;非接触式的接受敏感元件是光敏元件或磁敏元件,采用光敏元件时以透光区和不透光区来表示代码的状态是“1”还是“0”。 按照工作原理编码器可分为增量式和绝对式两类。增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小,绝对式编码器的每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。 旋转增量式编码器以转动时输出脉冲,通过计数设备来知道其位置,当编码器不动或停电时,依靠计数设备的内部记忆来记住位置。这样,当停电后,编码器不能有任何的移动,当来电工作时,编码器输出脉冲过程中,也不能有干扰而丢失脉冲,不然,计数设备记忆的零点就会偏移,而且这种偏移的量是无从知道的,只有错误的生产结果出现后才能知道。 解决的方法是增加参考点,编码器每经过参考点,将参考位置修正进计数设备的记忆位置。在参考点以前,是不能保证位置的准确性的。为此,在工控中就有每次操作先找参考点,开机找零等方法。 比如,打印机扫描仪的定位就是用的增量式编码器原理,每次开机,我们都能听到噼哩啪啦的一阵响,它在找参考零点,然后才工作。 增量式编码器特点: 增量式编码器转轴旋转时,有相应的脉冲输出,其旋转方向的判别和脉冲数量的增减借助后部的判向电路和计数器来实现。其计数起点任意设定,可实现多圈无限累加和测量。还可以把没转发出一个脉冲的Z信号,作为参考机械零位。编码器轴转一圈会输出固定的脉冲,脉冲数由编码器光栅的线数决定。需要提高分辨率时,可利用90 度相位差的A、B两路信号对原脉冲数进行倍频,或者更换高分辨率编码器。 增量式角度数字编码器的工作原理:

旋转编码器详解

增量式编码器的A.B.Z 编码器A、B、Z相及其关系

TTL编码器A相,B相信号,Z相信号,U相信号,V相信号,W相信号,分别有什么关系? 对于这个问题的回答我们从以下几个方面说明: 编码器只有A相、B相、Z相信号的概念。 所谓U相、V相、W相是指的电机的主电源的三相交流供电,与编码器没有任何关系。“A相、B相、Z相”与“U相、V相、W相”是完全没有什么关系的两种概念,前者是编码器的通道输出信号;后者是交流电机的三 相主回路供电。 而编码器的A相、B相、Z相信号中,A、B两个通道的信号一般是正交(即互差90°)脉冲信号;而Z相是零脉冲信号。详细来说,就是——一般编码器输出信号除A、B两相(A、B两通道的信号序列相位差为90度)外,每转一圈还输出一个零位脉冲Z。 当主轴以顺时针方向旋转时,输出脉冲A通道信号位于B通道之前;当主轴逆时针旋转时,A通道信号则位于B通道之后。从而由此判断主轴是正转还是反转。 另外,编码器每旋转一周发一个脉冲,称之为零位脉冲或标识脉冲(即Z相信号),零位脉冲用于决定零位置或标识位置。要准确测量零位脉冲,不论旋转方向,零位脉冲均被作为两个通道的高位组合输出。由于通道之间的相位差的存在,零位脉冲仅为脉冲长度的一半。 带U、V、W相的编码器,应该是伺服电机编码器 A、B相是两列脉冲,或正弦波、或方波,两者的相位相差90度,因此既可以测量转速,还可以测量电机的旋转方向Z相是参考脉冲,每转一圈输出一个脉冲,脉冲宽度往往只占1/4周期,其作用是编码器自我校正用的,使得编码器在断电或丢失脉冲的 时候也能正常使用。 ABZ是编码器的位置信号,UVW是电机的磁极信号,一般用于同步电机; AB对于TTL/HTL编码器来说,AB相根据编码器的细分度不同,每圈有很多个,但Z相每圈只有一个; UVW磁极信号之间相位差是120度,随着编码器的角度转动而转动,与ABZ 之间可以说没有直接关系。 /#############################################################

