二氧化硅薄膜器件

二氧化硅薄膜器件
二氧化硅薄膜器件

二氧化硅薄膜器件

为了得到具有较高品质的薄膜样品,制备方法十分重要,现在制备具有阻变性质薄膜的主要方法有溶胶-凝胶、脉冲激光溅射、金属有机化合物化学气相沉淀和射频溅射[20]。通过溶胶-凝胶法制备SiO2薄膜能够节约成本,成膜面积大,且容易对SiO2进行各种掺杂实验,所以本文采用溶胶-凝胶法在玻璃、塑料、IT O衬底上制备薄膜。

溶胶-凝胶法(Sol-gel):Sol-gel法的基本原理将薄膜材料的各组分按照一定的化学计量比例比溶于有机溶剂中,经过水解反应后聚合,形成溶胶,经过一段时间转变成具有一定空间结构的凝胶,最后经过旋涂、烘干处理制备出所需要的薄膜。溶胶-凝胶法具有操作简单、均匀性好、容易掺杂、设备简单、容易控制、成本低等优点。这种方法的缺点是:形成薄膜的致密性差、缺陷多从而导致测出的漏电流、表面均匀性不太理想。

ITO玻璃结构图

3.1制备SiO2薄膜样品

3.1.1溶胶-凝胶法制备二氧化硅胶体

操作步骤:

(1)用一次性滴管分别量取TEOS和乙醇(按计算的量),加入到干净小瓶中,用镊子夹取清洗干净磁子,放入小瓶中,放置在磁力搅拌机上搅拌均匀;

(2)用滴管吸取DI加入到(1)中的瓶子中,搅拌3-5天;

(3)按照不同配比重复上述步骤重复上述步骤;

按照上述步骤将TEOS、乙醇、DI按照不同的摩尔比制成胶体

(TEOS:乙醇:DI=1:2/3:5;TEOS:乙醇:DI=1:2:5:;TEOS:乙醇:DI= 1:3:5 )

图3.1.1 溶液配制方案示意图图3.1.2 SiO2薄膜制备工艺流程图

3.1.2 薄膜样品衬底的清洗

在制备二氧化硅RRAM实验中,以ITO作为实验衬底。首先拿出ITO衬底,将其放入烧杯中,加入丙酮,放入超声波清洗仪中震荡清洗5min,然后用乙醇清洗衬底5min,主要用来清洗基片表面有机物和无机物。清洗完毕后,拿出基片放在滤纸上在高温烤灯下烘干。

3.1.3 二氧化硅薄膜的制备

(1)悬涂仪参数设置:

设置低速为500rmp/s,旋转时间设为5秒;

设置高速为3000rmp/s,旋转时间设为30秒。

(2)二氧化硅薄膜的旋涂:

插上真空泵、旋涂仪电源,清洗吸盘表面;

开启悬涂仪电源,按下“CONTROL”;

用干净镊子取基片放在吸盘上,放在中间,按下“V ACUUM”吸住基片;

设置好对应的参数;

用一次性滴管将制好的胶体滴在衬底上,盖上盖子,按下“START”。

机台停止运转后后,用镊子取下基片,旋涂结束后关闭电源。

3.1.4 顶电极制备

镀电极前在薄膜样品表面放上200um孔径的mask。电极镀制在常温真空下进行,用电子束蒸发设备进行蒸镀。

3.2 二氧化硅薄膜性能测试与分析

对于已经制备好的薄膜,主要对薄膜的内部和表面结构,以及电学性能进行分析。

图3.2.3 探针与电极之间接触示意图

3.2.1 SiO2薄膜的电学性能

在SiO2薄膜样品上镀上Ag电极,形成金属-SiO2-Ag三明治结构,利用已经变成好的程序对薄膜样品电学性能进行测试。将四探针的两个探针分别与电极和ITO薄膜相连。如图3.2.1所示。

图3.2.2 Ag/SiO2/ITO器件的I-V曲线(DI量多)

图3.2.3 Ag/SiO2/ITO器件的I-V曲线(DI量少)

图3.2.2与图3.2.3都是SiO2器件的I-V曲线,两个器件的胶体配比不同,图中显示出期间的双极阻变行为,测试过程中,先对器件进行Set然后Reset重复进行。从图中可以看出器件具有较高的On-Off比(>10)。DI含量少的数据比较分散,Reset过程不稳定。

两个图比较可以发现,DI含量少的配比中具有更高的On-Off比。所以器件的性能会表现的更好。

3.2.2 SiO2器件的高低阻态

图3.2.3 器件的高低阻态(上1为DI多,上2为DI少)

两个图都是在0.2V下重复200次循环所测得的器件高低阻态,前面介绍到存储窗口为高低阻态阻值比表征存储器存储能力。DI含量少的器件中R HRS/R LRS大于DI含量多的器件。

表明DI含量少,器件的存储能力高。

3.2.3 掺杂对SiO2薄膜的影响

考虑到之前所测量的器件具有较大的孔隙、均匀性不太好,实验决定掺杂百万分子量的PVP 来增加溶液的均匀性以及粘稠度,目的是让增加膜厚、均匀性、填补孔隙。对制得的掺杂(PVP)SiO2对其进行电学性能测试。

图3.2.4 SiO2(掺杂PVP)的I-V特性

从图中可以看出,掺杂了PVP的器件在Set-Reset过程中会发生两次Set过程。可能由

于实验掺杂的PVP量较多导致。

3.2.4 SiO2器件的重复性

实验把DI含量较多的胶体,搅拌几天后,进行旋涂,旋涂后发现形成较厚的薄膜,可以重

复测试。

图3.2.5 DI含量多的薄膜样品

图3.2.5为DI含量多的样品重复500次所做出的图。实验总共测试了3000次。可以看出图中的On-Off比很稳定而且比较大。表明器件可以重复运行多次测量。测量过程中会有波动,高低阻态分布不明显。

二氧化硅的制备

纳米二氧化硅颗粒的制备与表征 一、实验目的 颗粒。 1、学习溶胶—凝胶法制备纳米SiO 2 颗粒物相分析和粒径测定。 2、利用粒度分析仪对SiO 2 颗粒进行表征。 3、通过红外光谱仪对纳米SiO 2 4、通过热重分析仪测试煅烧温度。 二、实验原理 纳米SiO 具有三维网状结构,拥有庞大的比表面积,表面上存在着大量2 的羟基基团, 亲水性强, 众多的颗粒相互联结成链状,链状结构彼此又以氢键 相互作用,形成由聚集体组成的立体网状结构。 图1 纳米二氧化硅三维网状结构 图2 纳米二氧化硅表面上存在着大量的羟基基团

