信息论

信息论
信息论

《信息编码理论》课程题目:哈夫曼及线性分组码编码的实现

姓名:李

学号:

学院:物理与信息工程学院

专业:081001 通信与信息系统

年级:2015级

2015 年12 月20 日

目录

中文摘要 (3)

Abstract (3)

第一章发展背景与国内外现状 (4)

第二章哈夫曼编码 (5)

1 、编码原理 (5)

2、哈夫曼二叉树 (5)

第三章线性分组码 (7)

1、线性分组的概念 (7)

2、线性分组码的原理 (7)

3、汉明距离 (9)

第四章 MATLAB编码译码仿真 (10)

第五章心得体会 (15)

参考文献 (16)

中文摘要

在信息的传输过程中,为了提高信息的安全性和信息可靠性,我们往往要对信源符号和信道分别进行编码以达到我到接收的要求。因此通信的过程中对信源和信道的分别编码具有很高的要求。本文我们重点讲解的是信源编码当中的哈夫曼编码和信道编码的线性分组编码。通过对这两种典型编码的讲解让我更深一步了解信息传输过程中的规则,能加强对信息的进一步认识。本文重点放在了理论讲解,并且通过具体的例子进行了细致的编码过程,这样就能对信源编码中哈夫曼编码和信道编码中的线性分组码有深的认识。最后又附加了在matlab软件运用的环境下用程序去实现了两种编码方式。

关键词:哈夫曼编码、线性分组码、matlab程序实现

Abstract

In the transmission of information, in order to improve the security and reliability of the information, we often have to carry out the source symbols and channels to meet the requirements of encoding to meet me. Therefore, the process of communication on the source and channel of encoding has a very high demand. In this paper, we focus on the linear block encoding Huffman encoding and channel encoding of the source encoding. Through the two typical encoding to explain to me a deeper understanding of the information transmission process of the rules, can strengthen the further understanding of information. This paper put in the theory to explain, and carried on detailed coding process through concrete examples, so that we can to source coding in Huffman coding and channel coding in linear block codes have deep understanding. Finally added in the use of the MATLAB software environment to achieve the use of the program to achieve the two encoding.

Key words: Huffman encoding, linear block code, matlab programming

第一章发展背景与国内外现状

在通信系统中,信源编码是一种以提高通信有效性为目的而对信源符号进行的变换,或者说为了减少或消除信源冗余而进行的信源符号变换。具体就,就是针对信源输出符号序列的统计特性来寻找某种方法,把信源输出符号序列变换成最短的码字序列,使后者的各码元所含有的平均信息量最大,同时又能保证无失真地恢复原来的符号序列。信源编码发展了很长一段时间,最原始的信源编码是莫尔斯电码,另外还有ASCII码和电报码等都是信源编码。随着现代科学技术的发展又出现了好多的信源编码方式。比如:哈夫曼编码,算术编码,L-Z编码,这几种都是最佳变码方式。

本文我主要讲的是哈夫曼编码。哈夫曼编码是可变字长编码的一种。它是1952年提出的一种编码方法,该方法完全依据字符出现概率来构造的平均长度最短的码字,有时我们也称之为最佳编码。随着计算机的普遍应用与日益发展,哈夫曼编码的应用又得到了很大的发展。在现代技术的发展过程中,有好多地方用到了哈夫曼编码,比如在数据压缩,图象处理等方面都有很好的应用。然而仅仅依靠信源编码对信息的传输还是有一定的不安全性,因些我们还要考虑对信道进行编码。在通信中,由于信息码元序列是一种随机序列,接收端无法预知码元的取值,也无法识别其中有无错码。所以在发送端需要在信息码元序列中增加一些差错控制码元,它们称为监督码元(校验元)。这些监督码元和信息码元之间有确定的关系。在信息码元序列中加监督码元就称为差错控制编码,差错控制编码属于信道编码。对于信道编码有不同的类型,一般可分为两大类:一类是分组码,另一类则是卷积码。现在国内外信源编码的发展又有很大的创新,单纯就哈夫曼编码而言就出现了比较新的编码方法称之为动态哈夫曼编码。而对于线性分组码而言现在出现了一种叫低码率二进制线性分组码的盲识别。接下来我就重点讲解信源编码当中的哈夫曼编码和信道编码中的线性分组码编码。

第二章 哈夫曼编码

1 、编码原理

哈夫曼编码也称前缀编码,它是根据每一个字符出现的频率而进行编码的,

要求任一字符的编码都不是其它任意字符编码的前缀且字符编码的总长度为最短。因此我们可以得到哈夫曼编码的前提一定要是先了解到各个字符各出现的概率是多少,只有这样我们才能对其进行哈夫曼编码。哈夫曼编码的一般方法是:

(1)将信源消息符号按其出现的概率大小依次排列为

n p p p p ≥≥≥ 321

(2)取两个概率最小的字母分配以0和1两个码元,并将这两个概率相加作为一个新字母的概率,与未分配的二进制符号的字母重新排队。

(3)对重排的两个概率最小的符号重复步骤(2)的过程。

(4)不断继续上述过程,直到最后两个符号配以0和1为上有止。

(5)从最后一级开始,向前返回得到各个信源符号所对应的码元序列,即相应的码字。

2、哈夫曼二叉树

前面我们已经了解到了哈夫曼编码的一般步骤,那么我们知道了这一般的编

码步骤以后应该如何更好更加观的表现出编码的形式呢。在这里我们给出了哈夫曼树的概念。所谓哈夫曼树又称最优三叉树,是一种带有权路径长度最短二叉树。所谓树的带权路径长度也就是树中所有叶结点的权值。二叉树的每一个叶即代表出现的每个字符的概率大小。那如何构造一棵哈夫曼树呢?最具有一般规率就是如下的描述:

1)对给定的n 个权值(也就是所给定的各个符号的概率)

{n w w w w w w w 654321,,,,,}构成n 棵二叉树的初始集合F={n T T T T 321,,},其中每棵二叉树i T 中只有一个权值为i w 的根结点,它的左右子树均为空。

2)在F 中选取两棵根结点权值最小的树作为新构造的二叉树的左右子树,

新二叉树的根结点的权值为其左右子树的根结点的权值之和。

3)从F 中删除这两棵树,并把这棵新树的二叉树加入到集合F 中。

4)重得2、3两步,直到到集合F 中只有一棵二叉树为止。

单纯的看上面的步骤显得有些抽象,现在我们通过一个例题来说明一下哈夫曼编

码的具体过程。下图是各信源符号对应的各自概率,并且概率大小关系已经列出,

请用哈夫曼编码方法对信源符号进行编码。 信源符号i a

概率)(i a p 1a 0.4

2a 0.2

3a 0.2

4a 0.1

5a

0.1 通过给出的概率作出哈夫曼编码的树如下图所示

在上图的哈夫曼树当中方框中的数是题目所给的各信源符号的概率,椭圆里面则

是两个概率的和,我们一般规定左支为0右支为1,然后根据路径从上到下就完

成了哈夫曼编码的过程,编完的码如下图所示

信源符号i a

概率)(i a p 码字i W 码长i K 1a

0.4 1 1 2a 0.2

01 2 3a 0.2

000 3 4a 0.1

0010 4 5a

0.1 0011 4

1 0.4.0.2

0.2 0.2 0.1 0.1 0 1

0 1 0 1

第三章 线性分组码

1、线性分组的概念

所谓线性分组码是当分组码的信息码元与监督码元之间的关系为线性关系,一般线性分组码用(n,k)来表示。也就是说(n,k)分组码是把信息分割成一串前后独立的k bit 信息组(通常用m 表示),再将每组信息元映射成n 个码元组成的码字。k 信息元组可以写成矩阵],,,[011m m m m k -=,码字同样也可以写成矩阵],,,[011c c c c n -=。在二进制情况下:1个码元符号可携带1比特信息。对于线性分组码最核心的部分就是生成矩阵G ,它决定了编码的线性变换规则,也同样决定了码集C 。矩阵G 可以看成由3个行矢量构成,这3个矢量线性无关,所有的码字都是这三个行矢量的线性组合002211g m g m g m C k k k k +++=----

