纸箱抗压计算

纸箱抗压计算
纸箱抗压计算

依据纸箱配比参数:边压强度≥3600N/m

3.6KN/m = 3600/9.8 Kg/m = 367.35 Kg/m

经计算得出在最底层单个箱所承受的压力可维持在184.175 Kg/m

十层码放方式:

抗压力值(KG)=1.65*(码放层数—1)*单箱毛重=1.65*9*13.2=196.02Kg (超标)

抗压力值(N)=1.65*(码放层数—1)*单箱毛重*9.8=1.65*9*13.2*9.8=1920.996N

八层码放方式:

抗压力值(KG)=1.65*(码放层数—1)*单箱毛重=1.65*7*13.2=152.46Kg(满足要求)

抗压力试验

纸箱抗压能力是指瓦楞纸箱空箱立体放置时,对其两面匀速施压,箱体所能承受的最高压力值。

抗压能力的N。

取箱体和箱面不得破损和有明显碰、戳伤痕的样箱三个。

抗压力试验的设备是包装容器整体抗压试验机

包装容器整体抗压试验机的主要技术参数是:

测量范围:0-50kN

负荷准确度:±2%

压板面积:1200mm×1200mm

上、下板平行度:2/1000

上压板有效行程:标准速度10mm/mm

无极调速1-100/min

抗压力试验的检测方法是将三个样箱立体合好,用封箱胶带上、下封牢,放入抗压试验机下压板的中间位置,开机使上压板接近空箱箱体。然后启动加压标准速度,直至箱体屈服。读取实测值。

对测试的结果,求出算术平均值。

被测瓦楞纸箱的抗压力值按下列公式计算:

P=K×G(H/h-1)×9.8

式中:P:-抗压力值,N

K:-劣变系数(强度系数);

G:-单件包装毛重;kg

H:-堆积高度;m

h:-箱高;m

H/h:-取整位数。

根据SN/T0262-93《出口商品运输包装瓦楞纸箱检验规程》中的计数规定,H/h取速位数。小数点后面无论大、小都入上,就高不就低。

SN/T0262-93检验规程关于劣变系数的规定(表二十五):

表二十五

贮存期小于30天30天-100天100天以上

劣变系数K 1.6 1.65 2 注:劣变系数(强度系数)K根据纸箱所装货物的贮存条件决定。

抗压力试验合格准则的判定为:当所测三个样箱的抗压力值均大于标准抗压力值时,该项试验为合格。若其中有一个样箱不合格,则该项试验为不合格。

纸板边压强度的推算方法

瓦楞纸板的边压强度等于组成纸板各层原纸的横向环压强度之和,对于坑纸,其环压值为原纸环压强度乘以对应的瓦楞伸长系数。

单瓦楞纸板Es=(L1+L2+r×F)

双瓦楞纸板Ed=(L1+L2+L3+r×F+r1×F1)

三瓦楞纸板Et=(L1+L2+L3+L4+r×F+r1×F1+r2×F2)

式中

L1、L2、L3、L4分别为瓦楞纸板面纸、里纸及中隔纸的环压强度(N/m);

r、r1、r2表示瓦楞伸长系数(见表二);

F、F1、F2表示芯纸的环压强度(N/m);

表二不同楞型的伸长系数及纸板厚度

楞型A C B E

伸长系数(r) 1.53 1.42 1.40 1.32

纸板厚度5 4 3 1.5

注:1. 不同瓦线设备,即使是同一种楞型,由于其瓦楞辊的尺寸不同,瓦楞伸长系数也存在偏差,所以纸箱企业在使用表二进行推算时需根据工厂的设备情况对伸长系数进行调整。

2. 双坑、三坑纸板的厚度就是由各单坑厚度简单相加。

举例:

有一款K纸板,用纸配置为230K//已知230K的横向环压强度为2208N/m,的环压为516 N/m ,的环压为1328 N/m求其边压强度。

题解:

查表得C瓦楞伸长系数为r=1.42

根据公式ES=(L1+L2+r×F)

=(2208+1328+1.42 ×516)

=4269 N/m

表三纸箱抗压强度值修正表

印刷工艺修正(瓦楞板为印刷底材)

印刷工艺单色印刷双色及三色印刷四色套印,满版面实地

抗压强度调整减6~8%,文字内容越多,印刷面积越大,减幅越大减10-15%,文字内容越多,印刷面积越大,减幅越大四色套印减20%,满版面实地减20%,满版实地加多色减30%

长宽高尺寸及比例

高度及长宽比长宽比大于2 箱高超过

抗压强度调整减20% 减8%

开孔方式

开孔方式及位置纸箱侧唛各加一通气孔两侧唛各一个手挽两侧唛各一个手挽,正唛一个手挽

抗压强度调整减10% 减20% 减30%

模切工艺

模工工艺平压平啤切圆压平啤切圆压圆啤切

抗压强度调整减5% 减20% 减25%

综合举例

有一款彩盒,其坑型为BE坑;尺寸为510×420×;五层纸的用纸配置为350华丰白板/112VISY坑纸/125理文B纸/112VISY F纸/175理文A纸;平压平啤切时两侧唛各打一个手挽,已知350华丰W环压为2900N/m、112VISY F纸环压为740N/m、125理文B纸环压为1100N/m、175理文A环压为1420N/m;试推测其抗压值。题解:

根据彩盒尺寸可知周长为,根据坑型可知纸板厚度为,根据坑型和原纸环压可知边压为7425N/m

带入公式p=5.879*ECT*square roof of (D*Z)

P=5.874×7425N/m×square roof of (1.86×0.0045)

=5.874×7425N/m× square roof of 0.091m

=3969N

由于纸箱两侧唛各一个手挽,则实际抗压应减去20%,平压平啤切,抗压减5%,所以纸箱的实际抗压值应为:

3969×(1-25%)=2977N

纸箱抗压的用纸配置方法

若客户对纸箱抗压值及纸箱印刷加工工艺有明确要求,则可以通过抗压强度推算公式推算出纸箱的边压强度,再根据边压强度推算公式反推出满足客户抗压要求的原纸配置。如果客户仅提供纸箱重量、运输、堆码及印刷加工工艺等方面的信息,那么我们也可以推算

出纸箱的抗压要求,再根据抗压强度推算公式和边压强度推算公式反推出纸箱的边压强度值,并进而确定其用纸配置。详见抗压强度用纸配置流程图。

(一级标题)纸箱抗压强度设计公式

纸箱的抗压强度由纸箱装箱后的总重量、堆码层数和安全系数决定。纸箱抗压强度设计公式如下:

P=G×(n-1) ×K

P表示纸箱空箱抗压

G表示单个装箱后的总重量

n表求纸箱装机后的堆码层数

K表示安全系数

举例:

一款纸箱装箱后总重量为、其堆码层数规定为9层,其安全系数设定为5.5,则其抗压值应为多少?

题解代入公式P=G×(n-1) ×K

=15×8×5.5

安全系数设计方法

纸箱在流通过程中所受的影响,除了堆码的重量外,还受堆放时间?p温湿环境?p 内装物水分?p振动冲击等因素的影响,考虑到这些因素都会造成纸箱抗压强度下降,因此必须设定一个安全系数,确保纸箱在各种因素的作用下,抗压强度下降后仍有足够的能力承

受堆码在其上面纸箱的重量。

一般来说,内装物可以承受一定的抗压,且内装物为运输流通过程较简短的内销品时,安全系数设为3~5左右。内装物本身排放出水分,或者内装物为易损的物品,堆码时间较长、流通环节较多,或者保管条件?p流通条件恶劣时,安全系数设为5~8。

安全系数可以在各种各样的导致抗压强度降低的主要因素确定的前提下,根据一定的方法计算出。

1

K=-----------------------------

(1-a)(1-b)(1-c)(1-d)(1-e)…

a:温湿度变化导致的降低率

b:堆放时间导致的降低率

c:堆放方法导致的降低率

d:装卸过程导致的降低率

e:其它

举例:

a:温湿度变化导致纸箱压降低率为40%

b:堆放时间导致的降低率为30%

c:堆码方法导致的降低率为20%

d:装卸过程导致的降低率为10%

e:其它因素导致的降低率为10%

则安全系数

1

K=---------------------------------------=3.67

(1-0.4)(1-0.3)(1-0.2)(1-0.1) (1-0.1)

表四安全系数设计参数表

装箱后温湿度环境变化

温湿环境装箱后从出厂到销售过程中,存储于干燥阴凉环境装箱后通过陆路流通,但纸箱所处的温湿环境变化较大装箱后入货柜,走海运出口

抗压强度减损率10% 30% 60%

装箱后堆码时间长短

堆码时间堆码时间不超过1个月堆码1~2个月左右堆码时间3个月以上

抗压强度减损率15%30%40%

装箱后堆放方法

堆放方法纸箱采用角对角平行式堆码纸箱堆放时不能箱角完全对齐,但堆放整齐纸箱杂乱堆放

抗压强度减损率5%20%30%

装卸流通过程

装卸流通情况流通过程中仅装卸一次,且装卸时很少受到撞击虽经多次装卸,但装卸时对纸箱撞击较少从工厂到超市需经过多次装卸,且运输装卸过程中常受撞击抗压强度减损率10%20%50%

瓦楞纸箱抗压强度的计算——谈凯里卡特公式的应用瓦楞纸箱抗压强度的计算公式很多,常用的有凯里卡特(K.Q.Kellicutt)公式、马丁荷尔特(Maltenfort)公式、沃福(Wolf)公式、马基(Makee)公式、澳大利亚APM公司计算公式,等等。其中,凯里卡特公式常被应用于0201型瓦楞纸箱抗压强度的计算。 凯里卡特公式表达式 美国的凯里卡特根据瓦楞纸箱的边压强度和周长提出了计算纸箱抗压强度的公式 BCT=ECT×(4aXz/Z)2/3×Z×J 式中BCT——瓦楞纸箱的抗压强度(lb) ECT——瓦楞纸板的边压强度(lb/in) Z ——瓦楞纸箱的周长(in) Xz——瓦楞常数 J ——纸箱常数 相应的瓦楞纸箱常数见表1。 倘若知道瓦楞纸箱的外尺寸和楞型,可根据瓦楞纸板的边压强度ECT推测瓦楞纸箱的抗压强度BCT,或者根据瓦楞纸箱的抗压强度BCT推测瓦楞纸板的边压强度ECT。 例如,29英寸彩电包装纸箱采用AB型瓦楞纸板 纸箱外尺寸为904×644×743mm; 毛重G=48Kg; 经多次使用修正确定安全系数为K=6.5; 堆码层数为N=300/74.3=4(堆码限高为3米, 堆码层数取整数); 因为1磅(lb)=0.454千克(Kg)=4.453牛顿(N),1英寸(in)=2.54厘米(cm),所以空箱抗压强度为 BCT=KG(N 1) =6.5×48×9.81×(4-1) =9182.16(N) =2061.67(lb) 因为瓦楞纸箱的周长Z=(90.4+64.4)×2=309.6(cm)=121.89(in),瓦楞常数aXz=13.36,纸箱常数J=0.54,故瓦楞纸板的边压强度 ECT=BCT/【(4aXz/Z)2/3×Z×J】 =2061.67/【(4×13.36 /121. 89)2/3×121.89×0.54】 =54.27(lb/in) =95.2(N/cm) =9520 (N/m) 表1 瓦楞纸箱常数 单位英制公制楞型aXz J aXz J A 8.36 0.59 8.36 1.10 B 5.00 0.68 5.00 1.27 C 6.10 0.68 6.10 1.27 AA 16.72 0.50 16.72 0.94 BB 10.00 0.58 10.00 1.08 CC 12.20 0.59 12.20 1.09 AB 13.36 0.54 13.36 1.01 AC 14.46 0.55 14.46 1.02 BC 11.10 0.58 11.10 1.08 AAA 25.08 0.48 25.08 0.89 BBB 15.00 0.55 15.00 1.02 CCC 18.30 0.55 18.30 1.03 AAB 21.72 0.50 21.72 0.93 AAC 22.82 0.50 22.82 0.94 ABB 18.36 0.53 18.36 0.98 BBC 16.10 0.55