溶胶凝胶法(Sol-Gel法):利用活性较高的前驱体作为原料,在含水的溶液中水解,生成溶胶,然后溶胶颗粒间进一步发生相互作用,与溶剂共同生成凝胶,干燥后、煅烧获得前驱体相应的氧化物。 第一步水解: 硅烷的水解过程ROH ?→ - + - -2 - ? Si+ OH O Si H OR 第二步缩合: 硅烷的缩聚过程O ?→ ? - - - - - - - + Si O H - Si Si + HO Si2 OH 总反应:ROH - - ? - - - + ?→ Si 22+ Si O O Si2 OR H 硅烷的浓度,硅烷溶液的pH 值,溶剂成分,水解时间与温度均会影响到硅烷的水解缩聚过程。 其中,pH 值能影响硅烷溶液的水解缩聚反应速率。一般认为酸性和碱性条件下均有利于硅烷的水解反应,而碱性条件下更能促进缩聚反应的进行。因此,选择合理的pH 值能控制硅烷的水解与缩合反应速率。 水含量除了影响硅烷的水解与缩聚反应速率外,还影响其溶解性;而醇溶剂对硅烷分子起到助溶与分散的作用,还起到调节水解速率的作用。 三、仪器及试剂 仪器常规玻璃仪器,不同型号移液枪,坩埚,研钵,水浴锅,磁子,磁力搅拌器,烘箱,马弗炉,傅里叶红外光谱仪,差热-热重分析仪,粒度分析仪; 试剂乙醇(AR),去离子水,TEOS,1:1 氨水,浓氨水、浓盐酸,精密pH 试纸。 四、实验步骤 ①Stober 法制备纳米SiO 颗粒 2 取75mL 无水乙醇于烧杯中,加入25mL 去离子水,搅拌使其均匀。向其中加入10mL TEOS,同时搅拌。用1:1 氨水溶液调节硅烷溶液的pH 值至7,搅拌10min。将上述硅烷溶液放入水浴锅中,水温35℃,陈化1h。向溶液中逐滴加

工作气压对射频磁控溅射HfO2薄膜工艺影响的研究

工作气压对射频磁控溅射HfO2薄膜工艺影响的研究 发表时间:2019-03-14T15:24:43.167Z 来源:《知识-力量》2019年6月中作者:刘汉伟 [导读] 二氧化铪可以用来作为取代传统二氧化硅的一种很好的高介电常数。由于然而,在制备薄膜方法中,氧化铪层的结构和性质强烈依赖于沉积条件和后退火处理的技术。 (大连东软信息学院) 摘要:二氧化铪可以用来作为取代传统二氧化硅的一种很好的高介电常数。由于然而,在制备薄膜方法中,氧化铪层的结构和性质强烈依赖于沉积条件和后退火处理的技术。本文应用磁控溅射法来制备二氧化铪薄膜,采用扫描电子显微镜(SEM)分析其薄膜表面形貌及粗糙程度和组织组成。为射频磁控溅射制备HfO2工艺条件的研究提供了借鉴。 关键词:二氧化铪;工作气压;射频磁控溅射;退火 1 引言 在集成电路的飞速发展中,产业存着一则由Gordon Moore先生提出的摩尔定律,提出内容为每隔的摩尔定律,提出内容为每隔18至24个月集成电路芯片上所有的数目翻一番。在摩尔定律下,集成电路的度随着时间不断上升特征尺寸减小。在人们持续不断的研究中,发现一系列可以作为氧化硅替代者的高介电常数材料,其中氧化铪材料备受关注,基于热力学研究和带隙测量,氧化铪被认为是高K电介质中替代二氧化硅材料的最佳候选。氧化铪薄膜具有较高的硬度、高的化学稳定性和优良的介电性能。氧化铪具有合适的介电常数、禁带宽度较大、与硅基CMOS集成电路有着优异的兼容性,因此,氧化铪可以用来作为取代传统二氧化硅的一种很好的高介电常数。由于然而,在制备薄膜方法中,氧化铪层的结构和性质强烈依赖于沉积条件和后退火处理的技术。 本文应用磁控溅射法来制备二氧化铪薄膜,采用扫描电子显微镜(SEM)分析其薄膜表面形貌及粗糙程度和组织组成。 2 实验 实验应用射频磁控溅射法制备HfO2薄膜,通过确定基本工艺参数,控制变量参数,对制备完成的HfO2薄膜进行表征分析,分析其晶体结构、表面形貌。 实验镀膜设备是中国科学院沈阳科学仪器股份有限公司所生产的TRP-450高真空三靶磁控溅射镀膜系统和北京世纪久泰真空技术有限公司生产的高真空热蒸发薄膜沉积系统。其主要由真空溅射室、电气控制柜、循环水冷系统组成;真空溅射室采用卧式圆筒型结构,尺寸为450×400mm,前开门结构,选用不锈钢材料制造,氩弧焊接,表面进行化学抛光处理,接口采用金属垫圈密封或氟橡胶圈密封。实验制备应用的靶材为纯金属Hf(99.99%)靶材,石英玻璃作为衬底片。溅射功率400W,氩氧比列2/9,本地真空度为3×10-4Pa,工作气压分别为0.2Pa,0.25Pa,0.3Pa,0.35Pa,0.4Pa,0.45Pa和0.5Pa。 3.结果与讨论 图1 工作气压与薄膜溅射速率之间的关系 由图1中可以明显看出,在实验中选取的工作气压范围内,工作气压对沉积速率的影响趋势是明显的。随工作气压升高,沉积速度呈上升趋势,而当工作气压达到0.3Pa以后沉积速度基本上维持不变。之所以出现这样的现象是由于随着工作气压的增高,带来两方面的作用效果。一方面工作气压的升高使得真空室内粒子数量的增加,对靶材的轰击溅射作用增强,其溅射产额增加,为薄膜合成所提供的金属源产量增加,必然提高薄膜的合成速度;另一方面工作气压的升高增加了各种粒子在向基片运动过程中碰撞几率,能够减少到达基片合成薄膜的粒子数量。两方面因素的综合作用,使得在一定的工作气压范围内表现出沉积速度的增加趋势。而当工作气压升高到一定程度后,沉积速度会显示降低的趋势。在本实验中,气压在0.3~0.4Pa之间是沉积速度达到最大,在0.5Pa附近已经有下降趋势。 图2为HfO2薄膜在制备得到薄膜退火后的SEM图。从图中可以得到,退火可以使薄膜表面的增强迁移能力,容易获得致密程度高的薄膜。