2、线性分组码的原理

通过线性分组码的概念我们初步对线性分组码有了了解,那具体的对信道如何进行编码呢,现在我们通过一个实例对线性分组码如何进行编码做具体的学习。

(6,3)二进制线性分组码输入信息组是][012m m m m =编码输出是][012345c c c c c c C =,而输入输出码元的关系如下图示

⊕ ⊕ ⊕

图3-2-1

其中的⊕是模2加。当三位信息码元m2m1m0给定后,根据图2-1即可写出

0m 1m 2m 0c 1c 2c 3c 4c 5c

码字C 与信息元m 之间的关系 ???????????+=++=+====0

200121122

031425m m c m m m c m m c m c m c m c 将上式改写成矩阵的形式为

()()G m C m m m c c c c c c ?=?????

??????=110100011010111001012012345 图3-2-2 矩阵形式

由于信息元k=3所以编码共有3

2=8种组合,即信息组()012m m m 分别对应从0-7的二进制数000,001,010,011,100,101,110,111然后根据图2-2的矩阵形式就可以对其进行编码。例如当 ()012m m m =(001)时代入矩阵形式有

()()()001011110100011010111001001012345=????

??????=c c c c c c 图3-2-3 系数矩阵

所以所对应码字即为(001011)

通过上面讲解我们知道了如何进行编码,然而我们如何检验一个码字是不是系统码里的码字呢,为此我们引入了校验矩阵H 。我们通过对生成矩阵的分析可以理解成生成矩阵可以通过矩阵的列变换化成k 位的线性无关组即将生成矩阵

看成[]P I G k |=,由于生成矩阵和校验矩阵的转置必需满足正交性所以定义[]k n T I P H --=|证明: 0]|[]|[]|[]|[=+=?-=?--k n k T k k n T T I P P I P I I P H G

我们现在已经定义有检验矩阵H 了,那如何通过检验矩阵来判断是不是码字

呢?因些我们假设

0=?T H r ,则证是r 是码字,反之则不是。可以把信息组置于监督码元的前面,也可以置于后面,这样结构的码均称作系统码;也可以把它

们分散开交错排列,这样的码称为非系统码。系统码和非系统码在检纠错能力上是一样的,一般采用前者,于是得到一个系统码码字。

3、汉明距离

在线性分组码的编码过程当中有可能会出现误码的问题,对于误码是不可避免的,也就是任何一种信道编码的纠、检能力都是有限的,这种限度与码间的距离有关系。为此我们为了表征二元编码间差异的量度我们引入了汉明距离。所谓汉明距离就是说逐位比较两个n 重矢量1R 和2R 的对应各位,其中取值不同的元素的个数称为1R 与2R 的汉明距离,用)(21R R d ,来表示。显然,有)(21R R d ,=)(21R R w ⊕成立。同样也定义汉明重量为n 重矢量R 中,非零元素的个数。最小距离计算定理:线性分组码的最小距离等于码集中非零码字的最小重量。根据此定理我们就将最小距离问题转化为寻找最轻码字的问题使计算量大大减少。并且通过定理二我们可知线性分组码的随机检错的能力为min d -1。而定理三告诉我们线性分组码的纠错能力也是有限的在量上随机差错的能力t 为t=INT ]2

1[min -d 。例如1011101和1001001的汉明距离是多少?可以对两组码字进行模2运算最后再看所对就的权重即是两组码字的汉明距离大小,计算出结果为2。

第四章MATLAB编码译码仿真

MATALB在实现信息编码与译码方面有非常好的作用,它本身含有两个可实现的函数,下面将用MATLAB分别实现信源A=(0.3,0.2,0.1,0.2,0.2)的哈夫曼编码和其对就的熵值和编码效率

哈夫曼编码的MATLAB实现(基于0、1编码)

clc;

clear;

A=[0.3,0.2,0.1,0.2,0.2];

A=fliplr(sort(A));

T=A;

[m,n]=size(A);

B=zeros(n,n-1);

for i=1:n

B(i,1)=T(i);

end

r=B(i,1)+B(i-1,1);

T(n-1)=r;

T(n)=0;

T=fliplr(sort(T));

t=n-1;

for j=2:n-1

for i=1:t

B(i,j)=T(i);

end

K=find(T==r);

B(n,j)=K(end);

r=(B(t-1,j)+B(t,j));

T(t-1)=r;

T(t)=0;

T=fliplr(sort(T));

t=t-1;

end

B;

END1=sym('[0,1]');

END=END1;

t=3;

d=1;

for j=n-2:-1:1

for i=1:t-2

if i>1 & B(i,j)==B(i-1,j)

d=d+1;

else

d=1;

end

B(B(n,j+1),j+1)=-1;

temp=B(:,j+1);

x=find(temp==B(i,j));

END(i)=END1(x(d));

end

y=B(n,j+1);

END(t-1)=[char(END1(y)),'0']; END(t)=[char(END1(y)),'1']; t=t+1;

END1=END;

end

A

END

for i=1:n

[a,b]=size(char(END(i))); L(i)=b;

end

avlen=sum(L.*A)

H1=log2(A);

H=-A*(H1')

P=H/avlen

运行结果显示

接下来用matlab 实现对信道的线性分组编码,我们就用前面所讲的例题(6,3)

线性分组码并且生成矩阵为????

??????==110100011010111001]|[3P I G 实现代码如下 c lc

clear

m=[0 0 0;0 0 1;0 1 0;0 1 1; 1 0 0;1 0 1;1 1 0;1 1 1]; E=eye(3);

disp(E);

p=[1 1 1;1 1 0;0 1 1];

G=[E,p];

disp(G)

C=rem(m*G,2)

w_min=min(sum(C))

运行结果

第五章心得体会

通过本次对信源编码中哈夫曼编码和信道编码中的线性分组码的讲解,自身对这两种针对不同方面的编码类型又有了更深的理解。讲解的同时也是自身学习的一个过程。在此过程个我在结合教材的同时又查询了好多此类方面的资料,并且还请教了老师和同学们。当然在论述的过程中语言方面有可能存在表达不准确的地方。在对哈夫曼信源编码的讲解中还发现了哈夫曼编码方法的不足之处。我们所讲的哈夫曼编码主要是针对的静态哈夫曼编码进行讲解的。静态哈夫曼编码实现的前提是各符号出现的权值一定是事先知道的,只有这样才能对其进行哈夫曼编码。然而现实当中有好多时候各符号的权值也就是所说的概率是事先不知道,那么这种情况下本文所讲解的基础的哈夫曼编码的知识就不一定能得到应用了,通过查看相关资料有一种改进型的哈夫曼编码叫动态哈夫曼编码它能更好的解决概率不知的情况下的编码问题。对于信道编码中的线性分组码编码也是非常基本的一种方法,然而线性分组码也有不足之处,比如线性分组码是把n分成了独立的几块,并且相互之间是没有联系的,这无疑就失去了码字与码字这之间的相关性,进而就大大增加了编码的误码程度。所以针对更好的信道编码相关资料又有提出卷积码的编码方法。但是通过对基本的知识学习能让我能更好的认识这门学科。由于在MATLAB软件中有大量的已经封装好的函数可以更加方便的去实现上面的两种型类的编码,在编码仿真方面MATLAB有很强的作用。本文所采用的实现程序就是大量调用了MATLAB中的相关函数,这样能使程序的代码量大量减少。

