气体膜分离原理

气体膜分离原理
气体膜分离原理

气体膜分离原理

Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

气体膜分离原理:

两种或两种以上的气体混合物通过高分子膜时,由于各种气体在膜中的溶解和扩散系数的不同,导致气体在膜中的相对渗透速率有差异。在驱动力——膜两侧压力差作用下,渗透速率相对较快的气体,如水蒸汽(H2O)、氢气(H2)、二氧化碳(CO2)和氧气(O2)等优先透过膜而被富集;而渗透速率相对较慢的气体,如甲烷(CH4)、氮气(N2)和一氧化碳(CO)等气体则是在膜的滞留侧被富集,从而达到混合气体分离的目的。

气体分子在高分子膜表面遵循下列公式中描述的溶解-扩散渗透原理进行气体的分离。

气体分离膜产品应用领域:

气体分离膜技术作为全球最先进的气体分离技术,在各个领域已经得到了广泛的应用。目前主要应用领域有:

·O2/N2———————空气分离(富氮、富氧)

·CO2/CH4——————沼气、天然气脱碳、三次采油中CO2分离

·H2/(N2、CO、CH4)——化学工业、石油精炼等H2回收,高纯H2

·H2O/Air——————空气脱湿

·H2O/(VOC)————有机蒸汽脱水(醇类、酮类等)

氢气膜分离技术的现状

氢气膜分离技术的现状、特点和应用(中国科学院大连化学物理研究所)摘要: 气体膜分离技术是一种新型的化工分离技术。由于它具有能耗低、投资省、占地面积小和使用方便等特点,现已在石化和化工工业中得到广泛的应用。 在气体膜分离技术中,氢气分离膜占有很大的比重。到目前为止,氢气膜分离技术是开发应用得最早,技术上最成熟,取得的经济效益十分显着的气体膜分离技术。 本文简要地介绍氢气膜分离技术的发展概况,一些氢气膜分离器的性能和特点以及在国内外的应用情况。 关键词:氢气膜分离膜分离技术氢气回收 作者简介: 董子丰:男,1937年生;祖籍:浙江绍兴;研究员。 1961年毕业于北京理工大学化工系。从那时起一直在中国科学院大连化学物理研究所工作。主要从事国防科技事业的研究。80年代中,曾作为访问学者到德国海德堡大学从事激光化学的合作研究。88年回国到现在,主要从事气体膜分离的技术开发,已撰写10余篇文章刊登在国内外杂志上。 中图分类号: TQ028. 8 氢气分离膜技术的现状、特点和应用 一、概述 目前,在气体膜分离技术中,氢气膜分离技术是开发应用最早、适用范围很广、技术最成熟和经济效益十分显着的膜分离技术。氢气膜分离技术主要用来从含氢和其它气体的混合气中,分离和提浓氢气。它之所以在气体膜分离技术中占有如此重要位置的原因不仅是因为氢气在化工和石化工业中的重要性,而且还在于氢气膜分离所具有的技术适用性和经济合理性。 1、氢气在化工和石油化工工业中具有非常重要的意义 现代石油化学和炼油工业的特点是,在一些大型工艺过程中,氢气是重要付产物(重整、裂解),同时,氢又是重要的原料(合成氨、合成甲醇、加氢精制、加氢裂化)。石化工业是个耗氢大户,多年来,在石化工业中,氢气一直供不应求,随着原料油的加重和对辛烷值要求的提高,氢气的供需予盾将会更加突出。

气体膜分离影响因素

1、膜面积对分离过程的影响 膜面积越大,渗透气浓度越小,渗透气流量越大,即回收率越大。2、分离系数对分离过程的影响 在产气量一定时,膜组件的分离系数越大,渗透气浓度越高,所需膜组件的膜面积也越大。当分离系数达到一定值后,分离系数对渗透气浓度影响不大。当分离系数较大时,分离过程主要是在分离器前半段完成的。因此,在分离器中,前半段完成了提浓过程,而后半段主要是为了增加回收率。当原料气流量、原料气浓度、原料侧压力、渗透侧压力、渗透气浓度一定时,随着分离系数的增加,系统所能达到的回收率增加,所需的膜面积增大。从工程的济性角度考虑,膜分离过程有它自身的最佳工作条件,当产品气浓度一定,即使膜组件的分离性能得到了很大的提高,回收率的增加,也会导致系统造价直线上升。 3、温度对分离过程的影响 温度的提高会极大的促进渗透过程的进行。因为随着温度的提高,分子的运动速度增快,膜中高分子链段的震动频率加快、震动幅度加大,因此分子将更快、更容易地通过膜,但是,由于高分子链段震动幅度的加大,使膜对各种气体分子选择性通过的能力减弱,即分离系数降低。一般来说,温度提高后,最终的结果将导致回收率显著地提高,渗透气浓度降低。 4、压差对分离过程的影响 由于渗透过程的推动力是气体分子在膜两端的分压差,因此压差的增