采用热氧化方法制备的二氧化硅从结构上看是的。

采用热氧化方法制备的二氧化硅从结构上看是()的。 (A)结晶形态(B)非结晶形态(C)可能是结晶形态的,也可能是非结晶形态的(D)以上都不对 多选题 下列物质中是结晶形态二氧化硅的有()。 (A)硅土(B)石英(C)磷石英(D)玻璃(E)水晶 判断题 结晶形态二氧化硅是由Si-O四面体在空间规则排列所构成的。( ) 非结晶态二氧化硅的网络疏松,不均匀而且存在孔洞。( ) 结晶与非结晶形态二氧化硅的基本差异在于前者的结构具有周期性,而后者则不具有任何周期性。( ) 二氧化硅性质 单选题 采用热氧化方法制备的二氧化硅从结构上看是()的。 (A)结晶形态(B)非结晶形态(C)可能是结晶形态的,也可能是非结晶形态的(D)以上都不对 结晶形态和非结晶形态二氧化硅的基本差异在于()。 (A)前者前者由Si-O四面体组成,而后者则不含Si-O四面体(B)前者的结构具有周期性,而后者则不具有任何周期性(C)前者的密度大,而后者的密度小(D)前者的氧都是桥联氧,而后者的氧不是桥联氧 二氧化硅薄膜的折射率是表征其()学性质的重要参数。 (A)电(B)磁(C)光(D)热 下列几种氧化方法相比,哪种方法制得的二氧化硅薄膜的电阻率会高些()。 (A)干氧氧化(B)湿氧氧化(C)水汽氧化(D)与氧化方法无关 判断题 结晶形态二氧化硅是由Si-O四面体在空间规则排列所构成的。( ) 热氧化法制备二氧化硅 单选题 干氧氧化中,氧化炉内的气体压力应(A)一个大气压。 (A)稍高于(B)大大于(C)等于(D)没有要求 干氧氧化法有一些优点,但同时它的缺点有()。 (A)生长出的二氧化硅中引入很多可动离子(B)氧化的速度慢(C)生长的二氧化硅缺陷多(D)生长的二氧化硅薄膜钝化效果差 多选题 干氧氧化法具备以下一系列的优点()。 (A)生长的二氧化硅薄膜均匀性好(B)生长的二氧化硅干燥(C)生长的二氧化硅结构致密(D)生长的二氧化硅是很理想的钝化膜(E)生长的二氧化硅掩蔽能力强 判断题 水汽氧化法指的是在高温下,硅与高纯水产生的蒸气反应生成二氧化硅。( ) 湿氧氧化既有干氧氧化的优点,又有水汽氧化的优点,所以其氧化制备的二氧化硅薄膜的质量最好。( ) 湿氧氧化的氧化剂既含有氧,又含有水汽。( ) 二氧化硅生长的机制 单选题

二氧化硅薄膜制备及检测

二氧化硅的化学性质 二氧化硅的化学性质不活泼,不与水反应,也不与酸(氢氟酸除外)反应,但能与碱性氧化物或碱反应生成盐。例如:高温 2NaOH+SiO2===Na2SiO3+H2O CaO+SiO2===CaSiO3 二氧化硅的化学性质特点:SiO2是酸性氧化物,是硅酸的酸酐。然而SiO2与其它的酸性氧化物相比却有一些特殊的性质。 (1)酸性氧化物大都能直接跟水化合生成酸,但SiO2却不能直接跟水化合。它所对应的水化物——硅酸,只能用相应的可溶性硅酸盐跟酸反应制得(硅酸不溶于水,是一种弱酸,它的酸性比碳酸还要弱(2)酸性氧化物一般不跟酸作用,但SiO2却能跟氢氟酸起反应,生成气态的四氟化硅。SiO2+4HF==SiF4↑+2H2O 普通玻璃、石英玻璃的主要成分是二氧化硅。因而可用氢氟酸来腐蚀玻璃。用氢氟酸在玻璃上雕花刻字,实验室里氢氟酸不能用含二氧化硅的玻璃、陶瓷、瓷器、陶器盛放,一般可用塑料瓶。 (3)SiO2与强碱溶液反应可生成水玻璃,它是一种矿物胶,常用作粘合剂。所以实验室盛放碱溶液的试剂瓶不用玻璃塞,而用橡胶塞。 二氧化硅在IC中的用途 二氧化硅薄膜最重要的应用是作为杂质选择扩散的掩蔽膜,因此需要一定的厚度来阻挡杂质扩散到硅中。二氧化硅还有一个作用是对器件表面保护和钝化。二氧化硅薄膜还可作为某些器件的组成部分: (1)用作器件的电绝缘和隔离。 (2)用作电容器的介质材料。 (3)用作MOS晶体管的绝缘栅介质。 1 二氧化硅(SiO2)薄膜的制备 针对不同的用途和要求,很多SiO2薄膜的制备方法得到了发展与应用,主要有化学气相淀积,物理气相淀积,热氧化法,溶胶凝胶法和液相沉积法等。 1.1化学气相淀积(CVD) 1969年,科莱特(Collett)首次利用光化学反应淀积了Si3N4薄膜,从此开辟了光化 学气相淀积法在微电子方面的应用。 化学气相淀积是利用化学反应的方式,在反应室内,将反应物(通常是气体)生成固态生成物,并淀积在硅片表面是的一种薄膜淀积技术。因为它涉及化学反应,所以又称CVD (Chemical Vapour Deposition)。 CVD法又分为常压化学气相沉积(APCVD)、低压化学气相沉积(LPCVD)、等离子增强化学气相沉积(PECVD)和光化学气相沉积等。此外CVD法制备SiO2可用以下几种反应体系:SiH4-O2、SiH4-N2O、SiH2Cl2-N2O、Si(OC2H5)4等。各种不同的制备方法和不同的反应体系生长SiO2所要求的设备和工艺条件都不相同,且各自拥有不同的用途和优缺点。目前最常用的是等离子体增强化学气相沉积法。 1.1.1等离子体增强化学气相沉积法 这种技术利用辉光放电,在高频电场下使稀薄气体电离产生等离子体,这些离子在电场中被加速而获得能量,可在较低温度下实现SiO2薄膜的沉积。这种方法的特点是沉积温度可以降低,一般可从LPCVD中的700℃下降至200℃,且生长速率快,可准确控制沉积速率(约1nm樸s),生成的薄膜结构致密;缺点是真空度低,从而使薄膜中的杂质含量(Cl、O)较高,薄膜硬度低,沉积速率过快而导致薄膜内柱状晶严重,并存在空洞等。

SiO2的制备

改进众所周知的Stober 方法[135],通过正硅酸乙脂(TEOS)在含有水(H2O)、 氨水(NH3OH)的乙醇混合溶液中水解,制备了不同尺寸(300,500,900 和1200 nm) 的二氧化硅(SiO2)微球。通过这种方法制备的二氧化硅(SiO2)微球单分散、尺寸 分布窄、不团聚,尺寸大小依靠反应物的浓度。典型的实验是混合正硅酸乙脂(TEOS)、 水(H2O)、氨水(NH3OH)、乙醇(C2H5OH),在室温下搅拌 4 小时,结果得到白色 的SiO2胶体悬浮液。用离心机把SiO2从悬浮液中离心出来,之后用乙醇洗三次。比 600 nm 大的SiO2,不能直接通过Stober 方法制备,需要种子生长过程。在种子生长 过程,把一定量的SiO2加入NH3,H2O 和C2H5OH 的混合溶液之后,加入TEOS 和水, 这个过程与Stober 相似。表3-1 列出了制备不同尺寸的SiO2的实验条件。 3.2. 2 SiO2@Y2O3:Eu3+ 核壳材料的制备 利用Pechini 型溶胶-凝胶法在SiO2球上包覆Y2O3:Eu3+层,制备SiO2@Y2O3:Eu3+ 核壳发光材料[136-138]。搀杂的Eu3+的浓度占基质Y2O3中Y3+浓度的5%,这是最优化 条件[138]。称取化学计量比的Y2O3 和Eu2O3 (Y1.9Eu0.1O3),用硝酸溶解,冷却到室 温,加入一定量的乙醇和水的混合溶液(其体积比为7:1),加入柠檬酸作为络合 剂,柠檬酸与金属离子的摩尔比为2:1,再加入一定量的聚乙二醇(0.08g/ml)作 为交联剂, 溶液搅拌2 小时形成溶胶,然后在搅拌的条件下加入SiO2 粒子,搅拌5 小时,用离心机把悬浮液离心。所得试样在100 oC 干燥两个小时,然后以每小时120 oC 的升温速度烧结到900 oC,并保留2 小时。这样的过程反复几次,以增加Y2O3:Eu3+ 层的厚度。实验过程如图3-1 所示。为作对比,把包覆之后的溶胶蒸发形成凝胶,烧 结到相应的温度,制备纯的Y2O3:Eu3+粉末。表3-1 制备不同尺寸SiO2 的实验条件:C 是浓度,单位是mol/L, N 是反应次数,t是反应时间 图3-1 核壳SiO2@Y2O3:Eu3+发光粉的制备过程示意图

