华南理工大学数值分析

华南理工大学数值分析
华南理工大学数值分析

诚信应考,考试作弊将带来严重后果!

华南理工大学期末考试

《数值分析》试卷A 卷

注意事项:1.考前请将密封线内各项信息填写清楚;

2. 可使用计算器,解答就答在试卷上; 3 ?考试形式:闭卷; 4.

本试卷共 八大题,满分100分。考试时间120分钟。

一. 填空题(每小题2分,共20分) 1. 已知自然数 e = 2.718281828459045…,取 2.71828,那

么e 具有的有效数字是 ______________ . 2. VZ 的相对误差约是x *的相对误差的 _______ 倍. 3.

为了减少舍入误差的影响

,数值计算时应将10 -「99改为

4. 求方程x 2

-2x 十1 = 0根的牛顿迭代格式为 _______________ 收敛阶为 _______________ .

5. 设 b=(0,-4,3)T ,则 b := __________ , b^ _________ .

2 x 1 - 5x 2 = 1

6.

对于方程组」

,Guass-seidel 迭代法的迭代矩

J0x 1 - 4x^ 3

阵是B G = ____________ . 7. 2个节点的Guass 型求积公式代数精度为 ___________ . 8. 设 f(x)=x 3+3x-1,则差商 f 10,1,2,3】= _____________ .

9.

求解常微分方程初值问题的隐式欧拉方法的绝对稳定区间为

10. 设^q k (x)?kz0为区间[0,1]上带权,=x 且首项系数为1的k 次正

交多项式序列,其中q 0(x)=1,则qdx)= _______________ . 二. (10分)用直接三角分解方法解下列线形方程组

)封 题… 答… 不… 内… 线… 封

密…

<215、/

、4112X2

<-2-45」MJ 「11、

27亿

三.(12分)对于线性方程组

J142

、「2 0、

2310X213

<521」J2,

写出其Jacobi迭代法及其Guass-Seidel迭代法的分量形式,并判断它们的收敛性.

四.(12分)对于求.3的近似值,若将其视为(X2-3)2=0的根,

(1).写出相应的Newton迭代公式.

⑵.指出其收敛阶(需说明依据).

五.(12分)依据如下函数值表

(1).构造插值多项式满足以上插值条件⑵.推导出插值余项.

六.(10分已知离散数据表

若用形如y =ax ? bx2进行曲线拟合,求出该拟合曲线.

1

七.(12分)构造带权:(x) 的Guass型求积公式.

1 1

(0 左f(x)dx 止A°f(X o)十A1f(x1)

八.(12分)对于常微分方程的初值问题

Z dy

2y

dx

y(0)

= 2

(1) .若用改进的欧拉方法求解,证明该方法的收敛性

(2) .讨论改进欧拉方法的稳定条件.

2016华工计算机计算方法(数值分析)考试试卷

考完试了,顺便把记得的题目背下来,应该都齐全了。我印象中也就只有这些题,题目中的数字应该是对的,我也验证过,不过也不一定保证是对的,也有可能我也算错了。还有就是试卷上面的题目可能没有我说的这么短,但是我也不能全把文字背下来,大概意思就是这样吧。每个部分的题目的顺序可能不是这样,但总体就是这四大块。至于每道题目的分值,我记得的就写出来了,有些题目没注意。我题目后面写的结果都是我考试时算出来的,考完了也懒得验证了,可能不一定对,自己把握吧,仅供参考。 华南理工大学2016计算机计算方法(数值分析)考试试卷 一填空题(16分) 1.(6分)X* = 3.14,准确值x = 3.141592,求绝对误差e(x*) =,相对误差e r(x*) =,有效数 位是。 2.(4分)当插值函数的n越大时,会出现龙格现象,为解决这个问题,分段函数不一个 不错的办法,请写出分段线性插值、分段三次Hermite插值和三次样条插值各自的特点。 3.(3分)已知x和y相近,将lgx – lgy变换成可以使其计算结果更准确。 4.(3分)已知2x3– 3x2 +2 = 0,求牛顿迭代法的迭代式子。 解题思路:1. 这里的绝对误差和相对误差是没有加绝对值的,而且要注意是用哪个数减去哪个数得到的值,正负号会不一样;2. 可以从它们函数的连续性方面来说明;3. 只要满足课本所说的那几个要求就可以;这个记得迭代公式就可以直接写,记不住可以自己推导,就是用泰勒展开式来近似求值得到的迭代公式。 我最终的结果是: 1.-0.001592 -0.000507 3 2.分段线性插值保证了插值函数的连续性,但是插值函数的一次导数不一定连续; 分段三次Hermite既保证了插值函数的连续性,也保证了其一次导数的连续性; 三次样条插值保证了插值函数及其一次导数和二次导数的连续性 3.lg(x/y) 4.x k+1 = x k– (2x3– 3x2 +2)/(6x2 -6x) 二计算题(64分) 1.已知f(x) = x3–x -1,用对分法求其在[0 , 2]区间内的根,误差要满小于0.2,需要对分多少 次?请写出最后的根结果。 解题思路:每次求区间的中值并计算其对应的函数值,然后再计算下一个区间中值及函数值,一直到两次区间中值的绝对值小于0.2为止。 我最终算得的对分次数是4,根的结果为11/8. 2. (1)请根据以上数据构造Lagrange三次插值函数; (2)请列出差商表并写出Newton三次插值函数。 解题思路:(1) 直接按照书本的定义把公式列出来就可以了,这个要把公式记住了才行,不然也写不了;(2)差商表就是计算Newton三次插值函数过程中计算到的中间值及结果值,可以先在草稿上按照Newton公式的计算过程把公式写出来,然后把中间用到的值

