ZMJ-15井下移动式灌浆注胶防灭火系统(标准)设计

ZMJ-15井下移动式灌浆注胶防灭火系统(标准)设计
ZMJ-15井下移动式灌浆注胶防灭火系统(标准)设计

ZMJ-15井下移动式

灌浆注胶防灭火系统

西安森兰科贸有限责任公司

西安科技大学矿山应用技术研究所

井下移动式灌浆注胶防灭火系统设计方案黄泥灌浆是煤矿最主要的防灭火手段之一,其原理是泥浆中的水份吸收大量热,起到灭火降温的作用,黄土覆盖浮煤表面,起隔氧阻止氧化的作用。灌浆防灭火时,泥浆浓度对注浆防灭火的效果影响很大,泥浆浓度越大效果越好。现有灌浆防灭火系统的水土比通常在5:1左右,浆液流失量大,灌浆效率低,而且,灌注黄泥浆时还存在严重的“拉沟”现象,在较大空间内不能有效地堆积,下部煤层开采时还容易发生“溃浆”事故。

在发现煤层自燃高温点时,采用常规的注水、灌浆和喷阻化剂时,由于重力作用,浆液流往低处,不能在高处积存、渗流范围很小,难以扑灭高处大面积火源;浆液往低处流,冲出水沟,不能有效降低块煤内部温度,停止注浆后,风流渗透流畅,复燃很快,且用水或灌浆控制火势时,将迅速产生大量水蒸汽,反而会促进煤层自燃火势发展,恶化工作环境,并有产生水煤汽爆炸的危险。采用注氮、注惰性泡沫灭火时,需封闭性严,且气体热容小,能带走高温区的热量有限,灭火周期很长,火区复燃概率高。

胶体防灭火技术集堵漏、降温于一体,防灭火效果佳,已成为煤层自燃火灾治理的主要技术手段之一。

1胶体防灭火材料简介

1.1胶体防灭火材料的分类及组成

目前煤矿使用的防灭火胶体主要有以下四种:

1)“凝胶”是以硅胶为主体,由基料(水玻璃)、促凝剂(碳酸氢钠)、增强剂(黄土或粉煤灰等)和水按比例混合而成。

2)“稠化胶体”由稠化悬浮剂(JXF1930)、黄土或粉煤灰和水按比例混合而成。

3)“复合胶体”由胶凝剂(FCJ12)、黄土或粉煤灰和水按比例混合而成。

4)“高分子胶体”由灭火剂(MCJ12)和水按比例混合而成。

胶体中各种材料所起的作用主要如下:

1)水作为溶剂,所起的主要作用是将各种成胶材料通过管路输送到指定地点,并起到吸热降温作用。

2)粉煤灰或黄土作为主要充填物,起到充填浮煤孔隙,包裹煤体,隔绝煤氧接

触,阻隔火势的发展和蔓延,并有利于再生顶板的形成。

3)胶体外加剂的主要作用是对水、粉煤灰或黄土浆液进行改性,提高其利用率,并改善其防灭火效能,避免“溃水、溃浆”等次生事故的发生。

1.2胶体防灭火材料的性能

胶体材料具有如下防灭火性能:

1)固水降温性:胶体中90%以上是水,易于流动的水被固结起来,充分发挥水的降温作用;成胶过程是吸热反应,煤温上升使胶体中的水汽化,也吸收大量的热。

2)渗透和堵漏性:成胶材料是易于流动的液体,渗透到煤层缝隙中后形成胶体,堵住漏风通道。

3)阻化性:促凝剂和基料本身都是阻化剂,两者反应生成的材料也是阻化剂,胶体具有通用阻化剂的性能。

4)热稳定性:在1000多度的高温下胶体不熔化、不破裂,仍能保持完好,只是慢失水干裂。

5)充填性能:增强剂(黄土、粉煤灰等)用量增加,胶体耐压性增强,高浓度胶体泥浆可充填高冒空顶区。

6)灭火安全性:由于胶体有束水作用,在用于扑灭煤火时,不会急剧产生大量的水煤汽而恶化工作环境或发生爆炸。

7)有效期:正常情况下(T<28℃,湿度>90%),胶体可长期保存在煤层中(现场实测十三个月仍完好),防止煤层自然发火或火区复燃。

8)成胶时间可控性:最短成胶时间25s,慢的可控制在2h以上,便于针对不同发火情况和现场使用工艺对其进行适当调节。

为了更好地发挥水、灌浆材料和胶体材料的防灭火性能,针对不同的现场环境、使用条件、应用工艺和原料成本,森兰科贸有限责任公司与西安科技大学联合开发了(稠化胶体)悬浮剂、(复合胶体)胶凝剂、(高分子胶体)灭火剂等一系列新型的胶体防灭火材料。

1.3胶体防灭火技术的特色

1)灭火速度快:由于胶体独特的灭火性能,其灭火速度很快,通常巷道小范围的火仅需几小时即可扑灭,工作面后方大范围的火也只需几天即可扑灭。

2)安全性好:胶体在松散煤体内胶凝固化、堵塞漏风通道,故有害气体消失快;

在高温下,胶体不会产生大量水蒸汽,不存在水煤气爆炸和水蒸汽伤人危险。

3)火区启封时间短:注胶灭火工程实施完,即可启封火区。

4)火区复燃性低:高温区内只要有胶体渗透到的地点都不会复燃。

增加浆液的粘稠度、

保水性和渗透性;

使稀泥浆达到稠泥浆

用水灭火胶体灭火

胶体防灭火系统类型主要分为:地面固定式;地面移动式;井下移动式三种,这些系统使用所须的条件及其应用时的优缺点如下表。

3 ZMJ-15井下移动式灌浆注胶防灭火系统

3.1系统功能

功能一:灌浆。本系统每小时最多可将4m3的粉煤灰或沙土制成一定浓度的浆液,

经过滤后通过管路进入注浆地点,达到防灭火目的。

功能二:灌注复合胶体。在注浆地点附近,使用“ZHJ-5/1.8G矿用移动式防灭火注浆装置”向输浆管路的浆液内加入FCJ12复合胶体胶凝剂,形成复合胶体注入火区。

功能三:压注稠化胶体:在“ZHJ-12/4矿用移动式防灭火注浆装置”中加入悬浮剂;悬浮剂在此设备的制浆滤浆总成内搅拌制备成稠化胶体浆液。经制浆滤浆总成过滤合格的浆液通过出浆管输出经泥浆泵加压后通过管路及钻孔注入火区。

功能四:压注高分子胶体。使用“ZHJ-5/1.8G矿用移动式防灭火注浆装置”以每小时5m3以下的流量将水和MCJ12胶体灭火剂制成高分子胶体并以一定压力注入火区。

3.2系统构成

ZMJ-15井下移动式胶体防灭火系统由连续式定量制浆系统、浆液过滤系统、浆液压注系统、输浆管网系统和外加剂添加系统构成。胶体防灭火系统的结构见图1。

图1 井下移动式防灭火注胶系统流程框图

3.3系统布置及工艺

该系统的主要目的是将加入粉煤灰料箱里的粉煤灰按照设备要求的用量均匀送入连续式制浆部分,然后由制浆部分根据需要的浆液浓度配比相应的水量,并搅拌制成一定浓度的浆液。浆液过滤部分把制成的不同浓度的浆液进行过滤,浆液中大于3mm的固体颗粒物会被滤出使其不能进入注浆管路,以保证注浆管路不因固体颗粒的沉淀而发生堵塞。浆液压注部分将制成的浆液以小于4Mpa的压力输送至井下1000m内的任何用胶地点。

