51定时器初值设置问题

51定时器初值设置问题
51定时器初值设置问题

数器/定时器运行,用指令CLR来关闭定时/计数器的工作。

定时/计数器的四种工作方式

1.工作方式0

定时器/计数器的工作方式0称之为13位定时/计数方式。它由TL(1/0)的低5位和TH(0/1)的8位构成13位的计数器,此时TL(1/0)的高3位未用。

4.GATE:看上图,当我们选择了定时或计数工作方式后,定时/计数脉冲却

不一定能到达计数器端,中间还有一个开关,显然这个开关不合上,计数脉冲就没法过去,那么开关什么时候过去呢?有两种情况:

GATE=0,分析一下逻辑,GATE非后是1,进入或门,或门总是输出1,和或门的另一个输入端INT1无关,在这种情况下,开关的打开、合上只取决于TR1,只要TR1是1,开关就合上,计数脉冲得以畅通无阻,而如果TR1等于0则开关打开,计数脉冲无法通过,因此定时/计数是否工作,只取决于TR1。

GATE=1,在此种情况下,计数脉冲通路上的开关不仅要由TR1来控制,而且还要受到INT1引脚的控制,只有TR1为1,且INT1引脚也是高电平,开关才合上,计数脉冲才得以通过。这个特性可以用来测量一个信号的高电平的宽度,想想看,怎么测?

1.工作方式1

工作方式1是16位的定时/计数方式,将M1M0设为01即可,其它特性与工作方式0相同。

2.工作方式2

在介绍这种式方式之前先让我们思考一个问题:比如我要计1000个数,可是16位的计数器要计到65536才满,怎么办呢?办法是用预置数,先在计数器里放上64536,再来1000个脉冲,不就行了吗?是的,但是计满了之后我们又该怎么办呢?要知道,计数总是不断重复的,当计满并溢出后,计数器里面的值变成了0(为什么,这时硬件自动清零),因此下一次将要计满65536后才会溢出,这可不符合要求,怎么办?当然办法很简单,就是每次一溢出时执行一段程序(要不然要溢出干吗?)可以在这段程序中做把预置数64536送入计数器中的事情。所以采用工作方式0或1都要在溢出后做一个重置预置数的工作,做工作当然就得要时间,一般来说这点时间不算什么,可是有一些场合我们还是要计较的(如串口通信等),所以就有了第三种工作方式自动再装入预置数的工作方式。此时M1M0=10。

自动重装时TH0(1)赋初值(预置数)

通常这种式作方式常用于波特率发生器(我们将在串行接口中讲解),用于这种用途时,定时器就是为了提供一个时间基准。计数溢出后不需要做事情,要做的仅仅只有一件,就是重新装入预置数,再开始计数,而且中间不要任何延迟,可见这个任务用工作方式2来完成是最好的了。

3.工作方式3

这种式作方式之下,定时/计数器0被拆成2个独立的定时/计数器来用。其中,TL0可以构成8位的定时器或计数器的工作方式,而TH0则只能作为定时器来用。我们知道作定时、计数器来用,需要控制,计满后溢出需要有溢出标记,

T0被分成两个来用,那就要两套控制及、溢出标记了,从何而来呢?TL0还是用原来的T0的标记,而TH0则借用T1的标记。如此T1不是无标记、控制可用了吗?是的。

一般情况处,只有在T1以工作方式2运行(当波特率发生器用)时,才让T0工作于方式3的。

定时器/计数器的定时/计数范围

工作方式0:13位定时/计数方式,因此,最多可以计到2的13次方,也就是8192次。

工作方式1:16位定时/计数方式,因此,最多可以计到2的16次方,也就是65536次。

工作方式2和工作方式3,都是8位的定时/计数方式,因此,最多可以计到2的8次方,也说是256次。

预置值计算:用最大计数量减去需要的计数次数即可。

例:流水线上一个包装是60盒,要求每到12盒就产生一个动作,用单片机的工作方式0来控制,应当预置多大的值呢?对了,就是8192-60=8132。当然设为计数时,需将C/T=1。

以上是计数,明白了这个道理,定时也是一样。

初学者应多看相关书籍中的定时/中断部分,对个标志位的处理与应用要能理解,对你的应用开发有很大帮助的!!!,特别是在按键的消抖、延时等方面。

下面给出一个实验,网友只要烧写进89C51,放到实验板即可看到效果,然后在想????

定时器方式0的应用:

应用定时器T1产生1MS的定时,并使P1。0输出周期的2MS方波,设晶震6MHZ。

首先要计算T0的初始值,以定时器方式工作时,每一机器周期计数器加1,6MHZ晶震时的机器周期

T=12/F=12/6*10的6次方,设初值为X,则:

-X/2*= X=7692

以13位二进制数表示为:X=1111000001100B(从前算8位为F0H;)

计算得:TH0初值为0F0H,TL0初值为0CH;

因复位以后,TMOD、TCON初值为0,因此以定时器方式0工作时,初始化程序不必对TMOD重置0,我们查询TF0的状态来控制P1。0输出。在P1。0端得到周期为2MS的方波。

程序清单:

START:MOV TL0,#0CH;初值写入T0

MOV TH0,#0F0H;

SETB TR0;启动T0计数

LOOP:JBC TF0,PTF0

AJMP LOOP

PTF0:MOV TL0,#0CH;计数初值重装

MOV TH0,#0F0H;