华南理工大学数值分析试题-14年下-A

《数值分析》A 卷 第 1 页 共 2 页 华南理工大学研究生课程考试 《数值分析》试卷A (2015年1月9日) 1. 考前请将密封线内各项信息填写清楚; 所有答案请按要求填写在本试卷上; 课程代码:S0003004; 4. 考试形式:闭卷; 5. 考生类别:硕士研究生; 本试卷共八大题,满分100分,考试时间为150分钟。 一.(12分)解答下列问题 1.欲计算下式: ()13(1)2(1)(2)7(1)(2)(3)6(1)(2)(3)(4),P x x x x x x x x x x x =+-+------+---- 2.设有递推公式 0161,1,2,n n y y y n -?=??=-=?? *001.732y y = 作实际计算,问计算到10y 时误差为初始误差*00y y -的多少 这个计算过程数值稳定吗 ? . (14分)解答下列问题 1. 若2()63f x x =+,则[1,2,3]f 和[1,2,34]f ,的值分别是多少? 2. 1012 . (10分) 设f 在互易节点i x 上的值()()0,1,....i i f f x i n ==。试证明:f 在节点i x 上n 次最小二乘拟合多项式()n p x 与f 在节点i x 上的n 次Lagrange 插值多项式()n L x 一致,()()=n n p x L x 。 . (12分) 按代数精度的定义,构造下列形式的求积公式(即确定参数,A B ,α): ()()()11f x dx Af Bf αα-≈-+? Gauss 型求积公式。

《数值分析》A 卷 第 2 页 共 2 页 五. (14分) 已知线性代数方程组Ax=b 为: (1) 用顺序高斯消去法求解方程组Ax=b ; (2) 先由(1)的消元过程直接写出A 的LU 分解,再利用该LU 分解求解方程组Ax=b 。 六. (12分) 对方程组323,,121Ax b A b ????===????-???? ,拟用迭代法 (1)()()(),0,1,k k k x x Ax b k α+=+-= 求解,试确定实数α的取值范围,使得该迭代公式收敛。 七. (14分) 欲求方程 ln 2 (1)x x x -=> 的根,试 (1)证明 [3, 4] 为方程的一个有根区间; (2)在区间 [3, 4] 上构造一个收敛的不动点迭代公式; (3)求所构造迭代公式的收敛阶。 八. (12分) 对初值问题 ()()00 y f xy y x y '=???=?? (1)试利用Taylor 展开公式推导下列数值求解公式: ()()()212 n n n n n n n n n n h y y hf x y f x y y x f x y +'=+++???? (2)指出上述公式是几阶公式。 ??????? ?????????=????????????????????????????????-----n n n n n n n n b b b b x x x x d u u u v d v d v d 12112112111221100 0000 . 0)/(,0,1 1,,,≠-≠∑-=n i i i i n i i i i i d v u d d b v u d 已知其中

数值分析第4章答案

第四章 数值积分与数值微分 1.确定下列求积公式中的特定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: 101210121 12120 (1)()()(0)(); (2)()()(0)(); (3)()[(1)2()3()]/3; (4)()[(0)()]/2[(0)()]; h h h h h f x dx A f h A f A f h f x dx A f h A f A f h f x dx f f x f x f x dx h f f h ah f f h -----≈-++≈-++≈-++''≈++-?? ?? 解: 求解求积公式的代数精度时,应根据代数精度的定义,即求积公式对于次数不超过m 的多项式均能准确地成立,但对于m+1次多项式就不准确成立,进行验证性求解。 (1)若101(1) ()()(0)()h h f x dx A f h A f A f h --≈-++? 令()1f x =,则 1012h A A A -=++ 令()f x x =,则 110A h Ah -=-+ 令2 ()f x x =,则 3 221123 h h A h A -=+ 从而解得 01 1431313A h A h A h -?=?? ?=?? ?=?? 令3 ()f x x =,则 3()0h h h h f x dx x dx --==? ? 101()(0)()0A f h A f A f h --++= 故 101()()(0)()h h f x dx A f h A f A f h --=-++? 成立。 令4 ()f x x =,则

