四阶巴特沃兹低通滤波器的设计与仿真

四阶巴特沃兹低通滤波器的设计与仿真
四阶巴特沃兹低通滤波器的设计与仿真

四阶巴特沃兹低通滤波器的设计与仿真

一. 电路工作原理

1. 电路用途

滤波器是一种能使有用信号频率通过,同时抑制无用频率成分的电路,广泛应用于电子、电气、通信、计算机等领域的信号处理电路中。滤波器的种类很多,本电路是一个四阶巴特沃兹型低通滤波器,其截止频率为1khz ,增益为2.6.

2. 电路图

H I

R51.6k

H I

R6

1.6k

U0

C20.1u

R8

1.6k

R415.2k

R71.6k

C10.1u

C40.1u

V1

1Vac 0Vdc

四阶巴特沃兹低通滤波器

C30.1u

R212.53k

LO

0LO

U1A

AD648A 3

2

8

4

1

+-V +

V -

OUT

R3100k

R110k

U1B

AD648A 5

6

8

4

7

+-

V +

V -

OUT

3. 工作原理

高阶低通滤波器通常可由一阶,二阶低通滤波器组成,这样可以改善低通滤波器的频率特性,如要求低通滤波器的阻带特性下降速率大于|-40db/10oct| 时,则必须采用高阶低通滤波器。因此本电路中欲设计一个四阶巴特沃兹低通滤波器,可用两个二阶巴特沃兹低通滤波器构成。其具体设计步骤如下:

先设计四阶巴特沃兹低通滤波器的传递函数,用两个二阶巴特沃兹低通滤波器构成一个四阶巴特沃兹低通滤波器,其传递函数为

0102

422

12()*11

G G G s s s s s λλλλλξξ=

++++ (1) 为了简化计算,假设在所选择的二阶巴特沃兹低通滤波器中,其参数满足如下条件:

1212,C C C R R R ====

由1

2c f RC

π=

,选取C=0.1uf ,可算得R=1.6K Ω。

由表查得四阶巴特沃兹低通滤波器的两个阻尼系数分别为120.765, 1.848ξξ==,由此

可算得两个零频增益分别为

011022330.765 2.23533 1.848 1.152

G G ξξ=-=-==-=-=

则式(1)的传递函数可写为

()422

2.235 1.152

*0.7651 1.8481

G s s s s s λλλλλ=

++++ (2) 可选用两个巴特沃兹低通滤波器级联组成。其中,第一级增益为

1011

1 2.2351 1.235f i R G R =+

==+

若选取 112.35f R K =Ω,则110i R K =Ω。 同理,第二级增益为:

2022

1 1.15210.152f i R G R =+

==+

若选取 215.2f R K =Ω,则2100i R K =Ω。 这样即可得到一个四阶巴特沃兹型低通滤波器。

二.仿真工具软件简介

ORCAD 简介:ORCAD 是由ORCAD 公司于八十年代末推出的EDA 软件,它是世界

上使用最广的EDA 软件,每天都有上百万的电子工程师在使用它,相对于其它EDA 软件而言,它的功能也是最强大的。Cadence 公司在1999年与ORCAD 公司合并后,更成为世界上更强大的开发EDA 软件的公司,它最新的产品工作于WINDOWS95与WINDOWSNT 环境下,集成了电原理图绘制,印制电路板设计、模拟与数字电路混合仿真等功能,它的电路仿真的元器件库更达到了8500个,收入了几乎所有的通用型电子元器件模块。

ORCAD Capture 作为设计输入工具,它运行在PC 平台,用于FPGA 、PCB 和PSPICE 设计应用中。它是业界第一个真正基于Windows 环境的原理图输入程序。Capture 易于使用的功能和特点使其已经成为了原理图输入的工业标准。

PSPICE A/D : PSPICE 是一个全功能的模拟与混合信号仿真器,它支持从高频系统到低功耗IC 设计的电路设计。PSPICE 的仿真工具已和 ORCAD Capture 及Concept HDL 电路编辑工具整合在一起,让工程师方便地在单一的环境里建立设计、控制模拟及得到结果。

三.仿真结果分析及讨论

仿真结果:

3.0V

2.0V

1.0V

0V

1.0Hz 3.0Hz10Hz30Hz100Hz300Hz 1.0KHz 3.0KHz10KHz30KHz100KHz

V(U0)

Frequency

图1:电压与频率的关系

3.0

2.0

1.0

1.0Hz 3.0Hz10Hz30Hz100Hz300Hz 1.0KHz 3.0KHz10KHz30KHz100KHz

V(U0) / V(U1A:+)

Frequency

图2:增益与频率的关系

由仿真结果可以看出:

图1中:在输入幅值为1V的信号源时,输出电压约为2.6V,则其增益约为2.6,当增益下降到其0.707倍,即2.6*0.707=1.84V,在1.84V处可看出其截止频率约为1KHz,与设计要求基本相符。

图2中:从该仿真结果可看出其增益为2.6,当增益下降到其0.707倍,即2.6*0.707=1.84时,其截止频率约为738Hz,在误差允许范围内,与设计要求基本相符。

巴特沃斯数字低通滤波器

目录 1.题目.......................................................................................... .2 2.要求 (2) 3.设计原理 (2) 3.1 数字滤波器基本概念 (2) 3.2 数字滤波器工作原理 (2) 3.3 巴特沃斯滤波器设计原理 (2) 3.4脉冲响应不法 (4) 3.5实验所用MA TLAB函数说明 (5) 4.设计思路 (6) 5、实验内容 (6) 5.1实验程序 (6) 5.2实验结果分析 (10) 6.心得体会 (10) 7.参考文献 (10)