基片温度对磁控溅射沉积二氧化硅的影响

书山有路勤为径,学海无涯苦作舟 基片温度对磁控溅射沉积二氧化硅的影响 本文详细地研究了基片温度对磁控溅射沉积二氧化硅的影响,随着基片 温度的增加,溅射沉积速率下降明显,薄膜的折射率也出现上升趋势,薄膜也由低温时的疏松粗糙发展为致密光滑。250℃时的溅射沉积速率仅为室温时的1/3,由此, 针对间歇式在大面积玻璃上沉积二氧化硅薄膜,我们采取了沉积完 本课题组在开发一 1、实验样品由国产JGP450 型磁控溅射系统制备,溅射时采用射频电源,通过Si 靶与O2 反应溅射制备二氧化硅薄膜。基片为单面抛光的单晶硅片,在溅射之前经过乙醇超声清洗30 min。Ar 和O2 的流量一直保持为60 sccm 和20 sccm。待本底真空达到8 乘以10- 4 Pa 后,通入Ar,调节起辉压强0.3 Pa,待基片温度稳定后,起辉预溅射10 min,功率为100 W,通入O2,开始二氧化硅薄膜的溅射。薄膜的厚度和折射率n 通过Filmetrics 公司的F20- UV 测量,溅射速率则由薄膜的厚度和沉积时间的比值计算得到,并通过Hitachi S- 4800 来观察薄膜的表面情况。 2、结果与讨论如表1 所示,对于不同的基片温度,均为100 W 的溅射功率,为了适应F20- UV 的测量范围,减少测量误差,在样品的制备过程中采用不同的沉积时间,随着基片温度的增加,样品的沉积时间也相应增加。 二氧化硅薄膜的折射率随着基片温度的增加出现线性增加的趋势。室温 下沉积的薄膜的折射率为1.4628,当温度上升到250℃时,折射率达到1.669。 出现上面所述的情况,主要是因为基片温度的增加,基片表面的二氧化 硅分子的能量也增加,在基片表面的迁移能力增加,相对低温时薄膜会变得更

纳米二氧化硅的制备

纳米二氧化硅的制备 专业:凝聚态学号:51110602021 作者:张红敏 摘要 本文简单综述了一下纳米二氧化硅的各种制备方法,包括化学沉淀法、气相法、溶胶-凝胶法、微乳液法、超重力法、机械粉碎法,并对未来制备纳米二氧化硅的方法提出了一点展望。 关键词:纳米二氧化硅,制备,展望

1. 引言 纳米二氧化硅为无定型白色粉末,是一种无毒、无味、无污染的无机非金属材料,其颗粒尺寸小,粒径通常为20~200nm,化学纯度高,分散性好,比表面积大,耐磨、耐腐蚀,是纳米材料中的重要一员。由于纳米二氧化硅表面存在不饱和的双键以及不同键合状态的羟基,具有常规粉末材料所不具备的特殊性能,如小尺寸效应、表面界面效应、量子隧道效应、宏观量子隧道效应和特殊光电性等特点[1],因而表现出特殊的力学、光学、电学、磁学、热学和化学特性,加上近年来随着纳米二氧化硅制备技术的发展及改性研究的深入, 纳米二氧化硅在橡胶、塑料、涂料、功能材料、通讯、电子、生物学以及医学等诸多领域得到了广泛的应用。 2. 纳米二氧化硅的制备 经过收集资料,查阅一些教科书籍和文献,发现二氧化硅有各种形形色色不同的制备方法, 主要包括化学沉淀法、气相法、溶胶-凝胶法、微乳液法、超重力法、机械粉碎法等等。现在一个个介绍如下: 2.1. 化学沉淀法 化学沉淀法是目前生产纳米二氧化硅最主要的方法。这种方法的基本原理是利用金属盐或碱的溶解度, 调节溶液酸度、温度、溶剂, 使其产生沉淀, 然后对沉淀物进行洗涤、干燥、热处理制成超细粉体[2]。 可以采用硅酸钠和氯化铵为原料, 以乙醇水溶液为溶剂, 采用化学沉淀法制备得到纳米SiO2[3]。将去离子水与无水乙醇以一定浓度混合盛于三口瓶中, 加入一定质量的硅酸钠和少量分散剂, 置于恒温水浴中, 凋节至40±1℃, 搅拌状态下加入氯化铵溶液, 即出现乳白色沉淀, 洗涤, 抽滤, 100℃烘干,置于马弗炉450 ℃焙烧1h, 得到白色轻质的SiO2 粉末。所得SiO2颗粒为无定形结构, 近似球形, 粒径30~50nm, 部分颗粒间通过聚集相互联结, 表面有蜂窝状微孔。 以水玻璃(模数为3.3)和盐酸为原料[4],在超级恒温水浴中控制在40~50℃左右进行沉淀反应, 控制终点pH 值5~6, 得到的沉淀物采用离心法洗涤去掉Cl-, 然后在110℃下干燥12 h, 再于500℃进行焙烧即可得到产品。制得SiO2粒

磁控溅射方法制备铜薄膜实验

磁控溅射方法制备铜薄膜实验 一、实验目的 1.掌握物理气相沉积的基本原理,熟悉磁控溅射薄膜制备的工艺; 2.掌握磁控溅射镀膜设备的结构和原理。 二、设备仪器磁控溅射薄膜沉积台结构如图1所示。 图 1 磁控溅射镀膜机结构示意图 三、实验原理当高能粒子(电场加速的正离子,如Ar+)打在固体表面时,与表面的原子、分子交换能量,从而使这些原子、分子飞溅出来,沉积到基体材料表面形成薄膜的工艺过程。 四、实验内容 掌握磁控溅射薄膜制备的气体放电理论和特性,观察气体放电现象,理解气体放电的物理过程;掌握磁控溅射膜制备的沉积原理及条件,薄膜制备过程中溅射气体的选择、溅射电压及基片电位、高纯度靶材的影响。 五、实验步骤 1.准备:基体材料载玻片的清洗、烘干、装夹,铜靶材的安装; 2.方案:

a. 描述低真空的抽气回路:真空室三通阀位置2 低真空管道电磁阀机械泵大气。 b. 描述高真空的抽气回路:真空室蝶阀挡油器油扩散泵储气罐三通阀位置 1 低真空管道电磁阀机械泵大气 c. 铜薄膜的沉积工艺参数:本底真空度、溅射电流、溅射电压、沉积时间、薄膜厚度。 3. 步骤:本底真空获得后,进行氩气充气量的控制,溅射过程中电流、电压和时间的 控制,薄膜制备完成后,充入大气,取出试样。六.撰写实验报告 1. 真空系统的组成及作用,简述旋片泵、分子泵的工作原理。 2. 真空测量系统的组成,简述电离真空规的工作原理。 3. 气体放电理论的物理模型。 4. 铜薄膜沉积原理与影响参数的关系。 简介 真空镀膜在真空中制备膜层,包括镀制晶态的金属、半导体、绝缘体等单质或化合物膜。虽然化学汽相沉积也采用减压、低压或等离子体等真空手段,但一般真空镀膜是指用物理的方法沉积薄膜。真空镀膜有三种形式,即蒸发镀膜、溅射镀膜和离子镀。 蒸发镀膜 通过加热蒸发某种物质使其沉积在固体表面,称为蒸发镀膜。这种方法最早由M.法拉第于1857年提出,现代已成为常用镀膜技术之一。蒸发镀膜设备结构如图1。蒸发物质如金属、化合物等置于坩埚内或挂在热丝上作为蒸发源,待镀工件,如金属、陶瓷、塑料等基片置于坩埚前方。待系统抽至高真空后,加热坩埚使其中的物质蒸发。蒸发物质的原子或分子以冷凝方式沉积在基片表面。薄膜厚度可由数百埃至数微米。膜厚决定于蒸发源的蒸发速率和时间(或决定于装料量),并与源和基片的距离有关。对于大面积镀膜,常采用旋转基片或多蒸发源的方式以保证膜层厚度的均匀性。从蒸发源到基片的距离应小于蒸气分子在残余气体中的平均自由程,以免蒸气分子与残气分子碰撞引起化学作用。蒸气分子平均动能约为0.1~0.2电子伏。 蒸发镀膜

二氧化硅的制备

二氧化硅的制备 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

纳米二氧化硅颗粒的制备与表征 一、实验目的 1、学习溶胶—凝胶法制备纳米SiO2 颗粒。 2、利用粒度分析仪对SiO2 颗粒物相分析和粒径测定。 3、通过红外光谱仪对纳米SiO2 颗粒进行表征。 4、通过热重分析仪测试煅烧温度。 二、实验原理 纳米SiO 具有三维网状结构,拥有庞大的比表面积,表面上存在着大量的 2 羟基基团, 亲水性强, 众多的颗粒相互联结成链状,链状结构彼此又以氢键相互作用,形成由聚集体组成的立体网状结构。 图1 纳米二氧化硅三维网状结构 图2 纳米二氧化硅表面上存在着大量的羟基基团 溶胶凝胶法(Sol-Gel法):利用活性较高的前驱体作为原料,在含水的溶液中水解,生成溶胶,然后溶胶颗粒间进一步发生相互作用,与溶剂共同生成凝胶,干燥后、煅烧获得前驱体相应的氧化物。 第一步水解: 硅烷的水解过程ROH ? ?→ + - -2 - O OH Si H OR Si+ - 第二步缩合: 硅烷的缩聚过程O ? ?→ - - - - - - + - O Si Si - Si H + Si2 OH HO 总反应:ROH - ?→ ? - - - - + O O Si 22+ Si H Si2 OR 硅烷的浓度,硅烷溶液的pH 值,溶剂成分,水解时间与温度均会影响到硅烷的水解缩聚过程。

其中,pH 值能影响硅烷溶液的水解缩聚反应速率。一般认为酸性和碱性条件下均有利于硅烷的水解反应,而碱性条件下更能促进缩聚反应的进行。因此,选择合理的pH 值能控制硅烷的水解与缩合反应速率。 水含量除了影响硅烷的水解与缩聚反应速率外,还影响其溶解性;而醇溶剂对硅烷分子起到助溶与分散的作用,还起到调节水解速率的作用。 三、仪器及试剂 仪器常规玻璃仪器,不同型号移液枪,坩埚,研钵,水浴锅,磁子,磁力搅拌器,烘箱,马弗炉,傅里叶红外光谱仪,差热-热重分析仪,粒度分析仪; 试剂乙醇(AR),去离子水,TEOS,1:1 氨水,浓氨水、浓盐酸,精密pH 试纸。 四、实验步骤 ①Stober 法制备纳米SiO2 颗粒 取75mL 无水乙醇于烧杯中,加入25mL 去离子水,搅拌使其均匀。向其中加入10mL TEOS,同时搅拌。用1:1 氨水溶液调节硅烷溶液的pH 值至7,搅拌10min。将上述硅烷溶液放入水浴锅中,水温35℃,陈化1h。向溶液中逐滴加入浓氨水,使其刚好产生果冻状凝胶为止。静置,至溶液全部转化为凝胶。 前躯体将所得的凝胶捣碎放入烘箱中,烘箱温度为100℃,烘干,即得SiO 2 粉末。 粉末。将粉末碾碎后在300℃煅烧20min 即得SiO 2 ② SiO2颗粒的粒径测试 先将大烧杯中装满水,对大烧杯进行清洗,倒去水。向大烧杯中装入部分水,测试背景。将小烧杯中预先搅拌好的二氧化硅浊液倒入大烧杯中,进行充分混合均匀,对其进行粒径分析。 ③SiO2颗粒红外光谱测试

氧化硅的制备

纳米二氧化硅颗粒的制备与表征一、实验目的 颗粒。 1、学习溶胶—凝胶法制备纳米SiO 2 颗粒物相分析和粒径测定。 2、利用粒度分析仪对SiO 2 颗粒进行表征。 3、通过红外光谱仪对纳米SiO 2 4、通过热重分析仪测试煅烧温度。 二、实验原理 纳米SiO 具有三维网状结构,拥有庞大的比表面积,表面上存在着大量2 的羟基基团, 亲水性强, 众多的颗粒相互联结成链状,链状结构彼此又以氢键 相互作用,形成由聚集体组成的立体网状结构。 图1 纳米二氧化硅三维网状结构 图2 纳米二氧化硅表面上存在着大量的羟基基团 溶胶凝胶法(Sol-Gel法):利用活性较高的前驱体作为原料,在含水的溶 液中水解,生成溶胶,然后溶胶颗粒间进一步发生相互作用,与溶剂共同生成凝 胶,干燥后、煅烧获得前驱体相应的氧化物。 第一步水解: 硅烷的水解过程ROH ? ?→ + - OH - -2 O Si H OR Si+ - 第二步缩合: 硅烷的缩聚过程O ? ?→ - - - - - - + - O Si Si - Si H + HO Si2 OH 总反应:ROH - - ?→ - - - + ? Si2 O Si Si O OR H 22+ 硅烷的浓度,硅烷溶液的pH 值,溶剂成分,水解时间与温度均会影响到硅 烷的水解缩聚过程。 其中,pH 值能影响硅烷溶液的水解缩聚反应速率。一般认为酸性和碱性条 件下均有利于硅烷的水解反应,而碱性条件下更能促进缩聚反应的进行。因此, 选择合理的pH 值能控制硅烷的水解与缩合反应速率。 水含量除了影响硅烷的水解与缩聚反应速率外,还影响其溶解性;而醇溶剂 对硅烷分子起到助溶与分散的作用,还起到调节水解速率的作用。 三、仪器及试剂