大会使渗透过程的推动力变大,从而导致产品气量增大,同时产品气浓度也会略微提高。 以上所说的是正向压差,由于在膜设计时,为了降低气体分子在膜内的透过阻力,因此膜被做得很薄,同时为了满足工程中对其耐压性能的要求,在膜的下面增加了结构较为疏松的支撑层,当膜受到正向压力时,膜会受到支撑层的支撑作用,不被压坏,但是,当受到反向压力时,膜就很容易损坏了。 5、压比对分离过程的影响 压比的提高,将直接导致产品气浓度的提高。在膜分离过程中,压比是非常重要的,提供更高压比的操作条件,将会获得更好的分离效果,但是当压比超过6以后,其意义就不大了。 作为一种定性的理解,提高压比与增加膜的分离系数类似,提高压差与增加膜的渗透系数系数类似。 6、原料气流量对分离过程的影响 原料气流量越大,渗透气浓度越高,回收的氢气总量越多,但是,回收率降低,这时,如果渗透气浓度大于产品气所要求的浓度,可以考虑增加膜组件的数量,来提高回收率,也可以提高操作温度,增大压差等办法,但如果但如果渗透气浓度不大于产品气所要求的浓度,这时提高回收率只能用增大压差或压比的办法。当原料气流量减少时,为了保证渗透气浓度和充分发挥膜组件的性能,减少膜组件的数量是一个比较好的方法。 7、操作条件对尾气冷凝的影响

油气回收膜分离法

油气回收膜分离法 1国内外发展现状 国外对膜法油气回收的研究和工业应用较早。日本公司1988年建造了第一套用于油库油气回收的膜装置。1989年德国公司也成功推出了膜法油气回收装置,至今已有180多套大型装置在运行。德国的公司、日本的日东电工和美国的公司都在膜法油气回收方面实现了工业应用。欧洲建造了很多安装在输油管线终端的大型膜装置,用来从输送过程产生的气流中分离和回收油气。 由于国外在气体分离膜领域开展的研究较早,目前国外己经实现工业化的膜分离法回收的生产厂家以及回收体系有: 我国对气体分离膜的研究开发和应用开始的较晚,20世纪80年代初才开始。但由于气体分离技术与催化燃烧、吸附等传统处理方法比较,具有效率高、能耗低、操作简单、装置紧凑、占地面积少、无二次污染等显著特点,所以得到了广泛推广和深入研究。 中科院大连化学物理所、中科院长春应用化学所等单位在该方面进行了积极有益的探索,并取得了长足进步。我国目前使用膜分离技术主要应用的领域有:氢气的回收和利用、从空气中制取富氮、从空气中富集氧气、二氧化碳的回收和脱除、工业气体脱湿、从天然气中提取浓氦气、空气中易挥发有机物的回收等。在这些领域,膜分离技术基本都得到了工业化应用,但在回收废气中的挥发性有机物领域的研究应用工作只是最近几年才开始。

在化工生产、油罐、油轮及加油站等有机物质制造、贮存、运输和使用过程中,经常要排放挥发性有机气体。他们通常由惰性气体和烷烃、烯烃等有机气体组成,采用膜技术实现有机混合气体的分离,不仅可以回收附加值高的烷烃、烯烃等有机物和等,获得可观的经济效益。2002年,中国科学院大连化学物理研究所和吉化公司合作进行了现场实验,采用螺旋卷式膜分离器回收聚乙烯生产过程中排放的乙烯和丁烯单体,取得了较好的结果。但在膜材料的研究和生产领域,我国还没有全部实现自己研制开发。寻找成本低,分离效率高、化学稳定性好、耐热、并具有优良的机械加工性能的膜材料,并将其工业化应用将是我国研究人员面临的挑战。 近几年来,国外的实验室研究分离使用得最多的膜分离材料是聚二甲基硅氧烷P()。它从结构上看属半无机、半有机结构的高分子,具有许多独特性能,是目前发现的气体渗透性能好的高分子膜材料之一。研究人员大多是采用聚枫()、聚偏氟乙烯()、聚间苯二甲酸乙二酯()等材料作为支撑层,使用涂层堵孔,作为选择性分离层,选择性分离2或空气体系,都取得了理想的实验结果。 2003年,大连欧科力德环境技术有限公司与德国研究所、公司合作,率先引进膜法油气回收技术,在中石油上海灵广加油站应用成功。这座加油站安装上膜法油气回收装置后,油气回收率达到98%以上,尾气排放浓度降到15 g 3以内,低于欧洲标准(35 g 3),是国内第一座真正意义上的安全、环保、效益型的加油站。 2膜分离机理 膜法气体分离的基本原理就是根据混合气中各组分在压力的推动下透过膜的传递速率不同,从而达到分离目的。对不同结构的膜,气体通过膜的传递扩散方式不同,因而分离机理也不同。目前常见的气体通过膜的分离机理包括: (1)气体通过非多孔膜即致密膜(如,高分子聚合物膜)的溶解—扩散的分离机理。一般橡胶态聚合物的气体渗透是溶解控制,玻璃态聚合物为扩散控制。此时,气体透过膜的过程可认为由3个环节(步骤)组成:①吸着过程,即气体在膜的上游侧表面被吸附、凝聚、溶解。这个过程带有一定的选择性;②扩散过程,即该被吸着的气体在膜两侧压力差、浓度差的推动下,按不同扩散系数扩散透过膜另一侧;③解吸过程,即该已扩散透过的气体在膜下游侧表面被解吸、剥离过程。