一、题目:巴特沃斯数字低通滤波器 二、要求:利用脉冲响应不变法设计巴特沃斯数字低通滤波器,通带截止频率100HZ,采样频率1000HZ ,通带最大衰减为0.5HZ ,阻带最小衰减为10HZ ,画出幅频、相频相应相应曲线。并假设一个信号x(t)=sin(2*pi*f1*t)+sin(2*pi*f2*t),其中f1=50HZ,f2=200HZ 。用此信号验证滤波器设计的正确性。 三、设计原理 1、数字滤波器的基本概念 所谓数字滤波器,是指输入、输出均为数字信号,通过数值运算处理改变输入信号所含频率成分的相对比例,或者滤波器除某些频率成分的数字器件或程序,因此,数字滤波的概念和模拟滤波相同,只是的形式和实现滤波方法不同。正因为数字滤波通过数值运算实现滤波,所以数字滤波处理精度高、稳定、体积小、质量轻、灵活、不存在阻抗匹配问题,可以实验模拟滤波器无法实现的特殊滤波功能。如果要处理的是模拟信号,可通过A\DC 和D\AC,在信号形式上进行匹配转换,同样可以使用数字滤波器对模拟信号进行滤波。 2、数字滤波器的工作原理 数字滤波器是一个离散时间系统,输入x(n)是一个时间序列,输出y(n)也是一个时间序列。如数字滤波器的系统函数为H(Z),其脉冲响应为h(n),则在时间域内存在下列关系 y(n)=x(n) h(n) 在Z 域内,输入输出存在下列关系 Y(Z)=H(Z)X(Z) 式中,X(Z),Y(Z)分别为输入x(n)和输出y(n)的Z 变换。 同样在频率域内,输入和输出存在下列关系 Y(jw)=X(jw)H(jw) 式中,H(jw)为数字滤波器的频率特性,X(jw)和Y(jw)分别为x(n)和y(n)的频谱。w 为数字角频率,单位rad 。通常设计H(jw)在某些频段的响应值为1,在某些频段的响应为0.X(jw)和H(jw)的乘积在频率响应为1的那些频段的值仍为X(jw),即在这些频段的振幅可以无阻碍地通过滤波器,这些频带为通带。X(jw)和H(jw)的乘积在频段响应为0的那些频段的值不管X(jw)大小如何均为零,即在这些频段里的振幅不能通过滤波器,这些频带称为阻带。 一个合适的数字滤波器系统函数H(Z)可以根据需要输入x(n)的频率特性,经数字滤波器处理后的信号y(n)保留信号x(n)中的有用频率成分,去除无用频率成分。 3、巴特沃斯滤波器设计原理 (1)基本性质 巴特沃斯滤波器以巴特沃斯函数来近似滤波器的系统函数。巴特沃斯滤波器是根据幅频特性在通频带内具有最平坦特性定义的滤波器。 巴特沃思滤波器的低通模平方函数表示1 () ΩΩ+ =Ωc N /22 a 11 ) (j H

绝对经典的低通滤波器设计报告

经典 无源低通滤波器的设计

团队:梦知队 团结奋进,求知创新,追求卓越,放飞梦想 队员: 日期:2010.12.10 目录 第一章一阶无源RC低通滤波电路的构建 (3) 1.1 理论分析 (3) 1.2 电路组成 (4) 1.3 一阶无源RC低通滤波电路性能测试 (5) 1.3.1 正弦信号源仿真与实测 (5) 1.3.2 三角信号源仿真与实测 (10) 1.3.3 方波信号源仿真与实测 (15) 第二章二阶无源LC低通滤波电路的构建 (21) 2.1理论分析 (21) 2.2 电路组成 (22) 2.3 二阶无源LC带通滤波电路性能测试 (23) 2.3.1 正弦信号源仿真与实测 (23) 2.3.2 三角信号源仿真与实测 (28)

2.3.3 方波信号源仿真与实测 (33) 第三章结论与误差分析 (39) 3.1 结论 (39) 3.2 误差分析 (40) 第一章一阶无源RC低通滤波电路的构建1.1理论分析 滤波器是频率选择电路,只允许输入信号中的某些频率成分通过,而阻止其他频率成分到达输出端。也就是所有的频率成分中,只是选中的部分经过滤波器到达输出端。 低通滤波器是允许输入信号中较低频率的分量通过而阻止较高频率的分量。 图1 RC低通滤波器基本原理图 当输入是直流时,输出电压等于输入电压,因为Xc无限大。当输入

频率增加时,Xc减小,也导致Vout逐渐减小,直到Xc=R。此时的频率为滤波器的特征频率fc。 解出,得: 在任何频率下,应用分压公式可得输出电压大小为: 因为在=时,Xc=R,特征频率下的输出电压用分压公式可以表述为: 这些计算说明当Xc=R时,输出为输入的70.7%。按照定义,此时的频率称为特征频率。 1.2电路组成

低通滤波器设计

低通滤波器设计 例3. 设计低通数字滤波器,要求在通带内频带低于rad π2.0时,允许幅度误差在1dB 以内,在频率rad rad ππ~3.0之间的阻带衰减大于15dB 。用双线性设计数字滤波器,1=T ,模拟滤波器采用巴特沃兹滤波器原型。 n=0:255; fp=0.2*pi;fst=0.3*pi;Fs=1; rp=1;rs=15; wp=fp/Fs; ws=fst/Fs; Fs=Fs/Fs; wap=tan(wp/2);was=tan(ws/2); [n,wn]=buttord(wap,was,rp,rs,'s') ; [z,p,k]=buttap(n); [bp,ap]=zp2tf(z,p,k) ; [bs,as]=lp2lp(bp,ap,wap); [bz,az]=bilinear(bs,as,Fs/2) ; [h,w]=freqz(bz,az,256,Fs*1000); plot(w,abs(h));title('Lowpass');