3.3.1井下移动式胶体防灭火系统布置

本系统所有设备、仪表、管路等全部置于井下,所使用的防灭火材料、制浆原

料等也要从地面运至井下。由于井下的巷道空间较为狭窄,所以设备、材料、操作人员在井下应有一个合理的布置(见图2)。

灌浆注胶材料可在使用时运至井下,也可贮存于井下适宜的地点。

制浆料(粉煤灰)由井上(尽可能过筛或使用较好的粉煤灰)用矿车运至井下。胶凝剂在需要注胶时由操作工人从地面带至井下使用地点。

矿用移动式防注浆装置、泥浆泵、控制开关及其它仪表等放置在离注胶地点1000m以内水、电较为方便的设备峒室内,按安装要求进行安装和连接,并连接铺设备的注浆管路。

矿用移动式防灭火注浆装置放置于离注胶地点100m以内的巷道内,按要求连接水、电。

置,7.5KW

图2 井下移动式防灭火注胶系统布置及工艺流程图

7

3.3.2井下移动式胶体防灭火系统工艺

1)灌浆:打开水阀把水加入制浆滤浆总成,启动电机,待设备运行稳定后,把制浆原料(砂土或粉煤灰)加入灰土料箱,(悬浮剂料箱不使用),灰土定量送料总成将制浆原料定量送入制浆滤浆总成。经制浆滤浆总成过滤合格的浆液通过出浆管输出;较大颗粒的残渣从出渣口排出,合格浆液经泥浆泵加压后通过管路及钻孔注入火区。

2)压注稠化胶体:打开水阀把水加入“ZHJ-12/4矿用移动式防灭火注浆装置”的制浆滤浆总成,启动电机,待设备运行稳定后,把制浆原料(砂土或粉煤灰)加入灰土料箱,把悬浮剂(型号:JXF1930,此材料为本公司研发产品,仅限于本公司生产)加入悬浮剂料箱;灰土定量送料总成与悬浮剂定量送料总成均将所添加的料定量送入制浆滤浆总成,在制浆滤浆总成内搅拌制备成稠化胶体浆液。经制浆滤浆总成过滤合格的浆液通过出浆管输出;较大颗粒的残渣从出渣口排出,合格浆液经泥浆泵加压后通过管路及钻孔注入火区。

3)压注复合胶体:

打开水阀把水加入“ZHJ-12/4矿用移动式防灭火注浆装置”的制浆滤浆总成,启动电机,待设备运行稳定后,把制浆原料(砂土或粉煤灰)加入灰土料箱,把悬浮剂(型号:JXF1930,此材料为本公司研发产品,仅限于本公司生产)加入悬浮剂料箱;灰土定量送料总成与悬浮剂定量送料总成均将所添加的料定量送入制浆滤浆总成,在制浆滤浆总成内搅拌制备成稠化胶体浆液。经制浆滤浆总成过滤合格的浆液通过出浆管输出;较大颗粒的残渣从出渣口排出,合格浆液经泥浆泵加压到达需注胶地点附近后,用“ZHJ-5/1.8G矿用移动式防灭火注浆装置”按比例要求(根据现场情况确定)注入灭火材料胶凝剂(型号:FCJ12,此材料为本公司研发产品,仅限于本公司生产)可制备复合胶体,胶体通过钻孔或预埋管路注入用胶地点。

4)压注高分子胶体(即矿用移动式防灭火注浆装置:ZHJ-5/1.8G单独使用所具备的功能,主要用于煤层火灾的快速控制和熄灭)

在井下安装好“ZHJ-5/1.8G矿用移动式防灭火注浆装置”(离用胶地点距离小于30m),把“高分子胶体灭火剂”加入胶凝剂料箱,按使用现场的要求调节“高分子胶体灭火剂”的加入量,制成高分子胶体后压注入火区进行灭火。

3.4系统设计参数

1)制浆原料:粉煤灰、砂土;

2)动力:系统设备总功率30kw;

3)供水:大于17m3/h,水压大于0.4Mpa,要求水中无不溶性杂物;

4)输浆管路:2寸管路,小于1000m;

5)水灰比:3~1:1;

6)制浆原料的使用量: 4 m3/h;

7)注胶量:17 m3/h;

8)悬浮剂使用量(与水的配比量):>0.1%(制备稠化胶体);

7)胶凝剂使用量(与水的配比量):>0.06%(制备复合胶体);

8)灭火剂使用量(与水的配比量):>0.8%(制备高分子胶体);

3.选用的主要设备及技术参数

1)矿用移动式防灭火注浆装置(含泥浆泵)

型号:ZHJ-12/4 数量:1台

制浆量: 12m3/h;滤浆能力: 12m3/h;

粉煤灰用量: 4 m3/h;功率:22.5kw。

滤浆粒度:6mm;

将粉煤灰或砂土与水混合,连续制、滤成符合浓度和粒径要求的浆液并进行输送。

2)矿用移动式防灭火注浆装置

型号:ZHJ-5/1.8G 数量:1台

流量: 5m3/h;功率:7.5kw;压力: 1.8MPa。

可井下单独使用,也可与系统配套使用,可配合系统实现灌注复合胶体,或单独使用压注高分子胶体的功能。

3.6设备尺寸和重量

1)矿用移动式防灭火注浆装置ZHJ-12/4: 4450mm×850mm×1040mm;1480 Kg 2)矿用移动式防灭火注浆装置ZHJ-5/1.8G:2000mm×600mm×780mm;415 Kg。

气体灭火系统设计规范

气体灭火系统设计 规范

气体灭火系统设计规范 Code for design of gas fire extinguishing systems 标准号:GB 50370- 发布日期:年 03 月 02 日 实施日期:年 05 月 01 日 发布单位:中华人民共和国建设部 / 中华人民共和国国家质量监督检验检疫总局 出版单位:中国计划出版社 摘要:本规范是根据建设部建标 [ ]269 5- 文《——年度工程建设国家标准制定、修订计划》要求编制完成的。本规范共分六章内容包括 : 总则、术语和符号、设计要求、系统组件、操作与控制、安全要求等。 其中,第 3.1.4、3.1.5、3.1.15、3.1.16、3.2.7、3.2.9、3.3.1、3.3.7、3.3.16、3.4.1、 3.4.3、3.5.1、3.5.5、4.1.3、4.1.4、4.1.8、4.1.10、5.0.2、5.0.4、5.0.8 等条为强制性条文。 1 总则 1.0.1 为合理设计气体灭火系统,减少火灾危害,保护人身和财产的安全,制定本规范。 1.0.2 本规范适用于新建、改建、扩建的工业和民用建筑中设置的七氟丙烷、 IG541 混合气体和热气溶胶全淹没灭火系统的设计。 1.0.3 气体灭火系统的设计,应遵循国家有关方针和政策,做到安全可靠、技术先进、经济合理 1.0.4 设计采用的系统产品及组件,必须符合国家有关标准和规定的要求。 1.0.5 气体灭火系统设计,除应符合本规范外,还应符合国家现行有关标准的规定。 2 术语和符号 2.1 术语 2.1.1 防护区 protected area 满足全淹没灭火系统要求的有限封闭空间。 2.1.2 全淹没灭火系统 total flooding extinguishing system 在规定的时间内,向防护区喷放设计规定用量的灭火剂,并使其均匀地充满整个防护区的灭火系统。