二氧化硅薄膜的制备

实验方案设计方案二氧化硅薄膜的制备 学院:化学与化工程学院 年级: 2011级 专业:材料化学 姓名:何珊

二氧化硅薄膜的制备 摘要 二氧化硅薄膜具有良好的硬度、光学、介电性质及耐磨、抗蚀等特性,在光学、微电子等领域有着广泛的应用前景,是目前国际上广泛关注的功能材料。论述了有关二氧化硅薄膜的制备方法,相应性质及其应用前景。 关键词:二氧化硅,薄膜,制备,应用,方法 1 引言 二氧化硅具有硬度高、耐磨性好、绝热性好、光透过率高、抗侵蚀能力强以及良好的介电性质。通过对各种制备方法、制备工艺的开发和不同组分配比对二氧化硅薄膜的影响研究,制备具有优良性能的透明二氧化硅薄膜的工作已经取得了很大进展。薄膜在诸多领域得到了很好的应用,如用于电子器件和集成器件、光学薄膜器件等相关器件中。利用纳米二氧化硅的多孔性质可应用于过滤薄膜、薄膜反应和相关的吸收剂以及分离技术、分子工程和生物工程等,从而在光催化、微电子和透明绝热等领域具有很好的发展前景。本文将对二氧化硅薄膜的制备、性能及其应用研究进行了综述。 2 实验目的 学会通过施加负压,能够诱导TMOS 在ITO表面发生一个溶胶--凝胶过程,最终制备出二氧化硅薄膜。这个方法制备的二氧化硅薄膜对可见光有一定程度的吸收,其吸光度随着沉积时间和沉积温度的该表呈现一定的变化趋势。 3 实验原理 此次实验使用电化学诱导的溶胶一凝胶法制备了SiO 薄膜并且使用扫描电 2 镜、紫外/可见光谱及循环伏安法分别对薄膜的表面形貌、光吸收特性和导电性进行了表征.实验发现:随着沉积时间的延长,所得薄膜的电阻越来越大,而且,不同沉积时间和不同的沉积温度下所制的薄膜对可见光的吸收具有一定的变化趋势;此外,我们还观察到了有一定变化规律的扫描电镜图,在此基础上,提出 薄膜可能的生长机理 了一种模型探讨了SiO 2 4 实验仪器及试剂 CHI660型电化学工作站购自上海辰华仪器有限公司,UV18。0PC型紫外

二氧化硅薄膜制备

二氧化硅薄膜的制备及应用 班级:08微电子一班姓名:袁峰学号:087305136 摘要:二氧化硅薄膜具有良好的硬度、光学、介电性质及耐磨、抗蚀等特性,在光学、微电子等领域有着广泛的应用前景,是目前国际上广泛关注的功能材料。论述了有关二氧化硅薄膜的制备方法,相应性质及其应用前景。 关键词:二氧化硅,薄膜,制备,应用,方法 引言:二氧化硅具有硬度高、耐磨性好、绝热性好、光透过率高、抗侵蚀能力强以及良好的介电性质。通过对各种制备方法、制备工艺的开发和不同组分配比对二氧化硅薄膜的影响研究,制备具有优良性能的透明二氧化硅薄膜的工作已经取得了很大进展。薄膜在诸多领域得到了很好的应用,如用于电子器件和集成器件、光学薄膜器件等相关器件中。利用纳米二氧化硅的多孔性质可应用于过滤薄膜、薄膜反应和相关的吸收剂以及分离技术、分子工程和生物工程等,从而在光催化、微电子和透明绝热等领域具有很好的发展前景。本文将对二氧化硅薄膜的制备、性能及其应用研究进行了综述。 1 二氧化硅(SiO2)薄膜的制备 针对不同的用途和要求,很多SiO2薄膜的制备方法得到了发展与应用,主要有化学气相淀积,物理气相淀积,热氧化法,溶胶凝胶法和液相沉积法等。 1.1化学气相淀积(CVD) 1969年,科莱特(Collett)首次利用光化学反应淀积了Si3N4薄膜,从此开辟了光化学气相淀积法在微电子方面的应用。 化学气相淀积是利用化学反应的方式,在反应室内,将反应物(通常是气体)生成固态生成物,并淀积在硅片表面是的一种薄膜淀积技术。因为它涉及化学反应,所以又称CVD (Chemical V apour Deposition)。 CVD法又分为常压化学气相沉积(APCVD)、低压化学气相沉积(LPCVD)、等离子增强化学气相沉积(PECVD)和光化学气相沉积等。此外CVD法制备SiO2可用以下几种反应体系:SiH4-O2、SiH4-N2O、SiH2Cl2-N2O、Si(OC2H5)4等。各种不同的制备方法和不同的反应体系生长SiO2所要求的设备和工艺条件都不相同,且各自拥有不同的用途和优缺点。目前最常用的是等离子体增强化学气相沉积法。 1.1.1等离子体增强化学气相沉积法

纳米二氧化硅制备

1.纳米二氧化硅的制备方法 到目前为止,纳米二氧化硅的生产方法主要可以分为干法和湿法两种。干法包括气 相法和电弧法,湿法有沉淀法、溶胶-凝胶法、微乳液法、超重力反应法和水热合成法 等。 1.1 气相法 气相法多以四氯化硅为原料,采用四氯化硅气体在氢氧气流高温下水解制得烟雾状 的二氧化硅。 2H2+ O2→ 2H2O SiCl4+ 2H2O → SiO2+4HCl 2H2+ O2+SiCl4→ SiO2+4HCl 1.2 沉淀法 1.2.1沉淀法是硅酸盐通过酸化获得疏松、细分散的、以絮状结构沉淀出来的 SiO2晶体。 Na2SiO3+HCl → H2SO3+NaCl H2SO3→ SiO2+ H2O 该法原料易得,生产流程简单,能耗低,投资少,但是产品质量不如采用气相法和凝胶法的产品好。目前,沉淀法制备二氧化硅技术包括以下几类: (1)在有机溶剂中制备高分散性能的二氧化硅; (2)酸化剂与硅酸盐水溶液反应,沉降物经分离、干燥制备二氧化硅; (3)碱金属硅酸盐与无机酸混和形成二氧化硅水溶胶,再转变为凝胶颗粒,经干燥、热水洗涤、再干燥,锻烧制得二氧化硅; (4)水玻璃的碳酸化制备二氧化硅; (5)通过喷雾造粒制备边缘平滑非球形二氧化硅。 1.2.2实验部分 以Na2SiO3·9H2O为原料“浓H2SO4”为酸试剂"采用化学沉淀法制备纳米二氧化硅。 (1)原料与试剂:水合硅酸钠,分析纯,无锡市亚盛化工有限公司;浓硫酸,分析纯,国药集团化学试剂有限公司;无水硫酸钠,分析纯,无锡市亚盛化工有限公司;聚乙二醇(PEG)6000,分析纯,无锡市亚盛化工有限公司。 (2)设备与分析仪器:Avatar360型傅立叶变换红外光谱(FT-IR)仪,KBr压片,美国;D/Max 型X射线粉末衍射仪,日本理学公司;TEM-2010型高分辨率透射电镜(TEM),日本日立公司;HPPS5001激光粒度分析仪,英国Malvern公司;S-570型扫描电镜(SEM),日本日立公司;紫外可见光吸收仪(UV-Vis),日本日立公司;WDT-20,KCS-20型万能试验机,深圳凯强利试验仪器有限公司;磁力搅拌器、分析天平、抽滤瓶、烘箱、马弗炉。 (3)条件实验 ①称取一定量Na2SiO3·9H2O放入三颈瓶中,加入适量的蒸馏水使其完全溶解,然后向三颈瓶中慢慢滴加质量分数为95%~98%的浓H2SO4,并同时加入分散剂Na2SO4溶液和表面活性剂PEG6000,在反应的同时需要进行搅拌。 ②在反应结束后继续滴加浓H2SO4同时加入分散剂。 ③将反应的浆料在三颈瓶中熟化1h。 ④熟化后的反应物进行抽滤洗涤,反复洗涤数次,直至检测不出SO42-为止,将反应物抽滤成为粗时间,脱水的滤饼。 ⑤将滤饼放入烘箱中80℃烘干。 ⑥把烘干的产物放入马弗炉中450℃煅烧,最后将煅烧后的产物研磨成粉末。 1.3 凝胶法 凝胶法是加入酸使碱度降低从而诱发硅酸根的聚合反应,使体系中以胶态粒子形式存在