数值分析试题

华南理工大学研究生课程考试《数值分析》试卷 A (2015年1月9日)注意事项: 1. 考前请将密封线内各项信息填写清楚; 2. 所有答案请按要求填写在本试卷上; 3. 课程代码:S0003004; 4. 考试形式:闭卷; 5. 考生类别:硕士研究生; 6. 本试卷共八大题,满分100分,考试时间为150分钟。一.(12分)解答下列问题1.欲计算下式:()13(1)2(1)(2)7(1)(2)(3)6(1)(2)(3)(4),P x x x x x x x x x x x 试给出乘法次数尽可能少的计算形式。2.设有递推公式01361,1,2,n n y y y n 如果取*003 1.732y y 作实际计算,问计算到10y 时误差为初始误差*00y y 的多少倍?这个计算过程数值稳定吗?二. (14分)解答下列问题_____________________姓名学 号学 院专 业任 课教师(密封线内不答题)…… … … … …………密………………………………………………封………………………………………线…………………………………………………

1. 若2() 63f x x +,则[1,2,3]f 和[1,2,34]f ,的值分别是多少?2. 已知100101211114412===,,,试利用二次插值方法求115的近似值,并估计误差。 三. (10分) 设f 在互易节点 i x 上的值0,1,....i i f f x i n 。试证明:f 在节点i x 上

的n 次最小二乘拟合多项式n p x 与f 在节点i x 上的n 次Lagrange 插值多项式n L x 一致,即=n n p x L x 。 四. (12分) 按代数精度的定义,构造下列形式的求积公式(即确定参数,A B ,):

郑州大学数值分析重点考察内容及各章习题

《数值分析》 重点考察内容及各章作业答案 学院: 学号: 姓名:

重点考察内容 基本概念(收敛阶,收敛条件,收敛区域等), 简单欧拉法。 第一章基础 掌握:误差的种类,截断误差,舍入误差的来源,有效数字的判断。 了解:误差限,算法及要注意的问题。 第二章插值 掌握:Hermite插值,牛顿插值,差商计算,插值误差估计。 了解:Lagrange插值 第三章数据拟合 掌握:给出几个点求线性拟合曲线。 了解:最小二乘原理 第四章数值积分微分 掌握:梯形公式,Simpson公式,代数精度,Gauss积分,带权Gauss积分公式推导,复化梯形公式推导及算法。 了解:数值微分,积分余项 第五章直接法 掌握:LU分解求线性方程组,运算量 了解:Gauss消去法,LDL,追赶法 第六章迭代法 掌握:Jacobi,Gauss-Seidel迭代格式构造,敛散性分析,向量、矩阵的范数、谱半径 了解:SOR迭代 第七章Nolinear迭代法 掌握:牛顿迭代格式构造,简单迭代法构造、敛散性分析,收敛阶。 了解:二分法,弦截法 第八章ODE解法 掌握:Euler公式构造、收敛阶。 了解:梯形Euler公式、收敛阶,改进Euler公式 题目类型:填空,计算,证明综合题

第一章 误差 1. 科学计算中的误差来源有4个,分别是________,________,________,________。 2. 用Taylor 展开近似计算函数000()()'()()f x f x f x x x ≈+-,这里产生是什么误差? 3. 0.7499作 3 4 的近似值,是______位有效数字,65.380是舍入得到的近似值,有____几位有效数字,相对误差限为_______. 0.0032581是四舍五入得到的近似值,有_______位有效数字. 4. 改变下列表达式,使计算结果比较精确: (1)11,||1121x x x x --++ (2 ||1x (3) 1cos ,0,|| 1.x x x x -≠ (4)sin sin ,αβαβ-≈ 5. 采用下列各式计算61)时,哪个计算效果最好?并说明理由。 (1) (2 )99-3 )6 (3-(4 6. 已知近似数*x 有4位有效数字,求其相对误差限。 上机实验题: 1、利用Taylor 展开公式计算0! k x k x e k ∞ ==∑,编一段小程序,上机用单精度计算x e 的函数 值. 分别取x =1,5,10,20,-1,-5,-10,-15,-20,观察所得结果是否合理,如不合理请分析原因并给出解决方法. 2、已知定积分1 ,0,1,2,,206 n n x I dx n x ==+? ,有如下的递推关系 111 110 0(6)61666 n n n n n x x x x I dx dx I x x n ---+-===++-? ? 可建立两种等价的计算公式 (1) 1016,0.154n n I I I n -= -=取; (2) 12011),0.6n n I nI I n -=-=(取

数值分析第四章数值积分与数值微分习题答案

第四章 数值积分与数值微分 1.确定下列求积公式中的特定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: 101210121 12120 (1)()()(0)(); (2)()()(0)(); (3)()[(1)2()3()]/3; (4)()[(0)()]/2[(0)()]; h h h h h f x dx A f h A f A f h f x dx A f h A f A f h f x dx f f x f x f x dx h f f h ah f f h -----≈-++≈-++≈-++''≈++-?? ?? 解: 求解求积公式的代数精度时,应根据代数精度的定义,即求积公式对于次数不超过m 的多项式均能准确地成立,但对于m+1次多项式就不准确成立,进行验证性求解。 (1)若101(1) ()()(0)()h h f x dx A f h A f A f h --≈-++? 令()1f x =,则 1012h A A A -=++ 令()f x x =,则 110A h Ah -=-+ 令2 ()f x x =,则 3 221123 h h A h A -=+ 从而解得 011431313A h A h A h -?=?? ? =?? ?=?? 令3 ()f x x =,则 3()0h h h h f x dx x dx --==? ? 101()(0)()0A f h A f A f h --++=