多圈编码器

多圈编码器 多圈编码器 绝对编码器光码盘上有许多道光通道刻线,每道刻线依次以2线、4线、8线、16线。。。。。。编排,这样,在编码器的每一个位置,通过读取每道刻线的通、暗,获得一组从2的零次方到2的n-1次方的唯一的2进制编码(格雷码),这就称为n位绝对编码器。这样的编码器是由光电码盘的机械位置决定的,它不受停电、干扰的影响。绝对编码器由机械位置决定的每个位置是唯一的,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它的位置。这样,编码器的抗干扰特性、数据的可靠性大大提高了。旋转单圈绝对值编码器,以转动中测量光电码盘各道刻线,以获取唯一的编码,当转动超过360度时,编码又回到原点,这样就不符合绝对编码唯一的原则,这样的编码只能用于旋转范围360度以内的测量,称为单圈绝对值编码器。 如果要测量旋转超过360度范围,就要用到多圈绝对值编码器。编码器生产厂家运用钟表齿轮机械的原理,当中心码盘旋转时,通过齿轮传动另一组码盘(或多组齿轮,多组码盘),在单圈编码的基础上再增加圈数的编码,以扩大编码器的测量范围,这样的绝对编码器就称为多圈式绝对编码器,它同样是由机械位置确定编码,每个位置编码唯一不重复,而无需记忆。多圈编码器另一个优点是由于测量范围大,实际使用往往富裕较多,这样在安装时不必要费劲找零点,将某一中间位置作为起始点就可以了,而大大简化了安装调试难度。 技术参数 * 多圈绝对值光电码盘。 * 宽工作电压范围, 10…30Vdc或5Vdc,极性保护。 * 宽工作温度范围,-25~70℃;储存温度: -40~80℃。 * 并行推挽输出,可自选基准电压值,直接连接各种设备。 * 输出信号锁存控制,方便计算。 * 夹紧法兰,同步法兰或盲孔轴套,国际标准型外形,其他外形可选。

各种输出形式的旋转编码器与后续设备

各种输出形式的旋转编码器与后续设备(PLC、计数器等)接线分别怎么接? ⑴与PLC连接,以CPM1A为例 ①NPN集电极开路输出 方法1:如下图所示 这种接线方式应用于当传感器的工作电压与PLC的输入电压不同时,取编码器晶体管部分,另外串入电源,以无电压形式接入PLC。但是需要注意的是,外接电源的电压必须在DC30V以下,开关容量每相35mA 以下,超过这个工作电压,则编码器内部可能会发生损坏。 具体接线方式如下:编码器的褐线接编码器工作电压正极,蓝线接编码器工作电压负极,输出线依次接入PLC的输入点,蓝线接外接电源负极,外接电源正极接入PLC的输入com端。 方法2:编码器的褐线接电源正极,输出线依次接入PLC的输入点,蓝线接电源负极,再从电源正极端拉根线接入PLC输入com端。 ②电压输出 接线方式如图所示: 具体接线方式如下:编码器的褐线接电源正极,输出线依次接入PLC 的输入点,蓝线接电源负极,再从电源正极端拉根线接入PLC输入com端。 不过需要注意的是,不能以下图方式接线。

③PNP集电极开路输出 接线方式如下图所示: 具体接线方式如下:编码器的褐线接工作电压正极,蓝线接工作电压负极,输出线依次接入PLC的输入com 端,再从电源负极端拉根线接入PLC的输入com端。 ④线性驱动输出 具体接线如下:输出线依次接入后续设备相应的输入点,褐线接工作电压的正极,蓝线接工作电压的负极。 ⑵与计数器连接,以H7CX(OMRON制)为例 H7CX输入信号分为无电压输入和电压输入。 ①无电压输入: 以无电压方式输入时,只接受NPN输出信号。 NPN集电极开路输出的接线方式如下:

旋转编码器工作原理

增量式旋转编码器工作原理 增量式旋转编码器通过内部两个光敏接受管转化其角度码盘的时序和相位关系,得到其角度码盘角度位移量增加(正方向)或减少(负方向)。在接合数字电路特别是单片机后,增量式旋转编码器在角度测量和角速度测量较绝对式旋转编码器更具有廉价和简易的优势。 下面对增量式旋转编码器的内部工作原理(附图) A,B两点对应两个光敏接受管,A,B两点间距为 S2 ,角度码盘的光栅间距分别为S0和S1。 当角度码盘以某个速度匀速转动时,那么可知输出波形图中的S0:S1:S2比值与实际图的S0:S1:S2比值相同,同理角度码盘以其他的速度匀速转动时,输出波形图中的S0:S1:S2比值与实际图的S0:S1:S2比值仍相同。如果角度码盘做变速运动,把它看成为多个运动周期(在下面定义)的组合,那么每个运动周期中输出波形图中的S0:S1:S2比值与实际图的S0:S1:S2比值仍相同。 通过输出波形图可知每个运动周期的时序为 A B 1 1 0 1 0 0 1 0 A B 1 1 1 0 0 0 0 1 我们把当前的A,B输出值保存起来,与下一个A,B输出值做比较,就可以轻易的得出角度码盘的运动方向, 如果光栅格S0等于S1时,也就是S0和S1弧度夹角相同,且S2等于S0的1/2,那么可得到此次角度码盘运动位移角度为S0弧度夹角的1/2,除以所消毫的时间,就得到此次角度码盘运动位移角速度。

S0等于S1时,且S2等于S0的1/2时,1/4个运动周期就可以得到运动方向位和位移角度,如果S0不等于S1,S2不等于S0的1/2,那么要1个运动周期才可以得到运动方向位和位移角度了。 旋转编码器只有增量型和绝对值型两种吗?这两种旋转编码器如何区分?工作原理有何不同? 只有增量型和绝对型 增量型只是测角位移(间接为角速度)增量,以前一时刻为基点.而绝对型测从开始工作后角位移量. 增量型测小角度准,大角度有累积误差 绝对型测小角度相对不准,但大角度无累积误差 旋转编码器是用来测量转速的装置。它分为单路输出和双路输出两种。技术参数主要有每转脉冲数(几十个到几千个都有),和供电电压等。单路输出是指旋转编码器的输出是一组脉冲,而双路输出的旋转编码器输出两组相位差90度的脉冲,通过这两组脉冲不仅可以测量转速,还可以判断旋转的方向。 编码器的原理: 编码器的原理与应用 编码器是一种将角位移转换成一连串电数字脉冲的旋转式传感器,这些脉冲能用来控制角位移,如果编码器与齿条或螺旋杆结合在一起,也可于控制直线位移。 编码器中角位移的转换采用了光电扫描原理。读数系统是基于径向分度盘的旋转,该分度盘是由交替的透光窗口和不透光窗口构成的。此系统全部用一个红外光源垂直照射,这样光就把盘子和图像投射到接收器表面上,该接收器覆盖着一层光栅,称为准直仪,它具有和光盘相同的窗口。接收器的工作是感受光盘转动所产生的光变化,然后将光变化转换成相应的电变化。 增量型编码器 增量型编码器一般给出两种方波,它们的相位差90度,通常称为通道A和通道B。只有一个通道的读数给出与转速有关的信息,与此同时,通过所取得的第二通道信号与第一通道信号进行顺序对比的基础上,得到旋转方向的信号。还有一个可利用的信号称为Z通道或零通道,该通道给出编码器轴的绝对零位。此信号是一个方波,其相位与A通道在同一中心线上,宽度与A通道相同。 增量型编码器精度取决于机械和电气的因素,这些因素有:光栅分度误差、光盘偏心、轴承偏心、电子读数装置引入的误差以及光学部分的不精确性,误差存在于任何编码器中。 编码器如以信号原理来分,有增量型编码器,绝对型编码器。增量型编码器(旋转型) 工作原理: 由一个中心有轴的光电码盘,其上有环形通、暗的刻线,有光电发射和接收器件读取,获得四组正弦波信号组合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度),将C、D信号反向 ,叠加在A、B两相上,可增强稳定信号;另每转输出一个Z相脉冲以代表零位参考位。 由于A、B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。 编码器码盘的材料有玻璃、金属、塑料,玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高,金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级,塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。