无管网式气体灭火系统设计

目录 一 .装置简介???????????? ???????????????1 二 .产品特点???????????????????????????1 三 .灭火机理???? ???????????????????????2 四 .适用范围???????????????????????????2 五 .装置的控制方式、工作原理及动作控制流程图???????????2 六 .装置的主要技术性能指标???????????? ????????6 七 .柜式装置结构示意图、实体照片及外形尺寸???? ????????7 八 .装置主要部件的技术性能指标??????????????????9 九 .装置的设计??????????????????????????16 十 .装置的检查和维护???????????????????????22十一.注意事项???????????????????????????24

一、装置简介 柜式七氟丙烷气体灭火装置是一种采用七氟丙烷洁净气体做为灭火剂的一种高效 无管网灭火装置。当火灾发生时,本装置可直接向防护区喷射灭火剂,使灭火剂能迅速、均匀地充满整个防护区,因此灭火效率高、速度快。同时该装置具有如下特点: 1、保护环境:装置使用的七氟丙烷灭火剂是无色、无味的气体,其臭氧耗损潜能值( ODP )为零,在 ISO 认可的洁净气体灭火剂中,其洁净性最好,具有清洁、低毒、 电绝缘性能好、灭火效率高等特点,是哈龙灭火剂的理想替代物。在常温、常压条件下 能全部挥发,灭火后无残留物。 2 、保护生命安全:七氟丙烷灭火剂能观察到不良反应的浓度(LOAEL)值为10.5%,而一般七氟丙烷灭火系统的灭火设计浓度为10% 以下,因此对人体基本无害。 3、保护财产安全:装置喷放时温度变化很小,不会对被保护设备构成伤害。喷放 灭火后能全部挥发,无残留物,不会污损被保护设备。 4、装置的灭火剂储瓶和启动气体储瓶置于柜体内,具有外形美观、轻便、可移动、 安装简便灵活、占地面积小、维修方便等特点。 由于上述优良的性能,柜式七氟丙烷气体灭火装置已经在各类建设项目中得到了广 泛应用。 二、产品特点

水喷雾灭火系统设计要求规范GB50219-95

1 总则 1.0.1 为了合理地设计水喷雾灭火系统,减少火灾危害,保护人身和财产安全,制定本规。 1.0.2本规适用于新建、扩建、改建工程中生产、储存装置或装卸设施设置的水喷雾灭火系统的设计;本规不适用于运输工具或移动式水喷雾灭火装置的设计。 1.0.3水喷雾灭火系统可用于扑救固体火灾,闪点高于60℃的液体火灾和电气火灾。并可用于可燃气体和甲、乙、丙类液体的生产、储存装置或装卸设施的防护冷却。 1.0.4水喷雾灭火系统不得用于扑救遇水发生化学反应造成燃烧、爆炸的火灾,以及水雾时保护对象造成严重破坏的火灾。 1.0.5水喷雾灭火系统的设计,除应执行本规的规定外,尚应符合国家现行有关标准、规的规定。 2 术语、符号 2.1 术语 2.1.1水喷雾灭火系统 water spray extinguishing system 由水源、供水设备、管道、雨淋阀组、过滤器和水雾喷头等组成,向保护对象喷射水雾灭火或防护冷却的灭火系统。 2.1.2传动管 transfer pipe 利用闭式喷头探测火灾,并利用气压或水压的变化传输信号管道。 2.1.3响应时间 response time 由火灾自动报警系统发出火警信号起,至系统中最不利点水雾喷头喷出水雾的时间。 2.1.4水雾喷头 spray nozzle 在一定水压下,利用离心或撞击原理将水分解成细小水滴的喷头。 2.1.5水雾喷头的有效射程 effective range of spray nozzle

水雾喷头水平喷射时,水雾达到的最高点与喷口之间的距离。 2.1.6水雾锥 water spray cone 在水雾喷头有效射程水雾形成的圆锥体。 2.1.7雨淋阀组 deluge valves unit 由雨淋阀、电磁阀、压力开关、水力警铃、压力表以及配套的通用阀门组成的阀组。

矿井防火灌浆设计

中国矿业大学 矿井火灾防治理论与技术 课程设计 姓名: 学院: 专业: 学号: 班级序号: 指导教师: 日期:

目录 前言-------------------------------------------------------------------------------- 3 1.防火灌浆设计依据及基础资料 ------------------------------------------------- 4 1.1矿井概况 --------------------------------------------------------------------- 4 1.2煤层赋存条件 --------------------------------------------------------------- 5 1.3煤的碳化程度、煤岩成分、自燃倾向性及发火期------------------- 5 1.3.1 煤的碳化程度和煤岩成分 --------------------------------------- 5 1.3.2 自燃倾向性及发火期 --------------------------------------------- 7 1.4开采条件、地温及瓦斯 --------------------------------------------------- 7 1.4.1 开采条件 ------------------------------------------------------------ 7 1.4.2 地温 ------------------------------------------------------------------ 7 1.4.3 瓦斯 ------------------------------------------------------------------ 8 1.5矿井开拓方式和采区采区通风 ------------------------------------------ 8 1.5.1 矿井开拓方式 ------------------------------------------------------ 8 1.5.2 开采情况 ------------------------------------------------------------ 8 1.5.3 通风情况 ------------------------------------------------------------ 9 1.6灌浆站工作制度 ---------------------------------------------------------- 10 1.6.1 日灌浆量和时灌浆量计算 ------------------------------------- 10 2.防火灌浆系统与参数确定 ------------------------------------------------------12 2.1工作面概况 ---------------------------------------------------------------- 12 2.1.1 工作面参数 ------------------------------------------------------- 12 2.1.2 防火灌浆设计基本参数 ---------------------------------------- 13 2.2灌浆系统确定 ------------------------------------------------------------- 14 2.3灌浆材料的选择 ---------------------------------------------------------- 15 2.4地面制浆工艺流程 ------------------------------------------------------- 16 2.5 灌浆方法确定------------------------------------------------------------- 17

气体灭火系统设计规范条文说明

气体灭火系统设计规 条文说明

目录 1. 总则 (39) 2. 术语与符号 (41) 2.1 术语 (41) 3. 设计要求 (42) 3.1 一般规定 (42) 3.2 系统设置 (45) 3.3 七氟丙烷灭火系统 (48) 3.4 IG541混合气体灭火系统 (62) 3.5 热气溶胶预制灭火系统 (68) 4. 系统组件 (69) 4.1 一般规定 (69) 5. 操作与控制 (70) 6. 安全要求 (71)