选取氮化硅和二氧化硅作为薄膜材料

选取氮化硅和二氧化硅作为薄膜材料,借助膜系设计软件对膜系结构进行优化,采用中频脉冲磁控溅射技术进行薄膜制备。利用高反膜透射曲线拟合方法调整薄膜的实际沉积速率,减少膜厚控制误差,在树脂镜片CR39基底的凸面和凹面上分别镀制了符合设计要求的红外防护膜和可见光减反膜。镀膜后树脂镜片在420~680 nm的平均透过率大于95%,在近红外800~1400 nm波段的平均透过率小于60%,薄膜性能稳定,能够满足红外防护树脂镜片的日常使用需要 1)热固性材料 1)普通树脂材料:(CR-39) 学名碳本酸丙烯乙酸,或称烯丙基二甘醇酸脂(Dially Glycol Carbonates),是应用最广泛的生产普通树脂镜片的材料。它于四十年代被美国哥伦比亚公司的化学家发现,是美国空军所研制的一系列聚合物中的第39号材料,因此,被称为CR-39(哥伦比亚树脂第39号)。CR-39被用于生产眼用矫正镜片是在1955~1960年,是第一代的超轻、抗冲击的树脂镜片。CR-39作为一种热固性材料,单体呈液态,在加热和加入催化剂的条件下聚合固化。聚合是一个化学反应,即由几个相同分子结构的单体组成的一个新的聚合体分子,具有不同的长度和性质。作为光学镜片,CR-39材料性质的参数十分适宜:折射率为1.5(接近普通玻璃镜片)、密度1.32(几乎是玻璃的一半)、

阿贝数为58~59(只有很少的色射)、抗冲高透光率,可以进行 染色和镀膜处理。 它主要的缺点是耐磨性不及玻璃,需要镀抗磨损膜处理。树脂镜片可采用模式压法加工镜片表面的曲率,因此很适用于非球面镜片的生产。 2)中高折射率树脂材料:今天大部分的中折射率和高折射率材料都是热固性树脂,其发展非常迅速。它们的折射率可以使用以下任意一种技术来增加:改变原分子中电子的结构,例如:引入苯环结构;在原分子中加入重原子,诸如卤素(氯、溴等)或硫。与传统CR-39相比,用中高折射率树脂材料制造的镜片更轻、更薄。它们的比重与CR-39大体一致(在1.20到1.40之间),但色散较大(阿贝数45),抗热性能较差,然而抗紫外线较佳,同时也可以染色和进行各种系统的表面镀膜处理。使用这些材料的镜片制造工艺与CR-39的制造原理大体一致。现在1.67的树脂材料已广泛流行,而且象1.7的树脂材料也已在市场上有销售。视光业的专业人员正不断研制开发新材料,改良原有材料,以期树脂材料在将来获得更好的性能。 3)染色树脂材料:用于制造太阳眼镜镜片的基本上都是聚合前加入染料而制成的,特别适合大批量制造各色平光太阳镜片,同时在材料中加入可吸收紫外线的物质。

二氧化硅薄膜器件

二氧化硅薄膜器件 为了得到具有较高品质的薄膜样品,制备方法十分重要,现在制备具有阻变性质薄膜的主要方法有溶胶-凝胶、脉冲激光溅射、金属有机化合物化学气相沉淀和射频溅射[20]。通过溶胶-凝胶法制备SiO2薄膜能够节约成本,成膜面积大,且容易对SiO2进行各种掺杂实验,所以本文采用溶胶-凝胶法在玻璃、塑料、IT O衬底上制备薄膜。 溶胶-凝胶法(Sol-gel):Sol-gel法的基本原理将薄膜材料的各组分按照一定的化学计量比例比溶于有机溶剂中,经过水解反应后聚合,形成溶胶,经过一段时间转变成具有一定空间结构的凝胶,最后经过旋涂、烘干处理制备出所需要的薄膜。溶胶-凝胶法具有操作简单、均匀性好、容易掺杂、设备简单、容易控制、成本低等优点。这种方法的缺点是:形成薄膜的致密性差、缺陷多从而导致测出的漏电流、表面均匀性不太理想。 ITO玻璃结构图 3.1制备SiO2薄膜样品 3.1.1溶胶-凝胶法制备二氧化硅胶体 操作步骤: (1)用一次性滴管分别量取TEOS和乙醇(按计算的量),加入到干净小瓶中,用镊子夹取清洗干净磁子,放入小瓶中,放置在磁力搅拌机上搅拌均匀; (2)用滴管吸取DI加入到(1)中的瓶子中,搅拌3-5天; (3)按照不同配比重复上述步骤重复上述步骤; 按照上述步骤将TEOS、乙醇、DI按照不同的摩尔比制成胶体 (TEOS:乙醇:DI=1:2/3:5;TEOS:乙醇:DI=1:2:5:;TEOS:乙醇:DI= 1:3:5 )

图3.1.1 溶液配制方案示意图图3.1.2 SiO2薄膜制备工艺流程图 3.1.2 薄膜样品衬底的清洗 在制备二氧化硅RRAM实验中,以ITO作为实验衬底。首先拿出ITO衬底,将其放入烧杯中,加入丙酮,放入超声波清洗仪中震荡清洗5min,然后用乙醇清洗衬底5min,主要用来清洗基片表面有机物和无机物。清洗完毕后,拿出基片放在滤纸上在高温烤灯下烘干。 3.1.3 二氧化硅薄膜的制备 (1)悬涂仪参数设置: 设置低速为500rmp/s,旋转时间设为5秒; 设置高速为3000rmp/s,旋转时间设为30秒。 (2)二氧化硅薄膜的旋涂: 插上真空泵、旋涂仪电源,清洗吸盘表面; 开启悬涂仪电源,按下“CONTROL”; 用干净镊子取基片放在吸盘上,放在中间,按下“V ACUUM”吸住基片; 设置好对应的参数; 用一次性滴管将制好的胶体滴在衬底上,盖上盖子,按下“START”。 机台停止运转后后,用镊子取下基片,旋涂结束后关闭电源。