参考文献

[1] 王群芳.哈夫曼编码的另一种实现算法.安徽教育学院学报,2006,6(11)

[2] 林寿光.基于MATLAB的哈夫曼编码设计.宁波技术学院学报,2010,10(5)

[3] 王防修,周康.基于二叉树的哈夫曼编码.武汉工业学院学报,2011,12(1)

[4] 康洪波.静态哈夫曼编码的原理及应用.河北建筑工程学院学报,2009,3(11)

[5] 郑瑞瑞.分组纠错编码盲识别的实现技术研究硕士论文.杭州电子科技大学,2013,1

[6] 叶爱华,方芳.基于信息论的编码技术发展与前景综述.南昌航空大学,2009,40(11)

[7] 黄炳,周涛林,刘旭.线性分组码在纠错编码解码的应用.江西应用工程系,2010,12

[8] 文化锋,李斌.线性分组码问题研究[J].宁波大学学报(理工版),2005,18(4)

[9] 李银.基于Simulink的线性分组码的仿真设计与分析.北方自动控制研究所,2012

[10] 邓薇.MA TLAB函数速查手册.人民邮电出版社,2010,5

信息论基础各章参考答案

各章参考答案 2.1. (1)4.17比特 ;(2)5.17比特 ; (3)1.17比特 ;(4)3.17比特 2.2. 1.42比特 2.3. (1)225.6比特 ;(2)13.2比特 2.4. (1)24.07比特; (2)31.02比特 2.5. (1)根据熵的可加性,一个复合事件的平均不确定性可以通过多次实验逐步解除。如果我们使每次实验所获得的信息量最大。那么所需要的总实验次数就最少。用无砝码天平的一次称重实验结果所得到的信息量为log3,k 次称重所得的信息量为klog3。从12个硬币中鉴别其中的一个重量不同(不知是否轻或重)所需信息量为log24。因为3log3=log27>log24。所以在理论上用3次称重能够鉴别硬币并判断其轻或重。每次实验应使结果具有最大的熵。其中的一个方法如下:第一次称重:将天平左右两盘各放4枚硬币,观察其结果:①平衡 ②左倾 ③右倾。ⅰ)若结果为①,则假币在未放入的4枚币,第二次称重:将未放入的4枚中的3枚和已称过的3枚分别放到左右两盘,根据结果可判断出盘中没有假币;若有,还能判断出轻和重,第三次称重:将判断出含有假币的三枚硬币中的两枚放到左右两盘中,便可判断出假币。ⅱ)若结果为②或③即将左盘中的3枚取下,将右盘中的3枚放到左盘中,未称的3枚放到右盘中,观察称重砝码,若平衡,说明取下的3枚中含假币,只能判出轻重,若倾斜方向不变,说明在左、右盘中未动的两枚中其中有一枚为假币,若倾斜方向变反,说明从右盘取过的3枚中有假币,便可判出轻重。 (2)第三次称重 类似ⅰ)的情况,但当两个硬币知其中一个为假,不知为哪个时, 第三步用一个真币与其中一个称重比较即可。 对13个外形相同的硬币情况.第一次按4,4,5分别称重,如果假币在五个硬币的组里,则鉴 别所需信息量为log10>log9=2log3,所以剩下的2次称重不能获得所需的信息. 2.6. (1)215 log =15比特; (2) 1比特;(3)15个问题 2. 7. 证明: (略) 2.8. 证明: (略) 2.9. 31)(11= b a p ,121 )(21=b a p , 121 )(31= b a p , 61)()(1312= =b a b a p p , 241)()()()(33233222= ===b a b a b a b a p p p p 。 2.10. 证明: (略) 2.11. 证明: (略)

信息论的应用

学号:201122010835 姓名:李毅 信息论在图像处理中的应用 摘要:把信息论的基本原理应用到图像处理中具有十分重要的价值。本文主要从评估图像捕捉部分性能的评估、图像分割算法这两个个方面阐述信息论在图像处理中的应用。 通过理论分析来说明使用信息论的基本理论对图像处理的价值。 关键字:信息论;图像捕捉;图像分割 第1章 引言 随着科学技术的不断发展,人们对图形图像认识越来越广泛,图形图像处理的应用领域也将随之不断扩大。为了寻找快速有效的图像处理方法,信息理论越来越多地渗透到图像处理技术中。文章介绍了信息论基本理论在图像处理中的应用,并通过理论分析说明其价值。把通信系统的基本理论信息论应用于采样成像系统,对系统作端到端的系统性能评价,从而优化采样成像系统的设计,是当前采样成像系统研究的分支之一。有些图像很繁杂,而我们只需要其中有意义的一部分,图像分割就是将图像分为一些有意义的区域,然后对这些区域进行描述,就相当于提取出某些目标区域图像的特征,随后判断这些图像中是否有感兴趣的目标。 第2章 图像捕捉部分性能评估 2.1 图像捕捉的数学模型 图像捕捉过程如图1所示。G 为系统的稳态增益,),(y x p 是图像捕捉设备的空间响应函数,),(y x n p 是光电探索的噪声。),(y x comb 代表采样网格函数,),(),,(y x s y x o 分别为输入、输出信号。 在这种模型下的输出信号 ),(),()],(),([),(y x n y x comb y x p y x Go y x s p +*= 其中,∑--= n m n y m x y x comb ,),(),(δ,代表在直角坐标系下,具有单位采样间隔的采样设备的采样函数。

信息论与编码在处理网络问题中的应用报告

信息论与编码在处理网络问题中的应用 摘要 随着计算机技术、通信技术和网络技术等信息技术的快速发展,信息技术已经成为当今社会应用范围最广的高新技术之一。信息论是信息技术的主要理论技术基础之一,它的一些基本理论在通信、计算机、网络等工程领域中得到了广泛的应用。其中信息论与编码与网络结合的更为紧密,在网络方面得到了广泛的应用。本文主要从这个方面作为切入点,介绍了信息论与编码在网络编码、基于网络编码的路由选择、在网络安全方面的放窃听的网络编码,还有就是在网络数据挖掘这方面的应用。 1.引言 人类社会的生存和发展无时不刻都离不开信息的获取、传递、再生、控制和利用。信息论正式一门把信息作为研究对象的科学,以揭示信息的本质特性和规律为基础,应用概率论。随机过程和树立统计等方法来研究信息的存储、传输、处理、控制和利用。它主要研究如何提高信息系统的可靠性、有效性、保密性和认证性,以使信息系统最优化。许多科学技术问题(如无线电通讯、电视、遥测、图像和声音识别等)都必须以信息论为理论指导才能很好地解决。信息论的研究对象又可以是广义的信息传输和信息处理系统。从最普通的电报、电话、传真、电视、雷达、声纳,一直到各类生物神经的感知系统,以及大到人类社会系统,可以用同一的信息论观点加以阐述,?都可以概括成某种随机过程或统计学的数学模型加以深入研究。 2.概述 2.1信息与信息论 1948年6月和10月香农在贝尔实验室出版的著名的《贝尔系统技术》杂志上发表了两篇有关《通信的数学理论》的文章。在这两篇文章中,他用概率测度和数理统计的方法系统的讨论了通信得基本问题,首先严格定义了信息的度量—