绝对值多圈编码器概述

绝对编码器和被测“物体”联结,能直接测量角度或加变换装置间接测量长度。有光电式、接触式及磁电式。它由码盘 和读取码盘信息的机构组成。其分辨率由“位数”多少决定。一般单圈7~16位;多圈有16~4096圈,位数比较复杂。如10 位的单圈绝对编码器,360度圆周能读出1024个码,角分辨率即为:360/1024(度)。绝对编码器“码值”跟被测“位置” 对应是唯一的,具有“断电记忆”功能,无旋转测量积累误差,在“一个循环”内用于测控领域比增量编码器优越,可 加前减速箱调节量程。广泛应用于水利、轻工、机械、冶金、纺织、石油、航空、航海等行业。具体到工程项目类如: 回转台、闸门开度、阀门开度、提升机吊车定位、行车定位、物位测量、导弹发射角度定位、导弹空气舵测量、电子经 纬仪等高精度测量定位场合。电源输入:+10~+30VDC,10%(极性保护) 分辨率/圈: 8192(13位) 65536(16位) 正常 使用温度范围:-40℃~+85℃储存温度范围:-55℃~+125℃正常工作电流:< 150mA (12V电源)<80mA(24V电源 )电子编码凸轮:8个预设电子编码凸轮开关,电压输出型;EasyPro设定,开关位置入--开关位置出凸轮模式输出刷新 周期:<3.2ms(波特率为115200) <16.8ms(波特率为9600) 开关信号<1.5ms(不输出RS485信号情况下) 通讯速率:9600, 19200,38400,57600,115200 bps,可EasyPro设定使用外部置位信号确定零位,方便安装使用防护等级: IP65 允许 转速: 3000转/分(16位数据准确性1000转/分) 多圈模式下,掉电后,允许编码器轴转动的角度:< ±120度连接电缆: 1米对绞屏蔽电缆径向侧出,其余形式订货可选外形特征: 金属外壳,密封双轴承结构SSI 单圈绝对式旋转编码器 2 耐 冲击,抗干扰,可靠性高2 多种形式的电气接口(串行,并行等)2 可选择任意分辨率,最高可达65536 2 多种工作电 压可选(5V,12V,24V,8~29V等)2 零位预置功能、计数方向选择技术参数环境参数使用温度—20~60℃相对湿度 30~85%RH(无结露)防护等级IP65 电气参数电源电压5V,12V,24V或8~29V 输出波形方波响应频率0~250KHZ 机 械参数允许最高机械转速5000r/min 耐冲击GB/T 2423.5-1995 100g,6ms 耐振动GB/T 2423.10-1995 10g,10~ 500HZ 启动力矩1.5x10ˉ2 N·m 轴最大负载转动惯量9.0x10ˉ6 kg·m2 允许角加速度1.0x104 rad/s 艾迪科多圈编码器,系机械真多圈,采用十多个铜齿轮多级计数(钟表)原理,精度高、性能可靠、寿命长等特点。 艾迪科多圈编码器有串行SSI、总线式CANOPEN、MODBUS、PD等多圈编码器,为国内少有的高尖端编码器。 串行SSI多圈编码器并行NPN集电极开路多圈编码器较早地应用于核电设备中;并行推挽多圈编码器应用于串行SSI多 圈编码器应用于水利闸门工程;总线式CANOPEN多圈编码器被广泛应用于港机工程车中

绝对值编码器简介

绝对值编码器概述 工作原理 绝对值编码器与增量编码器工作原理非常相似。它是一个带有若干个透明和不透明窗口的转动圆盘,用光接收器来收集间断的光束,光脉冲转换成电脉冲后, 由电子输出电路进行 处理,并将电脉冲发送出去。 绝对值代码 绝对值编码器和增量编码器之间主要的差别在于位置是怎么样来确定的:增量编码器的位置是从零位标记开始计算的脉冲数量来确定的,而绝对值编码器的位置是由输出代码的读数来确定的,在一转内每个位置的读数是唯一的。因此,

当电源断开或码盘移位时,绝对值编码器不会丢失实际位 置。 然而,当绝对值编码器的电源一旦重启位置值就会立即替代旧值,而一个增量编码器则需要设置零位标记。 输出代码用于指定绝对位置。很明显首选会是二进制码,因为它可以很容易被外部设备所处理,但是,二进制码是直接从旋转码盘上取得的,由于同时改变的编码状态位数超过一位,所以要求同步输出代码很难。 例如,两个连续的二进制码编码7(0111)变到8(1000),可以注意到所有位的状态都发生了变化。因此,如果你试着读在特定时刻的编码,要保证读数的正确性是很困难的,因为在数据改变的一瞬间同时就有超过一位的状态变化。因此,格雷码在二个连续编码之间(甚至于从最后一个到第一个)只有一位二进码状态变化。 格雷码通过一个简单的组合电路就可以很容易被转换为二进制码。(见如下表单)