1. 总则 1.0.1 本条阐明本《规》是为了合理地设计气体灭火系统,使之有效地达到扑灭火灾,保护人身和财产安全的目的。1.0.2 本《规》属于工程建设规标准中的一个组成部分,其任务是解决用于工业和民用建筑中新建、改建、扩建工程中有关设置气体全淹没灭火系统的消防设计问题。 气体灭火系统的设置部位,应根据国家标准《建筑设计防火规》、《高层民用建筑设计防火规》等其它有关国家标准的规定及消防监督部门针对保护场所的火灾特点、财产价值、重要程度等所作出的有关要求确定。 当今,国际上已开发出化学合成类及惰性气体类等多种替代哈龙的气体灭火剂。其中七氟丙烷及IG541混合气体灭火剂在我国哈龙替代气体灭火系统中应用较广,且已应用多年,有较好的效果,积累了一定经验。七氟丙烷是目前替代物中效果较好的产品。其对臭氧层的耗损潜能值ODP=0,温室效应潜能值GWP=0.6,大气中存留寿命ALT=31(年),灭火剂毒性——无毒性反应浓度NOAEL=9%,灭火设计基本浓度C=8%,具有良好的清洁性——在大气中完全汽化不留残渣、良好的气相电绝缘性及良好的适用于灭火系统使用的物理性能,自20世纪90年代初,工业发达国家首选用其替代哈龙灭火系统并取得成功。IG541灭火剂由N2、Ar、CO2三种惰性气体,按一定比例混合而成,其ODP=0,使用后以其原有成分回归自然,灭火设计浓度一般在37%~43%之间,在此浓度人员短时间停留不会造成生理影响。系统压源高,管网可布置较远。1994年1月美国率先制定出洁净气体灭火系统设计标准(NFPA2001),国际标准化组织(ISO)亦制订了国际标准《洁净气体灭火剂一物理性能和灭火系统设计》(ISO14520)。应用实践表明,七氟丙烷灭火系统和IG541混合气体灭火系统均能有效地达到预期的保护目的。 热气溶胶灭火技术是由我国消防科研人员于20世纪六十年代首先提出的,自90年代中期始,热气溶胶产品作为哈龙替代技术的重要组成部分在我国得到了大量使用。基于以下考虑,将热气溶胶预制灭火系统列入本《规》:

移动灌浆防灭火设计

贵州丰联煤业公司晴隆县碧痕镇沙家坪煤矿1202采煤工作面运输巷采用移动 注浆技术 进行防灭火设计 编制单位:通风科 编制日期:2017.9.17

会审综合意见

一、概矿 1、工作面概况 1202采面地面位置位于井筒西翼,工业广场以南地区。地面为中低山丘陵(山地),地面标高+1375m~+1450m。井下位于一采区西翼,向西延伸至井田西翼边界保安煤柱,北面(上帮)为1201采面(已回采完毕),南面(下部)为1203采面(为未采动区),东面为采区下山保安煤柱。从矿井井上下对照图和地面踏勘情况分析,1202采面对应地表为中低山丘陵(高低起伏的山地),地面无公路、铁路、建筑物和大型水体,开采深度120m左右,开采煤层厚度2.0——2.2m,平均2.0m,因此,1202采面回采对地表无影响。 2、注浆点基本情况 本次设计的注浆点在1202采面运输巷,从轨道下山和1202运输巷交岔点往采面方向80m处(见采掘工程平面图),由于在掘进该运输巷时,揭露一断层构造(落差1-2m),煤层和顶板的完整性遭到到了破坏,因此,巷道在此处出现了局部冒顶,冒顶长度4-5m,高度1-2.5m。在冒顶段,裸露的煤层和断层间冒落的煤岩混合物长期氧化,蓄热升温大,为防治煤层自燃,采取注浆防灭火。 3、注浆区域地质和围岩情况

二、注浆方法的选择、防灭火注浆装置选型及参数 本矿为设计生产能力15万吨/a小型型矿井,采用平硐、斜井联合开拓,结合矿井实际情况,本次设计采用一套 ZJB系列矿用井下移动式防灭火注浆装置(矿在用设备),该装置可在煤矿井下工作面及采空区具有煤炭自燃危险的地点,作为喷注以水为输送介质的泥浆、粉煤灰浆、阻化剂、石灰浆以及化学凝胶等浆液物质(或更高粘稠液体及含有机械杂志和固体颗粒的浓缩粉)的防灭火设备。 根据本次注浆的实际,考虑本井田煤层顶底板岩性多以砂质泥岩、粉砂岩为主,泥浆流动距离可达60m以上,设计位于1202工作面运输巷冒顶段后80m处安设ZJB型井下移动式防灭火注浆装置,采用先向冒顶区域上部帮、顶板打孔后注浆的方式注浆(见注浆孔设计图)。井下移动式防灭火注浆装置主要技术指标见下表。 1、注浆材料的选择原则 (1)、注浆材料的种类:黄土、页岩、矿井矸石、粉煤灰、尾矿等。沙家坪煤矿选用黄土作为注浆材料。 (2)、注浆材料成浆性能指标(0.1mm以下级别的样品)应达到如下规定: ①沉降速度1~10mm/min; ②临界稳定时间为20~60min; ③塑性指数7~14(粉煤灰可小于7); ③粘度系数(1~2)×10-3Pa.S; ③氧化镁胶体混合物含量20%~35%;

七氟丙烷灭火系统设计规范

七氟丙烷灭火系统设计规范 1.1.1 七氟丙烷灭火系统的灭火设计浓度不应小于灭火浓度的1.3倍,惰化设计浓度不应小于惰化浓度的1.1倍。 1.1.2 固体表面火灾的灭火浓度为5.8%,其它灭火浓度可按本规范附录A 中附表A-1的规定取值,惰化浓度可按本规范附录A 中附表A-2的规定取值。本规范附录A 中未列出的,应经试验确定。 1.1.3 图书、档案、票据和文物资料库等防护区,灭火设计浓度宜采用10%。 1.1.4 油浸变压器室、带油开关的配电室和自备发电机房等防护区,灭火设计浓度宜采用9%。 1.1.5 通讯机房和电子计算机房等防护区,灭火设计浓度宜采用8%。 1.1.6 防护区实际应用的浓度不应大于灭火设计浓度的1.1倍。 1.1.7 在通讯机房和电子计算机房等防护区,设计喷放时间不应大于8s ;在其它防护区,设计喷放时间不应大于10s 。 1.1.8 灭火浸渍时间应符合下列规定: 1 木材、纸张、织物等固体表面火灾,宜采用20 min ; 2 通讯机房、电子计算机房内的电气设备火灾,应采用5 min ; 3 其它固体表面火灾,宜采用10 min ; 4 气体和液体火灾,不应小于1 min 。 1.1.9 七氟丙烷灭火系统应采用氮气增压输送。氮气的含水量不应大于0.006%。 储存容器的增压压力宜分为三级,并应符合下列规定: 1 一级 2.5+0.1MPa(表压); 2 二级 4.2+0.1MPa(表压); 3 三级 5.6+0.1MPa(表压)。 1.1.10 七氟丙烷单位容积的充装量应符合下列规定: 1 一级增压储存容器,不应大于1120kg/m 3; 2 二级增压焊接结构储存容器,不应大于950kg/m 3; 3 二级增压无缝结构储存容器,不应大于1120kg/m 3; 4 三级增压储存容器,不应大于1080kg/m 3。 1.1.11 管网的管道内容积,不应大于流经该管网的七氟丙烷储存量体积的80%。 1.1.12 管网布置宜设计为均衡系统,并应符合下列规定: 1 喷头设计流量应相等; 2 管网的第1分流点至各喷头的管道阻力损失,其相互间的最大差值不应大于20%。 1.1.1 3 防护区的泄压口面积,宜按下式计算: f x x P Q F 15 .0= (3.3.13) 式中 x F —— 泄压口面积(m 2); x Q —— 灭火剂在防护区的平均喷放速率(kg/s); f P —— 围护结构承受内压的允许压强(Pa)。 1.2.1灭火设计用量或惰化设计用量和系统灭火剂储存量,应符合下列规定: 1 防护区灭火设计用量或惰化设计用量,应按下式计算: ) C (C S V K W 11100·-= (3.3.14-1) 式中 W —— 灭火设计用量或惰化设计用量(kg); 1C —— 灭火设计浓度或惰化设计浓度(%); S —— 灭火剂过热蒸汽在101KPa 大气压和防护区最低环境温度下的 比容(m 3/kg); V —— 防护区的净容积(m 3);