—熵的概念,又定义了信道容量的概念,得出了几个重要而带有普遍意义的结论,并由此奠定了现代信息论的基础。 Shannon理论的核心是:揭示了在通信系统中采用适当的编码后能够实现高效率和高可靠地传输信息,并得出了信源编码定理和信道编码定理。从数学观点看,这些定理是最优编码的存在定理。但从工程观点看,这些定理不是结构性的,不能从定理的结果直接得出实现最优编码的具体途径。然而,它们给出了编码的性能极限,在理论上阐明了通信系统中各种因素的相互关系,为人们寻找出最佳通信系统提供了重要的理论依据。 而其理论到目前主要经历了以下几个方面的发展:Shannon信息理论的数学严格化、无失真信源编码定力和技术的发展、信道纠错编码的发展、限失真信源编码的提出和发展、多用户、网络信息论的发展、信息保密与安全理论的提出与发展,从此以后,纠错码和密码学相结合的研究迅速发展起来。 2.2网络与信息论 网络信息论的发展前期是多用户信息论,在20世纪70、80年代有很大的发展,当时的多用户信息论已具有网络结构的特征,其中的信源与信道模型已具有多数人多输出的结构,对信道还有并联与串联的结构等模型,多用户信息论就是解决这些模型的编码问题,一时成为信息论研究的热点问题。到20世纪90年代,由于网络通信的兴起,网络模型远比多用户模型复杂,网络中的通信、数据压缩、资源共享与安全管理将是信息论发展的重要领域。 2.3网络编码 2000 年Ahlswede 等人首次提出了网络编码理论, 通过网络编码可以实现网络流量的最大化.2003年, Li , Yeung 和Cai证明了线性网络编码就可以实现网络的最大流.随后T .Ho 等人提出了随机网络编码理论, 其思想是在网络中参与传输的节点, 其输出信道上传输的数据是该点多条输入信道上传输的数据的随机线性组合, 他们并且证明了接收节点能以很大的概率正确恢复出信源所发送的信息. 传统的通信网络传送数据的方式是存储转发,即除了数据的发送节点和接收节点以外的节点只负责路由,而不对数据内容做任何处理,中间节点扮演着转发

信息论基础论文

信息论基础发展史 信息论(information theory)是运用概率论与数理统计的方法研究信息、信息熵、通信系统、数据传输、密码学、数据压缩等问题的应用数学学科。是专门研究信息的有效处理和可靠传输的一般规律的科学,是研究通讯和控制系统中普遍存在着信息传递的共同规律以及研究最佳解决信息的获限、度量、变换、储存和传递等问题的基础理论。信息论将信息的传递作为一种统计现象来考虑,给出了估算通信信道容量的方法。信息传输和信息压缩是信息论研究中的两大领域。这两个方面又由信息传输定理、信源-信道隔离定理相互联系。 信息论从诞生到今天,已有五十多年历史,是在20世纪40年代后期从长期通讯实践中总结出来的,现已成为一门独立的理论科学,回顾它的发展历史,我们可以知道理论是如何从实践中经过抽象、概括、提高而逐步形成的。它是在长期的通信工程实践和理论研究的基础上发展起来的。 通信系统是人类社会的神经系统,即使在原始社会也存在着最简单的通信工具和通信系统,这方面的社会实践是悠久漫长的。电的通信系统(电信系统)已有100多年的历史了。在一百余年的发展过程中,一个很有意义的历史事实是:当物理学中的电磁理论以及后来的电子学理论一旦有某些进展,很快就会促进电信系统的创造发明或改进。 当法拉第(M.Faraday)于1820年--1830年期间发现电磁感应的基本规律后,不久莫尔斯(F.B.Morse)就建立起电报系统(1832—1835)。1876年,贝尔(A.G.BELL)又发明了电话系统。1864年麦克斯韦(Maxell)预言了电磁波的存在,1888年赫兹(H.Hertz)用实验证明了这一预言。接着1895年英国的马可尼(G.Marconi)和俄国的波波夫(A.C.ΠoΠoB)就发明了无线电通信。本世纪初(1907年),根据电子运动的规律,福雷斯特(1,Forest)发明了能把电磁波

信息的内涵与信息论发展简史

信息的内涵与信息论发展简史学院:数学与统计学院专业:信息与计算科学学生:卢富毓学号:20101910072 内容摘要:信息论经过六十多年的发展,现在已经成为现代信息科学的一个重要组成部分,信息论是现代通信和信息技术的理论基础。本文详细从来阐述信息论的内涵以及发展史。 信息是什么?什么叫信息论? 信息泛指人类社会传播的一切内容。人通过获得、识别自然界和社会的不同信息来区别不同事物,得以认识和改造世界。在一切通讯和控制系统中,信息是一种普遍联系的形式。1948年,数学家香农在题为“通讯的数学理论”的论文中指出:“信息是用来消除随机不定性的东西”。美国数学家、控制论的奠基人诺伯特·维纳在他的《控制论——动物和机器中的通讯与控制问题》中认为,信息是“我们在适应外部世界,控制外部世界的过程中同外部世界交换的内容的名称”。英国学者阿希贝认为,信息的本性在于事物本身具有变异度。 由此可见在不同的领域,有着对信息的不同定义。 而如今比较首肯的是数学家香农给出的解释——信息是用来消除随机不定性的东西。 信息论是运用概率论与数理统计的方法研究信息、信息熵、通信系统、数据传输、密码学、数据压缩等问题的应用数学学科。 信息论将信息的传递作为一种统计现象来考虑,给出了估算通信信道容量的方法。信息传输和信息压缩是信息论研究中的两大领域。这两个方面又由信息传输定理、信源-信道隔离定理相互联系。 1948~1949年,香农(Shannon)在《贝尔系统技术杂志》上发表了论文《通信的数学理论》以及《噪声下的通信》。在这两篇论文中,他经典地阐明了通信的基本问题,提出了通信系统的模型,给出了信息量的数学表达式,解决了信道容量、信源统计特性、信源编码、信道编码等有关精确地传送通信符号的基本技术问题,并且开始创造性的定义了“信息”。这两篇论文成了现在信息论的奠基著作。而香农也一鸣惊人,成了这门新兴学科的奠基人。香农也因此被称为是“信息论之父”。 信息有什么内涵? 信息是现代社会的一种非常重要的资源,信息社会中的信息就像农业社会的土地,工业社会的资金和技术一样,将会成为人们竞相争夺的对象,从某种意义上来说,信息就是现代社会最重要的财富,谁掌握了信息,谁就掌握了未来。 信息的内涵是什么呢? 不同人对信息有着不同的理解。有人认为信息就是消息,传递信息就是传递消息。这种定义有一定道理,但不太准确。信息和消息是有区别的,一般来说,

信息论基础及答案

《信息论基础》试卷第1页 《信息论基础》试卷答案 一、填空题(共25分,每空1分) 1、连续信源的绝对熵为 无穷大。(或()()lg lim lg p x p x dx +∞-∞ ?→∞ --?? ) 2、离散无记忆信源在进行无失真变长信源编码时,编码效率最大可以达到 1 。 3、无记忆信源是指 信源先后发生的符号彼此统计独立 。 4、离散无记忆信源在进行无失真变长编码时,码字长度是变化的。根据信源符号的统计特性,对概率大的符号用 短 码,对概率小的符号用 长 码,这样平均码长就可以降低,从而提高 有效性(传输速率或编码效率) 。 5、为了提高系统的有效性可以采用 信源编码 ,为了提高系统的可靠性可以采用 信道编码 。 6、八进制信源的最小熵为 0 ,最大熵为 3bit/符号 。 7、若连续信源输出信号的平均功率为1瓦特,则输出信号幅度的概率密度函数为 高斯分布(或()0,1x N 2 2 x - )时,信源具有最大熵,其值为 0.6155hart(或 1.625bit 或 1lg 22 e π)。 8、即时码是指 任一码字都不是其它码字的前缀 。 9、无失真信源编码定理指出平均码长的理论极限值为 信源熵(或H r (S)或()lg H s r ),此 时编码效率为 1 ,编码后的信息传输率为 lg r bit/码元 。 10、一个事件发生的概率为0.125,则自信息量为 3bit/符号 。 11、信源的剩余度主要来自两个方面,一是 信源符号间的相关性 ,二是 信源符号概率分布的不均匀性 。 12、m 阶马尔可夫信源的记忆长度为 m+1 ,信源可以有 q m 个不同的状态。 13、同时扔出一对均匀的骰子,当得知“两骰子面朝上点数之和为2”所获得的信息量为 lg36=5.17 比特,当得知“面朝上点数之和为8”所获得的信息量为 lg36/5=2.85 比特。 14.在下面空格中选择填入的数学符号“=,≥,≤,>”或“<” H(XY) = H(Y)+H(X ∣Y) ≤ H(Y)+H(X)