令4()f x x =,则 455 1012()5 2 ()(0)()3 h h h h f x dx x dx h A f h A f A f h h ---== -++=? ? 故此时, 101()()(0)()h h f x dx A f h A f A f h --≠-++? 故 101()()(0)()h h f x dx A f h A f A f h --≈-++? 具有3次代数精度。 (2)若 21012()()(0)()h h f x dx A f h A f A f h --≈-++? 令()1f x =,则 1014h A A A -=++ 令()f x x =,则 110A h Ah -=-+ 令2 ()f x x =,则 3 2211163 h h A h A -=+ 从而解得 1143 8383A h A h A h -?=-?? ? =?? ?=?? 令3 ()f x x =,则 22322()0h h h h f x dx x dx --==? ? 101()(0)()0A f h A f A f h --++=

数值分析试题

文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持. 1文档来源为:从网络收集整理.word 版本可编辑. 华南理工大学研究生课程考试 《数值分析》试卷A (2015年1月9日) 1. 考前请将密封线内各项信息填写清楚; 所有答案请按要求填写在本试卷上; 课程代码:S0003004; 4. 考试形式:闭卷; 5. 考生类别:硕士研究生; 本试卷共八大题,满分100分,考试时间为150分钟。 一.(12分)解答下列问题 1.欲计算下式: ()13(1)2(1)(2)7(1)(2)(3)6(1)(2)(3)(4),P x x x x x x x x x x x =+-+------+---- 2.设有递推公式 0161,1,2,n n y y y n -?=??=-=?? *001.732y y ≈= 作实际计算,问计算到10y 时误差为初始误差*00y y -的多少 这个计算过程数值稳定吗 ? . (14分)解答下列问题 1. 若2()63f x x =+,则[1,2,3]f 和[1,2,34]f ,的值分别是多少? 2. 1012 . (10分) 设f 在互易节点i x 上的值()()0,1,....i i f f x i n ==。试证明:f 在节点i x 上n 次最小二乘拟合多项式()n p x 与f 在节点i x 上的n 次Lagrange 插值多项式()n L x 一致,()()=n n p x L x 。 . (12分) 按代数精度的定义,构造下列形式的求积公式(即确定参数,A B ,α): Gauss 型求积公式。 . (14分) 已知线性代数方程组Ax=b 为: (1) 用顺序高斯消去法求解方程组Ax=b ; ????????????????=????????????????????????????????-----n n n n n n n n b b b b x x x x d u u u v d v d v d 121121121112211000000 .0)/(,0,11,,,≠-≠∑-=n i i i i n i i i i i d v u d d b v u d 已知其中

《数值分析》杨大地-标准答案(第八章)

数值分析第8章 数值积分与数值微分 8.1 填空题 (1)n+1个点的插值型数值积分公式∫f(x)dx b a ≈∑A j n j=0f(x j )的代数精度至少是 n ,最高不超过 2n+1 。【注:第1空,见定理8.1】 (2)梯形公式有 1 次代数精度,Simpson 公司有 3 次代数精度。【注:分别见定理8.1,8.3】 (3)求积公式∫f(x)dx h 0≈h 2[f (0)+f (h )]+ah 2[f ′(0)?f ′(h)]中的参数a= 1/12 时,才能保证该求积公式的代数精度达到最高,最高代数精度为 3 。 解:令f(x)=1,x,x 2带入有, { h 2[1+1]+ah 2[0?0]=h h 2[0+h ]+ah 2[1?1]=12 (h 2)h 2[0+h 2]+ah 2[0?2h ]=13 (h 3) //注:x 的导数=1 解之得,a=1/12,此时求积公式至少具有2次代数精度。 ∴ 积分公式为:∫f(x)dx h 0≈h 2[f (0)+f (h )]+h 2 12[f ′(0)?f ′(h)] 令 f(x)= x 3带入求积公式有:h 2 [0 +h 3]+ h 212 [0?3h 2]=14 (h 4),与f(x)= x 4的定积分计算值1 4 (h 4)相等, 所以,此求积公式至少具有3次代数精度。 令f(x)= x 4带入求积公式有,h 2[0+h 4]+h 2 12[0?4h 3]=1 6(h 5),与f(x)= x 5的定积分计算值1 5(h 5)不相等,所以,此求积公式的最高代数精度为3次代数精度。 8.2 确定下列求积公式的求积系数和求积节点,使其代数精度尽量高,并指出其最高代数精度。 解题思路:按照P149 中8.3式进行求解,根据求积公式中未知量n 的数量决定代入多少f(x),当积分公式代入求积节点x n 的计算结果与定积分的计算结果一致,继续代入求积节点X n+1,,若计算结果与对应的定积分计算结果不一致时,求积公式拥有最高n 次的代数精度。 (1)∫f(x)dx 2h 0≈A 0f (0)+A 1f (h )+A 2f(2h) 解:令f(x)=1,x,x 2代入有,【注:本例中需求解A 0、A 1、A 2共3个未知量,故需3个相异求积节点f(x)】 {A 0+A 1+A 2=2h A 1h +A 22h =1 2(2h )2A 1h 2+A 2(2h )2=1 3(2h )3 求解得A 0=13h ,A 1=43h ,A 2=1 3h , ∴求积公式为:∫f(x)dx 2h 0≈13hf (0)+43hf (h )+1 3 hf(2h) ∵该求积公式对3个相异节点1,x,x 2均有余项E (f )=0, //注:参见P149定理8.1 ∴该求积公式至少具有2次代数精度。 令f(x)= x 3,代入求积公式有:4 3hh 3+1 3h (2h )3=4h 4 ∵函数f(x) = x 3的定积分结果为:∫x 3dx 2h 0=1 4(2h )4=4h 4 ,与求积公式计算值相等, ∴该求积公式具有3次代数精度。