膜分离的原理

膜分离的原理是什么? 何为纳滤膜? 答:纳滤膜的透过物大小在1-10nm,科学家们推测纳滤膜表面分离层可能拥有纳米级(10nm以下)的孔结构,故习惯上称之为"纳滤膜"又叫"纳米膜"、"纳米管"。 纳滤膜净化原理? 答:(1)溶解--扩散原理:渗透物溶解在膜中,并沿着它的推动力梯度扩散传递,在膜的表面形成物相之间的化学平衡,传递的形式是:能量=浓度o淌度o推动力,使得一种物质通过膜的时候必须克服渗透压力。 (2)电效应:纳滤膜与电解质离子间形成静电作用,电解质盐离子的电荷强度不同,造成膜对离子的截留率有差异,在含有不同价态离子的多元体系中,由于道南(DONNAN)效应,使得膜对不同离子的选择性不一样,不同的离子通过膜的比例也不相同。 道南平衡:当把荷电膜置于盐溶液中会发生动力学平衡。膜相中的反离子浓度比主体溶液中的离子浓度高而同性离子的浓度低,从而在主体溶液中产生道南能位势,该能位势阻止了反离子从膜相向主体溶液的扩散和同性离子从主体溶液向膜的扩散。当压力梯度驱动水通过膜进同样会产生一个能位势,道南能位势排斥同性离子进入膜,同时保持电中性,反离子也被排斥。 三达纳滤膜具有哪些特点? 答:①超低压力下工作(0.15Mpa的压力下就可以稳定工作)。 ②大通量供水。在普通的市政水压下就可以使用,水通量可达15m2/小时。 ③选择性离子脱除。在去除细菌、病毒、过量金属离子、低分子有机物、氟、砷等有害物质的同时,保留一定量钾、钠、钙、铁等对人体有益矿物质。 ④使用领域广。在淡水处理、工业废水处理、医药和食品领域都有广泛的应用。 如何保存纳滤膜? 答:纳滤膜的保存目标是防止微生物在膜表布的繁殖及破坏,防止膜的水解,冻结及膜的收缩变形。前人就有微生物对膜性能的影响进行过多种试验,结果表明:不同的微生物对膜的性能产生不同的影响。防止膜的水解,对任何膜都很重要。温度和PH值是醋酸纤维素膜水解的两个主要因素。对芳香聚酰胺膜,PH值及水中游离氯的含量则是其水解的主要因素。纳滤膜的冻结在冬季运输过程中常常发生。经验表明膜的冻结使膜中的水分形成冰晶而使膜结构膨胀,造成膜的性能大幅度下降或破坏。膜的收缩变形,发生在湿态膜保存时的失水、及膜在与高深度溶液接触时膜中的水急剧向溶液中扩散。不同种类的纳滤膜,其保存方法不同。醋酸纤维素纳滤膜在干态时应避免阳光直接照射,要保存在荫凉、干燥的地方。保存温度以8~35℃。 三达纳滤膜用在水处理时与反渗透膜有什么区别? 答:纳滤膜是荷电膜,能进行电性吸附,它具有敏锐的分子截留区,对不同物质能有目的地提纯或去除的优越分离效果。反渗透膜的滤分子量在100以下,只能过滤掉水中的水分子和气体。在相同的水质及环境下制水,纳滤膜所需的压力小于反渗透膜所需的压力。 三达纳滤膜与反渗透制水水质有何不同? 答:经纳滤膜过滤后的自来水能脱除细菌、病毒、低分子有机物、重金属等物质,保留部分

膜分离技术

水的深度处理工艺综述 人类对膜的认识是从自然界中存在的膜开始的,到现在,各种人工合成膜已成为了我们生活中不可或缺的一部分。其种类繁多,作用也千差万别,但他们具有一个共同的特点-选择透过性。 水的膜技术的应用开始于20世纪60年代,最早使用反渗透膜进行海水淡化。其后膜技术得到了迅速发展,并被众多领域应用。自用于反渗透脱盐后,又开发出纳滤、超滤和微滤技术,这些不同的膜都有其独特的性能,可满足不同的处理要求。 1定义 膜从广义上可以定义为两相之间的一个具有选择透过性的薄层屏障。 膜分离是指在某种推动力作用下,利用膜的选择透过性能,达到分类混合物(如溶液)中离子、分子以及某些微粒的过程。与传统过滤器的最大不同是,膜可以在离子或分子范围内进行分离,并且该过程是一种物理过程,不需发生相变化和添加助剂。在某种推动力的作用下,利用某种隔膜特定的透过性能,使溶质或溶剂分离的方法,称为膜分离。 膜分离是用天然或人工合成膜,以外界能量或化学位差作推动力,对双组份或多组分溶质和溶剂进行分离、分级、提纯和富集的方法。膜分离可以用于液相和气相分离,可以用于水溶液体系、非水溶液体系、水溶胶体系以及含有其他微粒的水溶液体系等。 分离溶质时一般叫渗析,分离溶剂时一般叫渗透。 2分类与特点 膜可以是固态的,也可以是液体甚至是气态的。膜可以是均相的或非均相的,对称的或非对称的,可以是带电的或中性的,而带电膜又可以是带正电或带负电的,或二者兼而有之。膜可以是具有渗透性的,也可以是具有半渗透性的,但不能是完全不透过性的。目前使用的分离膜绝大多数是固相膜。由于膜材料的种类非常丰富,制备条件也多种多样,一般来说膜的分类有以下几种: (1)按分离机理:反应膜、离子交换膜、渗透膜等; (2)按膜的形态:均质膜和非对称膜;

膜分离技术的介绍及应用讲解

题目:膜分离技术读书报告日期2015年11月20日

目录 一、膜的种类特点及分离原理 (1) 二、最新膜分离技术进展 (3) 1. 静电纺丝纳米纤维在膜分离中的应用 (3) 1.1 静电纺丝技术的历史发展 (3) 1.2 静电纺丝纳米纤维制备新型结构复合膜 (3) 1.2.1 在超滤方面 (4) 1.2.2 在纳滤方面 (4) 1.2.3 在渗透方面 (5) 1.2.4 静电纺丝纳米纤维制备空气过滤膜 (5) 2. 多孔陶瓷膜应用技术 (6) 2.1 高渗透选择性陶瓷膜制备技术 (7) 2.1.1 溶胶—凝胶技术 (7) 2.1.2 修饰技术 (7)

