钙离子通道笔记

钙离子通道笔记
钙离子通道笔记

钙离子通道笔记

一、电压门控钙离子通道——参考文献《电压门控钙离子通道的研究进展》

1.电压门控钙离子通道(voltage-gated calcium channel)是一种镶嵌于细胞膜上的大分子蛋白复合体,其中央是高度选择性的亲水通道,允许适当电荷和适当大小的钙离子通过。

2.通道广泛分布于机体的脑、心脏、平滑肌以及内分泌细胞等组织中,并在基因表达、肌肉收缩和荷尔蒙的释放等生命活动中扮演着重要角色。

3.钙离子通过钙离子通道在细胞膜内外以及细胞器和胞浆之间流动以满足机体各项生理功能的需要。

4.根据钙离子进出细胞膜及细胞器的方向不同,可将钙离子通道分为钙进入通道和钙释放通道两大类。

5.钙进入通道是钙离子进入细胞或细胞器的通道,如心肌细胞去极化开放的电压门控钙离子通道(V oltage-gated calcium channel)和由化学信息(G-蛋白)介导的配体门控钙离子通道(Ligand-gated calcium channel)。

6.钙离子释放通道是指储池(内质网)中的钙离子进入胞浆的通道,如ryanodine 受体(RYR)和1,4,5-三磷酸肌醇受体,这两种受体主要分布于肌浆网。当肌纤维膜去极化时,肌浆网内的钙离子以配体-受体的特异性作用为信号,将钙离子释放入胞浆,产生兴奋-收缩耦联引起骨骼肌或心肌的收缩。

7.根据钙离子通道的结构功能特点和对阻断剂的敏感性不同,可将钙离子通道分为L 型、N 型、P/Q 型、R 型和T 型5 种类型。其中L 型、N 型、P/Q 型、R 型为高压激活钙离子通道(HV A),其活化所需要的膜电位是+30mV 到+50mV 之间。T 型钙离子通道为低压激活钙离子通道(LV A),其活化所需要的膜电位是-55mV 到-20mV 之间。

8.

钙拮抗剂横向比较

钙拮抗剂横向比较 分类:与动脉血管及心脏的亲和力和作用: 1.二氢吡啶类(DHPs), 如氨氯地平、硝苯地平主要作用于血管平滑肌上的L型钙通道, 起到舒张血管和降低血压的作用; 2.非DHPs, 如维拉帕米、地尔硫卓, 对心肌和血管上的L型钙通道作用程度与DHPs相同, 但是对窦房结和房室结处的钙通道有选择性。维拉帕米和地尔硫卓在扩张血管方面较DHPs差, 但是其对心脏的负性变时、负性传导和负性变力作用是DHPs所不具备的。 根据受体结合特性、组织选择性和药代动力学特点: (1)第一代为短效钙离子拮抗剂, 包括硝苯地平、尼卡地平、地尔硫卓等,由于生物利用度低且波动大,药物血浆浓度波动大,用药后快速导致血管扩张和交感神经系统激活,引起反射性心动过速、心悸和头痛;由于此类药物半衰期短、清除率高、作用持续时间短,使其对血压控制时间短,很难实现24小时的有效覆盖,容易引起反射性交感神经激活, 增加心率, 基本不用于高血压的治疗; (2)第二代钙离子拮抗剂的药物,通过改革剂型为缓释或控释剂型使药代动力学特性有了明显改善,也有部分具有新的化学结构,代谢动力学特性有所改善,血管选择性有所提高, 性质稳定、疗效确切, 如硝苯地平缓释片、尼莫地平、尼群地平等, 但其生物利用度仍很低, 峰谷血浆浓度波动较大; (3)第三代为长效钙离子拮抗剂, 以氨氯地平、拉西地平、乐卡地平等为代表, 半衰期长, 可1次/d服用, 因其起效缓慢,作用平稳,持续时间久,抗高血压的谷峰比值高,血压波动小、不良反应小、服用方便且能24h覆盖等特点, 已成为用于高血压治疗的重要钙离子拮抗剂类药物。 拉西地平: (1)肝功能不全者需减量或慎用, 因其生物利用度可能增加, 而加强降血压作用。 (2)本品不经肾脏排泄, 肾病患者无需调整剂量。 (3)虽然本品不影响传导系统和心肌收缩, 但理论上钙离子拮抗剂影响窦房结活动及心肌储备, 应予以注意。窦房结活动不正常者尤应关注, 有心脏储备较弱者亦应谨慎。

钙离子通道阻滞剂对心肌缺血的保护

钙离子通道阻滞剂对心肌缺血的保护 摘要:钙离子通道阻滞剂选择性地作用于L-型钙通道,通过非竞争性地阻滞电压敏感的L-型钙通道,使Ca2+经细胞膜上的慢通道进入细胞内,即减少Ca2+内流,抑制Ca2+通过心肌,降低心肌细胞内的游离Ca2+浓度,而使心肌的兴奋收缩发生脱偶联,呈现负性肌力作用,因此可降低心肌耗氧量。心肌缺血时,心肌细胞发生能量障碍,细胞内钙积聚,引起细胞凋亡或死亡。钙离子通道阻滞剂能减轻钙超载,从而对缺血的心肌细胞产生保护作用。 关键词:L型钙通道;钙离子通道阻滞剂;心肌缺血;作用 Calcium Channel Blockers On Myocardial Ischemia Protection SHEN Yan (Chengdu Medical College,Chengdu610083,China) ABSTRACT: Selective calcium channel blockers act on the L-type calcium channels, non-competitive manner by blocking voltage-sensitive L-type calcium channel, so that by the plasma membrane Ca2 + slow channel into the cell, a reduction of Ca2 + influx, inhibition of Ca2 + through the myocardium, reducing myocardial free intracellular Ca2 + concentration, leaving the excitement of myocardial contraction uncoupling occurs, a negative inotropic effect, thus reducing myocardial oxygen consumption. Myocardial ischemia, myocardial cell energy barrier, the accumulation of intracellular calcium, induce apoptosis or death. Calcium channel blockers can reduce calcium overload, which the myocardial cells in ischemic protection. KEY WORDS:L-type calcium channel; calcium channel blockers; myocardial ischemia;effects 心血管疾病现已成为世界范围内的一个“现代流行病”,其发病率和死亡率逐年升高的趋势日益明显。随着现代医学的的发展,心血管疾病的防治、诊断和治疗的等方面都取得了一定的进展,但由于心血管疾病发病率高,治愈率低,并发症多,预后欠佳,一般治疗以降血压、降血脂、扩冠改善心肌缺血缺氧、应用能量合剂以营养心肌为主等途径,疗效都不尽如人意,提高心血管疾病的防治水平势在必行[1]。 心肌缺血,是指心脏的血液灌注减少,导致心脏的供氧减少,心肌能量代谢不正常,不能支持心脏正常工作的一种病理状态。心肌缺血对心脏和全身都可能带来许多不利影响。氧是心肌细胞活动必不可少的物质,而氧是通过血液输送给细胞的。心脏没有“氧仓库”,完全依赖心肌血供,所以一旦缺血,立刻会引起缺氧。缺氧的直接后果是心肌细胞有氧代谢减弱,产能减小,使心脏活动时必需的能量供应不足,引起心绞痛、心律失常、心功能下降。同时,代谢的废物也不能被有效及时地清除,易产生不利影响。缺血、缺氧、缺能量,最终会影响心脏的收缩功能。若有20%~25%的心肌停止收缩,通常会出现左室功能衰竭;若有40%以上的心肌不能收缩,就会有重度心泵功能衰竭。如果这种情况突然发生,就会出现非常危险的心源性休克[2]。 钙离子通道阻滞剂以抑制心肌收缩力减少耗氧,对心肌细胞缺血具有一定的保护作用。 作为一种拮抗剂,钙离子通道阻滞剂是指作用于L-型钙通道,抑制C a2+经L-型钙通道进入细胞内的药物。钙拮抗剂的发现和应用是70年代后期心脏血管疾病治疗中的重大进展。钙拮抗剂是一组展示源性化合物,通过非竞争性地阻滞电压敏感的L型钙通道,使Ca2+经细胞膜上的慢通道进入细胞内,即减少Ca2+内流,抑制Ca2+通过心肌和平滑肌膜的药物[3]。现已广泛用于治疗高血压,冠心病心绞痛,心律失常及肥厚性心肌病。 Ca2+参与机体众多的生理生化反应,是维持生命活动的重要阳离子,但细胞胞浆内Ca2+