CPL P1。0;P1。0求反

AJMPN LOOP

您可以改变定时初值来改变方波的宽度。。。。。

C51单片机定时器及数码管控制实验报告

理工大学信息工程与自动化学院学生实验报告 (201 — 201学年第1 学期) 课程名称:单片机技术

一、实验目的 1.掌握定时器T0、T1 的方式选择和编程方法,了解中断服务程序的设计方法,学会实时程序的调试技巧。 2.掌握LED 数码管动态显示程序设计方法。 二、实验原理 1.89C51 单片机有五个中断源(89C52 有六个),分别是外部中断请求0、外部中断请求1、定时器/计数器0 溢出中断请求、定时器/计数器0 溢出中断请求及串行口中断请求。每个中断源都对应一个中断请求位,它们设置在特殊功能寄存器TCON 和SCON 中。当中断源请求中断时,相应标志分别由TCON 和SCON 的相应位来锁寄。五个中断源有二个中断优先级,每个中断源可以编程为高优先级或低优先级中断,可以实现二级中断服务程序嵌套。在

同一优先级别中,靠部的查询逻辑来确定响应顺序。不同的中断源有不同的中断矢量地址。 中断的控制用四个特殊功能寄存器IE、IP、TCON (用六位)和SCON(用二位),分别用于控制中断的类型、中断的开/关和各种中断源的优先级别。中断程序由中断控制程序(主程序)和中断服务程序两部分组成: 1)中断控制程序用于实现对中断的控制; 2)中断服务程序用于完成中断源所要求的中断处理的各种操作。 C51 的中断函数必须通过interrupt m 进行修饰。在C51 程序设计中,当函数定义时用了interrupt m 修饰符,系统编译时把对应函数转化为中断函数,自动加上程序头段和尾段,并按MCS-51 系统中断的处理方式自动把它安排在程序存储器中的相应位置。 在该修饰符中,m 的取值为0~31,对应的中断情况如下: 0——外部中断0 1——定时/计数器T0 2——外部中断1 3——定时/计数器T1 4——串行口中断 5——定时/计数器T2 其它值预留。 89C51 单片机设置了两个可编程的16 位定时器T0 和T1,通过编程,可以设定为定时器和外部计数方式。T1 还可以作为其串行口的波特率发生器。

51单片机定时器初值的计算

51单片机定时器初值的计算 一。10MS定时器初值的计算: 1.晶振12M 12MHz除12为1MHz,也就是说一秒=1000000次机器周期。10ms=10000次机器周期。65536-10000=55536(d8f0) TH0=0xd8,TL0=0xf0 2.晶振11.0592M 11.0592MHz除12为921600Hz,就是一秒921600次机器周期,10ms=9216次机器周期。 65536-9216=56320(dc00) TH0=0xdc,TL0=0x00 二。50MS定时器初值的计算: 1.晶振12M 12MHz除12为1MHz,也就是说一秒=1000000次机器周期。50ms=50000次机器周期。65536-50000=15536(3cb0) TH0=0x3c,TL0=0xb0 2.晶振11.0592M 11.0592MHz除12为921600Hz,就是一秒921600次机器周期,50ms=46080次机器周期。 65536-46080=19456(4c00) TH0=0x4c,TL0=0x00 三。使用说明 以12M晶振为例:每秒钟可以执行1000000次机器周期个机器周期。而T 每次溢出 最多65536 个机器周期。我们尽量应该让溢出中断的次数最少(如50ms),这样对主程序的干扰也就最小。开发的时候可能会根据需要更换不同频率的晶振(比如c51单片机,用11.0592M的晶振,很适合产生串

口时钟,而12M晶振很方便计算定时器的时间),使用插接式比较方便。 51单片机12M和11.0592M晶振定时器初值计算 2011-01-04 22:25 at89s52,晶振频率12m 其程序如下: 引用代码:#include #include void timer0_init() { TMOD=0x01;//方式1 TL0=0xb0; TH0=0x3c; TR0=1; ET0=1; } void timer0_ISR(void) interrupt 1 { TL0=0xb0; TH0=0x3c;//50ms中断一次 single++; if(single==20) { kk++; single=0; } } void main() { int kk=0;//计数器 int single=0; timer0_init(); } TL0=0xb0; TH0=0x3c; 这两个是怎么算出来得

MCS-51单片机计数器定时器

80C51单片机内部设有两个16位的可编程定时器/计数器。可编程的意思是指其功能(如工作方式、定时时间、量程、启动方式等)均可由指令来确定和改变。在定时器/计数器中除了有两个16位的计数器之外,还有两个特殊功能寄存器(控制寄存器和方式寄存器)。 : 从上面定时器/计数器的结构图中我们可以看出,16位的定时/计数器分别由两个8位专用寄存器组成,即:T0由TH0和TL0构成;T1由TH1和TL1构成。其访问地址依次为8AH-8DH。每个寄存器均可单独访问。这些寄存器是用于存放定时或计数初值的。此外,其内部还有一个8位的定时器方式寄存器TMOD和一个8位的定时控制寄存器TCON。这些寄存器之间是通过内部总线和控制逻辑电路连接起来的。TMOD主要是用于选定定时器的工作方式;TCON主要是用于控制定时器的启动停止,此外TCON还可以保存T0、T1的溢出和中断标志。当定时器工作在计数方式时,外部事件通过引脚T0(P3.4)和T1 (P3.5)输入。 定时计数器的原理: 16位的定时器/计数器实质上就是一个加1计数器,其控制电路受软件控制、切换。 当定时器/计数器为定时工作方式时,计数器的加1信号由振荡器的12分频信号产生,即每过一个机器周期,计数器加1,直至计满溢出为止。显然,定时器的定时时间与系统的振荡频率有关。因一个机器周期等于12个振荡周期,所以计数频率fcount=1/12osc。如果晶振为12MHz,则计数周期为: T=1/(12×106)Hz×1/12=1μs 这是最短的定时周期。若要延长定时时间,则需要改变定时器的初值,并要适当选择定时器的长 度(如8位、13位、16位等)。 当定时器/计数器为计数工作方式时,通过引脚T0和T1对外部信号计数,外部脉冲的下降沿将触发计数。计数器在每个机器周期的S5P2期间采样引脚输入电平。若一个机器周期采样值为1,下一个机器周期采样值为0,则计数器加1。此后的机器周期S3P1期间,新的计数值装入计数器。所以检测一个由1至0的跳变需要两个机器周期,故外部事年的最高计数频率为振荡频率的1/24。例如,如果选用12MHz 晶振,则最高计数频率为0.5MHz。虽然对外部输入信号的占空比无特殊要求,但为了确保某给定电平在变化前至少被采样一次,外部计数脉冲的高电平与低电平保持时间均需在一个机器周期以上。