滤波验证: 1.幅度: n1=0:60; x1=sin(0.1*pi*n1); x2=sin(0.4*pi*n1); x3=x1+x2; y=filter(bz,az,x3); subplot(2,2,1);stem(n1,x1);title('x1'); subplot(2,2,2);stem(n1,x2);title('x2'); subplot(2,2,3);stem(n1,x3);title('x1+x2'); subplot(2,2,4);stem(n1,y);title('output');

2.频率: n2=0:255; y1=freqz(x1,1,256); y2=freqz(x2,1,256); y3=freqz(x3,1,256); y4=freqz(y,1,256); subplot(2,2,1);plot(n2,abs(y1)); subplot(2,2,2);plot(n2,abs(y2)); subplot(2,2,3);plot(n2,abs(y3)); subplot(2,2,4);plot(n2,abs(y4)); 实验总结:经验证,该滤波器设计符合滤波设计要求,能滤除0.3PI以上的波,为合格的低通滤波器。另外,高通,带通,带阻滤波器的设计与此类似:区别主要在[bs,as]=lp2lp(bp,ap,wap); [bs,as]=lp2hp(bp,ap,wap); [bs,as]=lp2bp(bp,ap,wap); [bs,as]=lp2ls(bp,ap,wap);以及通、阻带频率的不同。

基于巴特沃斯的低通滤波器的设计原理

课程设计报告 ——基于虚拟仪器的幅频特性自动测试系统的实现 2010年12月25日 一、实验内容 基于虚拟仪器的幅频特性自动测试系统的实现 二、实验目的 1、通过对滤波器的设计,充分了解测控电路中学习的各种滤波器的工作原理以及工作机制。学习幅频特性曲线的拟合,学会基本MATLAB操作。 2、进一步掌握虚拟仪器语言LabVIEW设计的基本方法、常用组件的使用方法和设计全过程。以及图形化的编程方法;学习非线性校正概念和用曲线拟合法实现非线性校正;练习正弦波、方波、三角波产生函数的使用方法;掌握如何使用数据采

集卡以及EIVIS产生实际波形信号。了解图形化的编程方法;练习DIO函数的使用方法;学习如何使用数据采集卡以及EIVIS产生和接受实际的数字信号。3、掌握自主化学习的方法以及工程设计理念等技能。 三、实验原理 滤波器是具有频率选择作用的电路或运算处理系统。滤波处理可以利用模拟电路实现,也可以利用数字运算处理系统实现。滤波器的工作原理是当信号与噪声分布在不同频带中时,可以在频率与域中实现信号分离。在实际测量系统中,噪声与信号的频率往往有一定的重叠,如果重叠不严重,仍可利用滤波器有效地抑制噪声功率,提高测量精度。 任何复杂地滤波网络,可由若干简单地、相互隔离地一阶与二阶滤波电路级联等效构成。一阶滤波电路只能构成低通和高通滤波器,而不能构成带通和带阻。可先设计一个一阶滤波电路来熟悉电路设计思路以及器件使用要求和软件地进一步学习。 滤波器主要参数介绍: ①通带截频f p=w p/(2π)为通带与过渡带边界点的频率,在该点信号增益下降到一个人为规定的下限。 ②阻带截频f r=wr/(2π)为阻带与过渡带边界点的频率,在该点信号衰耗(增益的倒数)下降到一人为规定的下限。 ③转折频率f c=w c/(2π)为信号功率衰减到1/2(约3dB)时的频率,在很多情况下,常以fc作为通带或阻带截频。 ④固有频率f0=w0/(2π)为电路没有损耗时,滤波器的谐振频率,复杂电路往

简单低通滤波器设计及matlab仿真

东北大学 研究生考试试卷 考试科目: 课程编号: 阅卷人: 考试日期: 姓名:xl 学号: 注意事项 1.考前研究生将上述项目填写清楚. 2.字迹要清楚,保持卷面清洁. 3.交卷时请将本试卷和题签一起上交. 4.课程考试后二周内授课教师完成评卷工作,公共课成绩单与试卷交研究生院培养办公室, 专业课成绩单与试卷交各学院,各学院把成绩单交研究生院培养办公室. 东北大学研究生院培养办公室

数字滤波器设计 技术指标: 通带最大衰减: =3dB , 通带边界频率: =100Hz 阻带最小衰减: =20dB 阻带边界频率: =200Hz 采样频率:Fs=200Hz 目标: 1、根据性能指标设计一个巴特沃斯低通模拟滤波器。 2、通过双线性变换将该模拟滤波器转变为数字滤波器。 原理: 一、模拟滤波器设计 每一个滤波器的频率范围将直接取决于应用目的,因此必然是千差万别。为了使设计规范化,需要将滤波器的频率参数作归一化处理。设所给的实际频 率为Ω(或f ),归一化后的频率为λ,对低通模拟滤波器令λ=p ΩΩ/,则1 =p λ, p s s ΩΩ=/λ。令归一化复数变量为p ,λj p =,则p p s j j p Ω=ΩΩ==//λ。所以巴 特沃思模拟低通滤波器的设计可按以下三个步骤来进行。 (1)将实际频率Ω规一化 (2)求Ωc 和N 11010/2-=P C α s p s N λααlg 1 10 110lg 10 /10/--= 这样Ωc 和N 可求。 p x fp s x s f