信息论

信息论的发展及应用 信息论是运用概率论与数理统计的方法研究信息、信息熵、通信系统、数据传输、密码学、数据压缩等问题的应用数学学科。 信息论将信息的传递作为一种统计现象来考虑,给出了估算通信信道容量的方法。信息传输和信息压缩是信息论研究中的两大领域。这两个方面又由信息传输定理、信源-信道隔离定理相互联系。信息论经过六十多年的发展,现在已经成为现代信息科学的一个重要组成部分,信息论是现代通信和信息技术的理论基础。现代信息论又是数学概率论与数理统计下年的一个分支学科。现在信息论已经成为国内数学系信息与计算科学专业的一门必须课程。作为信息论的奠基人克劳德·艾尔伍德·香农(Claude Elwood Shannon ),于1948 年和1949 年发表的两篇论文一起奠定了现代信息论的基础信息论的研究范围极为广阔。一般把信息论分成三种不同类型: (1)狭义信息论是一门应用数理统计方法来研究信息处理和信息传递的科学。它研究存在于通讯和控制系统中普遍存在着的信息传递的共同规律,以及如何提高各信息传输系统的有效性和可靠性的一门通讯理论。 (2)一般信息论主要是研究通讯问题,但还包括噪声理论、信号滤波与预测、调制与信息处理等问题。 (3)广义信息论不仅包括狭义信息论和一般信息论的问题,而且还包括所有与信息有关的领域,如心理学、语言学、神经心理学、语义学等。

信息论发展: 1924年,Nyquist提出信息传输理论; 1928年,Hartley提出信息量关系; 1932年,Morse发明电报编码; 1946年,柯切尼柯夫提出信号检测理论; 1948年,Shannon提出信息论,他发表的论文:“A mathematical theory of communication ”同时维纳提出了最佳滤波理论,成为信息论的一个重要分支。 1959年,香农为各种信息源编码的研究奠定基础,发表论文:“Coding theorems for a discrete source with a fidelity criterion”,数据压缩理论与技术成为信息论的重要分支 六十年代,信道编码技术有较大的发展,信道编码成为信息论重要分支。 1961年,香农的重要论文“双路通信信道”开拓了多用户信息理论的研究、 七十年代,有关信息论的研究,从点对点的单用户通信推广到多用户系统的研究。密码学成为信息论的重要分支。 详细介绍; 现代信息论其实是从上世纪二十年代奈奎斯特和哈特莱的研究开始的,他们最早开始研究了通信系统传输信息的能力,并且试图度量系统的信道容量。香农于1940 年在普林斯顿高级研究所期间开始思考信息论与有效通信系统的问题。经过8 年的努力,1948

信息论应用调研报告

信息论基础调研报告 一.信息论的起源: 信息论理论基础的建立,一般来说开始于1948年美国数学家香农在《贝尔系统电话杂志》发表题为“通信的数学理论”的长篇论文。这篇论文以概率论为工具,深刻阐释了通信工程的一系列基本理论问题,给出了计算信源信息量和信道容量的方法和一般公式,得出了一组表征信息传递重要关系的编码定理,从而创立了信息论。 信息论自诞生到现在不过60多年,在人类科学史上是相当短暂的。但它的发展对学术界以及人类社会的影响是相当广泛和深刻的。信息作为一种资源,如何开发、利用、共享,是人们普遍关心的问题。 信息论是研究信息的传输、存储和处理的学科,亦称“信息论”为“通信的数学理论”。它主要研究在通信系统设计中如何实现信息传输的有效性和可靠性。 因此,信息论与通信技术、统计数学信号处理等密切相关。 二.信息技术的发展: 现代信息论其实是从上世纪二十年代奈奎斯特和哈特莱的研究开始的,他们最早开始研究了通信系统传输信息的能力,并且试图度量系统的信道容量。 香农于1940年在普林斯顿高级研究所期间开始思考信息论与有效通信系统的问题。经过8年的努力,1948年,来自贝尔研究所的Claude Shannon(克劳德·香农)的《通信的数学理论》论文公诸于世,从此宣告了崭新的一门关于信息发面的学科──信息论的诞生。1949年,香农又在该杂志上发表了另一著名论文《噪声下的通信》。在这两篇论文中,香农阐明了通信的基本问题,给出了通信系统的模型,提出了信息量的数学表达式,并解决了信道容量、信源统计特性、信源编码、信道编码等一系列基本技术问题。两篇论文成为了信息论的奠基性著作。这两篇论文一起阐述了现代信息论的基础。并且香农开始创造性的定义了“信息”。 信息论自从二十世纪四十年代中叶到二十一世纪初期,现已成为一门独立的理论科学,他给出一切传输、存储、处理信息系统的一般理论,并指出,实现有效、可靠地传输和存储信息的途径是走数字化的道路。这是通信技术领域数字化革命的数学或理论基础。1946年的计算机和1947年晶体管的诞生和相应技术的发展,是这一革命的物理或物质基础。信息论是在长期的通信工程实践和理论研究的基础上发展起来的。 20世纪50年代,包括香农在内的一些科学家做了大量的工作,发表了许多重要文章,将香农的科学论断进一步推广,同时信道编码理论有了较大的发展。20世纪60年代,信道编码技术已经成为信息论的又一重要分支。它把代数方法引入到纠错码的研究,使分组码技术达到了高峰,找到了可纠正多个错误的码,并提出了可实现的译码方法。其次是卷积码和概率译码有了重大突破,提出了序列译码和维特比译码方法。 1961年,香农的重要论文“双路通信信道”开拓了多用户信息理论的研究。到70年代,由于数字计算机的广泛应用,通讯系统的能力也有很大提高,如何

信息论发展

信息论发展 现代信息论是从上世纪二十年代奈奎斯特和哈特莱的研究开始的,他们最早开始研究了通信系统传输信息的能力,并且试图度量系统的信道容量。香农于1940年在普林斯顿高级研究所期间开始思考信息论与有效通信系统的问题。经过8年的努力,1948年,来自贝尔研究所的ClaudeShannon(克劳德·香农)的《通信的数学理论》论文公诸于世,从此宣告了崭新的一门关于信息发面的学科──信息论的诞生。1949年,香农又在该杂志上发表了另一著名论文《噪声下的通信》。在这两篇论文中,香农阐明了通信的基本问题,给出了通信系统的模型,提出了信息量的数学表达式,并解决了信道容量、信源统计特性、信源编码、信道编码等一系列基本技术问题。两篇论文成为了信息论的奠基性著作。这两篇论文一起阐述了现代信息论的基础。并且香农开始创造性的定义了“信息”。 信息论自从二十世纪四十年代中叶到二十一世纪初期,现已成为一门独立的理论科学,他给出一切传输、存储、处理信息系统的一般理论,并指出,实现有效、可靠地传输和存储信息的途径是走数字化的道路。这是通信技术领域数字化革命的数学或理论基础。1946年的计算机和1947年晶体管的诞生和相应技术的发展,是这一革命的物理或物质基础。信息论是在长期的通信工程实践和理论研究的基础上发展起来的。当物理学中的电磁理论以及后来的电子学理论一旦有某些进展,很快就会促进电信系统的创造发明或改进。这是因为通信系统对人类社会的发展,其关系实在是太密切了。日常生活、工农业生产、科学研究以及战争等等,一切都离不开消息传递和信息流动。通信系统是人类社会的神经系统,即使在原始社会也存在着最简单的通信工具和通信系统,这方面的社会实践是悠久漫长的。自从香农十九世纪四十年代末两篇论文发表后,前苏联和美国的科学家采取了不同的研究途径经一部发展了信息论。柯尔莫哥洛夫、宾斯基和达布鲁新为首的一批著名数学家致力于信息论的公理化体系和更一般更抽象的数学模型,对信息论的基本定理给出了更为普遍的结果,为信息论发展成数学的一个分支作出了贡献。而在美国测试有一批数学修养很高的工程技术人员致力于信息有效处理和可靠传输的可实现性,维信息论转化为信息技术作出了贡献。 20世纪50年代,信息论向各门学科发起冲击;60年代信息论进入一个消化、