51单片机学习笔记(三)_定时器和计数器

51单片机学习笔记(三)_定时器和计数器 注:定时器与计数器原理与使用方法相似、此处计数器知识为基础普及、后 面详讲2 个定时器(寄存器)、定时器0、定时器1、(计数器0、计数器1) TMOD:定时器/计数器模式控制寄存器详见百度百科TMOD 每经过一个机器周期、寄存器+1TF:定时器溢出标志。溢出时自动置1。中 断时硬件清零否则必须软件清零。TR:定时器运行控制位。置1 开始计时、清 零停止计时。C/T:该位为0 时用作计时器、该位为1 时用作计数器。溢出时 时间-开始计时时间=预设定时时间 一个机器周期共有12 个振荡脉冲周期若设定时为0.02s,则: 12*(65535-X)/11059200=0.02s 定时器作加1 次数:X=47104=0xB800 次时间为0.02s 使用定时器的方法 1、设置特殊功能寄存器TMOD,使之工作在需求的状态。 2、设置计数寄存 器的初值,精确设定好定时时间。3、设置特殊功能寄存器TCON,通过打开 TR 来让定时器进行工作。 4、判断寄存器TCON 的FT0 位、检测定时器溢出情况。 假设我们使用定时器0、定时为0.02s,两个寄存器计时 TMOD=0x01; TMOD=0x01,指的是采用T0 方式,将M1 置0,M0 置1,是 方式一的定时器 高八位寄存器TH0=0xB8、低八位寄存器TL0=0x00 C 程序实现1s 钟定时 #include typedef unsigned char uint8;typedef unsigned int uint16;sbit led=P1;uint8 counter;void main(){TMOD=0x01;TH0=0xb8;TL0=0x00;TR0=1;

单片机定时器详解

一、MCS-51单片机的定时器/计数器概念 单片机中的定时器和计数器其实是同一个物理的电子元件,只不过计数器记录的是单片机外部发生的事情(接受的是外部脉冲),而定时器则是由单片机自身提供的一个非常稳定的计数器,这个稳定的计数器就是单片机上连接的晶振部件;MCS-51单片机的晶振经过12分频之后提供给单片机的只有1MHZ的稳定脉冲;晶振的频率是非常准确的,所以单片机的计数脉冲之间的时间间隔也是非常准确的,这个准确的时间间隔是1微秒; MCS-51单片机外接的是12MHZ的晶振(实际上是11.0592MHZ),所以,MCS-51单片机内部的工作频率(时钟脉冲频率)是12MHZ/12=1MHZ=1000000次/秒=1000000条指令/秒=1000000次/1000000微秒=1次/微秒=1条指令/微秒;也就是说,晶振振荡一次,就会给单片机提供一个时钟脉冲,花费的时间是1微秒,此时,CPU会执行一条指令,经历一个机器周期;即:1个时钟脉冲=1个机器周期=1微秒=1条指令; 注:个人PC机上的CPU主频是晶振经过倍频之后的频率,这一点恰好与MCS-51单片机的相反,MCS-51单片机的主频是晶振经过分频之后的频率; 总之:MCS-51单片机中的时间概念就是通过计数脉冲的个数来测量出来的;1个脉冲=1微秒=1条指令=1个机器周期; MCS-51单片机定时器/计数器的简单结构图: 8051系列单片机有两个定时器:T0和T1,分别称为定时器和定时器T1,这两个定时器都是16位的定时器/计数器;8052系列单片机增加了第三个定时器/计数器T2;它们都有定时或事件计数功能,常用于时间控制、延时、对外部时间计数和检测等场合; 二、定时器/计数器的结构 8051单片机的两个定时器T0和T1分别都由两个特殊功能寄存器组成;T0由特殊功能寄存器

89C51定时器和计数器精编版

AT89C51定时器/计数器 1.定时和计数功能: AT89C51有两个可编程的定时器和计数器:T0和T1。它们可以工作在定时状态也可以工作在计数状态。做定时器时不能用作计数,反之亦然。 2.计数器: 当定时器/计数器作“计数器”用时,可对接到14引脚(T0/P3.4)或15引脚(T1/P3.5)的脉冲信号数进行计数,每当引脚发生从“1”到“0”的负跳变时,计数器加1. 3.定时器: 当定时器/计数器作“定时器”用时,定时信号来自内部的时钟发生电路,每个机器周期等于十二个震荡周期,每过一个机器周期,计数器加1.当晶振频率为12MHz时,则机器周期为1微秒;在此情况下,若计数器为100, 则所定时的时间为:100 x 1 =100微秒。 1

4.与定时器/计数器有关的特殊功能寄存器 5.定时器/计数器的控制 AT89C51单片机定时器/计数器的工作由两个特殊的寄存器TMOD和TCON的相关位来控制, TMOD用于设置它的工作方式,TCON用于控制其启动和中断的请求。 1).TMOD用于设置定时器/计数器的工作方式,其字节地址为89H。低四位用于T0,高四位用于T1。虽有位名称, 2