格雷余码 当定义位置的个数不是2的幂次方时,从最后一个位置变到最前一个位置,即使是格雷码,同时改变的编码状态也会超过一位。 例如,假设一个每转12个位置的绝对型编码器,其格雷码如右侧所示,显而易见在位置11和0之间变化时,3位二进制码位同时改变状态,可能会引起读数出错,这是不允许的。试用格雷余码,3位二进制就可以维护编码仅仅只有一位状态变化,使得位置0与N值一一对应,这就得到格雷余码。其中,N是这样一个数,从转换成二进制码的格雷余码中减去N,就得到正确的位置值。 超差值N的计算: N=(2n-IMP)/2 式中:IMP IMP是每转的位置数(只能是 偶数)

多圈绝对编码器

一、多圈绝对式光电编码器 单圈绝对式光电编码器,从转动中测量光栅盘各道刻线,以获取唯一的编码,当转动超过360度时,编码又回到原点,这样就不符合绝对编码唯一的原则,这样的编码只能用于旋转范围360度以内的测量多圈式光电式编码器是在单圈式光电编码器的基础上通过机械传动原理,利用钟表齿轮机械原理结构制作而成。如图1所示为多圈绝对式光电编码器的常见结构。

图1 多圈绝对式编码器 当中心光栅码盘旋转时,通过齿轮传动另一组码盘(或多组齿轮,多组码盘),在单圈编码的基础上再增加圈数的编码,以扩大编码器的测量范围,它同样是由机械位置确定编码,每个位置编码唯一不重复,而无需记忆。 多圈编码器另一个优点是由于测量范围大,实际使用往往富裕较多,这样在安装时不必要费劲找零点,将某一中间位置作为起始点就可以了,从而大大简化了安装调试难度。 二、编码器输出形式 绝对值编码器信号输出有并行输出、串行输出、总线型输出、变送一体型输出 1.并行输出: 绝对值编码器输出的是多位数码(格雷码或纯二进制码),并行输出就是在接口上有多点高低电平输出,以代表数码的1或0,对于位数不高的绝对编码器,一般就直接以此形式输出数码,可直接进入PLC

或上位机的I/O接口,输出即时,连接简单。但是并行输出有如下问题: 1)必须是格雷码,因为如是纯二进制码,在数据刷新时可能有多位变化,读数会在短时间里造成错码。 2)所有接口必须确保连接好,因为如有个别连接不良点,该点电位始终是0,造成错码而无法判断。 3)传输距离不能远,一般在一两米,对于复杂环境,最好有隔离。4)对于位数较多,要许多芯电缆,并要确保连接优良,由此带来工程难度,同样,对于编码器,要同时有许多节点输出,增加编码器的故障损坏率。 2.串行SSI输出: 串行输出就是通过约定,在时间上有先后的数据输出,这种约定称为通讯规约,其连接的物理形式有RS232、RS422(TTL)、RS485等。 由于绝对值编码器好的厂家都是在德国,所以串行输出大部分是与德国的西门子配套的,如SSI同步串行输出。 SSI接口(RS422模式),以两根数据线、两根时钟线连接,由接收设备向编码器发出中断的时钟脉冲,绝对的位置值由编码器与时钟脉冲