灌浆防灭火灾设计

陇东学院能源工程学院 矿井灾害防治课程设计 设计题目:灌浆防灭火安全技术设计 姓名: 学号:2012401180 专业班级:2012级安全工程本科班 指导教师: 成绩: 二〇一五年六月

《矿井火灾防治》课程设计 目录 1 矿井概况 (4) 1.1 矿井位置及交通 (4) 1.2 煤层赋存条件 (4) 1.3 煤的碳化程度、煤岩成分 (5) 1.4 自燃倾向性、自然发火期 (5) 1.5 矿井开拓方式和采区布置图 (5) 2 .灌浆系统设计 (7) 2.1 土源状况 (7) 2.2 水源状况 (7) 2.3 确定注浆方式 (7) 3. 注浆材料及制浆工艺设计 (8) 3.1 注浆材料的选择 (8) 3.2 浆液的制备 (9) 3.3 泥浆输送 (10) 4. 灌浆方法设计 (11) 4.1 确定灌浆方法 (11) 5. 灌浆参数设计计算 (12) 5.1 灌浆站工作制度 (12) 5.2 灌浆量 (12) 6 灌浆设备选型 (15) 6.1 灌浆管道设计 (15) 6.1.1 管道内径计算 (15) 6.1.2 管材确定 (16) 7 灌浆安全技术措施 (17) 7.1 制浆安全技术措施 (17) 7.2 灌浆系统的安全维护措施 (18) 7.3 注浆过程中防止溃浆的安全技术措施 (18) 1

前言 对陕西矿业有限公司矿井兴云矿进行设计,主要内容有灌浆系统设计,注浆材料及制浆工艺设计,灌浆方法设灌浆参数设计计算计,灌浆设各选型,灌浆安全技术措施。 通过矿井火灾课程的学习,我们充分了解和学习到了地下火灾的发生原因与发展过程、煤炭的自燃学说、自燃的原因及发展过程,掌握地下火灾的预测、预报及预防方法和灭火措施等基本知识,提高了我们对矿井火灾的监测监控、预报、预防与扑救及地下工程防灭火的能力。矿井注浆防灭火安全技术是防止煤层内因火灾的有效技术措施之一,它是我国煤矿当前应用较普遍的一项技术。 关键词:采空区;自燃;灌浆防灭火 Abstract Mine fire is one of the five natural of coal mine disasters, efficient safety production of coal mine and miner's life safety has serious adverse

气体灭火系统设计规范

七氟丙烷(HFC-227ea)洁净气体灭火系 统设计规范 1 总则 第1.0.1条 为了合理设计七氟丙烷灭火系统,减少火灾危害,保护人身及财产的安全,制定本规范。 第1.0.2条 本规范适用于工业和民用建筑中新建、改建、扩建工程设置的七氟丙烷全淹没灭火系统。 第1.0.3条 七氟丙烷灭火系统的设计,应做到安全可靠、技术先进、经济合理. 第 1.0.4条 七氟丙烷灭火系统可用于扑救下列火灾: 1、电气火灾; 2、液体火灾或可熔化的固体火灾; 3、固体表面火灾; 4、灭火前应能切断气源的气体火灾。 第1.0.5条 七氟丙烷灭火系统不得用于扑救下列物质的火灾: 1、含氧化剂的化学制品及混合物,如硝化纤维、硝酸钠等; 2、活泼金属,如钾、钠、镁、钛、锆、铀等; 3、金属氢化物,如氢化钾、氢化钠等; 4、能自行分解的化学物质,如过氧化氢、联胺等。 第1.0.6条 灭火剂七氟丙烷HFC227ea的化学分子式为CF3CHFCF3 ,其质量应符合下列技术指标。 性能 技术指标 纯度 ≥99.6%(摩尔/摩尔) 酸度 ≤3ppm 水含量 ≤10ppm 不挥发残留物 ≤0.01% 悬浮或沉淀物 不可见 第1.0.7条 七氟丙烷灭火系统设计,除执行本规范外,尚应符合现行的有关国家标准的规定。 2 术语、符号 2.1术语 第 2.1.1条 防护区 能满足七氟丙烷全淹没灭火系统要求的有限封闭空间。 第 2.1.2条 全淹没灭火系统 在规定的时间内,向防护区喷射一定浓度的七氟丙烷,并使

其均匀地充满整个防护区的灭火系统。 第 2.1.3条 预制灭火装置 按一定的应用条件,将七氟丙烷储存装置和喷放喷头等部件预先组合成套的灭火装置。 第 2.1.4条 组合分配系统 用一套七氟丙烷储存装置保护两个或两个以上防护区的灭火系统 第 2.1.5条 灭火浓度 在101Kpa大气压和规定的温度条件下,扑灭某种火灾所需七氟丙烷在空气中的最小体积百分比。 第 2.1.6条 惰化浓度 当引火源加入时,在101Kpa大气压和规定的温度条件下,能抑制空气中任意浓度的可燃气体或可燃液体蒸汽的燃烧发生所需的七 氟丙烷在空气中的最小体积百分比。 第 2.1.7条 浸渍时间 在防护区内维持设计规定的七氟丙烷浓度,使火灾完全熄灭所需的时间。 第 2.1.8条 充装率 充装在储存容器中的七氟丙烷质量与容器的容积之比,单位为kg/m3。 第 2.1.9条 泄压口 七氟丙烷喷放时,防止防护区过压的开口。 2.2 符号 表2.2 编号 符号 单位 涵 义 2.2.1 C % 七氟丙烷灭火(或惰化)设计浓度 2.2.2 D mm 管道内径 2.2.3 Fc cm2 喷头孔口面积 2.2.4 Fx m2 泄压口面积 2.2.5 g m/s2 重力加速度 2.2.6 H m 喷头高度相对“过程中点”时储存容器液面的位差 2.2.7 K / 海拔高度修正系数 2.2.8 L m 计算管段的计算长度 2.2.9 n 个 储存容器的数量 2.2.10 nd 段 管网计算管段数量 2.2.11 Ng 个 安装在计算支管流程下游的喷头数量 2.2.12 P0 绝压MPa 储存容器额定增压压力

水喷雾灭火系统设计规范样本

水喷雾灭火系统设计规范 GB50129-95 主编部门: 中华人民共和国公安部批准部门: 中华人民共和 国建设部 发布日期: 1995年1月14日施行日期: 1995年9 月1日 关于发布国家标准《水喷雾灭火系统设计规范》的通知 根据国家计委计综[1987] 2390号文的要求, 由公安部会同有关部门共同编制的《水喷雾灭火系统设计规范》, 已经有关部门会审, 现批准《水喷雾灭火系统设计规范》GB50129-95为强制性国家标准。自1995年9月1日起施行。 本标准由公安部负责管理, 其具体解释等工作由公安部天津消防科学研究所负责, 出版发行由建设部标准定额研究所负责组织。 中华人 民共和国建设部 1995 年1月14日

1 总则 1.0.1 为了合理地设计水喷雾灭火系统, 减少火灾危害, 保护人身和财产安全, 制定本规范。 1.0.2 本规范适用于新建、扩建、改建工程中生产、储存装置或装卸设施设置的水喷雾灭火系统的设计; 本规范不适用于运输工具或移动式水喷雾灭火装置的设计。 1.0.3 水喷雾灭火系统可用于扑救固体火灾、闪点高于60 ℃的液体火灾和电气火灾。并可用于可燃气体和甲、乙、丙类液体的生产、储存装置或装卸设施的防护冷却。 1.0.4 水喷雾灭火系统不得用于扑救遇水发生化学反应造成燃烧、爆炸的火灾, 以及水雾对保护对象造成严重破坏的火灾。 1.0.5 水喷雾灭火系统的设计, 除执行本规范的规定外, 尚应符合现行的有关国家标准的规定。 2 术语、符号 2.1 术语 2.1. 1 水喷雾灭火系统Water spray extinguishing system 由水源、供水设备、管道、雨淋阀组、过滤器和水雾喷头等组成, 向保护对象喷射水雾灭火或防护冷却的灭火系统。 2.1.2 传动管Transfer pipe

谨记!机房气体灭火系统设计的11点要求!