钙通道阻滞剂

1.络活喜(苯磺酸氨氯地平片)说明书 通用名:苯磺酸氨氯地平片 商品名:络活喜 英文名:Amlodipine Besylate Tablets 汉语拼音:Benhuangsuan Anlüdiping Pian 络活喜化学名称为:3-乙基-5-甲基-2-(2-氨乙氧甲基)-4-(2-氯苯基)-1,4-二氢-6-甲基-3,5-吡啶二羧酸酯苯磺酸盐。【络活喜性状】络活喜为白色片。 【络活喜药理毒理】 药理作用苯磺酸氨氯地平是二氢吡啶类钙拮抗剂(钙离子拮抗剂或慢通道阻滞剂)。心肌和平滑肌的收缩依赖于细胞外钙离子通过特异性离子通道进入细胞。络活喜选择性抑制钙离子跨膜进入平滑肌细胞和心肌细胞,对平滑肌的作用大于心肌。其与钙通道的相互作用决定于它和受体位点结合和解离的渐进性速率,因此药理作用逐渐产生。络活喜是外周动脉扩张剂,直接作用于血管平滑肌,降低外周血管阻力,从而降低血压。治疗剂量下,体外实验可观察到负性肌力作用,但在整体动物实验中未见。络活喜不影响血浆钙浓度。15项随机双盲、安慰剂对照的临床试验证实了络活喜的抗高血压作用。轻中度高血压患者每日服药一次,可以24小时降低卧位和立位血压,长期使用不引起心率或血浆儿茶酚胺显著改变。降压效果平稳。降压效果和剂量相关,降压幅度与治疗前血压相关,中度高血压者(舒张压105-114mmHg)的疗效比轻度高血压者(舒张压90-104mmHg)高,血压正常者服药后没有明显作用。络活喜降低舒张压的作用在老年人和年轻人中相似,降低收缩压的作用对老年人更强。络活喜缓解心绞痛的准确机制尚不明确,但可能在运动时,络活喜通过降低外周阻力(后负荷)减少心脏做功和心率血压乘积,减少心肌氧需,治疗劳力型心绞痛;通过抑制钙离子、肾上腺素、5-羟色胺和血栓素A2引起的冠状动脉和小动脉收缩,恢复缺血区血供治疗自发性心绞痛。8项临床试验中5项显示,络活喜显著延长运动诱发劳力型心绞痛的时间;部分研究显示络活喜延长ST段下降1mm的时间,并减少心绞痛发作频率。该作用具有持续性,并且不显著影响血压和心率。在一项50例自发性心绞痛患者中进行临床试验显示,络活喜每周可以减少4次心绞痛发作(安慰剂每周减少1次)。心功能正常的患者服用络活喜后测定静息和运动状态下血流动力学,心脏射血分数有所增加,但对dP/dt或左室舒张末压/容积无显著影响。治疗剂量下,络活喜单独使用或与?-阻滞剂合用,均不引起负性肌力作用。一项安慰剂对照研究中,697例心功能II/III级(NYHA)的心衰患者用药8-12周后,运动耐量检查、NYHA分级、症状和左室射血分数均未显示心衰有加重的迹象。(另一项安慰剂对照的长期生存试验,1153名心功能III/IV级心衰病人,在常规治疗基础上随机加用络活喜或安慰剂,结果显示各种原因的死亡率和心源性发病率,氨氯地平组为39%,安慰剂组为42%。)络活喜不影响窦房结功能和房室传导。高血压或心绞痛患者合用络活喜和?-阻滞剂,未发现心电图异常。络活喜不改变心绞痛患者的心电图,不加重房室传导阻滞。肾功能正常的高血压患者用药后,肾血管阻力降低、肾小球滤过率和肾血流增加,但滤过分数或尿蛋白不变。毒理作用致癌、致突变和致畸以每日0.5、1.25和2.5mg/kg的剂量,大鼠和小鼠连续喂食氨氯地平两年,未证实有致癌性。最高剂量已达到了小鼠的最大耐受量,但大鼠尚未达到(以临床最大推荐剂量10mg为基础计算mg/m2)。基因和染色体水平均未揭示有药物相关的致突变性。雄性大鼠在交配前64天、雌性大鼠在交配前14天开始给予氨氯地平,每日10mg/kg(8倍于人类最大推荐剂量),不影响生殖能力。妊娠大鼠和兔子在主要器官形成期给予氨氯地平10mg/kg(8倍和23倍于人类最大推荐剂量),未发现有致畸性和其它胚胎毒性。但是大鼠交配前14天开始,直至整个交配期和妊娠期给予10mg/kg的氨氯地平,导致幼仔的体型明显减小(约50%),宫内死亡数量明显增加(约5倍),同时延长妊娠时间和分娩时程。毒性小鼠和大鼠分别单剂给予氨氯地平高达40mg/kg和100mg/kg,可以导致死亡。狗单剂服用4mg/kg或更高剂量将导致明显的外周血管扩张和低血压。 【络活喜药代动力学】 络活喜口服后吸收完全但缓慢,6-12小时达到峰浓度。单次口服5mg,血药峰值为3.0ng/ml;单次口服10mg,血药峰值为5.9ng/ml。绝对生物利用度为64%-90%,不受饮食影响。循环中的药物约95%以上与血浆蛋白结合,分布容积为21L/kg。持续用药后7-8天达到稳态血药浓度。络活喜以二室模型的方式从血浆中消除,在肝脏广泛代谢为无药理活性的代谢产物(90%)。终末半衰期(t1/2?)健康者约为35小时,高血压病人延长为50小时,老年人65小时,肝功受损者60小时,肾功能不全者不受影响。络活喜10%以原型、60%以代谢物的形式从尿中排出,20%-25%从胆汁或粪便排出。络活喜不被血液透析清除。肾功能不全对络活喜的药代动力学特点没有显著影响。老年患者和肝功能不全患者对络活喜的清除率降低,药时曲线下面积(AUC)约增加40%-60%。中重度心衰患者的AUC升高幅度相似。【络活喜适应症】 (1)高血压(单独或与其他药物合并使用)。(2)心绞痛:尤其自发性心绞痛(单独或与其他药物合并使用)。 【络活喜用法和用量】 通常口服起始剂量为5mg,每日一次,最大不超过10mg,每日一次。瘦小者、体质虚弱者、老年患者或肝功能受损者从2.5mg,每日一次开始用药;合用其它抗高血压药者也从此剂量开始用药。用药剂量根据个体需要进行调整,调