数控机床脉冲编码器工作原理

数控机床脉冲编码器工作原理 脉冲编码器是一种光学式位置检测元件,编码盘直接装在电机的旋转轴上,以测出轴的旋转角度位置和速度变化,其输出信号为电脉冲. 这种检测方式的特点是:非接触式的,无摩擦和磨损,驱动力矩小,响应速度快。缺点是抗污染能力差,容易损坏。按其编码化方式,可分为增量式和绝对值式。 根据检测原理,编码器可分为光学式、磁式、感应式和电容式。根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种. 1.增量式编码器工作原理 增量式旋转编码器通过内部两个光敏接受管转化其角度码盘的时序和相位关系,得到其角度码盘角度位移量增加(正方向)或减少(负方向). 下面对增量式旋转编码器的内部工作原理 A,B两点对应两个光敏接受管,A,B两点间距为S2 ,角度码盘的光栅间距分别为S0和S1. 通过输出波形图可知每个运动周期的时序为 顺时针运动逆时针运动 A B 1 1 0 1 0 0 1 0 A B 1 1 1 0 00 0 1 2.绝对值编码器工作原理 绝对编码器光码盘上有许多道光通道刻线,每道刻线依次以2线、4线、8线、16线。。。。.。编排,这样,在编码器的每一个位置,通过读取每道刻线的通、暗,获得一组从2的零次方到2的n—1次方的唯一的2进制编码(格雷码),这就称为n位绝对编码器。这样的编码器是由光电码盘的机械位置决定的,它不受停电、干扰的影响。?绝对编码器由机械位置决定的每个位置是唯一的,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它的位置。这样,编码器的抗干扰特性、数据的可靠性大大提高了。

图从单圈绝对值编码器到多圈绝对值编码器 旋转单圈绝对值编码器,以转动中测量光电码盘各道刻线,以获取唯一的编码,当转动超过360度时,编码又回到原点,这样就不符合绝对编码唯一的原则,这样的编码只能用于旋转范围360度以内的测量,称为单圈绝对值编码器。?如果要测量旋转超过360度范围,就要用到多圈绝对值编码器. 编码器生产厂家运用钟表齿轮机械的原理,当中心码盘旋转时,通过齿轮传动另一组码盘(或多组齿轮,多组码盘),在单圈编码的基础上再增加圈数的编码,以扩大编码器的测量范围,这样的绝对编码器就称为多圈式绝对编码器,它同样是由机械位置确定编码,每个位置编码唯一不重复,而无需记忆。?多圈编码器另一个优点是由于测量范围大,实际使用往往富裕较多,这样在安装时不必要费劲找零点, 将某一中间位置作为起始点就可以了,而大大简化了安装调试难度。 3.编码器的信号输出类型 a)增量式编码器的接线和输出 增量式编码器一般使用A、B、Z三相输出信号,外加+24V和0V;A、B输出相位相差90度的脉冲信号,Z相每圈输出一个脉冲作为零点信号。 如单相联接,用于单方向计数,单方向测速. A.B两相联接,用于正反向计数、判断正反向和测速。 A、B、Z三相联接,用于带参考位修正的位置测量. A、A-, B、B-,Z、Z-连接,由于带有对称负信号的连接,电流对于电缆贡献的电磁场为0,衰减最小,抗干扰最佳,可传输较远的距离。 增量式编码器连接PLC上的FM350、FM450高速计数模块,通过累积计算当前位置。 b)绝对值编码器的接线和输出 绝对值编码器接线上有时钟信号C+、C-,数据信号D+、D-,外加+24V和0V;数据信号发送的是二进制或者格雷码,大部分使用SSI同步串行通讯和DP通讯,传输距离短的话也有使用并行通讯的.