SiO2薄膜制备的现行方法综述

SiO2薄膜制备的现行方法综述 在导电基体上制作薄膜传感器的过程中,需要在基体与薄膜电极之间沉积一层绝缘膜。二氧化硅薄膜具有良好的绝缘性能,并且稳定性好,膜层牢固,长期使用温度可达1000℃以上,应用十分广泛。通常制备SiO2薄膜的现行方法主要有磁控溅射、离子束溅射、化学气相沉积、热氧化法、凝胶-溶胶法等。本文系统阐述了各种方法的基本原理、特点及适用场合,并对这些方法做了比较。 正文:SiO2薄膜以其优异的性能在半导体、微波、光电子、光学器件以及薄膜传感器等领域获得了广泛的应用。在微电子技术中SiO2膜被用作扩散掩蔽层、MOS器件的绝缘栅、多层布线的绝缘隔离层以及器件表面的钝化保护层等。SiO2膜还以其折射率低(n=1.458)、透光性好的特性用于光学零件的表面防护以及减反射涂层。此外SiO2膜具有良好的绝缘性、稳定性和机械特性,硬度高、结构精细、膜层牢固、抗磨耐腐蚀、熔点高而用于多层薄膜传感器的绝缘层。为此,多年来人们对SiO2膜制作方法及性能等进行了广泛的研究。对于应用于微电子技术和传感器技术中的SiO2膜,人们关心的是SiO2薄膜的介电常数、击穿场强、绝缘电阻、固定电荷和可动电荷密度等电性能指标。应用于光学镀膜领域的SiO2膜,人们更关心膜层的折射率、消光系数及透明区间等光学性能指标。通常制备SiO2薄膜现行方法主要有磁控溅射、离子束溅射、化学气相沉积(CVD)、热氧化法、凝胶- 溶胶法等。 1、SiO2薄膜的制备方法 1.1、磁控溅射 磁控溅射自1970年问世以来,由于其沉积速率快、衬底温度低、薄膜厚度的可控性、重复性及均匀性与其它SiO2薄膜制备方法相比有明显的改善和提高,避免粉尘污染,以及溅射阴极尺寸可以按比例扩大等优点,已应用于从微电子器件到数平方米玻璃镀膜的诸多领域,并逐渐发展成为大面积高速沉积的主流方法。溅射的一般原理是将衬底承片台正对着靶,在靶和衬底之间充入氩气(Ar),由于电场作用气体辉光放电,大量的气体离子将撞击靶材的表面,使被溅射材料以原子状态脱离靶的表面飞溅出来,淀积到衬底上形成薄膜。磁控溅射中的正交电磁场,能使高能电子作螺旋运动,并被局限在阴极附近,这样将使辉光放电区被限制在阴极靶的邻近区域,从而避免了失效离子的产生,大大减小了电子对衬底表面直接轰击造成的损伤,增加了离化率,使工作气压可以大大降低。 如果在沉积室中增加反应性气体,使溅射粒子和反应性气体发生化学反应,从而合成化合物薄膜,这种沉积方法就称为反应磁控溅射。 1.1.1、直流反应磁控溅射 直流反应溅射用于化合物沉积早在70年代末就已经在工业上得到应用,如制备ITO膜和TiN膜等,大大拓展了溅射镀膜的应用范围。直流反应磁控溅射制备SiO2薄膜时以Si为靶材,

中空二氧化硅微球的制备方法研究进展

技术进展 ,2009,23(4):257~264SI L I CONE MATER I A L 中空二氧化硅微球的制备方法研究进展 3 顾文娟 1,2 ,廖 俊2,吴卫兵2,易生平2,黄 驰 2,33 ,黎厚斌 1 (1.武汉大学印刷与包装系,武汉430072;2.有机硅化合物及材料教育部工程研究中心,武汉430072) 摘要:介绍了中空二氧化硅微球的性质特点和应用范围,归纳了中空微球的一些主要制备方法,重点介绍了模板法(溶胶-凝胶法、层层自组装法)和乳液法的研究进展,讨论了不同方法之间的的优缺点。在此基础上,对中空二氧化硅微球的研究前景进行了展望。 关键词:中空,二氧化硅,模板法,乳液法 中图分类号:TK12712 文献标识码:A 文章编号:1009-4369(2009)04-0257-08 收稿日期:20090226。 作者简介:顾文娟(1985—),女,博士生。 3基金项目:湖北省自然科学基金(2005ABA034);湖北省催化材料重点实验室基金(CHCL06003)。33联系人,E -mail:chihuang@whu 1edu 1cn 。 近年来,具有特殊拓扑结构的粒子引起了人 们广泛的关注。其中,有关中空微球的研究已经 成为材料科学领域的研究焦点[1] 。 中空微球是一类具有独特形态的材料,粒径在纳米级至微米级,具有比表面积大、密度低、稳定性好等特性。由于其内部中空,可以封装气体或者小分子物质(如水、烃类)等易挥发溶剂,当然也可以封装其它具有特殊功能的化合 物;因此可以应用到药物控释[2-4] 、形貌控制模板[5-6]或微胶囊封装材料 [7] (药物[8]、颜料、化妆品[9] 、油墨和生物活性试剂),处理水污染[10],化学催化[11]和生物化学[12]等方面;同时,通过调整微球尺寸以及空腔和壁厚可以有效 实现对隔声、光[13] 、热、机械等性能随心所欲的设计,在工业上有广泛的应用前景。 中空二氧化硅微球由于本身的高熔点、高稳定性、无毒等特殊性质,使其应用领域得到进一步的拓展。例如可以做成轻质填料、耐火材料应用到高端包装领域;在其空腔封装功能化合物[14],既可以制成具有缓释功能的药物[15],又能够在人造细胞、疾病诊治等方面具有一定的价 值,被应用到医药、医疗[16-17] 、防伪和香料等行业。因此,二氧化硅中空微球的制备受到了广大研究人士的关注。本文对二氧化硅中空微球的制备方法进行了总结。 1 制备方法 111 模板法 模板法是在制备特殊形貌材料中应用比较多 的一种方法。顾名思义,就是先以特定的物质作为形貌辅助物———模板,然后根据需要将材料包覆或填充在模板中得到所需的形貌。可以作为模板的材料有囊泡[18] 、胶束[19-22] 、聚合物乳胶粒[23-27]、无机物小颗粒[28-31]等等。 模板法按照壳层的生成方式不同又分为溶胶-凝胶法(s ol -gel )和层层自组装法(layer by layer )。11111 溶胶-凝胶法(s ol -gel )溶胶-凝胶法一般是先制备表面功能化的模板颗粒或者加入表面活性剂,利用有机硅烷的水解/缩合反应,在模板的表面形成二氧化硅壳层。 聚合物胶束和乳胶粒虽然都可被应用做模板。但一般来讲,乳胶粒作为模板粒径较大;在亚微米到微米范围,胶束作为模板粒径较小,大多低于100nm 。胶束作为模板的优点是:通过调整聚合物的尺寸、聚集情况以及溶剂可以实现对胶束的尺寸和形貌的控制。 迄今为止,应用的聚合物胶束都是由AB 或ABA 型聚合物组成的核-冠结构。在这些体系 中,胶束的“冠”可以汇集无机物前驱体,“核”则作为中空结构的模板。无机材料的前驱体被吸附到胶束的“冠”部,聚合形成中空颗粒的壳;聚合物核将通过煅烧或者其它方式去

相关文档
最新文档