根据滤波器设计要求=3dB ,则C =1,这样巴特沃思滤波器的设计就只剩一个参数N ,这时 N p N j G 222 )/(11 11)(ΩΩ+= += λλ (3)确定)(s G 因为λj p =,根据上面公式有 N N N p j p p G p G 22)1(11 )/(11)()(-+= += - 由 0)1(12=-+N N p 解得 )221 2exp(πN N k j p k -+=,k =1,2, (2) 这样可得 1 )21 2cos(21 ) )((1 )(21+-+-= --= -+πN N k p p p p p p p G k N k k 求得)(p G 后,用p s Ω/代替变量p ,即得实际需要得)(s G 。 二、双线性变换法 双线性变换法是将s 平面压缩变换到某一中介1s 平面的一条横带里,再通过标准变换关系)*1exp(T s z =将此带变换到整个z 平面上去,这样就使s 平面与z 平面之间建立一一对应的单值关系,消除了多值变换性。 为了将s 平面的Ωj 轴压缩到1s 平面的1Ωj 轴上的pi -到pi 一段上,可以通过以下的正切变换来实现: )21 tan(21T T Ω= Ω 这样当1Ω由T pi -经0变化到T pi 时,Ω由∞-经过0变化到∞+,也映射到了整个Ωj 轴。将这个关系延拓到整个s 平面和1s 平面,则可以得到

有源带通滤波器设计报告

有源带通滤波器设计报告 学生姓名崔新科 同组者王霞吴红娟 指导老师王全州

摘要 该设计利用模拟电路的相关知识,设定上线和下限频率,采用开环增益80dB 以上的集成运算放大器,设计符合要求的带通滤波器。再利用Multisim 仿真出滤波电路的波形和测量幅频特性。通过仿真和成品调试表明设计的有源滤波器可以基本达到所要求的指标。其主要设计内容: 1.确定有源滤波器的上、下限频率; 2.设计符合条件的有源带通滤波器;- 3.测量设计的有源滤波器的幅频特性; 4.制作与调试; 5. 总结遇到的问题和解决的方法。 关键词:四阶电路有源带通滤波器极点频率 The use of analog circuit design knowledge, on-line and set the lower limit frequency, the use of open-loop gain of 80dB or more integrated operational amplifier designed to meet the requirements of the bandpass filter. Re-use Multisim circuit simulation waveform and filter out the measurement of amplitude-frequency characteristics. Finished debugging the simulation and design of active filters that can basically meet the required targets. The main design elements: 1. Determine the active filter, the lower limit frequency; 2. Designed to meet the requirements of the active band-pass filter; - 3. Designed to measure the amplitude-frequency characteristics of active filters; 4. Production and commissioning; 5 summarizes the problems and solutions. Keywords: fourth-order active band-pass filter circuit pole frequency

基于matlab-的巴特沃斯低通滤波器的实现

基于matlab 的巴特沃斯低通滤波器的实现 一、课程设计的目的 运用MATLAB实现巴特沃斯低通滤波器的设计以及相应结果的显示,另外还对多种低通滤波窗口进行了比较。 二、课程设计的基本要求 1)熟悉和掌握MATLAB 的基本应用技巧。 2)学习和熟悉MATLAB相关函数的调用和应用。 3)学会运用MATLAB实现低通滤波器的设计并进行结果显示。 三、双线性变换实现巴特沃斯低通滤波器的技术指标: 1.采样频率10Hz。 2.通带截止频率fp=0.2*pi Hz。 3.阻带截止频率fs=0.3*pi Hz。 4.通带衰减小于1dB,阻带衰减大于20dB 四、使用双线性变换法由模拟滤波器原型设计数字滤波器 程序代码: T=0.1; FS=1/T; fp=0.2*pi;fs=0.3*pi; wp=fp/FS*2*pi; ws=fs/FS*2*pi; Rp = 1; % 通带衰减 As = 15; % 阻带衰减 OmegaP = (2/T)*tan(wp/2); % 频率预计 OmegaS = (2/T)*tan(ws/2); % 频率预计 %设计巴特沃斯低通滤波器原型

N = ceil((log10((10^(Rp/10)-1)/(10^(As/10)-1)))/(2*log10(OmegaP/OmegaS))); OmegaC = OmegaP/((10^(Rp/10)-1)^(1/(2*N))); [z,p,k] = buttap(N); %获取零极点参数 p = p * OmegaC ; k = k*OmegaC^N; B = real(poly(z)); b0 = k; cs = k*B; ds = real(poly(p)); [b,a] = bilinear(cs,ds,FS);% 双线性变换 figure(1);% 绘制结果 freqz(b,a,512,FS);%进行滤波验证 figure(2); % 绘制结果 f1=50; f2=250; n=0:63; x=sin(2*pi*f1*n)+sin(2*pi*f2*n); subplot(2,2,1);stem(x,'.'); title ('输入信号'); y=filter(b,a,x); subplot(2,2,2);stem(y,'.') ; title('滤波之后的信号'); figure(3) ; stem(y,'.') title('输出的信号'))