一、膜的种类特点及分离原理 膜分离技术(membrane separation technology, MST)是天然或人工合成的高分子薄膜以压力差、浓度差、电位差和温度差等外界能量位差为推动力,对双组分或多组分的溶质和溶剂进行分离、分级、提纯和富集的方法。常用的膜分离方法主要有微滤(micro-filtration, MF)、超滤(ultra-filtration,UF)、纳滤(nano-filtration,NF)、反渗透(reverse-osmosis, RO)和电渗析(eletro-dialysis, ED)等。MST具有节能、高效、简单、造价较低、易于操作等特点、可代替传统的如精馏、蒸发、萃取、结晶等分离,可以说是对传统分离方法的一次革命,被公认为20世纪末至21世纪中期最有发展前景的高新技术之一,也是当代国际上公认的最具效益技术之一。 分离膜的根本原理在于膜具有选择透过性,按照分离过程中的推动力和所用膜的孔径不同,可分为20世纪30年代的MF、20世纪40年代的渗析(Dialysis, D)、20世纪50年代的ED、20世纪60年代的RO、20世纪70年代的UF、20世 纪80年代的气体分离 (gas-separation, GS)、20世纪90 年代的PV和乳化液膜(emulsion liquid membrane, ELM)等。 制备膜元件的材料通常是有 机高分子材料或陶瓷材料,膜材料中的孔隙结构为物质透过分离膜而发生选择性分离提供了前提,膜孔径决定了混合体系中相应粒径大小的物质能否透过分离膜。图1是MF、UF、NF、RO的工作示意图。MF的推动力是膜两端的压力差,主要用来去除物料中的大分子颗粒、细菌和悬浮物等;UF的推动力也是膜两端的压力差,主要用来处理不同相对分子质量或者不同形状的大分子物质,应用较多的领域有蛋白质或多肽溶液浓缩、抗生素发酵液脱色、酶制剂纯化、病毒或多聚糖的浓缩或分离等;NF自身一般会带有一定的电荷,它对二价离子特别是二价阴离子的截留率可达99%,在水净化方面应用较多,同时可以透析被RO膜截留的无机盐;RO是一种非对称膜,利用对溶液施加一定的压力来克服溶剂的渗透压,使溶剂通过反向从溶液

气体分离膜质量安全与检测参考文本

气体分离膜质量安全与检 测参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

气体分离膜质量安全与检测参考文本使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 正文: 气体膜分离技术是一种新型高效的分离技术,同传统 的分离技术相比,具有投资少、设备简单、能耗低、使用 方便、易于操作、安全无污染等特点,因而近年来在食 品、医药卫生、石油化工、生物技术、环境工程等行业应 用越来越广泛,受到了各方面的高度重视。气体分离膜材 料是发展膜分离技术的关键问题之一,理想的气体分离膜 材料应该具有高的透气性和良好的透气选择性,高的机械 强度,优良的热和化学稳定性以及优良的成膜加工性能。 上述要求中,气体分离膜分离气体各组分的气体透过率是 各生产厂家技术开发和研究重点关注的指标。本文结合 G2/110膜分离测试分析仪对气体分离膜分离气体各组分的

气体透过率测试进行简单的介绍。 一、气体分离膜的分离原理 气体膜分离技术是利用原料混合气体中不同气体对于气体分离膜材料本身具有不同的渗透率,以气体分离膜两侧气体的压力差为推动力,在渗透侧得到渗透率大的气体富集的物料,在为渗透侧得到不易渗透气体富集的分离气,从而达到气体分离的目的。 二、G2/110膜分离测试分析仪测试原理 G2/110采用压差法与色谱分析技术相结合的测试原理,将预先处理好的试样放置在上下测试腔之间、夹紧,对低压腔以及整个系统进行真空处理;当达到规定的真空度后,向高压腔充入试验气体,并保证在试样两侧形成一恒定的压差;气体在压差梯度的作用下,由高压侧向低压侧渗透;渗透到低压腔的试验气体,由载气携带至色谱分析仪,通过色谱技术处理,从而得到分离膜对试验气体各

膜分离技术及其原理的介绍

膜分离技术及其原理的介绍

人们对膜进行科学研究是近几十年来的事。反渗透膜是膜分离技术发展中是一个重要的突破,使膜分离技术进入了大规模工业化应用的时代。其发展的历史大致为:20世纪30年代微孔过滤;40年代透析;50年代电渗析;60年代反渗透;70年代超滤和液膜;80年代气体分离;90年代渗透汽化。此外,以膜为基础的其它新型分离过程,以及膜分离与其它分离过程结合的集成过程也日益得到重视和发展。 一、膜分离原理 膜分离过程是以选择性透过膜为分离介质,当膜两侧存在某种推动力(如压力差、浓度差、电位差、温度差等)时,原料侧组分选择性地透过膜,以达到分离、提纯的目的。不同的膜过程使用不同的膜,推动力也不同。目前已经工业化应用的膜分离过程有微滤(MF)、超滤(UF)、反渗透(RO)、渗析(D)、电渗析(ED)、气体分离(GS)、渗透汽化(PV)、乳化液膜(ELM)等。 二、膜分离技术 反渗透、超滤、微滤、电渗析这四大过程在技术上已经相当成熟,已有大规模的工业应用,形成了相当规模的产业,有许多商品化的产品可供不同用途使用。这里主要以反渗透膜和超滤膜为代表介绍一下。 反渗透膜(RO)