钙离子拮抗剂 信心小总结

1 钙离子拮抗剂的应用类型及作用机制 低血游离钙可能引起高血压,其机理与钙对膜的稳定效应有关。当血游离钙降低时,膜的稳定效应减弱,膜上相应的电压依赖性钙通道开启,细胞外游离钙流入细胞。并触发“钙流入激活钙释放机制”,使胞浆游离钙进一步增高,最终引起血管收缩,血压升高,称I型缺陷。此型特点为低肾素、低血清游离钙及高细胞游离钙水平。此时,钙离子阻滞剂或补充钙治疗有效;而高肾素一高血清游离钙型高血压,钙离子阻滞剂或补钙治疗效果不佳。 在高血压治疗中的作用及地位。CCB明确适应证为:(1)老年性高血压患者;(2)单纯收缩期高血压患者;(3)高血压有心绞痛患者;(4)外周血管病患者;(5)颈动脉粥样硬化;(6)高血压伴妊娠患者。 钙离子拮抗剂阻滞心肌钙依赖性的兴奋一收缩耦联并在离子通道水平选择性地阻断细胞膜上的钙离子通道 (慢钙通道),使胞内肌浆网释放钙离子下降,同时减少钙离子与钙调蛋白相结合,使肌球蛋白氢键激酶 (MLCR) 活化, 肌球蛋白与肌动蛋白相互作用引起的收缩作用减弱, 使全身血管扩张,血压下降。除此之外, 钙离子拮抗剂还具有抑制心肌收缩力、降低心肌耗氧量、松弛血管平滑肌、引起血液动力学变化等心血管系统方面的作用, 而且还具有抑制血小板聚集、抑制神经及内分泌系统的兴奋分泌偶联以及减少交感神经末梢递质的释放等作用。. 2+Ca 2+通道Ca -2+Ca内流-2+Ca通道钙调蛋白阻滞剂2+Ca钙调蛋白复合物-

平滑肌收缩血压 钙离子拮抗剂的分2 : 根据其化学结构和药理作用可分为两大类型钙通道,起到舒张血 (DHP 二氢吡啶类s),主要作用于血管平滑肌上的L(1) 管和降低血压的作用;型钙通道作用程度, 对心肌和血管上的 L(2) 非DHPs, 如维拉帕米、地尔硫卓但是对窦房结和房室结处的钙通道有选择性。维拉帕米和地相同, 与 DHPs差,但是其负性变时、降低交感神经活性的尔硫卓在扩张血管方面较DHP s所不具备的。作用是 DHPs组织选择性和药代动力学特点将钙离子拮抗剂划分为根据药物的受体结合特性、: 三代容易, 包括硝苯地平、尼卡地平、地尔硫卓等,(1) 第一代为短效钙离子拮抗剂;基本不用于高血压的治疗引起反射性交感神经激活, 增加心率 , , 血管选择性有所提高(2) 第二代钙离子拮抗剂的药物代谢动力学特性有所改善,但其生, 尼莫地平、 , 性质稳定、疗效确切如硝苯地平缓释片、尼群地平等; 物利用度仍很低,峰谷血浆浓度波动较大. (3) 第三代为长效钙离子拮抗剂, 以氨氯地平、拉西地平、乐卡地平等为代表, 半衰期长 , 可 1次 / d服用, 因其长效、不良反应小、服用方便且能 24h覆 盖等特点, 已成为用于高血压治疗的重要钙离子拮抗剂类药物。 根据此分类 第一代钙拮抗剂均为短效。特点是: ①量效关系难以预测。这是因为生物利用度低、波动大,造成个体内和个体间的药物血浆浓度波动大。 ②由于快速的血管扩张和交感神经系统激活引起反射性心动过速、心悸和头痛,尤其以硝苯地平最为明显,这是因为此药的达峰时间较短( 1h ) 。 ③作用持续时间短。半衰期短、清除率高,使高血压患者的血压和心绞痛患者的心肌缺血的控制很难实现2 4 h的有效覆盖,在清晨的血压和缺血高峰期患者不能得到保护。 ④血管选择性差,如维拉帕米和地尔硫卓具有明显心脏作用,包括负性变时、负性传导和负性变力作用。第一代钙拮抗剂对充血性心力衰竭都有不利影响,使预后恶化。 第二代钙拮抗剂的药代动力学特性有所改善或血管选择性有所提高。 Ⅱa类与第一代钙拮抗剂相比,血管扩张所致的副作用减少减轻,因为它们的血浓度达峰时间延长,起效较慢。它们的半衰期延长,作用持续的时间延长。 Ⅱb类的血管选择性提高,对心脏的负性变力性、负性变时性和负性传导作用减弱,药代动力学也有所改善,但生物利用度仍很低,峰谷血浆浓度波动较大。