16.10 1.02 ACC 20.56 0.53 20.56 0.98 BCC 17.20 0.55

17.20 1.02 ABC 19.46 0.53 19.46 0.98 应用上述公式时,须将公制单位转化为英制单位,比较麻烦。实际上,将公式两边单位转化为公制,只需将瓦楞常数aXz扩大2.54倍,或将纸箱常数J扩大1.86161189倍(2.542/3)即可。若瓦楞常数aXz不变,将纸箱常数J扩大,可得到如表1所示的公制下的瓦楞常数aXz和纸箱常数J。此时,瓦楞纸箱抗压强度单位为牛顿(N),瓦楞纸板的边压强度单位为牛顿/厘米(N/cm),瓦楞纸箱的周长单位为厘米(cm)。 凯里卡特公式简化式 上述凯里卡特公式显得比较繁琐,事实上纸箱一旦成型,其外尺寸、瓦楞常数和纸箱常数都已确定,所以F=(4aXz/Z)2/3×Z×J 可看作一个常数,此时凯里卡特公式可简化为 BCT=ECT×F 不同楞型、不同外尺寸的瓦楞纸箱,其简易常数F均可从相关技术参数表中获取。不过,一旦身边没有相关技术参数表,将无从下手,非常不便。如果分析凯里卡特公式,我们会发现尽管不同楞型纸箱其瓦楞常数aXz和纸箱常数J不同,但是每种楞型纸箱其瓦楞常数aXz和纸箱常数J是相同的,将其合并为常数f,则凯里卡特公式可表示为 BCT=f×ECT×Z1/3 通过一系列的计算,可得到不同楞型纸箱相关常数f,如表2所示。 表2 瓦楞纸箱常数f 楞型英制f 公制

f 楞型英制f 公制f A 6.13 11.42 BBB 8.40 15.63 B

5.03 9.36 CCC 9.68 18.02 C 5.74 10.68 AAB 9.80 18.24 AA 8.32 15.49 AAC 10.24 19.06 BB

6.79 12.63 ABB 9.23 1

7.19 CC 7.82 14.56 BBC

8.80 16.39 AB 7.70 14.33 ACC

9.96 18.53 AC 8.19 15.26 BCC 9.20 17.13 BC 7.27 13.54 ABC 9.60 17.87 AAA 10.32 19.22 ——— 例如,AB型瓦楞纸箱凯里卡特公式可表示为 BCT=7.70×ECT×Z1/3(英制) BCT=14.33×ECT×Z1/3 (公制) 上例彩电包装纸箱 ECT=BCT/(14.33×Z1/3) =9182.16/(14.33×309.61/3) =94.7(N/cm)=9470(N/m),或 ECT=BCT/(7.70×Z1/3) =2061.67/(7.70×121.891/3) =54.0 (lb/in) =94.7(N/cm) =9470(N/m)

纸箱耐压强度是许多商品包装要求的最重要的质量指标,测试时将瓦楞纸箱放在两压板之间,加压至纸箱压溃时的压力,即为纸箱耐压强度,用KN表示。1、预定纸箱耐压强度

纸箱要求有一定的耐压强度,是因为包装商品后在贮运过程中堆码在最低层的纸箱受到上部纸箱的压力,为了不至于压塌,必须具有合适的抗压强度,纸箱的耐压强度用下列公式计算:

P=KW(n-1)

式中P----纸箱耐压强度,N

W----纸箱装货后重量,N

n----堆码层数

K----堆码安全系数

堆码层数n根据堆码高度H与单个纸箱高度h求出,n=H/h

堆码安全系数根据货物堆码的层数来确定,国标规定:

贮存期小于30d取K=1.6

贮存期30d-100d取K=1.65

贮存期大于100d取K=2.0

2、据原料计算出纸箱抗压强度预定了纸箱抗压强度以后,应选择合适的纸箱板、瓦楞原纸来生产瓦楞纸箱,避免盲目生产造成的浪费;

根据原纸的环压强度计算出纸箱的抗压强度有许多公式,但较为简练实用的是kellicutt 公式,它适合于用来估算0201型纸箱抗压强度。3、确定纸箱抗压强度的方法由于受生产过程中各种因素的影响,最后用原料生产的纸箱抗压强度不一定与估算结果完全一致,因此最终精确确定瓦楞纸箱抗压强度的方法是将纸箱恒温湿处理后用纸箱抗压试验机测试;对于无测试设备的中小型厂,可以在纸箱上面盖一木板,然后在木板上堆放等量的重物,来大致确定纸箱抗压强度是否满足要求;4、影响纸箱抗压强度的因素

1)原材料质量

原纸是决定纸箱压缩强度的决定性因素,由kellicutt公式即可看出。然而瓦楞纸板生产过程中其他条件的影响也不允许忽视,如粘合剂用量、楞高变化浸渍、涂布、复合加工处理等。2)水分

纸箱用含水量过高的瓦楞纸板制造,或者长时间贮顾在潮湿的环境中,都会降低其耐压强度。纤维是一种吸水性很强的,在梅雨季节及空气中湿度较大时,纸板中水分与大气环境的湿平衡关系很重要。3)箱型

箱型是指箱的类型和同种类型箱的尺寸比例,它们对抗压强度有明显的影响。有的纸箱箱体为双层瓦楞纸板构成,耐压强度较同种规格的单层箱明显提高;在相同条件下,箱体越高,稳定性就越差,耐压强度越低。4)印刷与开孔

印刷会降低纸箱抗压强度。包装有透气要求的商品在箱面开孔,或在箱侧冲切提手孔,都会降低纸箱强度,尤其开孔面积大,偏向某一侧等,影响更为明显。5)加工工艺偏差在制箱过程中压线不当,开槽过深,结合不牢等,也会降低成箱耐压强度。三、纸箱动

态性能试验

文章链接:工控网(百站) https://www.360docs.net/doc/d07906781.html,/tech_news/Detail/30821.html

纸箱最重要的功能在于它对商品具有良好的保护性,而纸箱的整体抗压强度则是纸箱保护性能的综合体现,抗压强度对纸箱的重要性是不言而喻的。近几年来,随着我国包装业的迅猛发展,许多工厂对纸箱的认识逐渐从凭手感判定纸箱的优劣发展到运用各种仪器对纸箱的物理性能进行测试分析的阶段,很多厂家还配备了抗压仪对纸箱抗压强度进行测试。不仅如此,许多客户特别是国外一些大型跨国公司对纸箱的认识也发生了深刻变化,即从关注纸板耐破强度逐渐转向纸箱的抗压强度,并将抗压强度作为质量验收的最重要指标。

如此一来,如何为客户提供满足抗压强度要求的纸箱便成为众多纸箱厂关注的焦点。特别是近二年原纸价格居高不下,纸箱利润空间一缩再缩的情况下,制造出用纸成本最省而又能满足客户抗压要求的纸箱已成为众多纸箱厂共同的目标。

在此着重就影响纸箱抗压强度的因素、纸箱抗压强度的推算方法、抗压强度的用纸配置方法及抗压强度的测试方法等几个方面对纸箱的抗压强度进行综合论述与分析。有些地方难免会有孔见之嫌,但希望能为广大同行提供有益的参考。

影响纸箱抗压强度的因素

影响纸箱抗压强度的因素有很多,大致可归纳为边压强度、结构尺寸、加工工艺、水分及装箱后的堆码运输方式等。由于各因素的交互影响,常常导致我们对抗压强度的预测产生一定偏差。纸箱厂也往往因为对这些因素认识不足,在设计、印刷及后加工过程中处理不当,造成巨大的成本浪费及客户投诉。因此,弄清这些因素的影响规律是十分必要的。

瓦楞纸板的边压强度

边压强度又叫垂直抗压强度,是对瓦楞纸板试样以垂直方向施加压力,施压过程中纸板所能承受的最大力即为纸箱的边压强度。纸箱抗压强度的高低主要取决于纸板边压强度,而边压强度则与组成瓦楞纸板的各层原纸的横向环压强度、纸板的坑型组合及纸板的粘合强度有关。

瓦楞纸板的边压强度主要与各层原纸的横向环压强度有关。一般来讲,克重较高、造纸材料质量较好及紧度较高的原纸,其横向环压强度也相应越高。但并非克重高的原纸环压就一定比克重低的原纸高。以箱板纸为例,进口牛皮横向环压指数可达到12N·m/g以上,而内地一些小型造纸厂生产的箱板纸仅为8 N·m/ g,相差了30个百分点。也就是说克重为175 g / m2的进口牛卡,其环压强度相当于260 g / m2。因此,鉴定纸箱保护性能的好坏,不能以纸箱用纸克重而论。

瓦楞纸板的结构设计是很科学的,其瓦楞的楞形就如一个个连接的小小拱形门,排成一排,相互支撑,形成三角结构体,强而有力,而且平面上也能承受一定压力,富有弹性,缓冲力强,能起到防震和保护商品的作用。瓦楞形状依圆弧半径不同一般分为U形、V形和UV形三种。U型的顶峰圆弧半径较大,呈圆弧形,如B楞、C楞;V型的波峰半径较小,且尖,如A楞;UV型介于两者之间,如AB楞。据试验表明,V形楞在受压初期歪斜度较小,但超过最高点,便迅速地破坏,而U形楞吸收的能量较高,当压力消除后,仍能恢复

原状,富有弹性,但耐压强度不高。另外V形楞节省瓦楞纸,粘合剂耗量较少,但加工时易出现高低楞,瓦楞辊磨损较快。UV形楞是结合U形和V形的特点,目前得到广泛的采用。

瓦楞纸板的各种坑型及其组合,就单坑纸板来说,一般A坑纸箱抗压强度最高,但易受到损坏;B坑强度较差,但稳定性好;C坑抗压力及稳定性居中。A型瓦楞具有较好的防震缓冲性,另外垂直耐压强度也较高;B型瓦楞的峰端较尖,粘合面较窄,其瓦楞高度较小,可以节省瓦楞原纸,其平面抗压能力超过A型瓦楞,B型瓦楞单位长度内瓦楞数较多,与面纸有较多的支承点,因而不易变形,且表面较平。在印刷时有较强抗压能力,可得到良好印刷效果。C型瓦楞兼有A型和B型瓦楞的特点,它的防震性能与A型相近,平面抗压能力接近B型瓦楞。E型瓦楞是最细的一种瓦楞,单位长度内的瓦楞数目最多,能承受较大的平面压力,可适应胶版印刷需要,能在包装面上印出质量较高的图文,这种瓦楞纸板和硬纸板强度差不多。