有源低通滤波器设计报告要点

课程设计(论文)说明书 题目:有源低通滤波器 院(系):信息与通信学院 专业:通信工程 学生姓名: 学号: 指导教师: 职称: 2010年 12 月 19 日

摘要 低通滤波器是一个通过低频信号而衰减或抑制高频信号的部件。理想滤波器电路的频响在通带内应具有一定幅值和线性相移,而在阻带内其幅值应为零。有源滤波器是指由放大电路及RC网络构成的滤波器电路,它实际上是一种具有特定频率响应的放大器。滤波器的阶数越高,幅频特性衰减的速率越快,但RC网络节数越多,元件参数计算越繁琐,电路的调试越困难。根据指标,本次设计选用二阶有源低通滤波器。 关键词:低通滤波器;集成运放UA741;RC网络 Abstract Low-pass filter is a component which can only pass the low frequency signal and attenuation or inhibit the high frequency signal . Ideal frequency response of the filter circuit in the pass band should have a certain amplitude and linear phase shift, and amplitude of the resistance band to be zero. Active filter is composed of the RC network and the amplifier, it actually has a specific frequency response of the amplifier. Higher the order of the filter, the rate of amplitude-frequency characteristic decay faster, but more the number of RC network section, the more complicated calculation of device parameters, circuit debugging more difficult. According to indicators ,second-order active low-pass filter is used in this design . Key words:Low-pass filter;Integrated operational amplifier UA741;RC network,

四阶巴特沃兹低通滤波器的设计与仿真

四阶巴特沃兹低通滤波器的设计与仿真 一. 电路工作原理 1. 电路用途 滤波器是一种能使有用信号频率通过,同时抑制无用频率成分的电路,广泛应用于电子、电气、通信、计算机等领域的信号处理电路中。滤波器的种类很多,本电路是一个四阶巴特沃兹型低通滤波器,其截止频率为1khz ,增益为2.6. 2. 电路图 H I R51.6k H I R6 1.6k U0 C20.1u R8 1.6k R415.2k R71.6k C10.1u C40.1u V1 1Vac 0Vdc 四阶巴特沃兹低通滤波器 C30.1u R212.53k LO 0LO U1A AD648A 3 2 8 4 1 +-V + V - OUT R3100k R110k U1B AD648A 5 6 8 4 7 +- V + V - OUT 3. 工作原理 高阶低通滤波器通常可由一阶,二阶低通滤波器组成,这样可以改善低通滤波器的频率特性,如要求低通滤波器的阻带特性下降速率大于|-40db/10oct| 时,则必须采用高阶低通滤波器。因此本电路中欲设计一个四阶巴特沃兹低通滤波器,可用两个二阶巴特沃兹低通滤波器构成。其具体设计步骤如下: 先设计四阶巴特沃兹低通滤波器的传递函数,用两个二阶巴特沃兹低通滤波器构成一个四阶巴特沃兹低通滤波器,其传递函数为 01 02 42 2 12()* 1 1 G G G s s s s s λλλλλξξ= ++++ (1) 为了简化计算,假设在所选择的二阶巴特沃兹低通滤波器中,其参数满足如下条件: 1212,C C C R R R ==== 由12c f RC π= ,选取C=0.1uf ,可算得R=1.6K Ω。 由表查得四阶巴特沃兹低通滤波器的两个阻尼系数分别为120.765, 1.848ξξ==,由此

fir低通滤波器设计(完整版)

电子科技大学信息与软件工程学院学院标准实验报告 (实验)课程名称数字信号处理 电子科技大学教务处制表

电 子 科 技 大 学 实 验 报 告 学生姓名: 学 号: 指导教师: 实验地点: 实验时间:14-18 一、实验室名称:计算机学院机房 二、实验项目名称:fir 低通滤波器的设计 三、实验学时: 四、实验原理: 1. FIR 滤波器 FIR 滤波器是指在有限范围内系统的单位脉冲响应h[k]仅有非零值的滤波器。M 阶FIR 滤波器的系统函数H(z)为 ()[]M k k H z h k z -==∑ 其中H(z)是k z -的M 阶多项式,在有限的z 平面内H(z)有M 个零点,在z 平面原点z=0有M 个极点. FIR 滤波器的频率响应 ()j H e Ω 为 0 ()[]M j jk k H e h k e Ω -Ω ==∑ 它的另外一种表示方法为 () ()()j j j H e H e e φΩΩΩ=

其中 () j H e Ω和()φΩ分别为系统的幅度响应和相位响应。 若系统的相位响应()φΩ满足下面的条件 ()φαΩ=-Ω 即系统的群延迟是一个与Ω没有关系的常数α,称为系统H(z)具有严格线性相位。由于严格线性相位条件在数学层面上处理起来较为困难,因此在FIR 滤波器设计中一般使用广义线性相位。 如果一个离散系统的频率响应 ()j H e Ω 可以表示为 ()()()j j H e A e αβΩ-Ω+=Ω 其中α和β是与Ω无关联的常数,()A Ω是可正可负的实函数,则称系统是广义线性相位的。 如果M 阶FIR 滤波器的单位脉冲响应h[k]是实数,则可以证明系统是线性相位的充要条件为 [][]h k h M k =±- 当h[k]满足h[k]=h[M-k],称h[k]偶对称。当h[k]满足h[k]=-h[M-k],称h[k]奇对称。按阶数h[k]又可分为M 奇数和M 偶数,所以线性相位的FIR 滤波器可以有四种类型。 2. 窗函数法设计FIR 滤波器 窗函数设计法又称为傅里叶级数法。这种方法首先给出()j d H e Ω, ()j d H e Ω 表示要逼近的理想滤波器的频率响应,则由IDTFT 可得出滤波器的单位脉冲响应为 1 []()2j jk d d h k H e e d π π π ΩΩ-= Ω ? 由于是理想滤波器,故 []d h k 是无限长序列。但是我们所要设计的FIR 滤波 器,其h[k]是有限长的。为了能用FIR 滤波器近似理想滤波器,需将理想滤波器的无线长单位脉冲响应 []d h k 分别从左右进行截断。 当截断后的单位脉冲响应 []d h k 不是因果系统的时候,可将其右移从而获得因果的FIR 滤波器。