离子通道病

离子通道病 定义:离子通道结构的缺陷所引起的疾病.又称离子通道缺陷性疾病。 与信号传导相关的离子通道获得性或遗传性的结构和功能改变,均可能导致响应的信号传导异常,引起某种疾病或参与疾病的发病过程。如;肌肉型nAch受体自身免疫性损害-----重症肌无力;CI-通道CIC1基因缺陷-----先天性肌强直:Ryarodine受体缺陷------恶性高热易感性。 细胞膜上电压调控性钠、钙、钾和氯离子通道功能改变与先天性和后天性疾病发生之间的关系,对于离子通道基因缺陷、功能改变与某些疾病关系的研究,将可更新在离子通道生理学、病理学和分子遗传学等方面的知识,有助于开辟离子通道病治疗新途径。 90年代以来发现的主要离子通道病: 第一节钠通道病 钠通道基因突变所引起的心律失常,其原因可分为:基于通道活动的失活异常(不完全失活);基于通道激活异常(Ina降低);基于细胞膜上通道的数量减少(合成、运输及表达障碍)。钠通道分子结构上的有关部门位点发生突变时,就会严重影响钠通道的正常活动,而出现致命性心律失常。 所有钠通道基因突变所引起的疾病主要与α-亚单位的基因改变有关。在心肌细胞,位于染色体3p21-24上的SCN5A基因与钠通道(hH1)的组成有关。该基因突变是造成人类第3型长Q-T综合症(LQT3)的根本原因。先天性长Q-T综合症是一种罕见且致死的心脏电复极化过程异常延长性心律失常,心电图上QT间期延长,出现室性心律失常、晕厥和瘁死的一种综合症。与正常结构相比,在由突变SCN5A形成的钠通道α亚单位上,位于Ⅲ和Ⅳ结构域之间的4和5号片段有脯氨酸、赖氨酸和谷氨酰胺缺失现象。破坏了通到连接攀与通道的相互作用,使部分通道变为非失活的形式,通道失活的延迟导致持续的Na+内流,延长心肌复极时间,导致QT间期延长。 LQT与一些基因的突变或缺失有关,这些基因分别命名为LQT1---LQT4。 LQT1,LQT2是主要的心脏钾通道病。

钙离子拮抗剂

钙离子拮抗剂 钙离子拮抗剂 钙拮抗剂在1962年即已被证实能有效地治疗急性高血压,70年代后期才被广泛地研究和应用于治疗高血压病。钙拮抗剂是80年代发展起来的一类心血管新药。它带来了心血管治疗的一场革命现以广泛应用于高血压、冠心病、心率失常、脑血管病的治疗。目前,钙拮抗剂在高血压病及其他心脑肾血管病变防治中仍具有中要地位。近年在美国,钙拮抗剂在老年人降压治疗中的应用有增无减,已成为常用药物(单用占23.9%,与利尿剂合用占5.4%);在中国和日本,接受治疗的高血压和心绞痛病人中,分别有1/2和3/4使用钙拮抗剂。 但是,钙拮抗剂也是争论最大的一类药物。关于钙拮抗剂是否增加心血管事件的危险尤其是chd的死亡率,以及是否增加肿瘤出血的危险,分歧很大。美国fda也警告使用短效硝苯地平有危险。为此,who/ish专门成立了特别问题专家小组——(ad hoc sub-committ ee)对钙拮抗剂的安全性进行评估。评估得出的结论是:现有资料不能确定有关钙拮抗剂对chd、肿瘤及出血的危险性影响是有益或有害。硝苯地平是近20年来我国治疗高血压应用最广泛的降压药,多年来并未见发生严重不良反应的报道。而且据中国老年收缩期高血压临床试验,在我国高血压的主要并发症是卒中,而不是心肌梗死,故仍推荐钙拮抗剂为治疗老年高血压第一线药,尤其适用于患者,对合并chd者,则宜选用长效制剂。 5.1 分类 钙拮抗剂包括一大族化学结构、功能、对组织选择性及不同钙通道与结合位点选择性都各异的药物。降压治疗最好使用长效钙拮抗剂如:氨氯地平、拉西地平、非洛地平缓释片、硝苯地平控释片、维拉帕米缓释片等。而应避免使用短效钙拮抗剂。 根据国际药理学联合会的分类,选择性的作用于型钙通道的钙拮抗剂,多数结合部位在分子结构的α1亚单位。因此可根据α1单位上不同的结合位点分为三个亚类:iα类,二氢吡啶类,包括硝苯地平、尼群地平、尼莫地平、尼卡地平、尼伐地平、氨氯地平、拉西地平、非洛地平、依拉地平等地平类药物。二氢吡啶类用以治疗心血管病,主要是高血压、冠心病、心绞痛等。 ib类,硫苯罩类,ib类类以硫罩类为代表,其药理作用介于二氢吡啶类及维拉帕米之间,主要用于治疗心绞痛。

钙离子通道阻断剂及其不良反应

钙离子拮抗剂(Calcium Antagonists Ca-A ) 主要通过阻断心肌和血管平滑肌细胞膜上的钙离子通道,抑制细胞外钙离子内流,使细胞内钙离子水平降低而引起心血管等组织器官功能改变的药物,常用于用于高血压病、冠心病和心律失常的治疗。(讲到钙离子拮抗剂的作用机理,首先要谈高血压是如何产生的。血压是指血液在血管内流动时对血管壁产生的侧压力。绝大部分高血压患者(90%以上)没有特定的病因,多是随着年龄增加,血管壁弹性减弱,阻力增加而引起的。在心肌和血管壁平滑肌细胞膜上都有钙离子通道,它像一扇大门一样控制钙离子的出入,细胞内钙离子浓度的增加,可以引起细胞的收缩,使血管阻力增加,血压升高。钙离子拮抗剂就像忠实的门卫,它与钙离子通道结合后,就阻止了钙离子进入细胞,从而使血管松弛,阻力减小,血压降低。另外,有些钙离子拮抗剂如氨氯地平(络活喜),地尔硫卓还能直接舒张供给心脏血液的冠状动脉,用于治疗心绞痛。) 根据药效学和药动学L 型钙通道阻滞剂可分为三代,第一代有维拉帕米、硝苯地平及地尔硫等; 第二代有非洛地平、尼莫地平、尼群地平及尼卡地平等; 第三代有氨氯地平及拉西地平等。第一代钙通道阻滞剂为一线心血管药,其疗效稳定,不良反应少,但其选择性差,半衰期均较短。第二代具有高度的血管选择性,性质稳定,疗效确切第三代药物除了具有高度血管选择性外,还具有半衰期长、作用持久的特点。目前,临床上常用的钙通道阻滞剂虽然结构各异,但均作用于L 型钙通道,这些药有一定的局限性,大多经肝代谢,生物利用度低,具有负性肌力及频率作用,可出现潮红、水肿及肝功能异常,交感神经激活,神经体液反应,抑制房室结传导,因此有必要开发具有强选择性的、不良反应少的新型钙通道阻滞剂。 其分类如下: 1. 1, 4-二氢吡啶类(如硝苯地平) 2. 芳烷基胺类(如维拉帕米) 3. 苯并硫氮杂卓类(如地尔硫卓) 4. 二苯基哌嗪类 (如氟桂嗪 ) 前三类在临床上广泛应用。 1. 1, 4-二氢吡啶类 硝苯地平 Nifedipine N H CH 3 H 3C 12 3456O CH 3O O H 3C O NO 22'