表一三种楞型比较表

瓦楞种类平面压力垂直压力平行压力

A 3 1 3

B 1 3 1

C 2 2 2

注:1. 平面压力是指垂直于瓦楞纸板平面的压力。

2. 垂直压力是指与瓦楞方向一致的压力,平行压力是指垂直于瓦楞方向的压力。

3. “1”代表最强。

根据上述不同类型瓦楞的不同特点,单瓦楞纸箱用A型和C型为宜;双瓦楞纸箱用A、B型,B、C型相结合最为理想;接近表面的用B型,能起到抗冲击力较强的作用;接近内层的用A型或C型弹性足、缓冲力强;采有用AB型或BC型结合,使纸箱的物理性能发挥两个优越性。中包装宜选用C型楞,E型瓦楞代替厚纸板,用于小包装。最近几年,国外又发展有F楞、G楞等比E楞更小的瓦楞,同时也开发出了K楞等特大瓦楞。

除此之外,纸板粘合强度及坑形挺度也对纸板边压强度造成一定影响。坑形越挺,粘合越好,边压强度越高。存在塌坑、倒楞、脱胶等缺陷的纸板强度,其边压强度会得到不同程度的削弱。

纸箱长、宽、高尺寸及比例

大量的数据分析表明,纸箱的抗压强度与纸箱周长、纸箱高度及纸箱长宽比存在一定关系。纸箱周长越长,抗压强度越高,纸箱周长与抗压强度存在一定的换算关系。

n 箱高在10厘米~35厘米时,抗压强度随高度增加而稍有下降;

n 箱高在35厘米~65厘米区间时,其抗压强度几乎不变;

n 箱高大于65厘米之间时,抗压随高度增加而降低。

主要原因是高度增加,其不稳定性也会相应增加。

一般来讲,纸箱长宽比在1~1.8的范围内,长宽比对抗压强度的影响仅为±5%。其中长宽比RL=1.2~1.5时,纸箱的抗压值最高。纸箱长宽比为2:1时,抗压强度下降约20%,因此设计纸箱时长宽比不宜超过2,否则会造成成本浪费。

堆码时间及堆码方式

纸箱的抗压强度随堆码时间的延长而降低,这种现象称为疲劳现象。试验表明,在长期载荷的作用下,只要经历一个月的时间,纸箱的抗压强度就会下降30%,在经历一年后,其抗压强度就只有初始值的50%。在设计纸箱材质时,对流通时间较长的纸箱应提高其安全系数。

纸箱堆码方式也对纸箱的抗压强度产生一定影响。纸箱竖坑方向承受的压力大大超过横坑方向,纸箱堆码时应保持竖坑方向受压。从试验结果来看,纸箱的箱角部位承受的压力最高,离箱角越远,承压力越低。因此纸箱在堆码时应尽量保持箱角与箱角对齐叠放(见图2)。

常见的纸箱堆码方式有三种:砖砌式、上下平行式及风车式(见图3)。此三种方式中,上下平行式堆码有利于保持箱角充分受压,因而最为合理。而砖砌式及风车式则应尽量避免。

纸箱开孔方式

部分纸箱上有通气孔、手挽孔等,这些开孔也会对纸箱的抗压造成重大影响。试验表明,开孔越大,抗压强度减损越大;开孔离顶、底部越近,离中心往左右越远,抗压强度越低;开对称孔比开不对称孔的抗压强度减损要小。

一般来说,侧面各1个手挽使纸箱的抗压强度降低20%,两侧面及正面各1个手挽使纸箱的抗压强度降低30%。有些工厂在纸箱内壁开孔部位贴一层加强卡,这样不仅可以降低开孔给抗压强度造成的影响,同时还可以防止手挽部位受力时发生破损,可谓一举两得。

纸箱印刷工艺

纸箱的印刷工艺对抗压强度的影响也不容忽视。印刷面积、印刷形状及印刷位置对纸箱抗压强度的影响程度各不相同。总的来说,印刷面积愈大,纸箱抗压强度的降低比率也愈大。满版实地,块状及长条状印刷对抗压强度的影响比较大,设计时应尽量避免。就纸箱印刷位置而言,印刷在正侧唛中间部位较边缘部位的抗压高

大量试验数据显示,单色印刷使纸箱的抗压强度降低6%~8%,双色及三色印刷使纸箱的抗压强度降低10%~15%,四色套印及整版面实地印刷使纸箱抗压强度下降约2%。对于多色印刷,采取先印刷,再覆面模切的预印加工工艺可以有效降低纸箱因印刷而造成抗压强度减损的幅度。

模切工艺

纸箱在进行模切加工过程中,由于受到外部重压,纸箱的坑形会受到不同程度的损害,因而抗压强度也会下降。比较而言,平压平模切对抗压强度影响较小,圆压圆及圆压平模切对抗压影响则大一些。譬如与印刷机连动的弧形啤切,可导致纸箱抗压强度减少25%以上。

纸箱内衬件设计

许多纸箱的内部还包括EPE、纸塑等内衬件,纸箱内装入内衬件后,其抗压强度会提高。但内衬件的设计对抗压提高的幅度也不一样。内衬件设计成直角比设计成圆角更有利于提高抗压强度。(见图5略)

纸箱堆放的温湿环境

纸箱对温湿环境比较敏感,温度对纸箱的抗压强度影响较小,但湿度则非常明显。随着温度和湿度的增加,纸箱的抗压强度呈明显下降趋势,在温度30℃、湿度80%RH时开始急剧下降,当温度为45℃、湿度95%RH时,抗压强度下降幅度可达60%以上。

纸箱抗压的推算方法

找出瓦楞纸箱结构工艺与纸箱抗压强度的规律,一直是瓦楞行业广大同仁致力研究的重要课题之一。瓦楞包装在欧美历史比较悠久,国外同行在对抗压强度的研究方面也有所建树,并总结出了一些抗压强度推算经验公式。其中较为流行的有:

根据瓦楞纸板原纸的环压强度计算纸箱抗压强度的凯里卡特公式(K.Q.Kellicutt);

P——瓦楞纸箱抗压强度(N);

Px——瓦楞纸板原纸的综合环压强度(N/cm);

aXz——瓦楞常数;

Z——瓦楞纸箱周边长(cm);

J——纸箱常数。

根据瓦楞纸板内外面纸的横向康哥拉平压强度来计算抗压强度的马丁荷尔特公式(Maltenfoit);

P——瓦楞纸箱抗压强度(N);

CLT- O ——内、外面纸横向平压强度平均值(N/cm)。

以瓦楞纸板的边压强度和厚度作为瓦楞纸板的参数,以箱体周长、长宽比和高度作为标志结构的因素计算瓦楞纸箱的抗压强度的沃福公式(Wolf);

Pm——瓦楞纸板边压强度(N/m)

把纸板的边压强度和挺度作为影响瓦楞纸箱强度的主要因素,而且认为纸箱抗压随纸箱周长的平方根而变化的马基公式(Makee)。

Dx——瓦楞纸板纵向挺度(MN·m)

Dy——瓦楞纸板横向挺度(MN·m)

马基简易公式:

包卷式纸箱抗压强度计算公式:

PwA——包卷式纸箱抗压强度(N);

Pm ——瓦楞纸板边压强度(N/m)

a——常数

b——常数

而其中尤以凯里卡特公式最受国内同行推崇,国内专业杂志刊登的有关纸箱抗压的文章大都以它作为推算公式。但经过实践证明,凯里卡特公式推算纸箱抗压强度的准确度较低,且计算方法比较复杂,难以掌握。

通过大量的数据分析,笔者总结出了一套准确推算抗压强度的方法,经实践检验准确度可达到90%以上。该方法主要是根据抗压推算公式算出纸箱抗压强度初始值,并结合纸箱结构工艺对公式推算出的结果进行修正而得出最终的推算结果。

纸箱抗压强度推算流程

要准确推算纸箱的抗压强度,首先须测出纸箱周长、纸板厚度及纸板边压强度,并结合纸箱结构工艺对推算值进行修正。边压强度可根据组成瓦楞纸板各层原纸的横向环压强度及纸板坑型进行推算。对于没有测试仪器的工厂,只要知道原纸的环压强度或环压指数,也可以推算出纸箱的抗压强度。必须指出的是,原纸的环压值必须客观真实,并且原纸的环压强度须是在23℃±1℃,52±2%RH的温湿环境下的测试值。

纸箱抗压强度推算流程如图6(略)所示。

纸箱抗压强度的推算公式

通过大量的测试数据验证,我们发现下面的公式推算出的结果比较接近真实值,并且计算简单,易于掌握。在此推荐给大家:

B=5.874×E× T×C

B表示纸箱抗压,单位N

5.874为系数

E表示纸板边压强度,单位N/m

T表示纸板厚度,单位m

C表示纸箱周长,单位m

举例:

一规格为360mm×325mm×195mm的普通开槽型纸箱,坑形为C坑,纸板厚度为3.6mm,边压强度为4270N/m,试推算其整箱抗压值。

题解:

可知纸箱周长为1.37m,纸板厚度为3.6mm,边压强度为4270 N/m

根据公式:纸箱抗压强度B=5.874×E × T × C

B=5.874 ×4270 × 0.0036 ×1.37

B=1755N

纸板边压强度的推算方法

瓦楞纸板的边压强度等于组成纸板各层原纸的横向环压强度之和,对于坑纸,其环压值为原纸环压强度乘以对应的瓦楞伸长系数。

单瓦楞纸板Es=(L1+L2+r×F)

双瓦楞纸板Ed=(L1+L2+L3+r×F+r1×F1)

三瓦楞纸板Et=(L1+L2+L3+L4+r×F+r1×F1+r2×F2)

式中

L1、L2、L3、L4分别为瓦楞纸板面纸、里纸及中隔纸的环压强度(N/m);

r、r1、r2表示瓦楞伸长系数(见表二);

F、F1、F2表示芯纸的环压强度(N/m);

表二不同楞型的伸长系数及纸板厚度

楞型A C B E

伸长系数(r) 1.53 1.42 1.40 1.32

纸板厚度5 4 3 1.5

注:1. 不同瓦线设备,即使是同一种楞型,由于其瓦楞辊的尺寸不同,瓦楞伸长系数也存在偏差,所以纸箱企业在使用表二进行推算时需根据工厂的设备情况对伸长系数进行调整。

2. 双坑、三坑纸板的厚度就是由各单坑厚度简单相加。

举例:

有一款K4A纸板,用纸配置为230K/130F/160A?o已知230K的横向环压强度为2208N/m,130F的环压为516 N/m ,160A的环压为1328 N/m求其边压强度。

题解:

查表得C瓦楞伸长系数为r=1.42

根据公式ES=(L1+L2+r×F)

=(2208+1328+1.42 ×516)