数值分析第四版习题及答案

第四版 数值分析习题 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中**** 1234 ,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 1n n Y Y -=…) 计算到100Y .(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字. 8. 当N 充分大时,怎样求 2 11N dx x +∞ +? ? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设 212S gt = 假定g 是准确的,而对t 的测量有±秒的误差,证明当t 增加时S 的绝对误 差增加,而相对误差却减小. 11. 序列 {}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字), 计算到 10y 时误差有多大?这个计算过程稳定吗? 12. 计算61)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 -- 13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 ln(ln(x x =- 计算,求对数时误差有多大?

华南理工大学数值分析试题

华南理工大学研究生课程考试 《数值分析》试卷B (2015 年 1 月 9 日) 师教课任 注意事项: 1. 考前请将密封线内各项信息填写清楚; 2. 所有答案请按要求填写在本试卷上; 3. 课程代码:S0003004; 4. 考试形式:闭卷; 5. 考生类别:硕士研究生; 6. 本试卷共八大题,满分 100分,考试时间为150分钟。 线 一?单项选择题(每小题2分,共10分) 1 ?设有某数x,则x的具有四位有效数字且绝对误差限是0. 5 10 5的近似值 应是( )° (A) 0.693 (B) 0.6930 (C) 0.0693 (D) 0.06930 业专 院学 ) 题 答 不 内 线 封 密 { 2 ?选择数值稳定的算法是为了() (A)简化计算步骤 (C)节省存储空间 (B)控制舍入误差的积累 (D)减小截断误差 3.如果对不超过m次的多项式,求积公式 式具有( )次代数精度。 (A)至少 m (B) m b f (x)dx a (C) 不足m A k f (x k)精确成立,则该求积公 k 0 (D)多于m 号学名姓 4.为使两点数值求积公式 1 1 f(x)dx f(X。) f (x1)具有最高次代数精度, 则求积节点应为( )° (A)x°,X1 任意(B) X。1,X1 1 (C) X。- ,x1 3 _3 3 (D) x o 1 1 ,X1 2 2 密 5.在下列求解常微分方程初值问题的数值方法中, (A) Euler 公式(B) (C) 3 阶 Runge— Kutta 公式(D) 4 () 的局部截断误差为 梯形公式 阶 Runge— Kutta 公式 O(h 3)。

数值计算第四章课后习题答案

()()()()()()()()()收敛较慢 代入上式得:将解: 收敛速度次并分析该迭代公式的迭代的根求方程 取试用迭代公式∴≠<<*'*+++-='∴+*+*=*∴=+?+?? ? ??===++= =∴++= ==-++=++=++014.01022220||10 2202613381013202132020 132010212010220. 2.0 20102110220 4.1222 222212012123021x x x x x x x x x x x x x x x x x x x x x x x x k k k k k k k ?????? )))()()()[]()()[])49998.0cos 215.0cos 2 1,022,00cos 2 102 12,0210,2,0.cos 2 10sin 2 11,cos 2 113cos 2 12; 1.0cos 2 12.4120101==== ==->-=<-=-=>+='-===-+x x x x x x x f f x x x f x x f x x x f x x x x k k 则 取上有一个根在所以上在为单调递增函数故则令解: 位有效数字求出这些根,精确到用迭代公式分析该方程有几个根给定方程ππππ

500 .0105.0102.0||3412≈*?

华南理工大学数值分析试题-14年下-C

华南理工大学研究生课程考试 《数值分析》试卷C (2015年1月9日) 1. 考前请将密封线内各项信息填写清楚; 所有答案请按要求填写在本试卷上; 课程代码:S0003004; 4. 考试形式:闭卷; 5. 考生类别:硕士研究生; 本试卷共八大题,满分100分,考试时间为150分钟。 一、(12分)解答下列问题: 1)设近似值0x >,x 的相对误差为δ,试证明ln x 的绝对误差近似为δ。 2)利用秦九韶算法求多项式 542()681p x x x x x =-+-+ 在3x =时的值(须写出计算形式),并统计乘法次数。 (12分)解答下列问题: 1)设()235f x x =+,求[]0,1,2f 和[]0,1,2,3f 。 2)利用插值方法推导出恒等式: 33220,0[]j j i i x j i x i j =≠=-=-∑∏ 。