钙离子拮抗剂---信心小总结

低血游离钙可能引起高血压,其机理与钙对膜的稳定效应有关。当血游离钙降低时,膜的稳定效应减弱,膜上相应的电压依赖性钙通道开启,细胞外游离钙流入细胞。并触发“钙流入激活钙释放机制”,使胞浆游离钙进一步增高,最终引起血管收缩,血压升高,称I型缺陷。此型特点为低肾素、低血清游离钙及高细胞游离钙水平。此时,钙离子阻滞剂或补充钙治疗有效;而高肾素一高血清游离钙型高血压,钙离子阻滞剂或补钙治疗效果不佳。 在高血压治疗中的作用及地位。CCB明确适应证为:(1)老年性高血压患者; (2)单纯收缩期高血压患者;(3)高血压有心绞痛患者;(4)外周血管病患者;(5)颈动脉粥样硬化;(6)高血压伴妊娠患者。 钙离子拮抗剂阻滞心肌钙依赖性的兴奋一收缩耦联并在离子通道水平选择性地阻断细胞膜上的钙离子通道 (慢钙通道),使胞肌浆网释放钙离子下降,同时减少钙离子与钙调蛋白相结合,使肌球蛋白氢键激酶 (MLCR) 活化, 肌球蛋白与肌动蛋白相互作用引起的收缩作用减弱, 使全身血管扩,血压下降。除此之外, 钙离子拮抗剂还具有抑制心肌收缩力、降低心肌耗氧量、松弛血管平滑肌、引起血液动力学变化等心血管系统方面的作用, 而且还具有抑制血小板聚集、抑制神经及分泌系统的兴奋分泌偶联以及减少交感神经末梢递质的释放等作用。

根据其化学结构和药理作用可分为两大类: (1) 二氢吡啶类 (DHP s),主要作用于血管平滑肌上的L 型钙通道,起到舒血管 和降低血压的作用; (2) 非DHPs, 如维拉帕米、地尔硫卓, 对心肌和血管上的 L 型钙通道作用程度 与 DHPs 相同, 但是对窦房结和房室结处的钙通道有选择性。维拉帕米和地 尔硫卓在扩血管方面较DHP s 差,但是其负性变时、降低交感神经活性的作 用是 DHPs 所不具备的。 根据药物的受体结合特性、组织选择性和药代动力学特点将钙离子拮抗剂划分为 三代: (1) 第一代为短效钙离子拮抗剂, 包括硝苯地平、尼卡地平、地尔硫卓等,容易 引起反射性交感神经激活, 增加心率 , 基本不用于高血压的治疗; (2) 第二代钙离子拮抗剂的药物代动力学特性有所改善,血管选择性有所提高, 性质稳定、疗效确切 , 如硝苯地平缓释片、尼莫地平、尼群地平等, 但其生 物利用度仍很低,峰谷血浆浓度波动较大; (3) 第三代为长效钙离子拮抗剂, 以氨氯地平、拉平、乐卡地平等为代表, 半衰 Ca 2+ Ca 2+通道 Ca 2+内流 -

钙通道阻滞剂的分类和临床应

钙通道阻滞剂的分类和 临床应 集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

钙通道阻滞剂的分类和临床应用钙通道阻滞剂的种类较多,药理作用广泛,临床上应用十分普遍。各种钙通道阻滞剂在分子结构、药代动力学、药理作用机制方面存在一定差异。因此,在临床上根据不同的指征合理选用不同的钙通道阻滞剂就十分重要。 1钙通道阻滞剂的分类 1.1钙通道的分类 1.1.1钙通道主要分为两类:L型钙通道和T型钙通道。 1.1.2L型钙通道和T型钙通道的主要区别是:①T型钙通道在膜电位低时开放,L型钙通道在膜电位高时开放。②T型钙通道开放时间短,L型钙通道开放时间长。③T型钙通道在窦房结细胞、血管平滑肌细胞密度较高,L型钙通道在心肌细胞、房室结细胞密度较高。④T型钙通道在0相除极时开放,L型钙通道在动作电位2相时开放。⑤T型钙通道主要与血管收缩、维持窦性节律有关,L型钙通道主要与房室传导、心肌收缩、血管收缩有关。 1.2钙通道阻滞剂的分类 1.2.1钙通道阻滞剂分为L型和T型。目前,几乎所有的钙通道阻滞剂均为L型钙通道阻滞剂。 1.2.2L型钙通道阻滞剂又分为二氢吡啶类和非二氢吡啶类。 1.2.3二氢吡啶类钙通道阻滞剂和非二氢吡啶类钙通道阻滞剂的作用机制和特点比 较如下. 两类L型钙通道阻滞剂特点比较 分类特点优点缺点

三代钙通道阻滞剂的作用特点比较 第一代第二代第三代 2.1.1钙通道阻滞剂是理想的降压药物。世界卫生组织和国际高血压联盟在最新颁布的高血压治疗指南中将该通道阻滞剂列为一线降压药物。我国约有1/3的高血压患者服钙通道阻滞剂。 2.1.2选择钙通道阻滞剂治疗高血压时,一般不选用硝苯地平等第一代药物作长期治疗药物,可选用每天只服一次的第二代或第三代药物,如氨氯地平、非洛地平。 2.1.3高血压急症时,可选用硝苯地平片舌下含服,起效快,但作用时间短。亦可应用尼卡地平静脉滴注治疗。 2.2对心力衰竭的治疗理论上钙通道阻滞剂可通过改善血流动力学,减轻心肌细胞内钙超荷、改善心肌缺血、抗动脉粥样硬化等作用机制治疗心力衰竭。但临床研究表明,除氨氯地平对心肌缺血引起的心力衰竭治疗有益外,其他钙通道阻滞剂对心力衰竭的治疗无益。 2.3对肺动脉高压的治疗临床上肺动脉高压可分为原发性和继发性两种。原发性肺动脉高压原因不明,发病率很低;继发性肺动脉高压常见。肺动脉高压的病理改变主要是肺血管收缩痉挛、肺血管重构。80年代开始应用钙通道阻滞剂治疗肺动脉高压,通过抑制血管平滑肌L型钙通道,减少钙内流,使血管平滑肌舒张。钙通道阻滞剂对原发性肺动脉高压效果较好,对继发性COPD的肺动脉高压效果不确切,但