反渗透膜使用的材料,最初是醋酸纤维素(CA),1966年开发出聚酰胺膜,后来又开发出各种各样的合成复合膜。CA膜耐氯性强,但抗菌性较差。合成复合膜具有较高的透水性和有机物截留性能,但对次氯酸等酸性物质抗性较弱。这两种材料耐热性较差,高温度大约是60℃左右,这使其在食品加工领域的应用中受到限制。 超滤膜(UF) 超滤膜也是使用CA做材料,后来各种合成高分子材料得以广泛应用。其材料多种多样,共同特点是具有耐热、耐酸碱、耐生物腐蚀等优点。 以上就是为大家介绍的全部内容,希望对大家有帮助。

膜分离技术及其应用和前景

膜分离技术概论 XXX 机械工程及自动化专业机械104班1003010414 摘要:膜分离是在20世纪60年代迅速发展起的一门分离技术,膜分离主要包括分离、浓缩、纯化和精制等功能且操作简单、易于操作,因此目前膜分离技术被广泛应用于供水、制药、食品、环保、废品回收、水的淡化等工业生产过程中,产生了巨大的经济效益和社会效益。本文首先介绍了膜分离技术中的一些概念、膜的种类及其原理,然后介绍了一些常见的膜分离过程在实际生产中的应用;最后介绍了我国膜分离技术的发展概况及前景。 关键词:膜分离,技术,前景,概况 Membrane-Seperating technology Abstract: Membrane-Seperating technology is a separating technology which developed fast in the 1960s. This technology involves in various functions like separating、concrntrating、purifying and refining,what else, for it’s easily to operate it’s now widely used in the fields of water supplyment、medicine production、food、environment protecting、waste water recycling and so on, make great economical and social benefits. This passage first explain some concepts membrane technology、main theory involved and sort of it. Key words: Membrane-Seperating,technology,introduction,prospect 1膜分离技术的原理 现代膜分离技术分离的根本原理在于膜具有选择透过性。膜分离法是用天然或人工合成的高分子薄膜,以外界能量或化学位差为推动力,对双组分或多组分的溶质和溶剂进行分离、分级、提纯和富集的方法,可用于液相和气相。对于液相分离,可用于水溶液体系、非水溶液体系、水溶胶体系以及含有其他微粒的水溶液体系。以下重点介绍反渗透的基本原理、微滤原理及超滤原理。

膜法制氧的技术原理

膜法制氧的技术原理 概念 气体膜分离技术是利用渗透的原理,即分子通过膜向化学式降低的方向运动,首先运动至膜的外表面层上,并溶解于膜中,然后在膜的内部扩散至膜的内表面层解吸,其推动力为膜两侧的该气体分压差,由于混合气体中不同组分的气体通过膜时的速度不同,从而达到气体分离及回收提纯气体的目的。 应用领域 目前,国内已成功地将膜法富氧助燃节能技术应用于有色金属冶炼、玻璃池炉节能、化铁炉和铸造炉节能等方面,并取得了提高产品质量,节约能源,改善环境的效果,进一步提高了社会效率。其节能率一般在10%-15%。 由赣州川汇气体设备制造有限公司提供的膜法制氧系统不仅适用于富氧助燃领域,它可广泛应用于富氧呼吸(如家庭氧吧、富氧空调、富氧养殖、登山运动保障、富氧运动、美容)、燃料电池、车辆增氧、发动机增效等等领域。 技术含量 赣州川汇气体设备制造有限公司是膜法富氧的先行者。生产制造方面,2003年引进了国内首条板式膜组件生产线,是国内唯一的板式膜制造厂商;工业应用方面,为国内最大的富氧项目提供过板式膜组件,参与了国内三星、小鸭空调富氧的前期开发;对柴油机、汽油机等发动机增效的节能、冷启动、降低氮氧化物排量方面进行深入的研究,该公司在研究将目前先进的ITM 离子传输膜无机透氧膜商品化,该分离膜可直接自空气中获得100%的纯氧。 竞争优势 该公司板式膜制氧系统是目前世界上技术先进的膜法富氧系统,它是标准的工业模块化组成装置,接上电源,即可产生氧气。具有竞争的领导地位: 1)富氧提取专利工艺流程技术 2)板式膜组件专利技术 3) 低压气体填料干燥技术 4)膜与膜分离设计软件 5)三维设计 6)人性化设计 7)以保证设备可靠性\稳定性出发的优秀元器件的选择