=4269 N/m

表三纸箱抗压强度值修正表

印刷工艺修正(瓦楞板为印刷底材)

印刷工艺单色印刷双色及三色印刷四色套印,满版面实地

抗压强度调整减6~8%,文字内容越多,印刷面积越大,减幅越大减10-15%,文字内容越多,印刷面积越大,减幅越大四色套印减20%,满版面实地减20%,满版实地加多色减30% 长宽高尺寸及比例

高度及长宽比长宽比大于2 箱高超过65cm

抗压强度调整减20% 减8%

开孔方式

开孔方式及位置纸箱侧唛各加一通气孔两侧唛各一个手挽两侧唛各一个手挽,正唛一个手挽

抗压强度调整减10% 减20% 减30%

模切工艺

模工工艺平压平啤切圆压平啤切圆压圆啤切

抗压强度调整减5% 减20% 减25%

综合举例

有一款彩盒,其坑型为BE坑;尺寸为510×420×330CM;五层纸的用纸配置为350华丰白板/112VISY坑纸/125理文B纸/112VISY F纸/175理文A纸;平压平啤切时两侧唛各打一个手挽,已知350华丰W环压为2900N/m、112VISY F纸环压为740N/m、125理文B纸环压为1100N/m、175理文A环压为1420N/m;试推测其抗压值。

题解:

根据彩盒尺寸可知周长为1.86m,根据坑型可知纸板厚度为0.0045m,根据坑型和原纸环压

可知边压为7425N/m

带入公式

P=5.874×7425N/m× 1.86×0.0045

=5.874×7425N/m×0.091m

=3969N

由于纸箱两侧唛各一个手挽,则实际抗压应减去20%,平压平啤切,抗压减5%,所以纸箱的实际抗压值应为:

3969×(1-25%)=2977N

纸箱抗压的用纸配置方法

若客户对纸箱抗压值及纸箱印刷加工工艺有明确要求,则可以通过抗压强度推算公式推算出纸箱的边压强度,再根据边压强度推算公式反推出满足客户抗压要求的原纸配置。如果客户仅提供纸箱重量、运输、堆码及印刷加工工艺等方面的信息,那么我们也可以推算出纸箱的抗压要求,再根据抗压强度推算公式和边压强度推算公式反推出纸箱的边压强度值,并进而确定其用纸配置。详见抗压强度用纸配置流程图。

(一级标题)纸箱抗压强度设计公式

纸箱的抗压强度由纸箱装箱后的总重量、堆码层数和安全系数决定。纸箱抗压强度设计公式如下:

P=G×(n-1) ×K

P表示纸箱空箱抗压

G表示单个装箱后的总重量

n表求纸箱装机后的堆码层数

K表示安全系数

举例:

一款纸箱装箱后总重量为15kg、其堆码层数规定为9层,其安全系数设定为5.5,则其抗压值应为多少?

题解代入公式P=G×(n-1) ×K

=15×8×5.5

=660kg

安全系数设计方法

纸箱在流通过程中所受的影响,除了堆码的重量外,还受堆放时间?p温湿环境?p内装物水分?p振动冲击等因素的影响,考虑到这些因素都会造成纸箱抗压强度下降,因此必须设定一个安全系数,确保纸箱在各种因素的作用下,抗压强度下降后仍有足够的能力承受堆码在其上面纸箱的重量。

一般来说,内装物可以承受一定的抗压,且内装物为运输流通过程较简短的内销品时,安全系数设为3~5左右。内装物本身排放出水分,或者内装物为易损的物品,堆码时间较长、流通环节较多,或者保管条件?p流通条件恶劣时,安全系数设为5~8。

安全系数可以在各种各样的导致抗压强度降低的主要因素确定的前提下,根据一定的方

1

K=-----------------------------

(1-a)(1-b)(1-c)(1-d)(1-e)…

a:温湿度变化导致的降低率

b:堆放时间导致的降低率

c:堆放方法导致的降低率

d:装卸过程导致的降低率

e:其它

举例:

a:温湿度变化导致纸箱压降低率为40%

b:堆放时间导致的降低率为30%

c:堆码方法导致的降低率为20%

d:装卸过程导致的降低率为10%

e:其它因素导致的降低率为10%

则安全系数

1

K=---------------------------------------=3.67

(1-0.4)(1-0.3)(1-0.2)(1-0.1) (1-0.1)

表四安全系数设计参数表

装箱后温湿度环境变化

温湿环境装箱后从出厂到销售过程中,存储于干燥阴凉环境装箱后通过陆路流通,但纸箱所处的温湿环境变化较大装箱后入货柜,走海运出口

抗压强度减损率10% 30% 60%

装箱后堆码时间长短

堆码时间堆码时间不超过1个月堆码1~2个月左右堆码时间3个月以上

抗压强度减损率15%30%40%

装箱后堆放方法

堆放方法纸箱采用角对角平行式堆码纸箱堆放时不能箱角完全对齐,但堆放整齐纸箱杂乱堆放

抗压强度减损率5%20%30%

装卸流通过程

装卸流通情况流通过程中仅装卸一次,且装卸时很少受到撞击虽经多次装卸,但装卸时对纸箱撞击较少从工厂到超市需经过多次装卸,且运输装卸过程中常受撞击

抗压强度减损率10%20%50%

其它需考虑的因素

其它影响因素糊料加入了防水耐潮的添加剂(安全系数设计时可从温湿环境对抗压的影响中减去)内装物本身为贵重易损物件,对纸箱的保护性要求非常高

抗压强度减损率-10%60%

有一款纸箱,纸箱装货后总重量为18kg,纸箱最高堆码层数为5层,纸箱为单色印刷、两侧唛各有一个手挽,通过货柜船运到美国,要求坑型为BC坑,尺寸为415 cm×124 cm×230cm,请设计其用纸配置。

题解:

第一步:设定安全系数

因是通过货柜出口,则设定温湿度变化导致纸箱压降低率为60%,设定堆放时间导致的降低率为30%,堆码方法导致的降低率为20%;装卸情况未做特殊说明,设定装卸过程导致的降低率为20%。

则其安全系数1

K=---------------------------------=5.6

(1-0.6)(1-0.3)(1-0.2)(1-0.2)

第二步:推算抗压强度

根据抗压设计公式P=G×(n-1) ×K

则该款纸箱的抗压值应为P=18×(5-1)×5.6

=403kg(3955N)

第三步:根据印刷加工工艺对抗压强度进行修正

因纸箱为单色印刷、两边各打一手挽,所以需对推算的抗压强度预以修正,以补偿印刷加工工艺给抗压带来的减损。根据《纸箱抗压强度值修正表》,单色印刷使抗压减少6%,手挽使抗压减少20%,则纸箱抗压强度应设定为:

3955×(1+26%)=4983N

第四步:根据抗压强度推算公式反推出纸板边压强度

根据尺寸可知周长为 1.078m,根据坑型可知纸板厚度为0.0065m,已知纸箱抗压要求为3559N。

则代入纸箱抗压推算公式:

B=5.874×E× T×C

4983=5.874×E× 1.078×0.0065

E=10135N/m

则纸板的用纸配置必须达到10135N/m的边压才能满足该款纸箱的要求。

第五步:最后确定合理的用纸配置

根据边压强度公式,纸板的楞型,并结合工厂原纸的横向环压强度参数确定最合理的用纸配置,在此不作列举。

纸箱抗压测试

纸箱抗压测试方法是将纸箱置于压力试验机上,以一定的速度在其顶部(或底部)均匀地施加压力,以此评定纸箱承受外部压力的能力也即纸箱对内装物的保护能力。纸箱压力实验也叫做压缩试验,是对纸箱性能的最基本测试。此项试验还可以测定纸箱在不同状态下的抗压能力。

纸箱抗压测试方法

纸箱的压力试验采用的设备为纸箱专用压力试验机,这种试验机有两块面积较大加压

板,常见上下压板的面积有1.5m×1.5m或1m×1m两种规格。两块加压板中,有一块是支承板,其位置可根据试样的尺寸来调整,使它具有适合的高度,然后把它紧固住;另一块是加压板,可沿导杆(立柱)滑动,向试样施加压力。

试验机的最大工作能力为50KN(5000kgf),加压板移动速度为10mm/min,也有采用1 英寸/分钟的。设备应附有测量精度不低于±0.5mm的位移指示装置,有些试验机带有自动记录仪,可自行记录载荷——变形曲线。

纸箱对温湿环境比较敏感,温湿度不同,纸箱的水分含量也不同。而水分则对抗压强度产生很大影响,即使同一纸箱,水分含量差异较大,测得的抗压值也存在较大差异。因此,为保证获得客观真实的测试结果,测试前须对测试试样进行温湿平衡处理。具体操作办法是将试样置于23±1?C ?p52 ±2%RH的标准温湿环境,直至试样水分含量不再发生变化,一般试样的处理时间需12小时以上。

整个抗压测试大致分为三个阶段,首先是预压阶段,给纸箱先行施加一个220N的压力,以保证纸箱的加压板充分接触;其次是纸箱受压变形的阶段,此时纸箱在压力下慢慢变形,试验机显示的压力值稳步上升,但纸箱未出现损坏迹象;第三个阶段是纸箱的压溃阶段,此阶段的主要表征是压力值瞬间下降,纸箱变形量突然加大,这时显示的压力值即为纸箱的抗压强度。

抗压测试的试样一般不少于三个,试样不能有破损,折痕,脱胶等缺陷。测试结果为各测试值的平均数,但如果测试值中有一个存在明显偏差,则应预以剔除后再取平均值。

快速准确地测出纸箱抗压值的技巧

抗压测试的试样预处理时间很长,而越来越短的交货期则要求纸箱在生产出来后立即知道准确的测试结果,很多纸箱厂对此深感头痛。在此,笔者提供一种不经温湿平衡处理,快速而准确地测算出纸箱抗压的方法。经过实践检验,得出的结果跟温湿平衡处理后测试的结果非常接近。

进行快速测算,需要的设备除了纸箱抗压测试仪外,还需要数配备一台数字式水分测试仪,该仪器须可即时得到测试结果,且准确度在±0.5℃以内。

测试方法是测出纸箱的抗压强度及纸板水分含量,然后根据《水分含量及抗压关系对照表》推算出纸箱的抗压值(见附表五)。

经测试证明,纸箱在标准温湿环境平衡后水分含量为8%,故可以认定纸箱水分为8%时,测得的抗压值为真实值(基准值)。若纸箱水分含量超过8%,其抗压强度会有不同程度的下降,且其下降的幅度与水分含量存在一定的对应关系。因此,我们测出抗压值及水分含量后,根据对照表中的对应关系即可换算出平衡后的抗压值。