dd细胞内钙离子释放通道IP3受体

医学生 细胞内钙离子释放通道IP3受体 文字表述:关键词: 钙释放通道 信号转导 三磷酸肌醇 受体 第二信使  近年来细胞内游离钙在信号转导中的作用日益受到重视。细胞钙离子的平衡,不仅通过质膜上电压和受体门控的通道入胞,还通过胞内钙释放通道介导的钙释放,形成了释放­—摄取—结合的完整过程,是影响或决定许多细胞反应的独立的第二信使[1]。此外,细胞内游离钙还与胞浆和胞外钙有着及为复杂的时空动力学关系和多样的作用方式[2]。作为钙释放通道之一的三磷酸肌醇受体(iP3R)除了在兴奋收缩耦联中起关键作用外,还参与了神经释放与突触效能改善、细胞周期调控与细胞间通讯、激素分泌、基因表达等活动。钙信号失常也会导致一系列病理过程。 1分子特征与表达 在克隆小鼠 iP3R cDNA的过程中,人们已了解其大致结构[3]。该受体有一个跨膜的信点靠近 c末端,在胞浆部分有一长的氨基末端和短的 c末端。比较小鼠、大鼠和人类的 iP3R结构, iP3R胞浆部分大约有418~650个 n末端的氨基酸残基是高度保守的,该区域缺失任何一个片断都能取消 iP3结合活性,提示该区域是 iP3结合的关键序列。克隆的 cDNA所编码的蛋白实际上同时具备了 iP3结合和钙通道特性,因此又可称之为 iP3门控的 ca2+通道。

iP3R的主要序列与细胞质膜上的钙通道无同源性,但与心肌和骨骼肌肌浆网上的另一种胞内钙释放通道 ryanodine受体部分同源。 iP3R为同型四聚体,每个亚单位结合一个 iP3分子。大鼠 iP3R结构存在含有或缺失45核苷序列的两种 cDNA克隆,提示有不同的剪接方式,每个亚基有2734个或2749个氨基酸,分子量260kD[4]。受体结构含3个 cAMP依赖的蛋白激酶作用的序列。因含 iP3结合、配基门控钙通道和数个调控部位, iP3R是目前发现的最大受体之一。 IP3R在脑 purkinje细胞、海马、脑干呈高表达,亦表达于动脉平滑肌、子宫、膀胱和卵细胞。iP3R分布于粗面内质网和外层核膜。在无脊椎动物中, iP3R分布很不同,主要集中于脑、感觉和肌肉系统,还有报道 iP3R存在于嗅觉神经元质膜、人 t淋巴细胞、内皮、平滑肌和角膜细胞的质膜 上[5]。在大鼠的肾脏, iP3R的Ⅱ型分布也不相同,Ⅰ型分布很广,几乎沿整个肾单位分布,而Ⅱ型局限于集合管[6]。 2受体功能调控 在非洲蟾蜍属 xenopus母细胞核外膜上,用膜片钳技术研究了 iP3R单通道的特性,发现离子通透性呈现三种电导离状态,通道开放的可能性随时间而变[7]。在脂质双层中研究了单通道水平 aTP对 iP3R的作用[8],在 iP3存在时,加入 aTP可使 iP3R开放频率增加4.8倍,通道开放平均时间增加2.5倍,而电导不变。高浓度的 aTP则通过竞争 iP3结合位点抑制 iP=3R。 aTP也增加主动脉微体组分和重构膜中 iP3依赖的钙释放。

TRPC6在心脏疾病研究

TRPC6在心脏疾病研究 瞬时受体电位阳离子通道6(transient receptor potential channel 6)是一种非选择性的钙离子通道,在肾、心脏等多个器官均有表达,被认为以钙库操纵性钙离子通道(SOC)、受体操纵性钙离子通道(ROC)、牵张敏感性钙通道(SAC)形式发挥作用,在细胞信号转导中起着重要作用。TRPC6过量表达或基因突变可引起細胞内钙离子信号通路异常,使得大量钙离子内流,导致心脏等各种病理生理过程的变化。 标签:瞬时受体电位通道6;心脏 1 TRPC6的结构与功能 TRPC通道为细胞感受器,是一类非选择性的钙离子通道[1],包括TRPC1-7。根据其功能结构的相似度和相近性,分为4个亚类:TRPC1、TRPC2、TRPC4/TRPC5、TRPC3/TRPC6/TRPC 7[2]。人类TRPC6基因定位于常染色体11q21222,共有13个外显子[3-4]。其表达产物TRPC6突变会影响其功能,通常TRPC6 突变有6 种,分别为N143S,P112Q,E897K,R875C,S270T,K874X[3,6-7],均可导致氨基酸置换。对TRPC6位点定向突变的研究表明[5],小孔区域的表达异常会出现一种负性优势作用,即在同一个同源或异源的四聚体通道中,只要有一个TRPC蛋白产生突变,就会使整个通道受到影响,甚至导致TRPC6通道的完全失活[8]。 2 TRPC6致肥厚性心肌病的可能机制 TRPC6 分子表达的变化可使心肌细胞内钙浓度增高,心肌肥厚过程的钙离子浓度改变成为诱发心肌肥厚的重要机制之一。Onohara 等[9]在体外通过血管紧张素Ⅱ诱导的新生大鼠心肌细胞肥大模型,通过PLC介导的DAG的生成增多有直接的激活作用导致TRPC3/TRPC6表达均显著上调,而敲除TRPC3或TRPC6基因中的任何一个,都会明显抑制AngⅡ诱导的新生大鼠心肌细胞肥大效应。TRPC3与TRPC6均可直接受DAG的激活开放,TRPC3与TRPC6之间有协同关系。Kuwahara 等[10]发现,促进心肌细胞肥大的效应是由TRPC介导的Ca2+-NFAT信号通路所完成的。TRPC6表达的程度与心肌细胞肥大密切相关,在Ca2+通道被持续激活后,小鼠的心肌细胞膜的TRPC6表达量会明显增加;同时发现在人类心力衰竭的心肌细胞中,TRPC6 亦出现了类似的过表达。Chu等[11]将初生小鼠心肌细胞在轻度缺氧(10%O2)环境下培养,证实低氧诱导因子HIF-1α 被上调,进而激活TRPC6 通道,导致胞外钙内流增加胞内钙离子,进而激活了NFAT信号通路,而使心肌细胞重建引起心肌肥厚[12]。心脏血管的内稳态是通过心肌细胞分泌脑钠肽(brain natriuretic peptides,BNP)和心钠肽(atrial natriuretic peptides,ANP)来进行调节的[13-14],二者受体为鸟苷环化酶-A (GC-A)。ANP/BNP通过消除多种心肌肥大前信号途径,包括钙调磷酸酶-NFAT 来发挥抗心肌肥厚功能。而ANP/BNP对肥大前信号的遏制,是通过促进蛋白激酶G对TRPC6蛋白69位苏氨酸磷酸化,进而抑制NFAT 以及钙离子流入细胞