气体膜分离技术的发展前景

气体膜分离的研究成果和发展前景气体分离是利用混合气体中不同气体组分在膜内溶解、扩散性质不同,而导致其渗透率的不同来实现其分离的一种膜分离技术。 目前,实现工业化的气体分离技术可分为三大主流技术:深冷法、变压吸附法、膜分离法。气体膜分离技术的工业化始于20世纪40年代,而膜法气体分离技术真正实现大规模的工业化应用是以美国孟山(monsanto)公司!1979年开发的Prism中空纤维氮/氢分离器为标志的。但膜分离法其产品纯度与产气量不如上述两种技术。由此可见。在三大气体分离技术中,气体膜分离技术是最晚实现工业化的。虽然如此,气体膜分离技术因其常温操作、装置简单、能耗低而分离效率高被认为是"21世纪最有发展前途的高新技术之一。气体分离膜已大规模用于合成氨厂的氮、氢分离,空气富氧、富氮,天然气中二氧化碳与甲烷的分离等。 近年来,由荷兰NTO环境科学、能源研究与工艺革新研究所开发的HTV膜分离气体吸收系统由荷兰Cirmac国际公司实现商业化,在捷克化学集团Aliachem公司用于氨回收,可捕集99.9%的氨。2001年,Eenrfex公司开发出其第一套膜系统用于从天然气中脱除N2,经催化转化器产生氢气供磷酸燃料电池使用。气体中N2含量从8.5%减少到6%,可满足用户要求。其拟建的大规模系统将使粗天然气的N2含量减少到任意的管输规格。美国无机膜技术实验室的研究人员正在开发从CO和CO2中分离出H2的多孔陶瓷膜,可应用于用煤生产合成气方面。此外,该实验室还在进行多孔金属支持膜上的碳素膜的研制,以用于从石油炼厂吹洗气中回收未使用完的H2。美国膜技术和研究公司与澳大利亚Csiro公司和美国卡罗来纳州立大学开发的新聚合物膜,用于气体分离的选择性是目前市售聚合物膜的两倍。另据报道,由美国北卡罗来纳州立大学、澳大利亚CSIKO学院、得克萨斯大学的科学家组成的联合小组在研制过程中配合使用通常用于制造膜过滤器的有机聚合物和无机物(SiO2纳米粒子)开发成功具有非凡的从气体中分离出有机大分子能力的膜,此分离膜让大分子透过的速率远大于小分子。研究人员希望将来将其用于天然气和石油加工等工业领域。 气体膜分离技术的发展前景

氢气膜分离技术的现状修订稿

氢气膜分离技术的现状 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

氢气膜分离技术的现状、特点和应用(中国科学院大连化学物理研究所)摘要: 气体膜分离技术是一种新型的化工分离技术。由于它具有能耗低、投资省、占地面积小和使用方便等特点,现已在石化和化工工业中得到广泛的应用。 在气体膜分离技术中,氢气分离膜占有很大的比重。到目前为止,氢气膜分离技术是开发应用得最早,技术上最成熟,取得的经济效益十分显着的气体膜分离技术。 本文简要地介绍氢气膜分离技术的发展概况,一些氢气膜分离器的性能和特点以及在国内外的应用情况。 关键词:氢气膜分离膜分离技术氢气回收 作者简介: 董子丰:男,1937年生;祖籍:浙江绍兴;研究员。 1961年毕业于北京理工大学化工系。从那时起一直在中国科学院大连化学物理研究所工作。主要从事国防科技事业的研究。80年代中,曾作为访问学者到德国海德堡大学从事激光化学的合作研究。88年回国到现在,主要从事气体膜分离的技术开发,已撰写10余篇文章刊登在国内外杂志上。 中图分类号: TQ028. 8 氢气分离膜技术的现状、特点和应用 一、概述 目前,在气体膜分离技术中,氢气膜分离技术是开发应用最早、适用范围很广、技术最成熟和经济效益十分显着的膜分离技术。氢气膜分离技术主要用来从含氢和其它气体的混合气中,分离和提浓氢气。它之所以在气体膜分离技术中占有如此重要位置的原因不仅是因为氢气在化工和石化工业中的重要性,而且还在于氢气膜分离所具有的技术适用性和经济合理性。 1、氢气在化工和石油化工工业中具有非常重要的意义 现代石油化学和炼油工业的特点是,在一些大型工艺过程中,氢气是重要付产物(重整、裂解),同时,氢又是重要的原料(合成氨、合成甲醇、加氢精制、加氢裂化)。石化工业是个耗氢大户,多年来,在石化工业中,氢气一直供不应求,随着原料油的加重和对辛烷值要求的提高,氢气的供需予盾将会更加突

气体分离膜的制备及应用

1.膜制备技术:相转化法 2.原理:所谓相转化法,就是将均相的高分子溶液由外力变成两相系统,一相为高分子浓度较高形成膜结构的固相,一相是高分子浓度较稀薄形成孔洞的液相。因此相分离程序是相转换法的核心,而操作相分离的参数主要是由热力学和动力学控制。热力学是由平衡状态下的相图来预测相分离产生,而动力学可以推论成膜的速率。 利用铸膜液与周围环境进行溶剂、非溶剂传质交换,原来稳态溶液变成非稳态而产生液液相转变,最后固化成膜。一般来说,环境因素对相转化法成膜影响较大,所以采用此法必须严格控制好环境条件。 3.实例: 一.致密皮层非对称气体分离膜的制备【1】 以湿相转化法制备出分离性能优良的致密皮层非对称气体分离膜;建立了醋酸纤维素-丙酮-甲醇三组分制膜体系,所制得的致密皮层醋酸纤维素非对称气体分离膜,在室温、0.5MPa 进气压力下,该膜对CO2/CH4的分离系数30,CO2透气速率可达1.8×10?8cm3(STP)/c m2·s·Pa;扫描电镜图显示该膜表层致密、超薄(约200nm)、支持层疏松,为理想结构的非对称气体分离膜。实验部分: ①材料和试剂: 醋酸纤维素CA:Eastman 398-3,使用前80度下烘干24h ,