表五水分含量与抗压关系对照表

纸板含水量% 8 9 10 11 12 13 14 15 16

抗压强度指数% 100 90 81 73 66 59 53 48 43

举例

瓦楞纸箱抗压强度计算公式

瓦楞纸箱抗压强度计算公式 纸箱抗压强度一类根据瓦楞纸板原纸,即面纸和芯纸的测试强度来进行计算,另一类则直接根据瓦楞纸板的测试强度进行计算。 ①凯里卡特(K.Q.Kellicutt)公式 a. 凯里卡特公式 P——瓦楞纸箱抗压强度(N); Px——瓦楞纸板原纸的综合环压强度(N/cm); aXz——瓦楞常数; Z——瓦楞纸箱周边长(cm); J——纸箱常数。 瓦楞纸板原纸的综合环压强度计算公式如下 Rn——面纸环压强度测试值(N/0.152m) Rmn ——瓦楞芯纸环压强度测试值(N/0.152m) C——瓦楞收缩率,单瓦楞纸板来说 双瓦楞纸板 纸箱抗压强度公式中的15.2(cm)为测定原纸环压强度时的试样长度。 Z 值计算公式 Z=2(L 0+B ) Z——纸箱周边长(cm); L0——纸箱长度外尺寸(cm)B0——纸箱宽度外尺寸(cm); a z X、J、C值可查表

b.06 类纸箱抗压强度计算公式: P0201 ——0201 箱型用凯里卡特公式计算的抗压强度(N);a——箱型修正系数, 凯里卡特公式,与实际测试值有一定差异,一般比测试值小5%。 ②马丁荷尔特(Maltenfort)公式

P——瓦楞纸箱抗压强度(N); CLT- O ——内、外面纸横向平压强度平均值(N/cm)。 ③沃福(Wolf)公式 Pm——瓦楞纸板边压强度(N/m) ④马基(Makee)公式 纸箱抗压强度Dx——瓦楞纸板纵向挺度(MN·m)Dy——瓦楞纸板横向挺度(MN·m) 马基简易公式: 包卷式纸箱抗压强度计算公式: PwA——包卷式纸箱抗压强度(N); Pm ——瓦楞纸板边压强度(N/m) a——常数 b——常数 纸箱抗压强度⑤APM 计算公式 考虑箱面印刷对抗压强度的影响。

如何提高瓦楞纸箱抗压强度

如何提高瓦楞纸箱抗压强度 纸箱最重要的功能在于它对商品具有良好的保护性,而纸箱的整体抗压强度则是纸箱保护性能的综合体现,抗压强度对纸箱的重要性是不言而喻的。近几年来,随着我国包装业的迅猛发展,许多工厂对纸箱的认识逐渐从凭手感判定纸箱的优劣发展到运用各种仪器对纸箱的物理性能进行测试分析的阶段,很多厂家还配备了抗压仪对纸箱抗压强度进行测试。不仅如此,许多客户特别是国外一些大型跨国公司对纸箱的认识也发生了深刻变化,即从关注纸板耐破强度逐渐转向纸箱的抗压强度,并将抗压强度作为质量验收的最重要指标。 如此一来,如何为客户提供满足抗压强度要求的纸箱便成为众多纸箱厂关注的焦点。特别是近二年原纸价格居高不下,纸箱利润空间一缩再缩的情况下,制造出用纸成本最省而又能满足客户抗压要求的纸箱已成为众多纸箱厂共同的目标。 在此着重就影响纸箱抗压强度的因素、纸箱抗压强度的推算方法、抗压强度的用纸配置方法及抗压强度的测试方法等几个方面对纸箱的抗压强度进行综合论述与分析。有些地方难免会有孔见之嫌,但希望能为广大同行提供有益的参考。 影响纸箱抗压强度的因素: 影响纸箱抗压强度的因素有很多,大致可归纳为边压强度、结构尺寸、加工工艺、水分及装箱后的堆码运输方式等。由于各因素的交互影响,常常导致我们对抗压强度的预测产生一定偏差。纸箱厂也往往因为对这些因素认识不足,在设计、印刷及后加工过程中处理不当,造成巨大的成本浪费及客户投诉。因此,弄清这些因素的影响规律是十分必要的。 瓦楞纸板的边压强度 边压强度又叫垂直抗压强度,是对瓦楞纸板试样以垂直方向施加压力,施压过程中纸板所能承受的最大力即为纸箱的边压强度。纸箱抗压强度的高低主要取决于纸板边压强度,而边压强度则与组成瓦楞纸板的各层原纸的横向环压强度、纸板的坑型组合及纸板的粘合强度有关。 瓦楞纸板的边压强度主要与各层原纸的横向环压强度有关。一般来讲,克重较高、造纸材料质量较好及紧度较高的原纸,其横向环压强度也相应越高。但并非克重高的原纸环压就一定比克重低的原纸高。以箱板纸为例,进口牛皮横向环压指数可达到12N·m/g以上,而内地一些小型造纸厂生产的箱板纸仅为8 N·m/ g,相差了30个百分点。也就是说克重为175 g / m2的进口牛卡,其环压强度相当于260 g / m2。因此,鉴定纸箱保护性能的好坏,不能以纸箱用纸克重而论。 瓦楞纸板的结构设计是很科学的,其瓦楞的楞形就如一个个连接的小小拱形门,排成一排,相互支撑,形成三角结构体,强而有力,而且平面上也能承受一定压力,富有弹性,缓冲力强,能起到防震和保护商品的作用。瓦楞形状依圆弧半径不同一般分为U形、V形和UV形三种。U型的顶峰圆弧半径较大,呈圆弧形,如B楞、C 楞;V型的波峰半径较小,且尖,如A楞;UV型介于两者之间,如AB楞。据试验表明,V形楞在受压初期歪斜度较小,但超过最高点,便迅速地破坏,而U形楞吸收的能量较高,当压力消除后,仍能恢复原状,富有弹性,但耐压强度不高。另外V形楞节省瓦楞纸,粘合剂耗量较少,但加工时易出现高低楞,瓦楞辊磨损较快。UV形楞是结合U形和V形的特点,目前得到广泛的采用。 瓦楞纸板的各种坑型及其组合,就单坑纸板来说,一般A坑纸箱抗压强度最高,但易受到损坏; B坑强度较差,但稳定性好;C坑抗压力及稳定性居中。A型瓦楞具有较好的防震缓冲性,另外垂直耐压强度也较高;B型瓦楞的峰端较尖,粘合面较窄,其瓦楞高度较小,可以节省瓦楞原纸,其平面抗压能力超过A型瓦楞,B型瓦

纸箱、彩盒价格的计算公式

纸箱的价格计算公式 外箱:(长+宽+8)/100 x(宽+高+6)/100 x 单价(元/CM2) <~~~此尺寸为内径尺寸. 中盒:{(长+宽)*2+4}/100x{(宽+高)*2)}/100* 单价(元/CM2) <~~~此尺寸为内径尺寸. 外箱:(长+宽+7)/100 x(宽+高+3)/100 x 单价(元/CM2) <~~~此尺寸为外径尺寸. 内箱:(长+宽+7)/100 x(宽+高+3)/100 x 单价(元/CM2) <~~~此尺寸为外径尺寸. 其中,长宽高的单位为CM,纸箱要看其材质来定价格,目前常规外箱的价格为6.5元/M2. 彩盒的价格计算公式 彩盒的展开面积( M2 ) X 系数(3.8 ~ 4 ),如果复膜,则系数为4.8 . 展开面积的计算方法:〔( 长+ 宽) X 2 + 3 〕/100 X 〔( 宽X 2 + 高) + 2 〕/100 其中长、宽、高为CM, 例如一个不复膜彩盒的尺寸为7 X 6 X 16 CM 则展开面积为〔( 7 + 6 ) X 2 + 3 〕/100 X 〔( 6 X 2 + 16 ) + 2 〕/100 = 0.087 M2 则彩盒大概价格为0.087 X 4 = 0.35元 注:该估算方法只能用于尺寸较小的彩盒。 一般瓦楞彩盒的基本成本主要包括:用纸成本,瓦楞成本,印刷费用,上釉、压光、复膜的成本,粘贴工资和税收等。 纸的规格一般有两种:标规78.7 X 109 CM 和大规89 X 119 CM . 彩盒价格的计算方法为按彩盒的实际展开尺寸,根据标规(或大规)尺寸计算出所能做的盒子个数,从而得出单个盒子用纸的费用,再加上瓦楞、印刷、上釉、压光、复膜及税收等费用。 一般标规印刷为0.10元/ 色,上釉为0.30元/M2 , 压光为0.60元/ M2, 复膜为0.60 ~ 0.80元/ M2, 瓦楞为1.50 ~ 2.00元/ M2. 一般计算彩盒成本需另加制版费及刀模费,普通尺寸制版费为300~ 600元,刀模费为150元。 *PVC盒或PVC桶,按重量计算成本,一般为0.025元/克计算. 例如一个PVC盒重20克,则成本大概为20*0.025=0.50元 *PVC泡壳,按重量计算成本,一般为0.02元/克计算. 例如一个泡壳重20g,则成本大概为 20*0.02=0.4元

瓦楞纸箱抗压特性分析

瓦楞纸箱抗压特性 瓦楞纸箱抗压强度是指瓦楞纸箱空箱立体放置时,对其两面匀速施压,箱体所能承受的最大压力值。抗压强度试验的检测方法是将样箱立体合好,用封箱胶带上、下封牢,放入抗压试验机下压板的中间位置,开机使上压板接近空箱箱体,然后启动加压标准速度,直至将纸箱压溃,读取实测值,即为抗压强度,同一批次纸箱的试验数据之间的偏差越小抗压性能就越稳定。 影响瓦楞纸箱抗压强度的因素较多,这些因素交互发生作用,只有充分认识弄清这些因素影响的规律,才能准确预测出瓦楞纸箱的抗压强度值,以满足顾客需求。 瓦楞纸板的边压强度对抗压强度的影响 计算瓦楞纸箱抗压强度最常用的是Kellicutt 凯里卡特公式: P=ECT{4 ax2/Z}2/3·Z·J 式中:ECT—纸板边压强度(lb / in); ax2—瓦楞常数; J—楞型常数; Z—纸箱周长(in ); P—纸箱抗压强度(lb) 比较简易的计算公式是: P=5.874×ECT× √T×C 式中:P—抗压强度,N ECT—边压强度,N/m

T —纸板厚度,m C —纸箱周长,m 从瓦楞纸箱抗压强度的计算公式可以看出,瓦楞纸箱抗压强度主要取决于纸板边压强度,又称为垂直抗压强度,是对瓦楞纸板试样以垂直方向施加压力,施压过程中纸板所能承受的最大力即为纸箱的边压强度。 瓦楞纸板边压强度基本取决于箱纸板和瓦楞原纸的环压强度,并且与瓦楞纸板的生产工艺、瓦楞纸板的结构、楞形、黏合剂的质量等因素有关,计算公式为: 瓦楞纸板边压强度(N/m) ECT=各层原纸的环压强度值之和×(1+δ) 式中:δ—楞型系数之和,参考值如下: A型瓦楞一般为:0.12; B型瓦楞一般为:0.08; C型瓦楞一般为:0.10 原纸的环压强度值=环压指数×定量。 瓦楞纸板的楞型对纸板抗压强度的影响 人们把发明的第一个瓦楞形状定为 A型瓦楞,其次发明了B型瓦楞,后来又发明了介于A、B楞型大小之间的C楞,之后发明了E楞,而后又出现了较大的D楞、K楞。近年来,人们又研发了微型瓦楞,有F、G、N、O等楞型。 目前最常用的瓦楞类型为A、B、C、E和K五种,国内外生产瓦楞纸箱最常用的是A、B、C三种楞型及其组合,瓦楞纸板边压强度的高低依次为AB、BC、A、C、B,另外根据纸箱箱型选择合适的楞型也很关键,在人们的意识中,往往认为楞型越大,纸箱的抗压强度越高,而容易忽视楞型对变形量的影响。实际上,楞型越大,纸箱的抗压强度越大,变形量越大;楞型越小,纸箱的抗压强度越小,变形量越小。如果纸箱过大,楞型却很小,纸箱在抗压测试时就很容易被压溃;纸箱过小,楞型却很大,抗压测试时会造成变形量过大,缓冲过程长。 纸箱的周长、高度尺寸及长宽比对抗压强度的影响 纸箱的周长影响