谨记!机房气体灭火系统设计的11点要求! 、火灾探测方式的选择 目前在机房消防设计中一般都采用:吊顶内采用点型定温和点型感烟探测器,因为吊顶内一般都安装有照明设备,这些设备老化后也极易产生不安全因素;吊顶下也采用点型定温和点型感烟探测器;地板内一般布置缆式线性定温探测器,因为点型探测器已经在此种工况内不能发挥它的正常作用。这种设计方法在国内非常普遍,消防审核及验收应该是没有任何问题的。 从探测速度上来讲,上述方法并不是最理想的。机房内的工况也是非常复杂的,例如,地板内布置缆式线性感温探测器,因为此类探测器在地板内呈s状布置,探温点毕竟很稀疏,而地板内的大量缆线着火一般都有大量的烟雾发出,然后才会有足够温升去触动缆式线性感温探测器,探测速度始终不尽如人意。有人提出在地板内加装点型烟感,此种提法只能在地板内不进行通风的前提下提,而且要考虑烟感的安装位置、数量,要考虑探测器本身的厚度(烟气向上),而且要考虑烟感的误报警。最理想的办法是:探测烟雾采用主动吸气式感烟探测装置,并对通风口做重要监视;探温采用差定温缆式感温探测器,除对通讯电缆做s 状布置外还应对通风口做同样重要的布置。 对吊顶内和吊顶下采用点型感温感烟探测器同样存在与地板内相同的问题。最理想的办法是:吊顶内和吊顶下都采用吸气式感烟探测方式,要探测速度更快还可直接将吸气管深入到机柜内进行探测;吊顶内和吊顶下采用缆式线性探测首先美观问题就不好处理,所以此时在吊顶内和

吊顶下安装点型定温比较切合实际,而机柜内应该布置差定温缆式感温探测器。此方法虽然复杂而且造价高,但探测速度和确认火灾速度是最快的。 从灭火药剂使用情况来看,及早发现火情后灭火器就可以灭掉,反而节省运行费用,也可将设备的损失降到最低;反之,火灾要形成到一定程度才能报警,此时有可能现场人员已经无法控制,灭火药剂最终也肯定会喷完,且火灾对机房设备的损失也会大的多。 2、灭火系统的选择 目前在有人值守机房主要采用七氟丙烷灭火系统。七氟丙烷灭火系统在机房消防设计中可以采用有管网全淹没灭火形式和无管网全淹没灭火形式,两种形式可在具体工程中进行投资比较后,决定采用哪一种方式。 3、灭火剂储备装正数量计算 七氟丙烷灭火系统的规范中有明确规定,防护区内的灭火浓度应校核设计最高环境温度下的最大灭火浓度,并应符合以下规定。 (1)对于经常有人工作的防护区,防护区内最大浓度不应超过正常安全的的NOAEL值。 (2)对于经常无人工作的防护区,或平时虽有人工作但能保证在系统报警后最长30s延时结束前撤离的防护区,防护区内灭火剂最大浓度不宜超过安全值。 虽然有明确规定,但通常好多工程设计中都将此问题忽略不计,原因有两点,设计者不了解此问题;有意避开此间锤,以求增加利润。然

气体灭火系统设计

七氟丙烷等其他灭火系统设计 一、系统设计参数 气体灭火系统设计参数和设置要求 1、防护区的设置要求 (1)防护区的划分——防护区宜以单个封闭空间划分;同一区间的吊顶层和地板下需同时保护时,可合为一个防护区;采用管网灭火系统时,一个防护区的面积不宜大于800㎡,且容积不宜大于3600m3;采用预制灭火系统时,一个防护区的面积不宜大于500㎡,且容积不宜大于1600m3。 (2)耐火性能 防护区围护结构及门窗的耐火极限均不宜低于0.50h;吊顶的耐火极限不宜低于0.25h。 全淹没灭火系统防护区建筑物构件耐火时间(一般为30min)包括:探测火灾时间、延时时间、释放灭火剂时间及保持灭火剂设计浓度的浸渍时间。延时时间为30s、释放灭火剂时间对于扑救表面火灾应不大于1min;对于扑救固体深位火灾不应大于7min。 (3)环境温度——防护区的最低环境温度不应低于-10℃。 2、安全要求 设置气体灭火系统的防护区应设疏散通道和安全出口,保证防护区内所有人员在30s内撤离完毕。防护区内的疏散通道及出口,应设消防应急照明灯具和疏散指示标志灯。防护区内应设火灾声报警器,必要时,可增设闪光报警器。 通信机房、电子计算机房等场所的通风换气次数应不小于每小时5次。防护区内设置的预制灭火系统的充压压力不应大于2.5MPa。 3、二氧化碳灭火系统的设计 (1)全淹没灭火系统的设计 二氧化碳设计浓度不应小于灭火浓度的1.7倍,并不得低于34%。 当防护区的环境温度超过100℃时,二氧化碳的设计用量应在设计规范计算值的基础上每超过5℃增加2%。当防护区的环境温度低于-20℃时,二氧化碳的设计用量应在设计规范计算值的基础上每降低1℃增加2%。 全淹没灭火系统二氧化碳的喷放时间不应大于1min。当扑救固体深位火灾时,喷放时间不应大于7min,并应在前2min内使二氧化碳的浓度达到30%。 (2)局部应用系统的设计 局部应用灭火系统的二氧化碳喷射时间不应小于0.5min。对于燃点温度低于沸点温度的液体和可熔化固体的火灾,二氧化碳的喷射时间不应小于1.5min。 4、其他气体灭火系统的设计 (1)一般规定 两个或两个以上的防护区采用组合分配系统时,一个组合分配系统所保护的防护区不应超过8个。灭火系统的储存装置72小时内不能重新充装恢复工作的,应按系统原储存量的

自动喷水灭火系统设计规范标准

自动喷水灭火系统设计规范 第一章总则 第1.0.1 条为了保卫社会主义建设和公民生命财产的安全,贯彻"预防为主,防消结合"的方针,合理设计自动喷水灭火系统,减少火灾危害,特制定本规范。第1.0.2 条自动喷水灭火系统设计,应根据建筑物、构筑物的功能,火灾危险性以及当地气候条件等特点,合理选择喷水灭火系统类型,做到保障安全、经济合理、技术先进。 第1.0.3 条本规范适用于建筑物、构筑物中设置的自动喷水灭火系统。本规范不适用于火药、炸药、弹药、火工品工厂等有特殊要求的建筑物、构筑物中设置的自动喷水灭火系统。 第1.0.4 条自动喷水灭火系统的设计,除执行本规范的规定外,尚应符合国家现行的有关设计标准和规范的要求。 第二章建筑物、构筑物危险等级和 自动喷水灭火系统设计数据的基本规定 第2.0.1 条设有自动喷水灭火系统的建筑物、构筑物,其危险等级应根据火灾危险性大小、可燃物数量、单位时间内放出的热量、火灾蔓延速度以及扑救难易程序等因素,划分以下三级: 一、严重危险级:火灾危险性大,可燃物多、发热量大、燃烧猛烈和蔓延迅速的建筑物、构筑物; 二、中危险级:火灾危险性较大,可燃物较多、发热量中等、火灾初期不会引起