干燥器中冷却,备用;丙酮、甲醇:分析纯,南开大学分校特种试剂实验厂;正已烷:分析纯,天津市化学试剂二厂;二氧化碳:天津酒精厂;甲烷:北京分析仪器厂, 纯度99.99 %。 ②膜的制备: 丙酮或与甲醇混合溶剂中加入CA,室温下混合,待全部溶解后, 经压滤、脱泡, 静置备用。将制膜液在玻璃上刮成膜,控制厚度约100μm ,在环境温度约25 ℃,相对湿度55 %的条件下,经过一定时间的自然蒸发,浸入甲醇中凝固,之后用正已烷交换膜中的甲醇,最后在空气中自然挥发制成干膜。 二.相转化法制备PVDF 超滤膜【2】 相转化法制膜工艺简单,操作方便,膜结构容易控制,大多数聚偏氟乙烯( PVDF) 超滤膜采用该方法制备。由于具有较强的抗氧化性、良好的热稳定性、耐辐射性、优异的机械性能及易成膜等优点,PVDF 成为超滤膜制备中应用最广泛的材料之一。PVDF 的表面能极高,因此疏水性较强,这使其成为气体吸附、脱附及膜蒸馏等非水体系分离过程的理想用膜。然而膜材料本身的疏水性经常导致膜污染及通量下降成为膜技术在水处理领域应用的最大障碍。为此,人们对膜亲水化改性进行了大量研究。 相转化法是制备PVDF 超滤膜使用最多的方法。相转化法是一种以某种控制方式使聚合物从液态转变为固态的过程,这种固化过程通常是由一个均相液态转变为两个液态( 液液分层) 而引发的。在分层达到一定程度时,其中一个液相( 聚合物用量高

液膜分离的原理及应用

宁波大学硕士研究生2016/2017学年第1学期期末答题纸 考试科目:生化分离技术课程编号:考卷类型:(A/B) 姓名:学号:阅卷老师:成绩: 液膜分离的原理及应用 摘要:液膜模拟生物膜的结构,通常由膜溶剂、表面活性剂和流动载体组成。它利用选择透过性原理,以膜两侧的溶质化学浓度差为传质动力,使料液中待分离溶质在膜内相富集浓缩,分离待分离物质。 关键字:液膜分离技术,乳化液膜,支撑液膜。 Principle and application of liquid membrane separation Abstract:Liquid membrane simulates the structure of a biofilm, usually consisting of a membrane solvent, a surfactant, and a mobile carrier. It uses the principle of selective permeability to the membrane on both sides of the solute chemical concentration difference for the mass transfer power,so that the liquid to be separated in the membrane solute enrichment enrichment, separation of the material to be separated. key words:liquid membrane separation technology, emulsion liquid membrane ,supported liquid membrane ,waste water treatment。 液膜分离是 60 年代中期诞生的一种新型的膜分离技术。它具有膜分离的一般特点, 主要是依据膜对不同物质具有选择性渗透的性质来进行组分的分离。自20世纪 60 年代美国林登埃克森研究与工程公司黎念之博士( N.N.Li)发明后[1]。液膜通常由膜溶剂、表面活性剂、流动载体和膜增强添加剂组成[2]。各国学者相继开展了大量的研究。该技术在湿法冶金、金属离子回收、废水处理、生物制品分离与生物医药分离、化工分离等方面已显示出广泛的应用前景。目前液膜技术处理农药厂废水已实现工业化, 在含锌废水处理中已进行了工业试验, 液膜技术分离宇宙飞船中 CO2 也已成功得到应用, 液膜分离技术正在得到迅速的发展。 生物学家们在液膜促进传递方面取得的成就引起了化学工程师们的注意. 60 年代中期 , Bloch 等[3]采用支撑液膜( supported liquid membrane) 研究了金属提取过程, Ward 与 Robb[4]研究了 CO2 与 O2 的液膜分离, 他们将支撑体液膜称为固定化液膜( immobilized liquid membrane). 黎念之( N .N . Li) 在用du Nuoy 环法测定含表面活性剂水溶液与油溶液之间的界面张力时 ,观察到了相当稳定的界面膜 ,由此开创了研究液体表面活性剂膜( liquid surfactant membrane) 或乳化液膜( emulsion liquid membrane)的历史[5] 1液膜分离原理 1.1液膜及其分类 液膜是分隔两个液相的第三液相,它与被分隔液体的互溶度极小。膜相液通常由膜溶剂、载体、表面活性剂、稳定剂所组成。 膜溶剂是膜相液的基体,占膜总量的90%以上,选择膜溶剂主要考虑膜的稳定性和对溶质的溶解性。当原料液为水溶液时,用有机溶剂作液膜,当原料液为有机溶剂时,用水作液膜。 载体是运载溶质穿过液膜的物质,它能与被分离的溶质发生化学反应,它分为离子型和非离子型。离子型载体通过离子交换方式与溶质离子结合,在膜中迁移;非离子