瓦楞纸箱抗压强度计算公式

瓦楞纸箱抗压强度计算 公式 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

瓦楞纸箱抗压强度计算公式 一类根据瓦楞纸板原纸,即面纸和芯纸的测试强度来进行计算,另一类则直接根据瓦楞纸板的测试强度进行计算。 a. 凯里卡特公式 P——瓦楞纸箱抗压强度(N); Px——瓦楞纸板原纸的综合环压强度(N/cm); aXz——瓦楞常数; Z——瓦楞纸箱周边长(cm); J——纸箱常数。 瓦楞纸板原纸的综合环压强度计算公式如下 Rn——面纸环压强度测试值(N/)

Rmn ——瓦楞芯纸环压强度测试值(N/) C——瓦楞收缩率,单瓦楞纸板来说 双瓦楞纸板 公式中的(cm)为测定原纸环压强度时的试样长度。Z 值计算公式 Z=2(L 0+B ) Z——纸箱周边长(cm); L0——纸箱长度外尺寸(cm)B0——纸箱宽度外尺寸(cm); a z X、J、C值可查表 类纸箱抗压强度计算公式:

P0201 ——0201 箱型用凯里卡特公式计算的抗压强度(N);a——箱型修正系数,

凯里卡特公式,与实际测试值有一定差异,一般比测试值小5%。 ②马丁荷尔特(Maltenfort)公式 P——瓦楞纸箱抗压强度(N); CLT- O ——内、外面纸横向平压强度平均值(N/cm)。 ③沃福(Wolf)公式 Pm——瓦楞纸板边压强度(N/m) ④马基(Makee)公式 Dx——瓦楞纸板纵向挺度(MN·m) Dy——瓦楞纸板横向挺度(MN·m) 马基简易公式:

包卷式纸箱抗压强度计算公式: PwA——包卷式纸箱抗压强度(N);Pm ——瓦楞纸板边压强度(N/m)a——常数 b——常数 ⑤APM 计算公式 考虑箱面印刷对抗压强度的影响。 a——箱面分类系数;

纸箱爆裂强度标准 tappi 810

Names of suppliers of testing equipment and materials for this method may be found on the Test Equipment Suppliers list in the bound 1 set of TAPPI Test Methods, or may be available from the TAPPI Technical Operations Department.Approved by the Fiberboard Shipping Container Testing Committee of the Corrugated Containers Division TAPPI T 810 om-98 SUGGESTED METHOD – 1966 OFFICIAL TEST METHOD – 1980 REVISED – 1985 REVISED – 1992 REVISED – 1998 ? 1998 TAPPI The information and data contained in this document were prepared by a technical committee of the Association. The committee and the Association assume no liability or responsibility in connection with the use of such information or data, including but not limited to any liability or responsibility under patent, copyright, or trade secret laws. The user is responsible for determining that this document is the most recent edition published. Bursting strength of corrugated and solid fiberboard 1.Scope This method describes the procedure for measuring the bursting strength of single wall and double wall corrugated and solid fiberboard. It is not designed to be used for the bursting strength of paper (TAPPI T 403 "Bursting Strength of Paper"), paperboard and linerboard (TAPPI T 807 "Bursting Strength of Paperboard and Linerboard"), or triple wall corrugated board. 2.Significance The bursting strength of combined board is primarily an indication of the character of the materials used in manufacturing a fiberboard box and has value in this respect. Bursting strength of combined board is an optional requirement of the various carrier regulations for shipping containers. The bursting strength of the component paperboard is an important control test in the paperboard mill since the conformity of the finished container is generally controlled by the bursting strength of the paperboard. Triple-wall corrugated board cannot be tested suitably by the bursting method. Testing of double-wall board is of questionable accuracy since it is rarely possible to get sufficiently simultaneous bursts of the multiple facings. The test is simple and rapid to execute, but it must be recognized that it is subject to serious errors if instrument, diaphragm, and gages are not properly maintained or if improper procedures are used (1, 2, 3). 3.Apparatus 3.1Bursting tester , consisting of the following: 13.1.1Means for clamping the test specimen between two annular, plane surfaces having fine concentric tool marks to minimize slippage. The upper clamping platen (clamping ring) has a minimum diameter of 95.3 mm (3.75 in.),a minimum thickness of 9.53 mm (0.375 in.), and a circular opening of 31.50 ± 0.03 mm (1.240 ± 0.001 in.) diameter.The lower edge of the opening (side in contact with the board) has a 0.64 mm (0.025 in.) radius. The lower clamping surface (diaphragm plate) has a thickness of 5.56 ± 0.08 mm (0.219 ± 0.003 in.) with an opening 31.50 ± 0.03 mm (1.240± 0.001 in.) in diameter and an overall diameter at least as large as the upper clamping plate.. The upper edge of the opening (in contact with the board) has a 0.41 mm ± 0.1 mm (0.016 ± 0.004 in.) radius and the lower edge of the opening (in contact with the rubber diaphragm) has a radius of 3.1 ± 0.1 mm (0.122 ± 0.004 in.) to prevent cutting the rubber when pressure is applied. The upper clamping ring is connected to the clamping mechanism through a swivel joint to

纸箱抗压强度的影响因素

影响瓦楞纸箱抗压强度的因素 瓦楞纸箱抗压强度是指瓦楞纸箱空箱立体放置时,对其两面匀速施压,箱体所能承受的最大压力值。抗压强度试验的检测方法是将样箱立体合好,用封箱胶带上、下封牢,放入抗压试验机下压板的中间位置,开机使上压板接近空箱箱体,然后启动加压标准速度,直至将纸箱压溃,读取实测值,即为抗压强度,同一批次纸箱的试验数据之间的偏差越小抗压性能就越稳定。 影响瓦楞纸箱抗压强度的因素较多,这些因素交互发生作用,只有充分认识弄清这些因素影响的规律,才能准确预测出瓦楞纸箱的抗压强度值,以满足顾客需求。 瓦楞纸板的边压强度对抗压强度的影响 计算瓦楞纸箱抗压强度最常用的是Kellicutt 凯里卡特公式: P=ECT{ 4 ax2/Z}2/3·Z·J 式中:ECT—纸板边压强度(lb / in); ax2—瓦楞常数; J—楞型常数; Z—纸箱周长(in ); P—纸箱抗压强度(lb) 比较简易的计算公式是: P=5.874×ECT× √T×C 式中:P—抗压强度,N ECT—边压强度,N/m T —纸板厚度,m C —纸箱周长,m 从瓦楞纸箱抗压强度的计算公式可以看出,瓦楞纸箱抗压强度主要取决于纸板边压强度,又称为垂直抗压强度,是对瓦楞纸板试样以垂直方向施加压力,施压过程中纸板所能承受的最大力即为纸箱的边压强度。 瓦楞纸板边压强度基本取决于箱纸板和瓦楞原纸的环压强度,并且与瓦楞纸板的生产工艺、瓦楞纸板的结构、楞形、黏合剂的质量等因素有关,计算公式为: 瓦楞纸板边压强度(N/m) ECT=各层原纸的环压强度值之和×(1+δ) 式中:δ—楞型系数之和,参考值如下:

A型瓦楞一般为:0.12; B型瓦楞一般为:0.08; C型瓦楞一般为:0.10 原纸的环压强度值=环压指数×定量。 瓦楞纸板的楞型对纸板抗压强度的影响 人们把发明的第一个瓦楞形状定为A型瓦楞,其次发明了B型瓦楞,后来又发明了介于A、B楞型大小之间的C楞,之后发明了E楞,而后又出现了较大的D楞、K楞。近年来,人们又研发了微型瓦楞,有F、G、N、O等楞型。 目前最常用的瓦楞类型为A、B、C、E和K五种,国内外生产瓦楞纸箱最常用的是A、B、C三种楞型及其组合,瓦楞纸板边压强度的高低依次为AB、BC、A、C、B,另外根据纸箱箱型选择合适的楞型也很关键,在人们的意识中,往往认为楞型越大,纸箱的抗压强度越高,而容易忽视楞型对变形量的影响。实际上,楞型越大,纸箱的抗压强度越大,变形量越大;楞型越小,纸箱的抗压强度越小,变形量越小。如果纸箱过大,楞型却很小,纸箱在抗压测试时就很容易被压溃;纸箱过小,楞型却很大,抗压测试时会造成变形量过大,缓冲过程长。 纸箱的周长、高度尺寸及长宽比对抗压强度的影响 纸箱的周长影响 在用料和楞型相同的情况下,纸箱周长的增长与抗压强度的增长会形成一种变化的曲线,开始纸箱的周长越长,抗压强度越高,但随着纸箱周长的加大,增加了纸箱的不稳定性,在纸箱周长达到一定阶段后,所能承受的抗压强度会呈现按一定比例的递减。(图1 纸箱周长与抗压强度的关系) 图1 纸箱周长与抗压强度的关系 纸箱的高度影响 高度在100~350mm时,抗压强度随着纸箱的高度增加而稍有下降;高度在350~650mm之间时,纸箱的抗压强度几乎不变;高度大于650mm时,纸箱的抗压强度随着高度增加而降低。主要原因是随着纸箱的高度增加,其稳定性也会相应地增加。 纸箱的长宽比影响 一般情况下,纸箱的长宽比在1~1.8的范围内,长宽比对抗压强度的影响仅为±5%。其中纸箱的长宽比RL=1.2~1.5时,纸箱的抗压强度最高。纸箱的长宽比为2:1时,其抗压强度下降约20%,因此确定纸箱尺寸时,长宽比不宜超过2,否则会造成成本浪费。(图2 纸箱的长宽比与抗压强度的关系) 错误!