迅速燃烧的建筑物、构筑物; 三、轻危险级:火灾危险性较小,可燃物量少、发热量较小的建筑物、构筑物。危险等级举例见附录二。 第2.0.2 条各危险等级的建筑物、构筑物其自动喷水灭火系统的设计喷水强度、作用 面积和喷头工作压力等应符合下规定: 湿式喷水灭火系统、干式喷水灭火系统和预作用喷水灭火系统设计的基本数据不应小于 表2.0.2 的规定。三种自动喷水灭火系统设计的基本数据表03.2.0.2 第2.0.3 条水幕系统的用水量,宜符合下列要求: 一、当水幕作为保护作用或配合防火幕和防火卷帘进行防火隔断时,其用水量不应小于0.5 升/秒。 二、舞台口、面积超过3 平方米的洞口以及防火水幕用水量不宜小于2 升/秒。第三章消防给水 第一节一般规定 第3.1.1 条自动喷水灭火系统的用水,可由室外给水管网、消防水池或天然水

灌浆防灭火

防火灌浆设计 灌浆系统选择 我国目前使用的灌浆系统,分为集中灌浆和分散灌浆两大类,其优缺点和适用条件比较见下表6-2-1: 表6-2-1 灌浆系统优缺点和适用条件比较表 由于8号煤层平均厚度为4.20m,灌浆量较大,生产相对集中,本设计采用集中灌浆系统,在风井工业场地建立一个集中灌浆站为全矿井服务。 浆材的配制及质量 灌浆材料采用主生产系统工业场地附近的粘土,对粘土要求如下: 1)加入少量水能够成浆;

2)泥浆的渗透性要好; 3)不含可燃物或助燃物; 4)泥浆要易于脱水和具有一定的稳定性; 注浆必须脱水:泥浆要易于脱水,,一般要求含砂量25-30%。泥浆注入井下,如果不易脱水,将会大量存积于采空区工作面下顺槽,并在矿山压力的作用下储备很高的能量。当在泥浆区下部进行回采或掘进工作时,易造成溃浆事故。 也不能脱水性太强,太易于脱水,泥浆在采空区形成堆积,起不到包裹煤体的作用。 5)泥土粒度要求 颗粒要小于2mm,而且细小颗粒(粘土:≤0.005mm者应占60%~70%)。 6)主要物理性能指标 密度为2.4~2.8; 塑性指数为9~11(亚粘土); 胶体混合物(按MgO含量计)为25%~30%; 含砂量为25%~30%(粒径为0.5~0.25mm以下); 7)泥土要便于开采、运输与制备。 因土源距煤矿风井5km,土质优良,容重1.3t/m3,属于亚粘土,塑性指数12,取土方便,矿井轻轨矿车可直接到达取土地点。且龙口矿业集团采用的土水比为1:3-5,灌浆系数0.03-0.05,因此,用黄土作为该矿的灌浆材料。 地面制浆工艺流程 浆液的制备与运输可按下面的流程进行: 常用的制浆工艺主要有两种:水力取土机械制浆法和机械搅拌制浆。水力取土机械制浆法,多采用于制备黄泥浆,可就地取材;机械搅拌制浆常用于制浆材料距生产源距矿井较远的材料。本设计采用机械搅拌制浆工艺。工艺流程如下:采土场(推土机、装载机)→自卸汽车→泥浆搅拌池(搅拌机)→贮浆池(筛子)→泥浆泵→灌浆管(从回风斜井下井)。 1)矸石页岩灌浆

气体灭火系统设计参数

第一章气体灭火系统设计参数 气体灭火系统的设计应以《气体灭火系统设计规范》(GB50370-2005)、《气体灭火系统施工及验收规范》(GB50263-2007)等国家现行规范和标准为依据,根据保护对象、系统设置类型、灭火剂种类等不同,确定设计基本参数。 一、防护区的设置要求 (一)防护区的划分 防护区的划分应根据封闭空间的结构特点和位置来划分,防护区划分应符合下列规定:防护区宜以单个封闭空间划分;同一区间的吊顶层和地板下需同时保护时,可合为一个防护区;采用管网灭火系统时,一个防护区的面积不宜大于800㎡,且容积不宜大于3600m3;采用预制灭火系统时,一个防护区的面积不宜大于500㎡,且容积不宜大于1600m 3。 (二)耐火性能 防护区围护结构及门窗的耐火极限均不宜低于0.50h;吊顶的耐火极限不宜低于0.25h。 全淹没灭火系统防护区建筑物构件耐火时间(一般为30min)包括:探测火灾时间、延时时间、释放灭火剂时间及保持灭火剂设计浓度的浸渍时间。延时时间为30s、释放灭火剂时间对于扑救表面火灾应不大于1min;对于扑救固体深位火灾不应大于7min。 (三)耐压性能 在全封闭空间释放灭火剂时,空间内的压强会迅速增加,如果超过建筑构件承受能力,防护区就会遭到破坏,从而造成灭火剂流失、灭火失败和火灾蔓延的严重后果。防护区围护结构承受内压的允许压强,不宜低于1200Pa。 (四)泄压能力 对于全封闭的防护区,应设置泄压口,七氟丙烷灭火系统的泄压口应位于防护区净高的2/3以上。防护区设置的泄压口,宜设在外墙上。泄压口面积按相应气体灭火系统设计规定计算。对于设有防爆泄压设施或门窗缝隙未设密封条的防护区可不设泄压口。 (五)封闭性能 在防护区的围护构件上不宜设置敞开孔洞,否则将会造成灭火剂流失。在必须设置敞开孔洞时,应设置能手动和自动关闭的装置。在喷放灭火剂前,应自动关闭防护区内除泄压口外的开口。 (六)环境温度 防护区的最低环境温度不应低于-10℃。 二、安全要求

机房气体灭火系统解决设计方案

通信机房气体灭火系统解决方案 一、机房火灾危险主要因素 (1)机房电气的消防安全,必须在设计时就要充分考虑,但是就目前机房建设而言,许多项目业主都以总包的形式包给专业的机房建设公司,合同中涵盖所有装修、主设备、软件以及消防设施,基本达到交钥匙工程,业主对消防的要求基本上是“消防部门验收过关,万事大吉!”,这种消防观念基本上是停留在被动消费层面,我国的消防管理力量与其它发达国家相比是非常薄弱的,消防部门不可能每个工程都监管的无懈可击。利润最大化驱使消防投入在总包合同中艰难前进,投资不足这只是其一; 其二,机房主设备大多数是高精尖设备,但消防设施还停留在“通过验收就行!”的层面,使损失减少到最小可能是每个消防设计人员最想达到的设计境界,目前市场上的不少消防产品可以做到,但大家一提到此问题立刻出现一个问题:钱不够!;其三,机房建设公司在计算机和装修方面是很专业的,但对消防应用科学都很陌生,往往在估计投资时过于克扣,使得很多项目估价不足,机房建设公司应该与消防公司经常进行交流,并确定三到四家消防和作单位进行长期合作,这样一来可以降低造价而提高消防工程的性能。 (2)电气线路短路、过载、接触电阻过大等引发火灾事故; (3)静电产生火灾。通信设备的运行及工作人员所穿的衣服等都能产生静电。如果电信机房接地处理不当,产生的静电负荷不能很快导人大地而是越积越多,一旦形成高电位,就会发生静电导电现象,产生火花并引燃周围可燃物发生火灾; (4)雷击等强电侵入导致火灾。雷电放电时所产生的电效应,能产生高达数万伏、甚至数十万伏的冲击电压,足以烧毁电力线路和设备,引发绝缘击穿,发生短路引发火灾。雷电放电时所产生的热效应、静电感应以及电磁感应都可能引发火灾;