膜分离技术及其应用 本科教学大纲

膜分离技术及其应用 课程编码:课程名称:膜分离技术及其应用 总学分: 1.5 总学时:24 课程英文名称:Membrane Separation Technology and Their application 适用专业:与环境相关专业 一、课程性质、地位和任务 《膜分离技术》是环境工程和环境科学专业的专业特色课。通过本课程的学习,主要使学生掌握膜分离技术基础理论,熟悉反渗透、纳滤、超滤、微滤、电渗析等膜技术的工作原理和各种膜分离组件的结构和各种膜技术的特点,培养学生综合利用膜技术基本理论与各种具体膜技术相结合进行初步应用设计的能力。二、教学目标要求 1.掌握膜及膜分离技术的基本概念,了解国内外膜分离技术的发展现状及存在的主要问题。 2.理解并掌握电渗析、超滤、微滤、反渗透等分离膜的基本性质及工艺流程等。3.掌握不同膜分离过程的基本理论及影响因素,并运用实际中去。 三、理论教学内容及安排 第1章概述(4.0学时) 教学目标:理解膜及膜分离技术等概念及以及膜分离技术的发展现状与趋势。重点、难点:重点是对膜的认识;难点是膜分离过程的特点及其存在的问题。1.1 分离膜与膜分离技术的概念(1.0学时) 1.2 膜分离技术发展沿革(1.0学时) 1.3 功能膜的分类(0.5学时) 1.4 膜分离过程的类型(0.5学时) 1.5 膜材料及膜的制备(1.0学时) 第2章电渗析(3.0学时) 教学目标:理解电渗析的基本原理、渗析和电渗析等概念。 重点、难点:重点是离子迁移过程的的认识;难点是膜的选择透过性的影响因子。 2.1 概述(0.5学时) 2.2 电渗析基本原理(1.0学时) 2.3 电渗析主要组件(0.5学时) 2.4 电渗析器(0.5学时) 2.5 EDI (0.5学时)

膜分离技术的应用现状及发展前景

膜分离技术的应用现状及发 展前景(总6页) 本页仅作为文档页封面,使用时可以删除 This document is for reference only-rar21year.March

膜分离技术的应用现状及发展前景 摘要:膜分离技术( Membrane Separation Technologies)是近十几年发展起来的一种高新技术,随着膜设备和技术的不断发展和成熟,其在各行业中有着广泛的应用。本文介绍了膜分离技术的特性,阐述了膜分离技术在食品工业、水处理、生物技术、医药工业和医疗设备方面的应用,并展望膜分离技术应用领域的发展前景,分析膜分离技术在膜材料、新的膜过程和膜通量等方面的发展趋势,同时指出膜分离技术将在人类社会的发展史上起到不可替代的作用。 关键词:膜分离技术;膜生物反应器;选择透过性膜;膜材料; 前言: 膜分离技术是指用天然或人工合成的具有选择透过性膜,以外界能量或化学位差为推动力,对双组分或多组分的溶质和溶剂进行分离、分级、提纯和浓缩的边缘学科高新技术[1]。由于膜分离技术具有节能、高效、简单、造价低、无相变、可在常温下连续操作等优点,而且特别适合热敏性物质的处理的特点,其应用已渗透到人们生活和生产的各个方面,现已被广泛应用于化工、环保、生物工程、医药和保健、食品和生化工程等行业[2]。虽然膜分离技术的应用在许多方面离产业化要求还有很长的距离,但是随着新型膜材料的不断开发、高效的强化膜过程分离技术研究的不断深入, 膜分离技术应将得到更加广泛的应用,其在未来是世界各国研究的热点,它将在各个领域发挥更引人注目的作用。 现本文对膜技术的特点、类型及其在各方面的应用现状进行综述,并且提出了膜分离技术的发展前景。 1 膜分离技术的特点 膜分离技术作为一种新型的分离技术, 具有以下特点[3]: 1.1 在常温下进行,特别适用于热敏性物质的分离、分级、提纯和浓缩,且 可以同步进行能较好地保持产品原有的色、香、味和营养成分; 1.2 分离过程中不发生相变,挥发性物质损失少,节约能源; 1.3 具有冷杀菌作用,保存期长,无二次污染; 1.4 选择性好,应用范围广,但要选择相应的膜类型; 1.5 设备简单,易于操作,可连续进行,效率高。 2 膜分离技术的类型

膜分离技术应用综述

膜分离技术应用综述-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

《食品科学概论》课程论文 论文题目:膜分离技术应用综述 学 院 :生物工程学院 专 业 :食品科学与工程 年级班别 :09级一班 学 号 :2009407010122 学生姓名 :齐莹 学生邮箱 :963894228@https://www.360docs.net/doc/d117626569.html, 指导教师 :陈清禅 2011年 5 月 24 日 JINGCHU UNIVERSITY OF TECHNOLOGY

膜分离技术应用综述 齐莹 2009407010122 摘要综述膜分离技术的特点、种类及分离机理,介绍国内外膜分离技术的研究进展及其在各个领域的应用现状,同时指出该技术存在的问题,提出选用更佳的膜材料以及多种膜分离技术联用是其今后的发展方向。 关键词膜分离技术微滤超滤食品工业 膜分离是在20世纪初出现,上世纪60年代后迅速崛起的一门分离新技术。膜分离技术由于兼有分离、浓缩、纯化和精制的功能,又有高效、节能、环保、分子级过滤及过滤过程简单、易于控制等特征,因此,目前已广泛应用于食品、医药、生物、环保、化工、冶金、能源、石油、水处理、电子、仿生等领域,产生了巨大的经济效益和社会效益,已成为当今分离科学中最重要的手段之一。据统计,膜销售每年以14%~30%的速度增长,而最大的市场为生物医药市场[1] 。 1膜分离的简介 1. 1 膜的定义 膜是一种起分子级分离过滤作用的介质,当溶液或混和气体与膜接触时,在压力下,或电场作用下,或温差作用下,某些物质可以透过膜,而另些物质则被选择性的拦截,从而使溶液中不同组分,或混和气体的不同组分被分离,这种分离是分子级的分离。 1. 2 膜的种类 分离膜包括:反渗透膜(0. 0001~0. 005μm) ,纳滤膜(0. 001 ~0. 005μm) 超滤膜(0. 001 ~0. 1μm) 微滤膜(0. 1~1μm) 、电渗析膜、渗透气化膜、

相关文档
最新文档