瓦楞纸箱抗压强度计算中凯里卡特公式的应用

瓦楞纸箱抗压强度计算中凯里卡特公式的应用: 瓦楞纸箱抗压强度的计算公式很多: 常用的有凯里卡特(K.Q.Kellicutt)公式、马丁荷尔特(Maltenfort)公式、沃福(Wolf)公式、马基(Makee)公式、澳大利亚APM公司计算公式,等等。 其中,凯里卡特公式常被应用于0201型瓦楞纸箱抗压强度的计算。 凯里卡特公式表达式: 美国的凯里卡特根据瓦楞纸箱的边压强度和周长提出了计算纸箱抗压强度的公式 BCT=ECT×(4aXz/Z)2/3×Z×J 式中BCT——瓦楞纸箱的抗压强度(lb) ECT——瓦楞纸板的边压强度(lb/in) Z ——瓦楞纸箱的周长(lb) aXz——瓦楞常数 J ——纸箱常数 相应的瓦楞纸箱常数见表1。 倘若知道瓦楞纸箱的外尺寸和楞型,可根据瓦楞纸板的边压强度ECT推测瓦楞纸箱的抗压强度BCT,或者根据瓦楞纸箱的抗压强度BCT推测瓦楞纸板的边压强度ECT。 例如,29英寸彩电包装纸箱采用AB型瓦楞纸板 ? 纸箱外尺寸为904×644×743mm; ? 毛重G=48Kg; ? 经多次使用修正确定安全系数为K=6.5; ? 堆码层数为N=300/74.3=4(堆码限高为3米, 堆码层数取整数); 因为1磅(lb)=0.454千克(Kg)=4.453牛顿(N),1英寸(in)=2.54厘米(cm),所以空箱抗压强度为: BCT=KG(N?1) =6.5×48×9.81×(4-1) =9182.16(N) =2061.67(lb) 因为瓦楞纸箱的周长Z=(90.4+64.4)×2=309.6(cm)=121.89(in), 瓦楞常数aXz=13.36, 纸箱常数J=0.54, 故瓦楞纸板的边压强度: ECT=BCT/【(4aXz/Z)2/3×Z×J】 =2061.67/【(4×13.36 /121.89)2/3×121.89×0.54】 =54.27(lb/in) =95.2(N/cm) =9520 (N/m) 1

纸箱价格计算公式

纸箱价格计算公式: 普通纸箱计算公式:纸箱价格=(长+宽+50)×(宽+高+30)×2×单价÷1000000。 全盖纸箱计算公式:纸箱价格=(长+宽+50)×(2宽+高+30)×2×单价÷1000000。 单面半盖纸箱计算公式:纸箱价格=(长+宽+50)×(0.5宽+高+30)×2×单价÷1000000。 纸护角计算公式:纸护角价格=(长+15)×(宽+15)×单价÷1000000。 下封上开型纸箱计算公式=(宽+高+50)×(长+高/2+80+30)×2×单价÷1000000。 五折式纸箱计价公式:(长+2高)*(2宽+3高)*纸质单价/10000。 公式中的纸箱长、宽、高均以厘米为计量单位。公式中的平方价按照不同的纸板材质价格有所不同的。 长宽dao高的单位为CM,纸箱要看其材质来定价格,常规外箱的价格为6.5元/M2.彩盒的价格计算公式彩盒的展开面积(M2)X 系数(3.8~4),如果复膜,则系数为4.8。 纸箱: 纸箱(英文carton或hard paper case):是应用最广泛的包装制品,按用料不同,有瓦楞纸箱、单层纸板箱等,有各种规格和型号。 纸箱常用的有三层、五层,七层使用较少,各层分为里纸、瓦楞

纸、芯纸、面纸,里、面纸有茶板纸、牛皮纸,芯纸用瓦楞纸,各种纸的颜色和手感都不一样,不同厂家生产的纸(颜色、手感)也不一样。 通常用作商品的包裹物或物品保护外层使用物。纸箱的体积因商品的大小而改变,纸箱通常有“小心轻放”、“怕湿”、“向上”、“堆码极限”、“怕晒”、“防潮”“质量安全”“禁止翻滚”“不可践踏”“注意防火”“易碎物品”“绿化环境”“怕热”“食品”“防异味”等多种图案或文字提示,提醒使用者注意,以保护内装物品不受伤害。 包装纸箱作为现代物流不可缺少的一部分,承担着容装、保护产品、美观的重要责任,包装纸箱的物理性能指标则成为其质量评估的依据。稳定的工作环境条件保障了测试数据的准确性和可靠性,并有多年从事纸箱测试专业的资深工程师,对包装箱进行测试分析,为包装箱供应商和包装箱用户提供公正、科学的测试数据。TTS(一通检测)亦为多家知名企业提供供应商材料筛选,标书评定等工程。

瓦楞纸箱抗压强度基本知识

瓦楞纸箱抗压强度基本知识 瓦楞纸箱抗压强度是指瓦楞纸箱空箱立体放置时,对其两面匀速施压,箱体所能承受的最大压力值。抗压强度试验的检测方法是将样箱立体合好,用封箱胶带上、下封牢,放入瓦楞纸箱耐压试验机下压板的中间位置,开机使上压板接近空箱箱体,然后启动加压标准速度,直至将纸箱压溃,读取实测值,即为纸箱抗压强度,同一批次纸箱的试验数据之间的偏差越小抗压性能就越稳定。影响瓦楞纸箱抗压强度的因素较多,这些因素交互影响,满足顾客对抗压强度的要求。常常导致我们对抗压强度的预测产生一定偏差。纸箱厂也往往因为对这些因素认识不足,在设计、印刷及后加工过程中处理不当,造成巨大的成本浪费及客户投诉。因此,弄清这些因素的影响规律是十分必要的。纸箱抗压试验机瓦楞纸板的边压强度边压强度又叫垂直抗压强度,是对瓦楞纸板试样以垂直方向施加压力,施压过程中纸板所能承受的最大力即为纸箱的边压强度。纸箱抗压强度的高低主要取决于纸板边压强度,而边压强度则与组成瓦楞纸板的各层原纸的横向环压强度、纸板的楞型组合及纸板的粘合强度有关。测试时需要使用纸板纸箱边压强度试验机,平压强度试验机,粘合强度试验机,环压强度试验机。纸张的防水性能也很重要,特别是冷藏箱对纸张的防水性能要求更高,有时虽然纸箱的抗压强度很高,但由于纸张不防水,纸箱存放在冷库中就容易吸潮,造成塌库。瓦楞纸板的边压强度主要与各层原纸的横向环压强度有关。瓦楞纸板的波形分为U形、V形和UV 形三种。U型的顶峰圆弧半径较大,呈圆弧形,如B楞、C楞;V型的波峰半径较小,且尖,如A楞;UV型介于两者之间,如AB楞。据试验表明,V形楞在受压初期歪斜度较小,但超过最高点,便迅速地破坏,而U形楞吸收的能量较高,当压力消除后,仍能恢复原状,富有弹性,但耐压强度不高。另外V形楞节省瓦楞纸,粘合剂耗量较少,但加工时易出现高低楞,瓦楞辊磨损较快。UV形楞是结合U形和V形的特点,目前得到广泛的采用。 瓦楞纸板的各种楞型及其组合,就单瓦纸板来说,一般A瓦纸箱抗压强度最高,但易受到损坏;B瓦强度较差,但稳定性好;C瓦抗压力及稳定性居中。A瓦楞具有较好的防震缓冲性,另外垂直耐压强度也较高;B瓦楞的峰端较尖,粘合面较窄,其瓦楞高度较小,可以节省瓦楞原纸,其平面抗压能力超过A型瓦楞,B瓦楞单位长度内瓦楞数较多,与面纸有较多的支承点,因而不易变形,且表面较平。在印刷时有较强抗压能力,可得到良好印刷效果。C瓦楞兼有A和B瓦楞的特点,它的防震性能与A瓦楞相近,平面抗压能力接近B瓦楞。E瓦楞是最细的一种瓦楞,单位长度内的瓦楞数目最多,能承受较大的平面压力,可适应胶版印刷需要,能在包装面上印出质量较高的图文,这种瓦楞纸板和硬纸板强度差不多。根据纸箱箱型选择合适的楞型也很关键在人们的意识中,往往认为楞型越大,纸箱的抗压强度越高,容易忽视楞型对变形量的影响。楞型越大,纸箱的抗压强度越大,变形量越大;楞型越小,纸箱的抗压强度越小,变形量越小。如果纸箱过大,楞型却很小,纸箱在抗压测试时就很容易被压溃;纸箱过小,楞型却很大,抗压测试时会造成变形量过大,缓冲过程长,有效力值与最终力值偏差过大。 三种楞型比较表瓦楞种类平面压力垂直压力平行压力 A:3 1 3 B :1 3 1 C:2 2 2 注:1. 平面压力是指垂直于瓦楞纸板平面的压力。 2. 垂直压力是指与瓦楞方向一致的压力,平行压力是指垂直于瓦楞方向的压力。 3. “1”代表最强。根据上述不同类型瓦楞的不同特点,单瓦楞纸箱用A型和C型为宜;双瓦楞纸箱用AB型, BC型相结合最为理想;接近表面的用B型,能起到抗冲击力较强的作用;接近内层的用A型或C型弹性足、缓冲力强;采有用AB型或BC型结合,使纸箱的物理性能发挥两个

瓦楞纸箱抗压强度计算公式

瓦楞纸箱抗压强度计算公式 一类根据瓦楞纸板原纸,即面纸和芯纸的测试强度来进行计算, 据瓦楞纸板的测试强度进行计算。 ① 凯里卡特(K.Q.Kellicutt )公式 a.凯里卡特公式 4 Y - P ――瓦楞纸箱抗压强度(N ); Px ---瓦楞纸板原纸的综合环压强度(N/cm ); aXz ---- 瓦楞常数; Z ----瓦楞纸箱周边长(cm ); J ----纸箱常数 瓦楞纸板原纸的综合环压强度计算公式如下 Rn ――面纸环压强度测试值(N/0.152m ) Rmn ――瓦楞芯纸环压强度测试值(N/0.152m ) C ――瓦楞收缩率,单瓦楞纸板来说 尸二片+尽4凡. J 15.2 双瓦楞纸板 公式中的15.2(cm )为测定原纸环压强度时的试样长度。 Z 值计算公式 另一类则直接根 爲一马+竖+盘1「+

Z=2(L0+B0) Z --- 纸箱周边长(cm); L o --- 纸箱长度外尺寸(cm) B o --- 纸箱宽度外尺寸(cm); a z X、J、C值可查表 b.06类纸箱抗压强度计算公式: P = l,29(^ +7^)-1050 P T6类纸腐拉七强度卓); 主体箱板抗压强度<N)5 P L Pg--- 端咬抗压强度 已=^0201' ~ - .B P R =兄DI() L+ B 舛呦——与主体箱板同村I讥0201纸箱抗压强度<N); ——与端板同材质0201纸箱抗压强度(N). &但卷式纸箱抗压强度计算公式 ^WA ~^0201 ' 0 Q 1.6 曰 硼—一包卷武纸箱抗压强度(N); 尽趴——舟凯里卡特公式计算的0201纸箱抗压强度(N):F揺盖长度 筑——纸箱宽度外尺寸(皿》 e.其他箱型抗床强度计算

纸箱强度计算

包装设计过程中可能要涉及强度计算方面的内容,主要有两个方面的应用: 1.已知最大堆叠高度,需选择适当的瓦楞纸板; 2.产品包装已确定,需计算出允许的最大堆叠高度。 对包装强度影响最大的就是选用的瓦楞纸板了。 1. 瓦楞纸板的构造及分类在介绍乏味的内容之前,我们先了解一下瓦楞纸板的构造及分类。 瓦楞纸板主要由面纸和波形的瓦楞(flute)通过粘合而成。根据瓦楞的不同大小瓦楞可以分为A型,B型,C型,D型,E型,F型,G型楞。如下图: B型和C型瓦楞比较常用,B型楞排列密度大,制成的瓦楞纸板表面平整,承压力高,适于印刷;C型楞有较好的挺度和抗冲击性。 根据需求,瓦楞纸板可以加工成单面瓦楞纸板、三层瓦楞纸板、五层、七层、十一层等瓦楞纸板。层是中文的表述,对应于英文的Layer,但是更常用的一种表述是Wall。通过下面的图你就可以知道它们表示什么含义了。