巴特沃兹低通滤波8极点

Rev.0 “Circuits from the Lab” from Analog Devices have been designed and built by Analog Devices engineers. Standard engineering practices have been employed in the design and construction of each circuit, and their function and performance have been tested and verified in a lab environment at room temperature. However, you are solely responsible for testing the circuit and determining its suitability and applicability for your use and application. Accordingly, in no event shall Analog Devices be liable for direct, indirect, special, incidental, consequential or One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 https://www.360docs.net/doc/d111074541.html, 电路笔记 CN-0127 连接/参考器件 利用ADI 公司产品进行电路设计 双通道、低功耗、精密、轨到轨输出运算放大器 AD8622放心运用这些配套产品迅速完成设计。 欲获得更多信息和技术支持,请拨打4006-100-006或访问ADA4062-2低功耗JFET 输入运算放大器 https://www.360docs.net/doc/d111074541.html,/zh/circuits 。 利用运算放大器AD8622和ADA4062-2构建精密、低噪声、 高增益8极点有源低通滤波器 电路功能与优势 该滤波器提供业界功耗最低的解决方案(使用±15 V 电源时,总静态电流为760 μA ),不仅具有精密和低噪声特性,而且提供高增益。它使用两个双通道运算放大器,而不是一个四通道运算放大器,这也使得PCB 布局更加灵活、简便。ADA4062-2还提供1.3 mm × 1.6 mm LFCSP 封装(小于SC-70),是业界最小的JFET 输入运算放大器。因此,设计人员不必担心使用两个双通道放大器比使用一个四通道放大器要占用更多电路板空间的问题。 本电路是一个精密、低噪声、低功耗、8 极点有源低通滤波器,其增益为40 dB ,它采用Sallen-Key 拓扑结构,可提供巴特沃兹响应。 本电路不是采用一个四通道运算放大器简单构建,而是精选双通道运算放大器组合来提供更加优化的解决方案。低噪声(0.2 μV 峰峰值,0.1 Hz 至10 Hz )、低失调电压(典型值10 μV )运算放大器AD8622用于输入和增益级。相对于其功耗(±15 V 时每个放大器215 μA ),AD8622提供的失调电压和噪声为业界最低。JFET 输入运算放大器低通滤波器经常用作数据采集系统中的抗混叠滤波器,或者用作噪声滤波器以限制高频噪声。巴特沃兹滤波器是一种幅度响应极为平坦的滤波器,通带和阻带中均无纹波。然而,与其它有纹波的响应相比,无纹波是以频率响应的过渡带更宽为代价而实现的,因此,通常需要高阶巴特沃兹滤波器。 ADA4062-2用于最后两级,其功耗同样很低(每个放大器165 μA )。ADA4062-2的低输入偏置电流允许最后两级使用较大的电阻和较小的电容,从而减小无源器件板的面积。 图1.利用AD8622和ADA4062-2构建的8极点Sallen Key 巴特沃兹低通滤波器,V SY = ±15 V (未显示去耦)

fir低通滤波器设计报告

滤波器设计原理 本文将介绍数字滤波器的设计基础及用窗函数法设计FIR 滤波器的方法,运用MATLAB 语言实现了低通滤波器的设计以及用CCS软件进行滤波效果的观察。读取语音文件,并加入一定的随机噪声,最后使用窗函数滤波法进行语音滤波,将加噪后的语音文件转换为.dat文件使其能和ccs软件链接,输出个阶段的时域和频域波形。 根据数字滤波器冲激响应函数的时域特性。可将数字滤波器分为两种,即无限长冲激响应( IIR) 滤波器和有限长冲激响应(FIR) 滤波器。IIR 滤波器的特征是具有无限持续时间的冲激响应;FIR 滤波器冲激响应只能延续一定时间。其中FIR 滤波器很容易实现严格的线性相位,使信号经过处理后不产生相位失真,舍入误差小,稳定等优点。能够设计具有优良特性的多带通滤波器、微分器和希尔伯特变换器,所以在数字系统、多媒体系统中获得极其广泛的应用。FIR数字滤波器的设计方法有多种,如窗函数设计法、最优化设计和频率取样法等等。而随着MATLAB软件尤其是MATLAB 的信号处理工具箱和Simulink 仿真工具的不断完善,不仅数字滤波器的计算机辅助设计有了可能而且还可以使设计达到最优化。 FIR滤波器的窗函数法的设计 采用汉明窗设计低通FIR滤波器 使用b=fir1(n,Wn)可得到低通滤波器。其中,0Wn1,Wn=1相当于0.5。其语法格式为 b=fir1(n,Wn); 采用:b=fir1(25, 0.25); 得到归一化系数:

或者在命令行输入fdatool进入滤波器的图形设置界面,如下图所示 得到系数(并没有归一化) const int BL = 26; const int16_T B[26] = { -26, 33, 126, 207, 138, -212, -757, -1096, -652, 950, 3513, 6212, 7948, 7948, 6212, 3513, 950, -652, -1096, -757, -212, 138, 207, 126, 33, -26 }; FIR滤波器的设计(Matlab) 技术指标为:采用25阶低通滤波器,汉明窗(Hamming Window)函数,截止频率为1000Hz,采样频率为8000Hz,增益40db。 下面的程序功能是:读取语音文件,并加入一定的随机噪声,最后使用窗函数滤波法进行语音滤波,将加噪后的语音文件转换为.dat文件使其能和ccs软件链接,输出个阶段的时域和频域波形。