但无位地址,不可进行位操作。 TMOD中的结构和各位名称 ○1M1,M0:工作方式选择位。M1、M0为两位二进制数,可表示四种工作方式,见下表: ○2C/T:计数/定时方式选择位。 C/T = 1,为计数工作方式,对输入到单片机T0、T1引用的外部信号脉冲计数,负跳变脉冲有效,用作计数器。C/T = 0,为定时工作方式,对片内机器周期(1个机器周期等于12晶振周期)信号计数,用作定时器。 3

单片机实验之定时器计数器应用实验二

一、实验目的 1、掌握定时器/计数器计数功能的使用方法。 2、掌握定时器/计数器的中断、查询使用方法。 3、掌握Proteus软件与Keil软件的使用方法。 4、掌握单片机系统的硬件和软件设计方法。 二、设计要求 1、用Proteus软件画出电路原理图,单片机的定时器/计数器以查询方式工作,设定计数功能,对外部连续周期性脉冲信号进行计数,每计满100个脉冲,则取反P1.0口线状态,在P 1.0口线上接示波器观察波形。 2、用Proteus软件画出电路原理图,单片机的定时器/计数器以中断方式工作,设定计数功能,对外部连续周期性脉冲信号进行计数,每计满200个脉冲,则取反P1.0口线状态,在P 1.0口线上接示波器观察波形。 三、电路原理图 六、实验总结 通过本实验弄清楚了定时/计数器计数功能的初始化设定(TMOD,初值的计算,被计数信号的输入点等等),掌握了查询和中断工作方式的应用。 七、思考题 1、利用定时器0,在P1.0口线上产生周期为200微秒的连续方波,利用定时器1,对 P1.0口线上波形进行计数,满50个,则取反P1.1口线状态,在P 1.1口线上接示波器观察波形。 答:程序见程序清单。

四、实验程序流程框图和程序清单。 1、定时器/计数器以查询方式工作,对外部连续周期性脉冲信号进行计数, 每计满100个脉冲,则取反P1.0口线状态。 汇编程序: START: LJMP MAIN ORG 0100H MAIN: MOV IE, #00H MOV TMOD, #60H MOV TH1, #9CH MOV TL1, #9CH SETB TR1 LOOP: JNB TF1, LOOP CLR TF1 CPL P1.0 AJMP LOOP END C语言程序: #include sbit Y=P1^0; void main() { EA=0; ET1=0; TMOD=0x60; TH1=0x9C; TL1=0x9C; while(1) { TR1=1; while(!TF1); TF1=0; Y=!Y; } }

51单片机实现数码管99秒倒计时

51单片机实现数码管99秒倒计时,其实很简单,就是使用定时器中断来实现。 目的就是学习怎样用单片机实现倒计时,从而实现一些延时控制类的东西,99秒只是一个例子,你完全可以做出任意倒计时如10秒倒计时程序。 定时器定时时间计算公式:初值X=M(最大计时)-计数值。 初值,换算成十六进制,高位给TH0,低位给TL0,如果用定时器0的话。 M(最大计时)如果是16位的,就是2的16次方,最大定时,65535 微秒,实现1秒定时,可以通过定时10毫秒,然后100次改变一次秒值即可。10*100毫秒=1S 计数值:你要定时多长时间,如果定时1毫秒,就是1000微秒,(单位为微秒),如果定时10毫秒,就是10000(微秒),当然,最大定时被定时器本身位数限制了,最大2的16次方(16位定时计数器),只能定时65.535毫秒。定时1S当然不可能1S定时器中断。 下面为实现99秒倒计时C语言源程序 /*了解定时器,这样的话,就可以做一些基本的实验了,如定时炸弹~~,10秒后打开关闭继电器*/ /*数码管,12M晶振*/ #include #define uchar unsigned char sbit p11=P1^1; //连的是继电器。。 code unsigned char tab[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f}; uchar shiwei; uchar gewei; void delay(unsigned int cnt) { while(--cnt); } void main() { TMOD|=0x01; /*定时器0 16位定时器X=65535-10000(10毫秒)=55535=D8F0(十六进制)定时10ms */ TH0=0xd8; TL0=0xf0; IE=0x82; //这里是中断优先级控制EA=1(开总中断),ET0=1(定时器0允许中断),这里用定时器0来定时

51单片机定时器初值的计算

51单片机定时器初值的计算一。10MS定时器初值的计算: 1.晶振12M 12MHz除12为1MHz,也就是说一秒=1000000次机器周期。10ms=10000次机器周期。 65536-10000=55536(d8f0) TH0=0xd8,TL0=0xf0 2.晶振11.0592M 11.0592MHz除12为921600Hz,就是一秒921600次机器周期,10ms=9216次机器周期。 65536-9216=56320(dc00) TH0=0xdc,TL0=0x00 二。50MS定时器初值的计算: 1.晶振12M 12MHz除12为1MHz,也就是说一秒=1000000次机器周期。50ms=50000次机器周期。 65536-50000=15536(3cb0) TH0=0x3c,TL0=0xb0 2.晶振11.0592M 11.0592MHz除12为921600Hz,就是一秒921600次机器周期,50ms=46080次机器周期。 65536-46080=19456(4c00)

TH0=0x4c,TL0=0x00 三。使用说明 以12M晶振为例:每秒钟可以执行1000000次机器周期个机器周期。而T 每次溢出 最多65536 个机器周期。我们尽量应该让溢出中断的次数最少(如50ms),这样对主程序的干扰也就最小。 开发的时候可能会根据需要更换不同频率的晶振(比如c51单片机,用11.0592M的晶振,很适合产生串口时钟,而12M晶振很方便计算定时器的时间),使用插接式比较方便。 对12MHz 1个机器周期1us 12/fosc = 1us 方式0 13位定时器最大时间间隔 = 2^13 = 8.192ms 方式1 16位定时器最大时间间隔 = 2^16 = 65.536ms 方式2 8位定时器最大时间间隔 = 2^8 = 0.256ms =256 us 定时5ms,计算计时器初值 M = 2^K-X*Fosc/12 12MHz 方式0: K=13,X=5ms,Fosc=12MHz 则M = 2^13 - 5*10^(-3)*12*10^6/12= 3192 = 0x0C78 THx = 0CH,TLx = 78H, 方式1: K=16,X=5ms,Fosc=12MHz 则M = 2^16 - 5*10^(-3)*12*10^6/12= 60536 = 0xEC78 THx = ECH,TLx = 78H,