瓦楞纸板的标注方式 2. 瓦楞纸板的强度包装箱上一般在底部会有一个如下的标识: 纸箱厂商证书 上图是两家厂商的包装箱上的标识,它上面包含的信息有:厂商名称,地址以及关于纸箱的强度参数: ?Edge Crush Test, ECT: 边压强度。边压强度又叫垂直抗压强度,是对瓦楞纸板试样以垂直方向施加压力,施压过程中纸板所能承受的最大力即为纸箱的边压强度。 ?Brusting Test: ?Size Limt: ?Groos WT LT: 瓦楞纸箱加上内装物总重量极限值

Min Comb WT Facings: Min Combined Weight on Facings 上面两张图片使用的参数不太一样,前面一个用的是Edge Crush Test,后面一个用的是Bursting Test也称为Mullen Test。 边压强度衡量的是瓦楞纸板的堆叠性能强度,而Mullen衡量瓦楞纸的抗破损强度。简单地说前者是沿纸板方向施压,后者是沿纸板垂直方向施压进行测试。Mullen测试更适合于包装比较重的物体,而ECT测试适合比较轻的物体时需考虑其堆叠特性。 ECT 和Brusting Test 的对应值大体如下表所示: Max Wt. Box/Contents (lbs.) Min. Burst Test Single/Double Wall (lbs. per sq. in.)* Min. Edge Crush Test (E (lbs. per in. width) Single Wall Corrugated Boxes 20 125 23 35 150 26 50 175 29 65 200 32 80 250 40 95 275 44 120 350 55 Double Wall Corrugated Boxes 80 200 42 100 275 48 120 350 51 140 400 61 160 500 71 180 600 82 Triple Wall Corrugated Boxes 240 700 67 260 900 80 280 1100 90 300 1300 112

纸箱计算公式

瓦楞纸箱价格计算方法 (特别指出本文所用价格纯属虚构) 纸箱的结构表达式如下:面纸:纸名,重量/瓦纸:瓦纸强度,重量,楞型/芯纸:瓦纸强度, 重量/里纸:纸名,重量 实例:面纸牛皮卡300克/高瓦180克(A/B楞)/芯纸180克普瓦/里纸280克箱板纸 瓦楞纸箱计价公式 纸箱价格(元)=瓦楞纸板出厂每平方米价(元/m2)×纸箱展开面积(m2) 一、瓦楞纸板出厂每平方米价的计算 1.瓦楞纸板的组成 瓦楞纸板主要分为三层瓦楞纸板、五层瓦楞纸板和七层瓦楞纸板: (三层瓦楞纸箱)主要用于包装重量较轻的内包装物,三层瓦楞纸箱又叫单瓦楞纸箱其结构是 由一张瓦楞纸两面各粘一张面纸组合而成。 (五层瓦楞纸箱)主要用于单件包装重量较轻且易破碎的内装物;五层瓦楞纸箱又叫双瓦楞纸箱,过去简称为三黄两瓦。五层瓦楞纸箱的结构是由面纸、里纸、两张芯纸和两张瓦楞纸粘合而成,楞型的组合通常采用AB型、AC型、BC型、AE型或BE型。 (七层瓦楞纸箱)由下列纸板组成三层瓦楞箱板纸(主要用于重型商品的包装,如摩托车等);组成:由面纸、瓦楞纸、芯纸、瓦楞纸、芯纸、瓦楞纸、里纸粘合而成。瓦楞楞型的组合通常 采用BAB型、BAA型、CAC型或BAC型 2.统一瓦楞纸板的计量单位 1).一般纸箱厂购进时面纸、里纸、芯纸、瓦楞原纸均以吨价计算。即各种面纸、里纸、芯纸、瓦楞原纸为每吨多少元,其单位表示为”元/吨”,而计算时必须换成”元/公斤”,如进价为5200元/吨,则按公斤算即为5200元/1000kg=5.20元/kg. 2).一般纸张的重量通常讲克重,实际上应为每平方米多少克重即各种面纸、里纸、芯纸、瓦楞原纸重量均以”克/m2”为代表单位,为计算必须统一其用量单位,这里必须把“克/ m2” 换算成 “kg/m2”。 如购进300克的牛皮纸,即是300g/m2的牛皮纸,此时将“300克/m2”换算成(300/1000)kg/m2”, 则得0.3kg/m2。 3-A.瓦楞原纸制作瓦楞纸的系数的确定 瓦楞原纸因压瓦楞后引起纸张长度方向上的缩短其缩短比值称为压缩比系数。此项系数各制造厂无统一标准,其原因在于各制造厂的生产能力、管理水平的高低直接影响瓦楞纸的收率高低, 但包装界一般默认如下系数: A楞的压缩比系数为1.59,即1.59米的瓦楞纸压瓦楞后为1米长。 B楞的压缩比系数为1.36,即1.36米的瓦楞纸压瓦楞后为1米长。 C楞的压缩比系数为1.50,即1.50米的瓦楞纸压瓦楞后为1米长。 E楞的压缩比系数为1.27,即1.27米的瓦楞纸压瓦楞后为1米长。

纸箱抗压强度计算.

纸箱抗压强度计算 发布时间:10-07-22 来源:点击量:1960 字段选择:大中小 抗压力试验 纸箱抗压能力是指瓦楞纸箱空箱立体放置时,对其两面匀速施压,箱体所能承受的最高压力值。 抗压能力的N。 取箱体和箱面不得破损和有明显碰、戳伤痕的样箱三个。 抗压力试验的设备是包装容器整体抗压试验机 包装容器整体抗压试验机的主要技术参数是: 测量范围:0-50kN 负荷准确度:±2% 压板面积:1200mm×1200mm 上、下板平行度:2/1000 上压板有效行程:标准速度 10mm/mm 无极调速 1-100/min 抗压力试验的检测方法是将三个样箱立体合好,用封箱胶带上、下封牢,放入抗压试验机下压板的中间位置,开机使上压板接近空箱箱体。然后启动加压标准速度,直至箱体屈服。读取实测值。 对测试的结果,求出算术平均值。 被测瓦楞纸箱的抗压力值按下列公式计算: P=K×G(H/h-1)×9.8 式中:P:-抗压力值,N K:-劣变系数(强度系数); G:-单件包装毛重;kg H:-堆积高度;m h:-箱高;m

H/h:-取整位数。 根据SN/T0262-93《出口商品运输包装瓦楞纸箱检验规程》中的计数规定,H/h取速位数。小数点后面无论大、小都入上,就高不就低。 SN/T0262-93检验规程关于劣变系数的规定(表二十五): 表二十五 贮存期小于30天30天-100天100天以上 劣变系数K1.61.652 注:劣变系数(强度系数)K根据纸箱所装货物的贮存条件决定。 抗压力试验合格准则的判定为:当所测三个样箱的抗压力值均大于标准抗压力值时,该项试验为合格。若其中有一个样箱不合格,则该项试验为不合格。 纸板边压强度的推算方法 瓦楞纸板的边压强度等于组成纸板各层原纸的横向环压强度之和,对于坑纸,其环压值为原纸环压强度乘以对应的瓦楞伸长系数。 单瓦楞纸板Es= (L1+L2+r×F) 双瓦楞纸板Ed= (L1+L2+L3+r×F+r1×F1) 三瓦楞纸板Et= (L1+L2+L3+L4+r×F+r1×F1+r2×F2) 式中 L1、L2、L3、L4分别为瓦楞纸板面纸、里纸及中隔纸的环压强度(N/m); r、r1、r2表示瓦楞伸长系数(见表二); F、F1、F2表示芯纸的环压强度(N/m); 表二不同楞型的伸长系数及纸板厚度 楞型 A C B E 伸长系数(r) 1.53 1.42 1.40 1.32 纸板厚度 5 4 3 1.5 注:1. 不同瓦线设备,即使是同一种楞型,由于其瓦楞辊的尺寸不同,瓦楞伸长系数也存在偏差,所以纸箱企业在使用表二进行推算时需根据工厂的设备情况对伸长系数进行调整。

如何计算纸箱的成本详细

纸箱成本核算标准IR 单价=原材料价(到价)+纸料损耗价+辅料价+其它部分绝对值+税+利润 1. 纸箱制作公式(单位:厘米) 单瓦:(1)单拼:(长+宽)×2+7 ,宽+ 高+4 (2)双拼:(长+宽+7 )×2 ,宽+ 高+4 双瓦:(1)单拼:(长+宽)×2+8 ,宽+ 高+5 (2)双拼:(长+宽+8 )×2 ,宽+ 高+5 2. 瓦楞缩率: (1)生产线和单面机为50% (2)单机为35% 3. 纸料损耗: (1)进口纸按7.75% (2)国产纸按10% (3)单机生产均按4% 4. 原纸价(到价)随行就市。 5. 辅料及燃料、动力费:单瓦0.16 元/平方米,双瓦0.24 元/平方米。) 6. 其它部分绝对值:(含工资及工资附加费、制造费、管理费用等)。 每平方米:双瓦:0.62-0.72 元,单瓦:0.48-0.58 元 7. 利润率:10% 8. 税金、上交管理费按6% 9. 附加:小批量加价。 (1)印刷费:双色以上(不含双色)印刷每色平方米加价0.10 元。 (2)特异纸箱加价5%-10% 。 (3)制版费:超过常规由客户负担。 (4)特大纸箱加价。 单瓦:(1)单拼:(长+宽)×2+7 ,宽+ 高+4 (2)双拼:(长+宽+7 )×2 ,宽+ 高+4 双瓦:(1)单拼:(长+宽)×2+8 ,宽+ 高+5 (2)双拼:(长+宽+8 )×2 ,宽+ 高+5 说明一下.... 一、纸箱/纸板计价公式: 1、纸箱/粘贴箱(carton/glue carton ) (长+宽+2 )*(宽+高+1 )*2* 单价/1000 2、平卡/企卡(flat card/ver.card ) (长+0.5)*( 宽+0.5)* 单价/1000 3、啤卡/啤刀卡/刀卡/啤盒(die-cut/egg-crate/gift box ) (长+1 )*(宽+0.5 )*单价/1000+ 啤工 4、半边翼箱(glue carton without one side cover) (长+宽+2)*( 宽*0.5+ 高+1)*2* 单价/1000 5、钉/粘固卡(sleere) (长+宽+2)*( 高+1)*2* 单价/1000 6、天盒(cover) (长+高*2+1)*( 宽+高*2+0.5)* 单价/1000 不同材质价格也将不同CXC 材质最差') 我采购的是双瓦楞纸板和单瓦楞纸板:双价格公式是:(长+宽+8 )(宽+高+6 )*双平方价格单瓦价格公式是::(长

相关文档
最新文档