巴特沃斯二阶低通滤波器

MEMS 陀螺的带宽为30HZ ,从采样频率100HZ 的数据序列中消除掉30HZ 以上的噪声。巴特沃斯函数只是在ω=0处精确地逼近理想低通特性,在通带内随着ω增加,误差愈来愈大,在通带边界上误差最大,逼近特性并不很好,但是陀螺仪的有用输出信号本就在低频段,对通带边界的滤波要求不高,因此巴特沃斯滤波器就可以满足要求。要求巴特沃斯滤波器通带上限截止频率fc=30HZ ,阻带下限截止频率fs=80HZ ,通带最大衰减3max =A db ,阻带最小衰减为 15min =A db 。由式(1)-(4)可得巴特沃斯低通滤波器为二阶。 1110max 1.0≈-=A ε (1) 49.1995.0622.30lg 110110lg 110110lg 3.05.11.01.0max min =??? ??=???? ??--=? ?? ? ??--A A (2) 85.01.7lg 302802lg lg 2 ==??? ??????=??? ? ??ππc s w w (3) 75.185.049.1lg 110110lg lg max min 1.01.0==??? ? ?????? ??-->c s A A w w n (4) 用 30 2??πs 代替1 21)(2 ++= s s s H 中的s 得到去归一化后的滤波器传递函 数为式(5)所示。 6.35494 4.2666 .35494)(2++= s s s H (5) 采用的低通滤波电路如图2所示,滤波增益为1,此电路传递函数如式(6)所示,只需将巴特沃斯滤波器的传递函数与此传递函数的系数一一对应即可以整定出滤波电路的参数。

低通滤波器的设计

低通滤波器的设计 模拟滤波器在各种预处理电路中几乎是必不可少的,已成为生物医学仪器中的基本单元电路。有源滤波器实质上是有源选频电路,它的功能是允许指定频段的信号通过,而将其余频段上的信号加以抑制或使其急剧衰减。各种生物信号的低噪声放大,都是首先严格限定在所包含的频谱范围之内。 最常用的全极点滤波器有巴特沃斯滤波器和切比雪夫滤波器。就靠近ω=0处的幅频特性而言,巴特沃斯滤波器比切比雪夫滤波器平直,即在频率的低端巴特沃斯滤波器幅频特性更接近理想情况。但在接近截止频率和在阻带内,巴特沃斯滤波器则较切比雪夫滤波器差得多。本设计中要保证低频信号不被衰减,而对高频要求不高,因此选择了巴特沃斯滤波器。巴特沃思滤波电路(又叫最平幅度滤波电路)是最简单也是最常用的滤波电路,这种滤波电路对幅频响应的要求是:在小于截止频率ωc。的范围内,具有最平幅度响应,而在ω>ωc。后,幅频响应迅速下降。 因为本设计中要保证低频信号不被衰减,而对高频要求不高,所以选择 二阶滤波器即可。本系统采用二阶Butterworth低通滤波器,截止频率f H=100HZ,其电路原理图如1: 图1 低通滤波器图 根据matlab软件算得该设计适合二阶低通滤波器,FSF=628选Z=10000,则

Z R R FSF Z ?=?=的归一值的归一值 C C 3.2脉象信号的的前置放大 由于人体信号的频率和幅度都比较低,很容易受到空间电磁波以及人体其它生理信号的干扰,因此在对其进行变换、分析、存储、记录之前,应该进行一些预处理,以保证测量结果的准确性。因此需要对信号进行放大,“放大”在信号预处理中是第一位的。根据所测参数和所用传感器的不同,放大电路也不同。用于测量生物电位的放大器称为生物电放大器,生物电放大器比一般放大器有更严格的要求。 在本研究中放在传感器后面的电路就是前置放大电路,由于从传感器取得的信号很微弱,且混杂了一些其他的干扰信号。因此前置放大电路的主要功能是,滤除一些共模干扰信号,同时进行一定的放大。该电路由4部分构成:并联型双运放仪器放大器,阻容耦合电路,由集成仪用放大器构成的后继放大器和共模信号取样电路。并联型双运放仪器放大器的优点是不需要精密的匹配电阻,理论上它的共模抑制比为无穷大,且与其外围电阻的匹配程度无关。集成仪用放大器将由并联型双运放仪器放大器输出的双端差动信号转变为单端输出信号,并采用阻容耦合电路隔离直流信号,可以使集成仪用放大器取得较高的差模增益,从而得到很高的共模抑制比。共模取样驱动电路由两个等值电阻和一只由运放构成的跟随器构成,能够使共模信号不经阻容耦合电路的分压直接加在集成放大器的输入端,避免了由于阻容耦合电路的不匹配而降低电路整体的共模抑制比。此电路中也采用了右腿驱动电路来抑制位移电流的影响。前置放大电路参数选择:此部分总的增益取为1000,其中并联型双运放仪器放大器的增益为5,集成仪用放大器的增益为200。具体设计电路如图2所示

巴特沃斯数字(精选)低通滤波器

目录1.题目...................................................................... (2) 2.要求...................................................................... . (2) 3.设计原理...................................................................... .. (2) 3.1数字滤波器基本概念 (2) 3.2数字滤波器工作原理 (2) 3.3巴特沃斯滤波器设计原理 (2) 3.4脉冲响应不法...................................................................... . (4) 3.5实验所用MATLAB函数说明 (5)