89C51单片机定时器所定时间的计算以及写法

89C51单片机定时器时间的计算以及写法 今晚学单片机的时候,有一点儿问题,就去网上看了看,发现了很多人不会单片机定时,也就是具体时间的设定,不知道如何设定,而且有关方面的书籍、资料讲解又太过术语化,所以就写一篇通俗些的语言讲述一下如何定时。 为了便于理解,先讲解一点儿关于单片机内部定时器和计数器的基本知识,如果学过数字电路,就不用管这些,看下边的就好了: (1)由于单片机内部定时器、计数器均为八位,所以它们从0开始到计数计满,也就是能从0000 0000计数到1111 1111,即 2^0到2^16,转换成十进制,就是0——65536。 (2)外部的晶振电路提供的频率,到单片机内部,经过硬件电路,进行了12分频,不要问为什么,就这么记着就好了。比如外 部晶振是12MHZ的,那么到了单片机内部,用的频率就是 1MHz的。 89C51单片机常使用的晶振频率为12MHz和11.0592MHz两种,主要讲述这两种频率的,如果用其他的,只需要相应改变即可,下面分别讲述如何定时: (1)使用12MHz晶振: 单片机工作的频率f:12MHz/12=1MHz, 那么时钟周期T1:T1=1/f=1μs, 比如你要定时T2=50ms=50000μs,

你需要总时间T=T1 x T2=50000,也就是说你需要50000个周期才能走完你所要定的时间,当把数全都计满,是需要65536个周期,也就是说还有65536-50000=15536个周期没有走,那么,我们可以把这个初始值放到计数器里面,让它从15536开始计数,当计够50000个周期,也就计满了,即到达了65536。 就像水往水缸里流,你需要流满半缸水的时间,但是现在水缸是空的,你可以先把水缸灌半缸水,然后让它从半缸水开始流,当流满了的时候,也就到了你需要的那个时间。 然后,15536转成十六进制为:0x3CB0,将3C放到定时器的高8位,B0放到第8位,就完成了定时。 我们在写程序赋初始值的时候一般是这么写的,可以参考一下:TH0=0x3C; TL0=0xB0; 或者 TH0=(65536-50000)/256; TL0=(65536-50000)%256; PS:如果你定时是其他的,可以把根据我上边讲解的,把T=50000换成相应的数值即可。 (2)使用11.0592MHz晶振: 单片机工作的频率f:11.0592MHz/12=0.9216MHz, 那么时钟周期T1:T1=(1/0.9216)μs,

AT89C51单片机定时器中断模式和查询设置

AT89C51单片机定时器终端模式和查询设置 T1为定时模式,定时65.536ms,P2.0对应的LED等闪烁一次,T0计数模式,计数脉冲从P3.4脚用按键输入,按一次,记一次,所以计数初值为0FFFFh,没按一次,产生一个溢出,P2.5对应的LED闪烁,同时数码管加1显示。 一、定时/计数器终端模式 org 0000h ljmp bb ;跳转到主程序入口bb处 org 000bh ;定时器0中断响应从这里开始执行 cjne r2,#9d,xx mov r2,#00h ljmp xx11 org 001bh ;定时器1中断响应从这里开始执行 ljmp xxx bb: mov p1,#3fh ;主程序入口处 mov tmod,#05h ;05h=0000 0101B设置T1定时T0计数模式,0定时,1计数 ;00是13位二进制计数模式0,高4位控制T1 ;01是16位二进制计数模式1,低4位控制T0 mov dptr,#0300h ;查表入口地址存放 mov r2,#00h

setb et0 ;和setb 0afh效果相同 setb ea ;和setb 0abh相同 setb et1 ;和setb 0a9h相同 setb tr0 setb tr1 mov th0,#0ffh ;计数器0的计数初值的高8位 mov tl0,#0fdh ;计数器0的计数初值的低8位(第一次开始计数初值) sjmp $ ;程序执行时,原地踏步等待语句,在没有中断请求时, ;在此位置原地踏步计数定时计数,有请求时跳到中断入口执行中断xx: inc r2 xx11: mov th0,#0ffh ;计数器0的计数初值的高8位 mov tl0,#0fdh ;计数器0的计数初值的低8位(第二次以后开始计数初值) mov a,r2 movc a,@a+dptr cpl p2.5 mov p1,a reti xxx: mov th1,#00h ;计数器1的计数初值的高8位 mov tl1,#00h ;计数器1的计数初值的低8位 cpl p2.0 reti org 0300h ;七段显示吗表格入口 db 3fh,06h,5bh,4fh,66h,6dh,7dh,07h,7fh,6fh end 二、定时/计数器查询模式 org 0000h ljmp bb ;跳转到主程序入口bb处 bb: mov tmod,#15h ;主程序入口处 ;设置T1定时模式,工作在计数方式0,设置T0计数模 ;式工作在计数方式1 mov dptr,#0300h ;查表入口地址存放 clr et0 ;关定时/计数器0中断 setb ea ;和setb 0abh相同,开总中断开关 setb et1 ;和setb 0a9h相同,开定时/计数器1中断 setb tr0 setb tr1 mov th0,#0ffh ;计数器0的计数初值的高8位 mov tl0,#0ffh ;计数器0的计数初值的低8位(第一次开始计数初值) CX: JBC TF0, xx ;查询定时/计数器0溢出标志位,有溢出跳转xx执行 JBC TF1, xxx ;查询定时/计数器1溢出标志位,有溢出跳转xxx执行 sjmp CX ;无溢出,跳CX继续查询 ;溢出是在THi和TLi计数满,超过FFFFH时,TFi被自动置1,中断和查询都是根 ;据这个标志是否为1来响应的。 xx: mov th0,#0ffh ;计数器0的计数初值的高8位 mov tl0,#0ffh ;计数器0的计数初值的低8位(第二次以后开始计数初值) cjne r2,#10d,xx11 mov r2,#00h