(1)设{}∞ =0)(k k x q 是区间[]1,0上带权1=ρ而最高次项系数为1的正交多项式族,其中1)(0=x q ,求1()q x 和2()q x 。 (2)求形如2y a bx =+的经验公式,使它与下列数据拟合: 四、(14分)对积分()10I f x dx = ?,试 (1)构造一个以012113,,424 x x x ===为节点的插值型求积公式; (2)指出所构造公式的代数精度; (3)用所得数值求积公式计算积分1 203x dx ?的精确值; (4)指出所得公式与一般的Newton-Cotes 型公式在形式上的重要区别。

(1)设?? ????=4321A ,计算1A 、()Cond A ∞和()A ρ。 (2)用列主元Gauss 消去法解方程组: 12312315410030.112x x x ????????????=????????????-?????? 六、(13分)对2阶线性方程组 11112212112222 a x a x b a x a x b +=??+=? (11220a a ≠ ) (1)证明求解此方程组的Jacobi 迭代与Gauss-Seidel 迭代同时收敛或同时发散; (2)当同时收敛时,试比较它们的收敛速度。

数值分析第四版习题和答案解析

第四版 数值分析习题 第一章绪论 1.设x>0,x的相对误差为δ,求的误差. 2.设x的相对误差为2%,求的相对误差. 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: 4.利用公式求下列各近似值的误差限: 其中均为第3题所给的数. 5.计算球体积要使相对误差限为1%,问度量半径R时允许的相对误差限是多少 6.设按递推公式 ( n=1,2,…) 计算到.若取≈(五位有效数字),试问计算将有多大误差 7.求方程的两个根,使它至少具有四位有效数字(≈. 8.当N充分大时,怎样求 9.正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝ 10.设假定g是准确的,而对t的测量有±秒的误差,证明当t增加时S的绝对误差增加,而 相对误差却减小. 11.序列满足递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多大这个计算过程 稳定吗 12.计算,取,利用下列等式计算,哪一个得到的结果最好 13.,求f(30)的值.若开平方用六位函数表,问求对数时误差有多大若改用另一等价公式 计算,求对数时误差有多大 14.试用消元法解方程组假定只用三位数计算,问结果是否可靠 15.已知三角形面积其中c为弧度,,且测量a ,b ,c的误差分别为证明面积的误差满足 第二章插值法 1.根据定义的范德蒙行列式,令 证明是n次多项式,它的根是,且 . 2.当x= 1 , -1 , 2 时, f(x)= 0 , -3 , 4 ,求f(x)的二次插值多项式. 3.

4.给出cos x,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数 字,研究用线性插值求cos x 近似值时的总误差界. 5.设,k=0,1,2,3,求. 6.设为互异节点(j=0,1,…,n),求证: i) ii) 7.设且,求证 8.在上给出的等距节点函数表,若用二次插值求的近似值,要使截断误差不超过,问使用函 数表的步长应取多少 9.若,求及. 10.如果是次多项式,记,证明的阶差分是次多项式,并且为正整数). 11.证明. 12.证明 13.证明 14.若有个不同实根,证明 15.证明阶均差有下列性质: i)若,则; ii)若,则. 16.,求及. 17.证明两点三次埃尔米特插值余项是 并由此求出分段三次埃尔米特插值的误差限. 18.求一个次数不高于4次的多项式,使它满足并由此求出分段三次埃尔米特插值的误差限. 19.试求出一个最高次数不高于4次的函数多项式,以便使它能够满足以下边界条件,,. 20.设,把分为等分,试构造一个台阶形的零次分段插值函数并证明当时,在上一致收敛到. 21.设,在上取,按等距节点求分段线性插值函数,计算各节点间中点处的与的值,并估计误 差. 22.求在上的分段线性插值函数,并估计误差. 23.求在上的分段埃尔米特插值,并估计误差. i) ii) 25.若,是三次样条函数,证明 i); ii)若,式中为插值节点,且,则. 26.编出计算三次样条函数系数及其在插值节点中点的值的程序框图(可用式的表达式). 第三章函数逼近与计算 1.(a)利用区间变换推出区间为的伯恩斯坦多项式. (b)对在上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误 差做比较. 2.求证: (a)当时,. (b)当时,. 3.在次数不超过6的多项式中,求在的最佳一致逼近多项式.