灌浆防灭火系统改造设计

玉华煤矿灌浆防灭火系统改造设计 一、矿井概况 玉华煤矿位于陕西省铜川市西北37km处的焦坪矿区东北端,地理位置处于铜川市和宜君、黄陵、旬邑三县交界处。该矿交通便利,自铜川市有沥青路面直达矿井工业场地,矿区铁路专用线梅(家坪)~七(里镇)线的梅~前(河)段(71km)于1975年修通,煤炭可通过铁路外运。井田走向长7~10.5km,倾斜宽2.8~4.8km,面积约34km2。 井田主要含煤层为中下侏罗统延安组地层,可分四个含煤组。从上到下分别为一、二、三、四号煤组,煤层总厚度为12.7m,其中四号煤组,煤层厚度较大且较稳定,全区可采;二、三号煤组仅局部可采(且不规则);一号煤组不可采。4-2煤层厚0~31.6m,一般厚10m,为本井田主要可采煤层,除局部地区在沉积过程中因冲蚀作用变薄尖灭外,井田内全部可采。 玉华煤矿由西安煤矿设计院设计,设计生产能力:1.5Mt/a,1991年12月正式开工建设,2001年10月矿井基本建成,11月试生产,2002年8月18日正式投产,2005年生产原煤2.0Mt/a;2007年改扩建完成后,生产能力可达3.0Mt/a。采煤方法为倾斜长壁综采放顶煤采煤法,矿井采用立井和斜井混合、单水平、分区两翼开拓方式。矿井目前布置1个综放工作面,4个掘进工作面(2个综掘,2个炮掘)。 二、矿井灌浆防灭火现状

矿井采用的防灭火措施主要有黄泥灌浆、汽雾阻化、采空区注氮等。其中以黄泥灌浆为主,南风井广场设有灌浆站,主管路从南回风井引入,管径133mm,管长1010m,然后分设管径为108mm的支管至灌浆地点,主要采用滞后工作面采空区灌浆和已采面闭墙定点灌浆。 随着煤矿防灭火技术的不断更新发展,新型防灭火技术在煤矿安全生产中起到重要的作用,而现有的防灭火灌浆系统难以满足防灭火新工艺、新技术的综合应用,为此,需对现行灌浆系统进行改造。 三、灌浆防灭火系统改造设计 (一)设计依据 1、《煤矿安全规程》 2、《矿井通风安全质量标准化标准》 3、《矿井质量标准化标准及考核评级办法》 (二)本次设计目的 1. 采用制浆设备、浆液缓冲池,控制灌浆浓度和流量,实现灌浆系统自动化。 2. 实现灌浆、稠化胶体、复合胶体以及高分子胶体防灭火新材料、新技术的综合应用。 (三)灌浆、注胶防灭火系统设计 地面固定式灌浆、注胶防灭火系统,水、电稳定,自动化程度高,注胶流量大,黄土等用量较大的防灭火材料通过管道输送至井下,大大减轻了防灭火材料井下运输量,井下仅需添加用量较少的促凝剂或胶凝剂,工作量较小。可对有发火危险区域进行高强度注灌,将自然发火危险消灭在萌芽状态。

悬挂式七氟丙烷气体灭火装置设计规范

悬挂式七氟丙烷气体灭火装置设计规范 1、设计依据 1)国家标准GB50370《气体灭火系统设计规范》; 2)国家标准CB50263《气体灭火系统施工及验收规范》; 3)国家现行其他相关的规范、标准、规则等。 2、设计条件 1 )保护对象(用于按照有关规范选定灭火设计浓度C1); 2)防护区的尺寸(用于计算防护区的净容积 V); 3)防护区的最低和最高环境温度(用于计算七氟丙烷灭火剂的蒸汽比容S); 4)防护区所处的海拔高度(选定海拔高度修正系数K)。 3、设计过程 1 )提出系统对防护区的要求; 2)根据保护对象确定灭火浓度; 3)计算防护区净容积; 4)计算灭火剂设计用量; 5)确定装置灭火喷放时间; 6)选定灭火剂储瓶规格及数量; 7)选定装置的型号及数量; 8)计算灭火剂存储用量及储瓶的充装率; 9)计算防护区泄压口面积。 4、系统对防护区的要求 1 )防护区宜以单个封闭空间划分;同一区间的吊顶上和地板下需同时保护时,可合为 一个防护区。

2)一个防护区的面积不宜大于 500卅,且容积不宜大于1600用。 3)防护区应实行完全的防火分隔。防护区围护结构及门窗的耐火极限均不宜低于 0.5h ;吊顶的耐火极限不宜低于0.25h。当防护区的相邻区域设有水喷淋或其他灭火 系统时,其隔墙或外墙上的门窗的耐火极限可低于0.25h,但不应低于 0.25h。当吊顶上和工作层划为同一防护区时,吊顶的耐火极限不做要求。 4)防护区围护结构承受内压的允许压强,不宜低于1200P& 5)防护区的门应为向疏散方向开启的防火门,并安装自动闭门器,以保证在气体喷放时能够处于关闭状态。但亦应保证用于疏散的门在任何状态下,都可以从防护区内部打开。 6)防护区内影响气体灭火效果的各种设备都应能保证在喷放气体前联动停止或关闭,除泄压口外的开口应自动关闭。 7)防护区应有保证人员在30s内疏散完毕的通道和出口。 8)防护区内的疏散通道和出口应设置应急照明和疏散指示标志。 9)防护区的入口处应设置灭火系统的永久性标志牌和气体释放指示灯。 10)灭火后的防护区应通风换气,地下防护区和无窗或设固定窗扇的地上防护区,应设置机械排风装置,排风口宜设在防护区的下部并应直通室外。通风换气的次数按照不少于每小时5次考虑。有可开启外窗的防护区,可采用自然通风换气的方法进行通风换气。 11)防护区应设置泄压口,泄压口应设置在防护区净高的2/3以上,且宜设置在外墙上。当防护区不存在外墙时,可考虑设置在与走廊相隔的内墙上。 12)防护区的最低环境温度不宜低于—10°C。 5、灭火浓度及灭火设计浓度的确定 1)七氟丙烷灭火系统的灭火设计浓度不应小于灭火浓度的 1.3倍,惰化设计浓度不应小于惰化浓度的1.1倍。 2)固体表面火灾的灭火浓度为 5.8%,其他灭火浓度可按附表1取值,惰化浓度可按附表2取值。 3)图书、档案、票据和文物数据库等防护区,灭火设计浓度宜采用10% 4)油浸变压器、带油开关的配电室和自备发电机房等防护区,灭火设计浓度宜采

相关文档
最新文档