信息论基础理论与应用考试题及答案

信息论基础理论与应用考试题 一﹑填空题(每题2分,共20分) 1.信息论研究的目的就是要找到信息传输过程的共同规律,以提高信息传输的 (可靠性)﹑(有效性)﹑保密性和认证性,使信息传输系统达到最优化。 (考点:信息论的研究目的) 2.电视屏上约有500×600=3×510个格点,按每点有10个不同的灰度等级考虑,则可组成5 31010?个不同的画面。按等概计算,平均每个画面可提供的信息量约为(610bit /画面)。 (考点:信息量的概念及计算) 3.按噪声对信号的作用功能来分类信道可分为 (加性信道)和 (乘性信道)。 (考点:信道按噪声统计特性的分类) 4.英文电报有32个符号(26个英文字母加上6个字符),即q=32。若r=2,N=1,即对信源S 的逐个符号进行二元编码,则每个英文电报符号至少要用 (5)位二元符号编码才行。 (考点:等长码编码位数的计算) 5.如果采用这样一种译码函数,它对于每一个输出符号均译成具有最大后验概率的那个输入符号,则信道的错误概率最小,这种译码规则称为(最大后验概率准则)或(最小错误概率准则)。 (考点:错误概率和译码准则的概念) 6.按码的结构中对信息序列处理方式不同,可将纠错码分为(分组码)和(卷积码)。 (考点:纠错码的分类) 7.码C={(0,0,0,0),(0,1,0,1),(0,1,1,0),(0,0,1,1)}是((4, 2))线性分组码。 (考点:线性分组码的基本概念) 8.定义自信息的数学期望为信源的平均自信息量,即(11()log ()log ()()q i i i i H X E P a P a P a =??==-????∑)。

信息论与编码试题集概要

1. 在无失真的信源中,信源输出由 H (X ) 来度量;在有失真的信源中,信源输出由 R (D ) 来度量。 2. 要使通信系统做到传输信息有效、可靠和保密,必须首先 信源 编码, 然后_____加密____编码,再______信道_____编码,最后送入信道。 3. 带限AWGN 波形信道在平均功率受限条件下信道容量的基本公式,也就是有名的香农公式是log(1)C W SNR =+;当归一化信道容量C/W 趋近于零时,也即信道完全丧失了通信能力,此时E b /N 0为 -1.6 dB ,我们将它称作香农限,是一切编码方式所能达到的理论极限。 4. 保密系统的密钥量越小,密钥熵H (K )就越 小 ,其密文中含有的关于明文的信息量I (M ;C )就越 大 。 5. 设输入符号表为X ={0,1},输出符号表为Y ={0,1}。输入信号的概率分布为p =(1/2,1/2),失真函数为d (0,0) = d (1,1) = 0,d (0,1) =2,d (1,0) = 1,则D min = 0 ,R (D min )= 1bit/symbol ,相应的编码器转移概率矩阵[p(y/x )]=1001?? ???? ;D max = 0.5 ,R (D max )= 0 ,相应的编码器转移概率矩阵[p(y/x )]=1010?? ???? 。 二、判断题 1. 可以用克劳夫特不等式作为唯一可译码存在的判据。 (√ ) 2. 线性码一定包含全零码。 (√ ) 3. 算术编码是一种无失真的分组信源编码,其基本思想是将一定精度数值作为序列的 编码,是以另外一种形式实现的最佳统计匹配编码。 (×) 4. 某一信源,不管它是否输出符号,只要这些符号具有某些概率特性,就有信息量。 (×) 5. 离散平稳有记忆信源符号序列的平均符号熵随着序列长度L 的增大而增大。 (×) 6. 限平均功率最大熵定理指出对于相关矩阵一定的随机矢量X ,当它是正态分布时具 有最大熵。 (√ ) 7. 循环码的码集中的任何一个码字的循环移位仍是码字。 (√ ) 8. 信道容量是信道中能够传输的最小信息量。 (×) 9. 香农信源编码方法在进行编码时不需要预先计算每个码字的长度。 (×) 10. 在已知收码R 的条件下找出可能性最大的发码i C 作为译码估计值,这种译码方 法叫做最佳译码。 (√ ) 三、计算题 某系统(7,4)码 )()(01201230123456c c c m m m m c c c c c c c ==c 其三位校验 位与信息位的关系为:

信息论基础总结

?? ? ???=??????)()()()(2 211 I I x q x x q x x q x X q X Λ Λ∑==I i i x q 1 1 )(?? ? ???=??????)()()()(2211 m q q q q x x x x x x X X m ΛΛ∏ =N i i x q 1 )(第1章 信息论基础 信息是物质和能量在空间和时间上分布的不均匀程度,或者说信息是关于事物运动的状态和规律。 消息是能被人们感觉器官感知的客观物质和主观思维的运动状态或存在状态。 通信系统中形式上传输的是消息,实质上传输的是信息,消息中包含信息,消息是信息的载体。 信息论是研究信息的基本性质及度量方法,研究信息的获取、传输、存储和处理的一般规律的科学。 狭义信息论 信息论研究的范畴: 实用信息论 广义信息论 信息传输系统 信息传输系统的五个组成部分及功能: 1. 信源 信源是产生消息的源。 2. 编码器 编码器是将消息变换成适合于信道传送的信号的设备。 编码器分为信源编码器和信道编码器两种。 3. 信道 信道是信息传输和存储的媒介,如光纤、电缆、无线电波等。 4. 译码器 译码器是编码器的逆变换,分为信道译码器和信源译码器。 5. 信宿 信宿是消息的接收者,可以是人,也可以是机器。 离散信源及其数学模型 离散信源—消息集X 为离散集合,即时间和空间均离散的信源。 连续信源—时间离散而空间连续的信源。波形信源—时间和空间均连续的信源。 无记忆信源—X 的各时刻取值相互独立。有记忆信源—X 的各时刻取值互相有关联。 离散无记忆信源的数学模型—离散型的概率空间: x i ∈{a 1,a 2,…,a k } 1≤i ≤I 0≤q(x i )≤1 离散无记忆N 维扩展信源的数学模型: x =x 1x 2…x N x i ∈{a 1,a 2,…,a k } 1≤i ≤N q (x )=q (x 1x 2 … x N )= 离散信道及其数学模型 离散信道—信道的输入和输出都是时间上离散、取值离散的随机序列。离散信道有时也称为数字信道。 连续信道—信道的输入和输出都是时间上离散、取值连续的随机序列,又称为模拟信道。 半连续信道—输入序列和输出序列一个是离散的,而另一个是连续的。 波形信道—信道的输入和输出都是时间上连续,并且取值也连续的随机信号。 无记忆信道—信道的输出y 只与当前时刻的输入x 有关。 有记忆信道—信道的输出y 不仅与当前时刻的输入x 有关,还与以前的输入有统计关系。