钙拮抗剂大全

钙拮抗剂大全

钙拮抗剂—尼卡地平 目录 1 钙拮抗剂概述 (3) 1.1 钙拮抗剂的分类 (3) 1.1.1 第1代钙拮抗剂 (4) 1.1.2 第2代钙拮抗剂 (4) 1.1.3 第3代钙拮抗剂 (4) 1.2 钙拮抗剂的药理作用 (4) 1.2.1 对心脏的影响 (5) 1.2.2 对血管的作用 (5) 1.2.3 抗动脉粥样硬化作用 (6) 1.2.4 改善组织血流的作用 (6) 1.2.5 利尿作用 (7) 1.3 目前常用的CCA的药理学特点和剂量 (7) 1.4 CCBS 临床应用 (8) 1.4.1 心绞痛 (8) 1.4.2 心律失常 (10) 1.4.3 高血压 (10) 1.4.4 急性心肌梗死(AMI) (12) 1.4.5 心力衰竭 (13) 1.5 钙拮抗药的不良反应 (14) 2 钙拮抗剂-尼卡地平 (15) 2.1 药理作用 (15) 2.2 毒理研究 (16) 2.3 药代动力学 (16) 2.4 药物相互作用 (17) 2.5 尼卡地平合成方法 (18) 2.5.1 酯化法合成 (18) 2.5.2 硝基苯甲醛法合成 (18) 2.5.3 乙酰乙酸甲酯法 (19) 2.6 尼卡地平其他领域应用及前景 (19) 2.6.1 尼卡地平印迹聚合物 (19) 2.6.2 麻醉期间应用 (20) 3 总结 (22) 参考文献 (23)

钙拮抗剂又称钙通道阻滞剂,能选择性阻滞钙离子经细胞膜上电压依赖性钙通道进入细胞内,减少胞内钙离子浓度,从而影响细胞功能的药物。20世纪70年代初由Fleckenstein提出钙拮抗剂(CCBs)的概念,其发现和广泛的临床应用,是本世纪心血管治疗的中最重要的进展之一,堪称心血管药物的里程碑。近年来世界各国已批准应用和正进入临床试用的药物近40多种,对于钙拮抗药的研究得到了普遍的重视。 1 钙拮抗剂概述 1.1 钙拮抗剂的分类 钙通道是细胞膜上的蛋白质小孔,易通透钙离子,对其他离子通透性低,根据其激活方式分为受体调控的钙通道(ROC)及电压依赖的钙通道(VDC),在心血管系统以电压依赖的钙通道为主,临床上作用的钙拮抗剂主要作用于VDC的L型为主,根据药物对钙通道的选择性可分为选择性和非选择性二大类。选择性钙拮抗剂与心血管疾病关系密切。最近由Toyo-Oka等提出一种新分类方法,将选择性钙拮抗剂根据化学性质分成几个大的亚类(二氢吡啶类、苯二氮卓类、苯基烷氨类等),这些亚类对于脂肪和心脏的亲和力不一样,每个亚类根据药代动力学及药效学特性的不同,又分为第1代、第2代和第3代化合物.其分类见表1 。 表1 选择性钙拮抗剂分类选择性 钙拮抗 剂 第一代第二代第三代 苯烷胺类(动脉<心脏) 维拉帕 米 缓释维拉帕米氨氯地 平

离子通道与疾病

摘要 细胞离子通道的结构和功能正常是维持生命过程的基础,其基因变异和功能障碍与许多疾病的发生和发展有关.离子通道的主要类型有钾、钠、钙、氯和非选择性阳离子通道,各型又分若干亚型.离子通道的主要功能是:提高细胞内钙浓度,触发生理效应;决定细胞的兴奋性、不应性和传导性;调节血管平滑肌的舒缩活动;参与突触传递;维持细胞的正常体积.离子通道的主要研究方法为膜片钳技术、分子生物学技术、荧光探针钙图像分析技术.离子通道病是指离子通道的结构或功能异常所引起的疾病.疾病中的离子通道改变是指由于某一疾病或药物引起某一种或几种离子通道的数目、功能甚至结构变化,导致机体发生或纠正某些病理改变.从离子通道与疾病的关系角度,加强分子生物学、生物物理学、遗传学、药理学等多学科交叉深入研究,对于深入探讨某些疾病的病理生理机制、早期诊断及发现特异性治疗药物或措施等均具有十分重要的理论和实际意义. 0 引言 离子通道(ion channel)是细胞膜上的一类特殊亲水性蛋白质微孔道,是神经、肌肉细胞电活动的物质基础.随着分子生物学、膜片钳技术的发展,人们对离子通道的分子结构及特性有了更加深入的认识,并发现离子通道的功能、结构异常与许多疾病的发生和发展有关[1].近年来,对于离子通道与疾病关系的研究取得了重大进展,不仅阐明了离子通道的分子结构突变可导致某种疾病,而且还明确了某些疾病可影响某种离子通道功能甚至结构.本文论述离子通道的主要类型、功能、研究方法及其与疾病的关系. 1 离子通道的主要类型 离子通道的开放和关闭,称为门控(gating).根据门控机制的不同,将离子通道分为三大类:(1)电压门控性(voltage gated),又称电压依赖性(voltage dependent)或电压敏感性(voltage sensitive)离子通道:因膜电位变化而开启和关闭,以最容易通过的离子命名,如K+、Na+、Ca2+、Cl-通道4种主要类型,各型又分若干亚型.(2)配体门控性(ligand gated),又称化学门控性(chemical gated)离子通道:由递质与通道蛋白质受体分子上的结合位点结合而开启,以递质受体命名,如乙酰胆碱受体通道、谷氨酸受体通道、门冬氨酸受体通道等.非选择性阳离子通道(non-selective cation channels)系由配体作用于相应受体而开放,同时允许Na+、Ca2+ 或K+ 通过,属于该类.(3)机械门控性(mechanogated),又称机械敏感性(mechanosensitive)离子通道:是一类感受细胞膜表面应力变化,实现胞外机械信号向胞内转导的通道,根据通透性分为离子选择性和非离子选择性通道,根据功能作用分为张力激活型和张力失活型离子通道.此外,还有细胞器离子通道,如广泛分布于哺乳动物细胞线粒体外膜上的电压依赖性阴离子通道(voltage dependent anion channel,VDAC),位于细胞器肌质网(sarcoplasmic reticulum,SR)或内质网(endoplasmic reticulum,ER)膜上的Ryanodine受体通道、IP3受体通道. 2 离子通道的主要功能 离子通道的主要功能有:(1)提高细胞内钙浓度,从而触发肌肉收缩、细胞兴奋、腺体分泌、Ca2+依赖性离子通道开放和关闭、蛋白激酶的激活和基因表达的调节等一系列生理效应;(2)在神经、肌肉等兴奋性细胞,Na+ 和Ca2+通道主要调控去极化,K+主要调控复极化和维持静息电位,从而决定细胞的兴奋性、不应性和传导性;(3)调节血管平滑肌舒缩活动,其中有K+、Ca2+、Cl-通道和某些非选择性阳离子通道参与;(4)参与突触传递,其中有K+、Na+、Ca2+、Cl-通道和某些非选择性阳离子通道参与;(5)维持细胞正常体积,在高渗环境中,离子通道和转运系统激活使Na+、Cl-、有机溶液和水分进入细胞内而调节细胞体积增大;在低渗环境中,Na+、Cl-、有机溶液和水分流出细胞而调节细胞体积减少. 3 离子通道的主要研究方法 研究离子通道功能的最直接方法是用膜片钳技术直接测定通过离子通道的电流或测量细胞膜电位的变化.膜片钳技术是利用一个玻璃微吸管电极完成膜片或全细胞电位的监测、钳制和膜电流的记录,通过观测膜电流的变化来分析通道个体或群体的分子活动、探讨离子通道特性.分子生物学技术为离子通道的分子结构分析、基因克隆、功能表达研究提供了有力工具,对于编码离子通道亚单位的基因结构可采用基因定位克隆确定其在染色体上的定位,用逆转录-聚合酶链反应、Northern杂交等明确其在器官组织中的分布,用Western杂交检测基因表达产物等.荧光探针钙图像分析技术为检测细胞内游离钙离子浓度提供了有效