4.设计思路...................................................................... (6) 5、实验内容...................................................................... .. (6) 5.1实验程序...................................................................... (6) 5.2实验结果分析...................................................................... (10) 6.心得体会...................................................................... .. (10) 7.参考文献...................................................................... .. (10) 一、题目:巴特沃斯数字低通滤波器 二、要求:利用脉冲响应不变法设计巴特沃斯数字低通滤波器,通带截止频率100HZ,采样频率1000HZ,通带最大衰减为0.5HZ,阻带最小衰减为10HZ,画出幅频、相频相应相应曲线。并假设一个信号x(t)=sin(2*pi*f1*t)+sin(2*pi*f2*t),其中f1=50HZ,f2=200HZ。用此信号验证滤波器设计的正确性。 三、设计原理 1、数字滤波器的基本概念 所谓数字滤波器,是指输入、输出均为数字信号,通过数值运算处理改变输入信号所含频率成分的相对比例,或者滤波器除某些频率成分的数字器件或程序,因此,数字滤波的概念和模拟滤波相同,只是的形式和实现滤波方法不同。正因为数字滤波通过数值运算实现滤波,所以数字滤波处理精度高、稳定、体积小、质量轻、灵活、不存在阻抗匹配问题,可以实验模拟滤波器无法实现的特殊滤

FilterPro低通滤波器设计工具使用中文手册

应用报告 ZHCA0 – 00 年 月 FilterPro TM MFB 及Sallen-Key 低通滤波器设计程序 运算放大器应用, 高性能线性产品 John Bishop, Bruce Trump, R. Mark Stitt FilterPro 低通滤波器设计程序 2 巴特沃兹(最大幅度平坦度) 3 切比雪夫(等纹波幅度) 3 贝塞尔(最大时间延迟平坦度) 3 概述 5 巴特沃兹响应 5 切比雪夫响应 5 贝塞尔响应 5电路实现 6 MFB 拓扑 6 Sallen-Key 拓扑 7使用FilterPro 程序 7 计算机要求 7 安装 7 入门 7 程序特点 9 打印结果 9 敏感度 9 MFB 及Sallen-Key 拓扑的fn 敏感度 9 Q 值敏感度 9 使用敏感度显示特性 10 使用籽电阻(Seed Resistor)设定 10 电容值 11 针对运算放大器输入电容进行补偿——仅用于Sallen-Key 拓扑 11 电容选择 11 使用fn 及Q 值显示 12运算放大器选择 12 运算放大器带宽 12 运算放大器转换频率 12UAF42通用有源滤波器 13 摘要 尽管低通滤波器在现代电子学领域的地位越来越重要,但其设计及定型工作仍是冗长乏味且耗时巨大的。FilterPro 程序设计用于辅助低通滤波器设计,以实现多反馈(MFB)及Sallen-Key 拓扑。本报告可作为FilterPro 操作指南,同时还包括了其他方面的问题,记述了设计人员涉足该程序的必备信息以及程序所交付的功能。 目录 FilterPro 是德州仪器的注册商标。

ZHCA053 FilterPro TM MFB及Sallen-Key低通滤波器设计程序https://www.360docs.net/doc/d111074541.html, 电流反馈放大器13全差分放大器13 MFB滤波器响应示例14结论15 图片目录 图1. 偶数阶(4极点)、3 dB纹波切比雪夫滤波器的频率响应(截止于0 dB)4图2. 奇数阶(5极点)、3 dB纹波切比雪夫滤波器的频率响应(截止于-3 dB)4图3. 图3. 实极点部件(单位增益、一阶巴特沃兹;f-3dB=1/2π×R1×C1)4图4. 二阶低通滤波器4图5. 三阶低通滤波器4图6. 采用层叠复极点对部件的偶数阶低通滤波器5图7. 采用层叠复极点对部件+单实极点部件的奇数阶低通滤波器5图8. MFB复极点对部件(增益= - R2/R1)6图9. Sallen-Key复极点对部件,单位增益(增益=1)6图10. Sallen-Key复极点对部件(增益= 1+ R4/R3)6图11. FilterPro的屏幕显示,展示了40 dB了益的9极点MFB滤波器8图12. 三阶低通滤波器驱动ADC 13图13. 5阶20 kHz巴特沃兹、切比雪夫及贝赛尔单位增益MFB低通滤波器的增益随频率的变化,所示为总体滤波器响应14图14. 5阶20 kHz巴特沃兹、切比雪夫及贝赛尔单位增益MFB低通滤波器的增益随频率的变化,所示为过渡带(T ransition-band)的详细情况14图15. 5阶20 kHz巴特沃兹低通MFB滤波器的阶跃响应14图16. 5阶20 kHz 切比雪夫低通MFB滤波器的阶跃响应14图17. 5阶20 kHz贝赛尔低通MFB滤波器的阶跃响应15图18. 三种20 kHz MFB低通滤波器的实测失真15 表格目录 表1. 滤波器电路vs.滤波器介数6 FilterPro低通滤波器设计程序 源自德州仪器的FilterPro程序使有源低通滤波器的设计工作变得更为轻松。该程序可辅助设计低通滤波器并实现多反馈点(MFB)拓扑。由于在某些场合Sallen-Key滤波器拓扑更为优秀,因此该程序也支持Sallen-Key低通滤波器的设计。 理想的低通滤波器将完全消除截至频率以上的信号,并使得低于截至频率(处于通带内)的信号完好的通过。但对实际的滤波器来说,需要做不同的折衷以逼近理想的状态。某些滤波器类型针对通带内的增益平坦度作了优化,另一些则以通带内的增益变化(纹波)作为代价,折衷获取陡峭的滚降;还具有其他的滤波器类型,为了获取较好的脉冲响应保真度而同时对平坦度及滚降速率做了折衷。FilterPro支持三种最常见的全极点滤波器类型:巴特沃兹、切比雪夫及贝塞尔。

相关文档
最新文档