华南理工大学数值分析教学内容及复习提纲

全日制硕士生“数值分析”教学内容与基本要求 一、教学重点内容及其要求 (一)引论 1、误差的基本概念 理解截断误差、舍入误差、绝对(相对)误差和误差限、有效数字、算法的数值稳定性等基本概念。 2、数值算法设计若干原则 掌握数值计算中应遵循的几个原则:简化计算步骤以节省计算量(秦九韶算法),减少有效数字的损失选择数值稳定的算(避免相近数相减),法。 重点:算法构造(如多项式计算)、数值稳定性判断(舍入误差的分析) (二)插值方法 1、插值问题的提法 理解插值问题的基本概念、插值多项式的存在唯一性。 2、Lagrange插值 熟悉Lagrange插值公式(线性插值、抛物插值、n次Lagrange插值),掌握其余项表达式(及各种插值余项表达式形式上的规律性)。 3、Newton插值 熟悉Newton插值公式,了解其余项公式,会利用均差表和均差的性质计算均差。 4、Hermite插值 掌握两点三次Hermite插值及其余项表达式,会利用承袭性方法构造非标准Hermite插值。 5、分段线性插值 知道Runge现象,了解分段插值的概念,掌握分段线性插值(分段表达式)。 6、三次样条函数与三次样条插值概念 了解三次样条函数与三次样条插值的定义。 重点:多项式插值问题(唯一性保证、构造、误差余项估计) (三)曲线拟合与函数逼近 1、正交多项式 掌握函数正交和正交多项式的概念(函数内积、2-范数、权函数,正交函数序列,正交多项式),了解Legendre多项式(授课时,将其放在课高斯型数值积分这部分介绍)。 2、曲线拟合的最小二乘法 熟练掌握曲线拟合最小二乘法的原理和解法(只要求线性最小二乘拟合),会求超定方程组的最小二乘解(见教材P103)。 3、连续函数的最佳平方逼近 了解最佳平方逼近函数的概念,掌握最佳平方逼近多项式的求法(从法方程出发)。 重点:最小二乘拟合法方程的推导、求解;拟合与插值问题的异同。

a华南理工大学数值分析A

诚信应考,考试作弊将带来严重后果! 华南理工大学期末考试 《数值分析》试卷A 卷 注意事项:1.考前请将密封线内各项佰息填写清楚; 2. 可使用计算器,解答就答在试卷上; 3. 考试形式:闭卷; 题号 ■ ?A 二 ■■■■ ■* H 五 六 七 八 总分 得分 评卷人 一.填空题(每小题2分,共20分) 1. 已知自然数 e=2.718281828459045-,取 ec2.71828, 那么e 具有的有效数字 ____________ ? 2?V7的相对误差约是屮的相对误差的 ______ 倍. 3? 为了减少舍入误差的影响,数值计算时应将10-阿改为 4. 求方程X 2-2X + 1 = 0根的牛顿迭代格式为 _________________ , 收敛阶为 ____________ ? 5? 设b = (0,-4,3F ,则桝广 ________ ,制广 ______ . f 2xi - 5乃=1 6? 对于方程组]]0冷_4厂=3, Guass-seidel 迭代法的迭代矩 阵是叽= _____________ ■ K-: ■E : 翁: 荊:

7 ? 2个节点的Guass型求积公式代数精度为 8. 设/(A)= X3+3A-1,则差商/[0,1,2,3]= ________________ ? 9?求解常微分方程初值问题的隐式欧拉方法的绝对稳定区间为设{q k(x)}:.()为区间[0,1]上带权p = x且首项系数为1的k 次正 交多顼式序列,其中qo(x) = i,则m(x)= ______ 二?(10分)用直接三角分解方法解下列线形方程组 <215]/ \ X 』r ir 4112X2=27 <-2-45 /X, \ 3 / 2 10.

最新(完美版)第八章习题答案_数值分析

第八章习题解答 3、设方程()0f x =有根,且'0()m f x M <≤≤。试证明由迭代格式1()k k k x x f x λ+=- (0,1,2,)k =产生的迭代序列{}0k k x ∞=对任意的初值0(,)x ∈-∞+∞,当20M λ<<时,均收敛于方程的根。 证明: 设()()x x f x ?λ=-,可知()x ?在(,)-∞∞上可导 对于任意给定的λ值,满足条件'0()m f x M <≤≤时 (1)''()1()x f x ?λ=- 则1'()11M x m λ?λ-≤≤-< 又20M λ<<,M>0 则02M λ<<时,11M λ-<- 所以11'()11M x m λ?λ-<-≤≤-< 若令max{1,1}L M m λλ=--,则可知'()1x L ?≤< (2)由0()(0)'()(0)'()x x x dx x ?????ε=+=+? 则()lim 1x x L x ?→∞??≤< ??? 所以,存在一个数a ,当x a >时,()x x ?< 同时,()x ?在[,]a a -内有界,即存在0b >使得[,]x a a ?∈-,()x b ?< 我们选取 max{,}c a b =,则对任意x 有0()max{,}x c x ?< 则对给定的任意初值0x ,设0max{,}d c x = 则0[,]x d d ∈-,于是在区间[,]d d -上有()x d ?< 即满足映内性 有(1)、(2)可知,()x ?满足收敛定理 迭代序列0{}k k x ∞=收敛于方程的根 6. 给出计算...222+++=x 的迭代格式,讨论迭代格式的收敛性,并证明2=x 解:构造迭代格式10,1,2,k x k +==??? 2k x ≤ 令()x ?=x ?∈?时,()x ??∈? '() x ?=,当x ?∈?时,1 '()12x ?<<

数值分析试题

y时误差为初始误差问计算到 10

二. (14分)解答下列问题 1. 若2 ()63 f x x +,则[1,2,3] f和[1,2,34] f,的值分别是多少? 2. 101112 页脚内容2

页脚内容3 三. (10分) 设f 在互易节点i x 上的值()()0,1,....i i f f x i n ==。试证明:f 在节点i x 上的n 次最小二乘拟合多项式()n p x 与f 在节点i x 上的n 次Lagrange 插值多项式()n L x 一致,即()()=n n p x L x 。