hERG抑制剂的研究进展

hERG抑制剂的研究进展 人类ether-a-go-go 相关基因(hERG)编码了延迟整合电压门控钾离子通道的成孔亚基(VGK)[1]。这些通道被定义为 IKr,hERG 或者 Kv11.1[2]。hERG(7q35-q36)是第一个被识别出的导 致 LQTS 基因[3,4]。LQTS 是由于心肌细胞异常离子流活动导致,属于一种离子通道疾病。临床各种药物使用与 LQTS 相关并有心律失常风险。一系列心脏和非心脏药物可以诱导 LQTS。 许多研究表明,很多临床药物能够抑制 IKr/hERG。 1.hERG 抑制剂分类 hERG 抑制剂根据作用机制可以分为直接作用和间接作用。直接作用机制是指直接阻断 hERG 电流,许多药物可以通过绑定结构专一的受体区域位点,抑制hERG 通道的门控开放,从而 降低 hERG 电流;第二种机制诱导的药源性 LQTS 是指选择性干扰心肌细胞膜表面的 hERG 蛋 白表达,即抑制 hERG 蛋白转运,如氟西汀和诺氟西汀[5]。hERG 蛋白在核糖体合成后,在内 质网进行核心糖基化过程,形成 135 KDa 的未成熟的 hERG 蛋白,核心糖基化的 hERG 蛋白与 分子伴侣结合,被转运到高尔基体进行完全糖基化,成为 155 KDa 的 hERG 蛋白,最后转运到细胞膜表面发挥作用。hERG 抑制剂根据药物类型可以分为抗心律失常药物、非抗心律失常药物、天然产物和低钾和高糖。 2.抗心律失常药物的 hERG 通道抑制作用 一般抗心律失常药物可以有效对抗心脏混乱的节律,一些会诱导心律失常风险。抗心律失常 药物的传统分类方法 Singh-Vaughan-Williams(S-V-W)分类法是通过对心肌电生理的影响和 作用机制分类,而不是化学结构或生理目的。一、Ⅰ类药物(钠通道阻滞药)通过减小内向 钠离子电流浓度,但不降低静息膜电位起作用;二、Ⅱ类药物(β受体阻断药)又称交感神 经阻滞药物,包括普萘洛尔等β 受体阻断剂;三、Ⅲ类药物可以延长动作电位时程(APD),最典型特征是可以阻断钾离子通道;四、Ⅳ类药物是钙通道阻滞药,包括钙离子通道阻滞剂。理论上,仅作用于单一离子通道或受体的阻断剂更具特异性活性,然而,许多临床使用的药 物显示的活性不符合 S-V-W 分类法,简言之,S-V-W 分类法具有一定局限性。如胺碘酮的不 良反应中包括QT 间期延长。Ⅰ类抗心律失常药物奎尼丁的机制是与细胞膜钠通道蛋白结合,阻滞钠通道,抑制钠离子内流,发挥抗心律失常作用。但通过临床研究发现奎尼丁还有强烈 的Ⅲ类抗心律失常作用,严重时可导致“奎尼丁昏厥”甚至猝死的发生[6]。已经研究清楚,奎 尼丁阻断心肌 IKr/hERG [7]。临床研究发现,Ⅲ类抗心律失常药物既有抗心律失常作用,也有 致心率失常作用。Ⅲ类抗心律失常药物的作用机制是可以选择性阻断钾离子电流。实验研究 表明,Ⅲ类抗心律失常药物 E-4031 可导致剂量依赖性人体心电图 QT 和 QTc 延长,诱导早后 除极(EAD)[8]。E-4031 是第一个在分子水平阐述的阻断 hERG K+ 通道的药物[9]。之后的研 究显示,多非利特也可以阻断 hERG 钾离子通道,它阻断通道的开放状态[9]。家兔离体心脏 灌流显示,虽然Ⅲ类抗心律失常药物氯非铵比多非利特的频率依赖性弱[10],但也可导致 QT 间期延长和心律失常。Ⅲ类抗心律失常药物胺碘酮可以同时阻断 IKr 和 IKs,也可以阻断钠电 流[11]。在豚鼠心肌细胞实验中,对 IKr 的阻断效应比 IKs 的阻断效应强[12]。 3.非抗心律失常药物 一些非抗心律失常药物的不良反应会靶向性抑制 IKr/hERG,这种抑制可能是最普遍的获得性LQTS 机制。然而这些药物不包含在抗心律失常药物分类中,却也诱导获得性 LQTS。 大环内酯类抗生素是指具有大环内酯环的一类抗菌药物,可以抑制细菌蛋白质合成,具有抑 制或杀灭病原菌的作用,广泛应用于临床防治感染性疾病。经过研究证明,大环内酯类抗生 素在电生理方面有延长 QT 间期和致心率失常作用[13-15]。电生理方面研究对 6 种不同类型 的大环内酯类药物在人体胚胎肾细胞上

相关文档
最新文档