什么是旋转编码器

旋转编码器是用来测量转速的装置。它分为单路输出和双路输出两种。技术参数主要有每转脉冲数(几十个到几千个都有),和供电电压等。单路输出是指旋转编码器的输出是一组脉冲,而双路输出的旋转编码器输出两组相位差90度的脉冲,通过这两组脉冲不仅可以测量转速,还可以判断旋转的方向。 编码器如以信号原理来分 增量脉冲编码器:SPC 绝对脉冲编码器:APC 两者一般都应用于速度控制或位置控制系统的检测元件. 增量型编码器与绝对型编码器的区分 工作原理: 由一个中心有轴的光电码盘,其上有环形通、暗的刻线,有光电发射和接收器件读取,获得四组正弦波信号组合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度),将C、D信号反向,叠加在A、B两相上,可增强稳定信号;另每转输出一个Z相脉冲以代表零位参考位。 由于A、B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。 编码器码盘的材料有玻璃、金属、塑料,玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高,金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级,塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。 分辨率—编码器以每旋转360度提供多少的通或暗刻线称为分辨率,也称解析分度、或直接称多少线,一般在每转分度5~10000线。 信号输出: 信号输出有正弦波(电流或电压),方波(TTL、HTL),集电极开路(PNP、NPN),推拉式多种形式,其中TTL为长线差分驱动(对称A,A-;B,B-;Z,Z-),HTL也称推拉式、推挽式输出,编码器的信号接收设备接口应与编码器对应。 信号连接—编码器的脉冲信号一般连接计数器、PLC、计算机,PLC和计算机连接的模块有低速模块与高速模块之分,开关频率有低有高。 如单相联接,用于单方向计数,单方向测速。 A.B两相联接,用于正反向计数、判断正反向和测速。 A、B、Z三相联接,用于带参考位修正的位置测量。 A、A-, B、B-,Z、Z-连接,由于带有对称负信号的连接,电流对于电缆贡献的电磁场为0,衰减最小,抗干扰最佳,可传输较远的距离。 对于TTL的带有对称负信号输出的编码器,信号传输距离可达150米。 旋转编码器由精密器件构成,故当受到较大的冲击时,可能会损坏内部功能,使用上应充分注意。 注意的事项是: (1)安装 安装时不要给轴施加直接的冲击。 编码器轴与机器的连接,应使用柔性连接器。在轴上装连接器时,不要硬压入。即使使用连接器,因安装不良,也有可能给轴加上比允许负荷还大的负荷,或造成拨芯现象,因此,要特别注意。 轴承寿命与使用条件有关,受轴承荷重的影响特别大。如轴承负荷比规定荷重小,可大大延长轴承寿命。

浅谈单圈绝对值编码器在多圈计数中的应用

浅谈单圈绝对值编码器在多圈计数中的应用 摘要:工业自动控制工程中,有大量的直线位移和角位移需要通过电信号来加以处理,编码器便是实现这一功能的最主要设备。但由于各类型编码器价位差别很大,实际应用中选型不当既容易造成使用不合理,也会造成浪费。本文主要探讨单圈绝对值编码器在多圈过程控制中的应用。 关键词:单圈绝对值编码器格雷码多圈计数 一.简述 编码器(encoder)是一种将旋转位移转换成一串数字脉冲信号的旋转式传感器,这些脉冲能用来控制角位移,如果编码器与齿轮条或螺旋丝杠结合在一起,也可用于测量直线位移。编码器产生电信号后由数控制置CNC、可编程逻辑控制器PLC、控制系统等来处理。这些传感器主要应用在下列方面:机床、材料加工、电动机反馈系统以及测量和控制设备。 二.编码器分类 按照工作原理编码器一般分为增量型与绝对型,它们存着最大的区别:增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。在增量编码器的情况下,位置是从零位标记开始计算的脉冲数量确定的,而绝对型编码器的位置是由输出代码的读数确定的。在一圈里,每个位置的输出代码的读数是唯一的;绝对式编码器的每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。因此,当电源断开时,绝对型编码器并不与实际的位置分离。如果电源再次接通,那么位置读数仍是当前的,有效的;不像增量编码器那样,必须去寻找零位标记。 绝对型编码器又可分为单圈编码器和多圈编码器。多圈绝对式编码器中,生产厂家运用钟表齿轮机械的原理,当中心码盘旋转时,通过齿轮传动另一组码盘(或多组齿轮,多组码盘),在单圈编码的基础上再增加圈数的编码,以扩大编码器的测量范围,这样的绝对编码器就称为多圈式绝对编码器,它同样是由机械位置确定编码,每个位置编码唯一不重复,而无需记忆。多圈编码器另一个优点是由于测量范围大,实际使用往往富裕较多,这样在安装时不必要费劲找零点,将某一中间位置作为起始点就可以了,而大大简化了安装调试难度。 三.编码规则 绝对值编码器一般采用格雷码编码方式,在一组数的编码中,若任意两个相邻的代码只有一位二进制数不同,则称这种编码为格雷码,另外由于最大数与最小数之间也仅一位数不同,即“首尾相连”,因此又称循环码或反射码。在数字系统中,常要求代码按一定顺序变化。例如,按自然数递增计数,若采用8421码,则数0111变到1000时四位均要变化,而在实际电路中,4位的变化不可能绝对

相关文档
最新文档