信息论发展史和展望 蒲鹤升

信息论发展史和展望 蒲鹤升(020150802) 一、信息论定义 信息论,顾名思义是一门研究信息的处理和传输的科学;即用概率论与数理统计方法来探究信息的度量、传递和变换规律的一门学科。它主要是研究通讯和控制系统中普遍存在着信息传递的共同规律以及研究最佳解决信息的获限、度量、变换、储存和传递等问题的基础理论。信息论将信息的传递作为一种统计现象来考虑,给出了估算通信信道容量的方法,信息传输和信息压缩是信息论研究中的两大领域,这两个方面又由信息传输理论、信源-信道隔离定理相互联系。信息是系统传输和处理的对象,它载荷于语言、文字、图像、数据等之中。这就是现代信息论的出发点。 二、狭义与广义 狭义的信息论是应用数理统计方法来研究信息处理和信息传递的科学,它研究存在于通讯和控制系统中普遍存在着的信息传递的共同规体,以及如何提高各信息传输系统的有效性和可能性的一门通讯理论。狭义信息论是申农氏于1948年创立的,其主要内容就是研究信源、信宿、传递及编码问题,因此它主要应用于通讯工作。后来信息论发展很快,将申农氏信息论的观点做为研究一切问题的理论,即广义信息论。信息论是建立在信息基础上的理论,所谓信息,即人类凭借感觉器官感知的周围一切变化,都可称作信息。 三、相关人物贡献 20世纪通信技术的发展推动了信息理论的研究. 美国科学家H.Nyquist 于1924年解释了信号带宽和信息速率之间的关系 美国科学家L.V.R.Hartley 于1928年开始研究通信系统传输信息的能力,给出了信息的度量方法 美国科学家C.E.Shannon 于1948年发表的著名论文《通信的数学理论》 A Mathematical Theory of Communication奠定了信息论的理论基础 四、各发展阶段 第一阶段:1948年贝尔研究所的香农在题为《通讯的数学理论》的论文中系统地提出了关于信息的论述,创立了信息论. 第二阶段:20世纪50年代,信息论向各门学科发起冲击;60年代信息论进入一个消化、理解的时期,在已有的基础上进行重大建设的时期.研究重点是信息和信源编码问题.

信息论概念复习1

信息论概念复习题 一、填空 1948年,美国数学家 香农 发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。 人们研究信息论的目的是为了 高效、可靠、安全 地交换和利用各种各样的信息。 信息的 可度量性 是建立信息论的基础。 统计度量 是信息度量最常用的方法。 熵 是香农信息论最基本最重要的概念。 事物的不确定度是用时间统计发生 概率的对数 来描述的。 7、单符号离散信源一般用随机变量描述,而多符号离散信源一般用 随机矢量 描述。 8、一个随机事件发生某一结果后所带来的信息量称为自信息量,定义为 其发生概率对数的负值 。 9、自信息量的单位一般有 比特、奈特和哈特 。 10、必然事件的自信息是 0 。 11、不可能事件的自信息量是 ∞ 。 12、两个相互独立的随机变量的联合自信息量等于 两个自信息量之和 。 13、数据处理定理:当消息经过多级处理后,随着处理器数目的增多,输入消息与输出消息之间的平均互信息量 趋于变小 。 14、离散平稳无记忆信源X 的N 次扩展信源的熵等于离散信源X 的熵的 N 倍 。 15、离散平稳有记忆信源的极限熵, =∞H ) /(lim 1 21-∞→N N N X X X X H 。 16、对于n 元m 阶马尔可夫信源,其状态空间共有 nm 个不同的状态。 17、一维连续随即变量X 在[a ,b]区间内均匀分布时,其信源熵为 log2(b-a ) 。 18、根据输入输出信号的特点,可将信道分成离散信道、连续信道、半离散或半连续 信道。 19、信道的输出仅与信道当前输入有关,而与过去输入无关的信道称为 无记忆 信道。 20、具有一一对应关系的无噪信道的信道容量C= log2n 。 21、对称信道的信道容量C= log2m-Hmi 。 22、对于离散无记忆信道和信源的N 次扩展,其信道容量CN= NC 。 24、信道编码定理是一个理想编码的存在性定理,即:信道无失真传递信息的条件是 信息率小于信道容量 。 25、信息率失真理论是量化、数模转换、频带压缩和 数据压缩 的理论基础。 26、求解率失真函数的问题,即:在给定失真度的情况下,求信息率的 极小值 。 27、单符号的失真度或失真函数d (xi ,yj )表示信源发出一个符号xi ,信宿再现yj 所引起的 误差或失真 。 28、汉明失真函数 d (xi ,yj )=? ??≠=j i j i 1 0 。 29、如果规定平均失真度D 不能超过某一限定的值D ,即:D D ≤。我们把D D ≤称为 保真度准则 。 30 、 试验信道的集合用PD 来表示,则PD= {}m j n i D D x y p i j ,,2,1,,,2,1;:)/( ==≤ 。

关于经典信息论的Case

关于经典信息论的Case 经典信息论的case首先是现代通信技术的理论基础,而以下就是经典信息论在现代通信技术的的基础作用的体现。 1.香农信息论是通信技术的理论基础 1948年香农在Bell System Technical Journal上发表了《A Mathematical Theory of Communication 》。论文由香农和威沃共同署名。前辈威沃(Warren Weaver,1894-1978)当时是洛克菲勒基金会自然科学部的主任,他为文章写了序言。后来,香农仍然从事技术工作,而威沃则研究信息论的哲学问题。顺便提一句,该论文刚发表时,使用的是不定冠词A,收入论文集时改为定冠词The。 这篇奠基性的论文是建立在香农对通信的观察上,即“通信的根本问题是报文的再生,在某一点与另外选择的一点上报文应该精确地或者近似地重现”。这篇论文建立了信息论这一学科,给出了通信系统的线性示意模型,即信息源、发送者、信道、接收者、信息宿,这是一个新思想。此后,通信就考虑为把电磁波发送到信道中,通过发送1和0的比特流,人们可以传输图像、文字、声音等等。今天这已司空见惯,但在当时是相当新鲜的。他建立的信息理论框架和术语已经成为技术标准。他的理论在通信工程师中立即获得成功,并刺激了技术。香农考虑的信息源,产生由有限符号组成的词。它们通过信道进行传输,每个符号开销有限的信道时间。这里涉及到统计学问题,如果xn是第n个符号,它是由固定随机过程源xn产生的,香农给出一个分析信号误差序列的方法,它是传输系统固有的,可以通过设计相应

的控制系统控制它。 在这篇论文中,香农首次引入“比特”(bit)一词,如果在信号中附加额外的比特,就能使传输错误得到纠正。按照物理学的习惯,把电流单位叫做“安培”,如果给“比特流”一个单位名,可以叫香农 通信的数学理论是香农在数学与工程研究上的顶峰。他把通信理论的解释公式化,对最有效地传输信息的问题进行了研究。香农的文章立即被世界各国的通信工程师和数学家采用,大家详细地论述它、扩展它、完善它。这个学科立刻繁荣起来,成为科学史上光辉灿烂的一页。后来,香农感到由他扮演重要角色而开始与通信革命走得有些过远。他写道:“信息理论可能像一个升空的气球,其重要性超过了它的实际成就”,真是大师的气魄。 2.香农的信息论对传播学的影响 香农的单向传播行为的模式有助于奠定传播学的学术领域。比起任何其他的理论概念化工作来,它更适合于作为传播学的范式,即为传播行为中的主要组成部分提供了一个单一的、易于理解的明确说明。这些主要组成部分是:信源、讯息、信道、接受器。因此,对于传播行为iede传播研究可以确定出信源变量(诸如可信度),讯息变量(就像使用恐惧诉求)、信道变量(诸如大众媒体与人际信道)和接受者变量(如受众个体的可说服性)。传播研究中的因变量对效果进行测度,诸如接受者一方的认识变化、态度变化等。香农信息论的第三个要素,也就是在他信息的定义、测度以及他的传播模式之后,是他关于信道能力的命题。香农的命题论述了诸如带或不带噪音的信