51单片机计数器和定时器的本质区别及应用方法

51单片机计数器和定时器的本质区别及应用方法 在51单片机的学习过程中,我们经常会发现中断、计数器/定时器、串口是学习单片机的难点,对于初学者来说,这几部分的内容很难理解。但是我个人觉得这几部分内容是单片机学习的重点,如果在一个学期的课堂学习或者自学中没有理解这几部分内容,那就等于还没有掌握51单片机,那更谈不上单片机的开发了,我们都知道在成品的单片机项目中,有很多是以这几部分为理论基础的,万年历是以定时器为主的,报警器是以中断为主的,联机通讯是以串口为主的。 在这几部分内容中,计数器/定时器对于初学者说很容易搞混淆,下面我将对这方面的内容结合自己的学习经验谈几点看法。 计数器和定时器的本质是相同的,他们都是对单片机中产生的脉冲进行计数,只不过计数器是单片机外部触发的脉冲,定时器是单片机内部在晶振的触发下产生的脉冲。当他们的脉冲间隔相同的时候,计数器和定时器就是一个概念。 在定时器和计数器中都有一个溢出的概念,那什么是溢出了。我们可以从一个生活小常识得到答案,当一个碗放在水龙头下接水的时候,过了一会儿,碗的水满了,就发生溢出。同样的道理,假设水龙头的水是一滴滴的往碗里滴,那么总有一滴水是导致碗中的水溢出的。在碗中溢出的水就浪费了,但是在单片机的定时计数器中溢出将导致一次中断。 在定时器计数器中,我们有个概念叫容量,就是最大计数量。 方式0是2的13次方, 方式1是2的16次方, 方式2是2的8次方, 把水滴比喻成脉冲,那么导致碗中水溢出的最后一滴水的就是定时计数器的溢出的最后一个脉冲。 在各种单片机书本中,在介绍定时计数器时都讲到一个计数初值,那什么是计数初值呢?在这里我们还是假设水滴碗。假设第一百滴水能够使碗中的水溢出,我们就知道这个碗的容量是100。

51单片机定时器计数器汇编实验报告

批 阅 长沙理工大学 实验报告 年级光电班号姓名同组姓名实验日期月日 指导教师签字:批阅老师签字: 内容 一、实验目的四、实验方法及步骤 二、实验原理五、实验记录及数据处理 三、实验仪器六、误差分析及问题讨论 单片机定时器/计数器实验 一、实验目的 1、掌握51单片机定时器/计数器的基本结构。 2、掌握定时器/计数器的原理及编程方法。 二、实验仪器 1、装有keil软件的电脑 2、单片机开发板 三、实验原理 51单片机有2个16位的定时器/计数器,分别是T0和T1,他们有四种工作方式,现以方式1举例。若定时器/计数器0工作在方式1,计数器由TH0全部8位和TL0全部8位构

成。 方式1作计数器用时,计数范围是:1-65536(2^16);作定时器用时,时间计算公式是:T=(2^16-计数初值)×晶振周期×12。 四、实验内容 1、计算计数初值 单片机晶振频率为6MHz,使用定时器0产生周期为120000μs等宽方波连续脉冲,并由P1.0输出。设待求计数初值为x,则: (2^16-x)×2×10^-6 = 120000×10^-6解得x=5536。二进制表示为:00010101 10100000B。十六进制为:高八位(15H),低八位(A0H)。 2、设置相关控制寄存器 TMOD设置为xxxx0001B 3、程序设计 ORG 0000H AJMP MAIN ORG 30H MAIN: MOV P1,#0FFH ;关闭所有灯 ANL TMOD,#0F0H ;置定时器0工作方式1 ORL TMOD,#01H ;不影响T1的工作 MOV TH0,#15H ;设置计数初始值 MOV TL0,#0A0H SETB EA ;CPU开中断 SETB ET0 ;定时器0开中断 SETB TR0 ;定时器开始运行 LOOP: JBC TF0,INTP ;如果TF0=1,则清TF0并转到INTP AJMP LOOP ;然跳转到LOOP处运行 INTP: MOV TH0,#15H ;重新设置计数初值 MOV TL0,#0A0H CPL P1.0 ;输出取反 AJMP LOOP END AJMP LOOP

51单片机定时器使用

51单片机定时器使用——小灯闪烁一、定时器工作方式设置TMOD=0x01 GATE =0 由TR=1控制开始计时; C/ T=0 作为定时时器使用; M1=0\M0=1 用作16位定时器 二、计数寄存器TH0\TL0初始值计算如定时0.02秒 普通51单片机12T模式: (一)手工计算例如晶振为10.6850MHZ 定时20毫秒 X/10.6850*1000000*12=20毫秒 X=17808 原始值T0=Y Y+17808=65536 Y=47728 利用科学计算器进行16进制转换为0Xb800 TH0=0x80 TL0=0x00 (二)单片机公式计算 TL0=T1MS;//初始化定时的计数初值(第8位),高8位丢失 (三)启动定时器(TR0=1),判断是否溢出(If(TF0==1){//}),时间到。 (四)闪烁的小灯代码 #include //P1 0脚接LED小灯 sbit led=P1^0;