页脚内容4 四. (12分) 按代数精度的定义,构造下列形式的求积公式(即确定参数,A B , α): ()()()1 1f x dx Af Bf αα-≈-+? 要求公式具有尽可能高的代数精度,并说明所得公式是不是Gauss 型求积公式。

页脚内容5 五. (14分) 已知线性代数方程组Ax=b 为: (1) 用顺序高斯消去法求解方程组Ax=b ; ??????? ?????????=????????????????????????????????-----n n n n n n n n b b b b x x x x d u u u v d v d v d 12112112111221100 0000

页脚内容6 (2) 先由(1)的消元过程直接写出A 的LU 分解,再利用该LU 分解求解方程组Ax=b 。 六. (12分) 对方程组323,,121Ax b A b ????===????-???? ,拟用迭代法 (1)()()(),0,1, k k k x x Ax b k α+=+-=

数值分析课后参考答案08

第八章习题解答 1、已知方程3210x x --=在 1.5x =附近有根,将方程写成以下三种不同的等价形式: ①2 11x x =+ ;②x = x =试判断以上三种格式迭代函数的收敛性,并选出一种较好的格式。 解:①令121()1x x ?=+ ,则'132()x x ?=-,' 13 2(1.5)0.592611.5?=≈<,故迭代收敛; ②令2()x ?=2' 2 32 2()(1)3 x x x ?-=+,'2(1.5)0.45581?≈<,故迭代收敛; ③令3()x ?= '3()x ?=,' 3(1.5) 1.41421?≈>,故迭代发散。 以上三中以第二种迭代格式较好。 2、设方程()0f x =有根,且'0()m f x M <≤≤。试证明由迭代格式1()k k k x x f x λ+=- (0,1,2,)k = 产生的迭代序列{}0k k x ∞ =对任意的初值0(,)x ∈-∞+∞,当2 0M λ<< 时,均收敛于方程的根。 证明:设()()x x f x ?λ=-,则''()1()x f x ?λ=-,故'1()1M x m λ?λ-<<-,进而可知, 当2 0M λ<< 时,'1()1x ?-<<,即'()1x ?<,从而由压缩映像定理可知结论成立。 3、试分别用Newton 法和割线法求以下方程的根 cos 0x x -= 取初值010.5,4 x x π == ,比较计算结果。 解:Newton 法:1230.75522242,=0.73914166,=0.73908513x x x =; 割线法:23450.73638414,=0.73905814,=0.73908515,=0.73908513x x x x =; 比较可知Newton 法比割线法收敛速度稍快。 4、用嵌套算法求下列方程的根 ①32250 (1,4)x x x --=∈,取初值0 2.5x =; ②3210x x x ---=,求方程的正根,取初值0 1.5x =。 解:①依代数方程求根的嵌套算法 ()0 1() (0,1,2,) k k k k b x x k c +=-= 其中()() 00 k k b c 与分别由 1(1,2,,1,0) n n i i k i b a b a x b i n n +=?? =+=--?

数值分析试题-研12年下(C)

《数值分析》C 卷 第 1 页 共 2 页 华南理工大学研究生课程考试 《数值分析》试卷C 2012年1月11日 1. 考前请将密封线内各项信息填写清楚; 所有答案请按要求填写在本试卷上; 课程代码:S0003004 考试形式:闭卷 考生类别:硕士研究生 本试卷共八大题,满分100分,考试时间为150分钟。 一.选择、判断、填空题(10小题,每小题2分,共20分): *** 第1--2小题: 选择A 、B 、C 、D 四个答案之一, 填在括号内, 使命题成立 *** .若近似数0.012300的绝对误差限为0.5×10-5,则该近似数有( )位有效数字。 A) 3 B) 4 C) 5 D) 6 .在下列求解常微分方程初值问题的数值方法中,( )的局部截断误差为O (h 3 )。 A) 隐式Euler 公式 B) 梯形公式 C) 3阶Runge -Kutta 法 D) 4阶Runge -Kutta 法 *** 第3--6小题: 判断正误, 正确写"√ ", 错误写"× ", 填在括号内 *** .设有递推公式 0121,1,2,n n y y y n -?=??=-=?? ,如果取0 1.73y ≈进行计算,则该计算过程是数值不稳定的。( ) .解方程组 Ax=b 时,Jacobi 迭代和Gauss-Seidel 迭代对任意的x (0)收敛的充分必要条件是A 严格对角占优。( ) .方程 1020x x e -+= 不存在有根区间。( ) . 4个节点的Gauss 型求积公式具有9次代数精度。( ) *** 第7--10小题: 填空题,将答案填在横线上 *** .设0280A ??=????,则A ∞= ,1()Cond A = 。 .已知方程组 Ax=b ,其中23106A ??=????,则求解此方程组的的J 迭代法的迭代矩阵是 。 .设13)(3-+=x x x f ,则均差[]3 ,2 ,1 ,0f = 。 .设数值求积公式n b k k a k 1f x dx A f x ()()=≈∑?为Newton-Cotes 公式, 则当 n 为奇数时代数精度为 次, n 为偶数时代数精度为 次。

相关文档
最新文档