信息论基础答案2

《信息论基础》答案 一、填空题(共15分,每空1分) 1、若一连续消息通过某放大器,该放大器输出的最大瞬时电压为b ,最小瞬时电压为a 。若消息从放大器中输出,则该信源的绝对熵是 无穷大 ;其能在每个自由度熵的最大熵是 ()log b-a 。 2、高斯白噪声信道是指 信道噪声服从正态分布,且功率谱为常数 。 3、若连续信源的平均功率为5 W ,则最大熵为12log10π ? e ,达到最大值的条件是 高斯信道 。 4、离散信源存在剩余度的原因是 信源有记忆(或输出符号之间存在相关性) 和 不等概 。 5、离散无记忆信源在进行无失真变长信源编码时,编码效率最大可以达到 1 。 6、离散无记忆信源在进行无失真变长信源编码时,码字长度是变化的。根据信源符号的统计特性,对概率大的符号用 短 码,对概率小的符号用 长 码,这样平均码长就可以降低,从而提高编码效率。 7、八进制信源的最小熵为 0 ,最大熵为 3 bit 。 8、一个事件发生概率为,则自信息量为 3 bit 。 9、在下面空格中选择填入数字符号“,,,=≥≤>”或“<” ()H XY = ()()+H Y H X Y ≤ ()()+H Y H X 二、判断题(正确打√,错误打×)(共5分,每小题1分) 1) 离散无记忆等概信源的剩余度为0。 ( √ ) 2) 离散无记忆信源N 次扩展源的熵是原信息熵的N 倍 ( √ ) 3) 互信息可正、可负、可为零。 ( √ ) 4) 信源的真正功率P 永远不会大于熵功率P ,即P P ≤ ( × ) 5) 信道容量与信源输出符号的概率分布有关。 ( × ) 三、(5分)已知信源的概率密度函数()p x 如下图所示,求信源的相对熵

论信息论与编码的发展与前景

信息论与编码的发展与前景 摘要:信息论理论的建立,提出了信息、信息熵的概念,接着人们提出了编码定理。编码方法有较大发展,各种界限也不断有人提出,使多用户信息论的理论日趋完整,前向纠错码(FEC)的码字也在不断完善。但现有信息理论中信息对象的层次区分对产生和构成信息存在的基本要素、对象及关系区分不清,适用于复杂信息系统的理论比较少,缺乏核心的“实有信息”概念,不能很好地解释信息的创生和语义歧义问题。只有无记忆单用户信道和多用户信道中的特殊情况的编码定理已有严格的证明,其他信道也有一些结果,但尚不完善。但近几年来,第三代移动通信系统(3G)的热衷探索,促进了各种数字信号处理技术发展,而且Turbo码与其他技术的结合也不断完善信道编码方案。 关键词:信息论信道编码纠错编码信息理论的缺陷 3G Turbo码 一、信息论的形成和发展 信息论从诞生到今天,已有五十多年历史,现已成为一门独立的理论科学,回顾它的发展历史,我们可以知道理论是如何从实践中经过抽象、概括、提高而逐步形成的。 1.1信息论形成的背景与基础 信息论是在人们长期的通信工程实践中,由通信技术和概率论、随机过程和数理统计相结合而逐步发展起来的一门学科。人们公认的信息论的奠基人是当代伟大的数学家、美国贝尔实验室杰出的科学家香农,他在1948年发表了著名的论文《通信的数学理论》,为信息论奠定了理论基础。近半个世纪以来,以通信理论为核心的经典信息论,正以信息技术为物化手段,向高精尖方向迅猛发展,并以神奇般的力量把人类社会推入了信息时代。随着信息理论的迅猛发展和信息概念的不断深化,信息论所涉及的内容早已超越了狭义的通信工程范畴,进入了信息科学领域。 通信系统是人类社会的神经系统,即使在原始社会也存在着最简单的通信工具和通信系统,这方面的社会实践是悠久漫长的。 电的通信系统(电信系统)已有100多年的历史了。在一百余年的发展过程中,一个很有意义的历史事实是:当物理学中的电磁理论以及后来的电子学理论一旦有某些进展,很快就会促进电信系统的创造发明或改进。这是因为通信系统对人类社会的发展,其关系实在是太密切了。日常生活、工农业生产、科学研究以及战争等等,一切都离不开消息传递和信息流动。 例如,当法拉第(M.Faraday)于1820年--1830年期间发现电磁感应的基本规律后,不久莫尔斯(F.B.Morse)就建立起电报系统(1832—1835)。1876年,贝尔(A.G.BELL)又发明了电话系统。1864年麦克斯韦(Maxell)预言了电磁波的存在,1888年赫兹(H.Hertz)用实验证明了这一预言。接着1895年英国的马可尼(G.Marconi)和俄国的波波夫(A.C.ΠoΠoB)就发明了无线电通信。 本世纪初(1907年),根据电子运动的规律,福雷斯特(1,Forest)发明了能把电磁波进行放大的电子管。之后很快出现了远距离无线电通信系统。大功率超高频电子管发明以后,电视系统就建立起来了(1925—1927)。电子在电磁场运动过程中能量相互交换的规律被人们认识后,就出现了微波电子管(最初是磁控管,后来是速调管、行波管),接着,在三十年代末和四十年代初的二次世界大战初期,微波通信系统、微波雷达系统等就迅速发展起来。五十年代后期发明了量子放大器,六十年代初发明的激光技术,使人类进入了光纤通信的时代。

信息论基础1答案

信息论基础1答案

《信息论基础》答案 一、填空题(本大题共10小空,每小空1分,共20分) 1.按信源发出符号所对应的随机变量之间的无统计依赖关系,可将离散信源分为有记忆信源和无记忆信源两大类。 2.一个八进制信源的最大熵为3bit/符号 3.有一信源X ,其概率分布为 123x x x X 111P 2 44?? ?? ?=?? ??? ?? , 其信源剩余度为94.64%;若对该信源进行十次扩展,则每十个符号的平均信息量是 15bit 。 4.若一连续消息通过放大器,该放大器输出的最大瞬间电压为b ,最小瞬时电压为a 。若消息从放大器中输出,则该信源的绝对熵是 ∞ ;其能在每个自由度熵的最大熵是log (b-a ) bit/自由度;若放大器的最高频率为F ,则单位时间内输出的最大信息量是 2Flog (b-a )bit/s. 5. 若某一 信源X ,其平均功率受限为

16w,其概率密度函数是高斯分布时,差熵的 最大值为1log32e π;与其熵相等的非高斯分布信2 源的功率为16w ≥ 6、信源编码的主要目的是提高有效性,信道编码的主要目的是提高可靠性。 7、无失真信源编码的平均码长最小理论极限 (S))。 制为信源熵(或H(S)/logr= H r 8、当R=C或(信道剩余度为0)时,信源与信道达到匹配。 9、根据是否允许失真,信源编码可分为无失真信源编码和限失真信源编码。 10、在下面空格中选择填入数学符号“,,, =≥≤?”或“?” (1)当X和Y相互独立时,H(XY)=H(X)+H(X/Y)。 (2)假设信道输入用X表示,信道输出用Y 表示。在无噪有损信道中,H(X/Y)> 0, H(Y/X)=0,I(X;Y)

相关文档
最新文档