//定义延时函数,循环cs次,时间长为20*cs毫秒 void delay20(unsigned int cs) { unsigned int shuL=0; TMOD=0x01; //初始值根据单片机时钟频率计算 TH0=0xB8; TL0=0x00; //启动定时器 TR0=1; while(shuL<=cs) { if(TF0==1) //查询是否溢出,溢出后复位溢出标志,赋初始值,循环计数加。{TF0=0; TH0=0xBA; TL0=0x70; shuL=shuL+1; } } } void main()

{ delay20(500); //小灯取反,亮500*20毫秒,即10秒; led=~led; delay20(500); }

51单片机定时器设置

51单片机定时器设置入门(STC89C52RC) STC单片机定时器设置 STC单片机定时器的使用可以说非常简单,只要掌握原理,有一点的C语言基础就行了。要点有以下几个: 1. 一定要知道英文缩写的原形,这样寄存器的名字就不用记了。 理解是最好的记忆方法。好的教材一定会给出所有英文缩写的原形。 2. 尽量用形像的方法记忆 比如TCON和TMOD两个寄存器各位上的功能,教程一般有个图表,你就在学习中不断回忆那个图表的形像 TMOD:定时器/计数器模式控制寄存器(TIMER/COUNTER MODE CONTROL REGISTER) 定时器/计数器模式控制寄存器TMOD是一个逐位定义的8位寄存器,但只能使用字节寻址,其字节地址为89H。 其格式为: 其中低四位定义定时器/计数器C/T0,高四位定义定时器/计数器C/T1,各位的说明: GA TE——门控制。 GA TE=1时,由外部中断引脚INT0、INT1来启动定时器T0、T1。 当INT0引脚为高电平时TR0置位,启动定时器T0; 当INT1引脚为高电平时TR1置位,启动定时器T1。 GA TE=0时,仅由TR0,TR1置位分别启动定时器T0、T1。 C/T——功能选择位 C/T=0时为定时功能,C/T=1时为计数功能。 置位时选择计数功能,清零时选择定时功能。

M0、M1——方式选择功能 由于有2位,因此有4种工作方式: M1M0 工作方式计数器模式TMOD(设置定时器模式) 0 0 方式0 13位计数器TMOD=0x00 0 1 方式1 16位计数器TMOD=0x01 1 0 方式 2 自动重装8位计数器TMOD=0x02 1 1 方式3 T0分为2个8位独立计数器,T1为无中断重装8位计数器TMOD=0x03 单片机定时器0设置为工作方式1为TMOD=0x01 这里我们一定要知道,TMOD的T是TIMER/COUNTER的意思,MOD是MODE的意思。至于每位上的功能,你只要记住图表,并知道每个英文缩写的原型就可以了。 在程序中用到TMOD时,先立即回忆图表,并根据缩写的单词原形理出每位的意义,如果意义不是很清楚,就查下手册,几次下来,TMOD的图表就已经在脑子里了。 8位GA TE位,本身是门的意思。 7位C/T Counter/Timer 6位M1 Mode 1 5位M0 Mode 0 TCON: 定时器/计数器控制寄存器(TIMER/COUNTER CONTROL REGISTER) TMOD分成2段,TCON控制更加精细,分成四段,在本文中只要用到高四段。 TF0(TF1)——计数溢出标志位,当计数器计数溢出时,该位置1。 TR0(TR1)——定时器运行控制位 当TR0(TR1)=0 停止定时器/计数器工作 当TR0(TR1)=1 启动定时器/计数器工作 IE0(IE1)——外中断请求标志位 当CPU采样到P3.2(P3.3)出现有效中断请求时,此位由硬件置1。在中断响应完成后转向中断服务时,再由硬件自动清0。 IT0(IT1)——外中断请求信号方式控制位 当IT0(IT1)=1 脉冲方式(后沿负跳有效) 当IT0(IT1)=0 电平方式(低电平有效)此位由软件置1或清0。 TF0(TF1)——计数溢出标志位

51单片机中断系统详解(定时器、计数器)

51单片机中断系统 51单片机中断级别 中断源默认中断级别序号(C语言用) INT0---外部中断0 最高0 T0---定时器/计数器0中断第2 1 INT1---外部中断1 第3 2 T1----定时器/计数器1中断第4 3 TX/RX---串行口中断第5 4 T2---定时器/计数器2中断最低 5 中断允许寄存器IE 位序号DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 符号位EA ------- ET2 ES ET1 EX1 ET0 EX0 EA---全局中允许位。 EA=1,打开全局中断控制,在此条件下,由各个中断控制位确定相应中断的打开或关闭。EA=0,关闭全部中断。 -------,无效位。 ET2---定时器/计数器2中断允许位。EA总中断开关,置1为开; ET2=1,打开T2中断。EX0为外部中断0(INT0)开关,…… ET2=0,关闭T2中断。ET0为定时器/计数器0(T0)开关,……ES---串行口中断允许位。EX1为外部中断1(INT1)开关,…… ES=1,打开串行口中断。ET1为定时器/计数器1(T1)开关,…… ES=0,关闭串行口中断。ES为串行口(TX/RX)中断开关,…… ET1---定时器/计数器1中断允许位。ET2为定时器/计数器2(T2)开关,…… ET1=1,打开T1中断。 ET1=0,关闭T1中断。 EX1---外部中断1中断允许位。 EX1=1,打开外部中断1中断。 EX1=0,关闭外部中断1中断。 ET0---定时器/计数器0中断允许位。 ET0=1,打开T0中断。 ET0=0,关闭T0中断。 EX0---外部中断0中断允许位。 EX0=1,打开外部中断0中断。 EX0=0,关闭外部中断0中断。 中断优先级寄存器IP 位序号DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 位地址--- --- --- PS PT1 PX1 PT0 PX0 -------,无效位。 PS---串行口中断优先级控制位。

基于51单片机控制的简易时钟(内部定时器)

若需要仿真图+程序(Q:409975690)附程序:#include #define uint unsigned int #define uchar unsigned char uchar n,fen,miao,shi,ri ,yue; uint a; sbit lcden=P2^1; sbit lcdrs=P2^0; sbit k1=P1^0; sbit k2=P1^2; sbit k3=P1^5; sbit k4=P1^6; sbit k5=P1^7; void keyscan(); void delay(uint z) { uint x,y; for(x=z;x>0;x--) for(y=110;y>0;y--); } void write_comd(uchar com) { lcdrs=0; P0=com; delay(5); lcden=1; delay(5); lcden=0;

void write_date (uchar date) { lcdrs=1; P0=date; delay(5); lcden=1; delay(5); lcden=0; } void start() { write_comd(0x38); write_comd(0x0c); write_comd(0x06); write_comd(0x01); } void write_sfm() { write_comd(0x80+0x44); write_date(0x30+shi/10); write_comd(0x80+0x45); write_date(0x30+shi%10); write_comd(0x80+0x46); write_date(0x3A); write_comd(0x80+0x47); write_date(0x30+fen/10); write_comd(0x80+0x48); write_date(0x30+fen%10); write_comd(0x80+0x49); write_date(0x3A); write_comd(0x80+0x4a); write_date(0x30+miao/10); write_comd(0x80+0x4b); write_date(0x30+miao%10); } void write_nyr() { write_comd(0x80); write_date('M'); write_comd(0x80+0x01); write_date('T'); write_comd(0x80+0x02); write_date('Z');

51定时器计数器使用

第六章MCS51单片机定时器/计数器 第一节定时器/计数器结构和工作方式 (一)学习要求 (1) 了解定时器/计数器0、1结构。 (2)了解定时器/计数器0、1的四种方法。 (二)内容提要 一、定时/计数器构成 1、定时方法 软件延时通过执行循环而获得延时,短时间延时; 硬件延时由硬件电路实现延时,长时间延时; 可编程定时通过对系统时钟脉冲的计数而获得延时。 2、MCS-51单片机的定时/计数器 16位定时/计数器T0、T1,分别由4个8位计数器组成,均属SFR寄存器。 T0由TH0、TL0构成,字节地址为8CH、8AH;T1由TH1、TL1构成,字节地址为8DH、8BH; 3、MCS-51单片机定时/计数器的功能,归根结底是计数器。 (1)定时功能对片内机器周期进行计数,即每个机器周期产生一个计数脉冲,计数加1。 (2)计数功能对片外从T0(P3.4)、T1(P3.5)引脚输入的外部脉冲信号进行计数,下降沿计数加1。 二、定时/计数器的控制寄存器 与定时/计数器有关的控制寄存器有3个: 1、定时器控制寄存器TCON(88H) SFR寄存器TCON既参与定时控制又参与中断控制,有关定时控制的有4位,表示如下: TF1/TF0:当T1/T0的计数器计数溢出时,该位置“1”。TR1/TR0:T1/T0运行控制位。软件将其置“1”时,启动T1/T0工作。 2、设定定时器工作方式寄存器TMOD(89H) SFR寄存器TMOD用于2个定时器/计数器T1/T0的工作方式设定,各位的含义表示如下: GA TE:门控位,定义T1/T0的启动方式,逻辑如图: C/T:定时/计数功能选择位。为“0”,作定时器

单片机定时计数器的方式控制字

单片机定时器/计数器的方式控制字 单片机中的定时/计数器都能有多种用途,那么我怎样才能让它们工作于我所需要的用途呢?这就要通过定时/计数器的方式控制字来设置。在单片机中有两个特殊功能寄存器与定时/计数有关,这就是TMOD和TCON。顺便说一下,TMOD和TCON是名称,我们在写程序时就能直接用这个名称来指定它们,当然也能直接用它们的地址89H和88H来指定它们(其实用名称也就是直接用地址,汇编软件帮你翻译一下而已)。 从图1中我们能看出,TMOD被分成两部份,每部份4位。分别用于控制T1和T0,至于这里面是什么意思,我们下面介绍。 从图2中我们能看出,TCON也被分成两部份,高4位用于定时/计数器,低4位则用于中断(我们暂不管)。而TF1(0)我们上节课已提到了,当计数溢出后TF1(0)就由0变为1。原来TF1(0)在这儿!那么TR0、TR1又是什么呢?看上节课的图。 计数脉冲要进入计数器还真不不难,有层层关要通过,最起码,就是TR0(1)要为1,开关才能合上,脉冲才能过来。因此,TR0(1)称之为运行控制位,可用指令SETB来置位以启动计数器/定时器运行,用指令CLR来关闭定时/计数器的工作,一切尽在自已的掌握中。 <单片机定时器/计数器结构> 定时/计数器的四种工作方式 工作方式0 定时器/计数器的工作方式0称之为13位定时/计数方式。它由TL(1/0)的低5位和TH(0/1)的8位组成13位的计数器,此时TL(1/0)的高3位未用。 我们用这个图来讨论几个问题: M1M0:定时/计数器一共有四种工作方式,就是用M1M0来控制的,2位正好是四种组合。C/T:前面我们说过,定时/计数器即可作定时用也可用计数用,到底作什么用,由我们根据需要自行决定,也说是决定权在我们��编程者。如果C/T为0就是用作定时器(开关往上打),如果C/T为1就是用作计数器(开关往下打)。顺便提一下:一个定时/计数器同一时刻要么作定时用,要么作计数用,不能同时用的,这是个极普通的常识,几乎没有教材会提这一点,但很多开始学习者却会有此困惑。 GA TE:看图,当我们选择了定时或计数工作方式后,定时/计数脉冲却不一定能到达计数器

相关文档
最新文档