高中数学优秀讲义微专题52 证明等差等比数列

高中数学优秀讲义微专题52  证明等差等比数列
高中数学优秀讲义微专题52  证明等差等比数列

微专题52 等差等比数列的证明

在数列的解答题中,有时第一问会要求证明某个数列是等差等比数列,既考察了学生证明数列的能力,同时也为后面的问题做好铺垫。 一、基础知识:

1、如何判断一个数列是等差(或等比)数列 (1)定义法(递推公式):1n n a a d +-=(等差),

1

n n

a q a +=(等比) (2)通项公式:n a kn m =+(等差),()0n n a k q q =?≠(等比)

(3)前n 项和:2n S An Bn =+(等差),n n S kq k =-(等比)

(4)等差(等比)中项:数列从第二项开始,每一项均为前后两项的等差(等比)中项 2、如何证明一个数列是等差等比数列: (1)通常利用定义法,寻找到公差(公比)

(2)也可利用等差等比中项来进行证明,即n N *

?∈,均有:

122n n n a a a ++=+ (等差) 2

12n n n a a a ++=? (等比)

二、典型例题:

例1:已知数列{}n a 的首项1133,,521

n

n n a a a n N a *+=

=∈+. 求证:数列11n a ??

-?

???

为等比数列 思路一:构造法,按照所给的形式对已知递推公式进行构造,观察发现所证的数列存在

1n

a 这样的倒数,所以考虑递推公式两边同取倒数:113121

213n n n n n n

a a a a a a +++=

?=+

112133n n a a +=+,在考虑构造“1-”:112111

111333n n n a a a +??-=+-=- ???

即数列11n a ??-?

???

是公比为1

3的等比数列

思路二:代入法:将所证数列视为一个整体,用n b 表示:1

1n n

b a =

-,则只需证明{}n b 是等比数列即可,那么需要关于n b 的条件(首项,递推公式),所以用n b 将n a 表示出来,并代换

到n a 的递推公式中,进而可从n b 的递推公式出发,进行证明 解:令11n n b a =

-,则11

n n a b =+ ∴ 递推公式变为:113

1131

1113

211

n n n n n b b b b b +++=?=+++?++

111

3333

n n n n b b b b ++?+=+?=

{}n b ∴是公比为1

3的等比数列。即数列11n a ??-????

为等比数列

小炼有话说:

(1)构造法:在构造的过程中,要寻找所证数列形式的亮点,并以此为突破对递推公式进行变形,如例1中就是抓住所证数列有一个“倒数”的特点,进而对递推公式作取倒数的变换。所以构造法的关键之处在于能够观察到所证数列显著的特点并加以利用

(2)代换法:此方法显得模式化,只需经历“换元→表示→代入→化简”即可,说两点:一是代换1

1n n

b a =

-体现了两个数列{}{},n n a b 的一种对应关系,且这种对应是同序数项的对应(第n 项对应第n 项);二是经过代换,得到{}n b 的递推公式,而所证n b 是等比数列,那么意味着其递推公式经过化简应当形式非常简单,所以尽管代入之后等式复杂,但坚定地化简下去,通常能够得到一个简单的答案。个人认为,代入法是一个比较“无脑”的方法,只需循规蹈矩按步骤去做即可。

例2:数列{n a }的前n 项和为n S ,213

1(*)22

n n S a n n n N +=-

-+∈(*)

.设n n b a n =+,证明:数列{}n b 是等比数列,并求出{}n a 的通项公式

思路:本题所给等式,n n S a 混合在一起,可考虑将其转变为只含n a 或只含n S 的等式,题目中

n n b a n =+倾向于项的关系,故考虑消掉n S ,再进行求解

解:213

122n n S a n n +=-

-+ ① ()()()2

11131112,22

n n S a n n n n N --+=----+≥∈ ②

∴ ①- ②可得:112121n n n n a a n a a n ---=--?=--

()()()1112112n n n n a n a n a n a n --∴+=+-?+=

+-???? 即11

2

n n b b -=

{}n b ∴是公比为1

2的等比数列 111b a =+ 令1n = 代入(*)可得:

11131122S a +=--+=- 112a ∴=- 11

2

b ∴=

1

11122n n n b b -??

??∴=?= ?

???

?? 12n

n n a b n n ??

∴=-=- ???

小炼有话说:(1)遇到,n n S a 混合在一起的等式,通常转化为纯n a (项的递推公式)或者纯n S (前n 项和的递推公式),变形的方法如下:

① 消去n S :向下再写一个关于1n S -的式子(如例2),然后两式相减(注意n 取值范围变化) ② 消去n a :只需1n n n a S S -=-代换即可(2,n n N ≥∈)

(2),n n S a 混合在一起的等式可求出1a ,令1n =即可(因为11S a =)

(3)这里体现出n n b a n =+的价值:等差等比数列的通项公式是最好求的:只需一项和公差(公比),构造出等差等比数列也就意味这其通项可求,而通过n n b a n =+也可将n a 的通项公式求出。这里要体会两点:一是回顾依递推求通项时,为什么要构造等差等比数列,在这里

给予了一个解释;二是体会解答题中这一问的价值:一个复杂的递推公式,直接求其通项公式是一件困难的事,而在第一问中,恰好是搭了一座桥梁,告诉你如何去进行构造辅助数列,进而求解原数列的通项公式。所以遇到此类问题不要只停留在证明,而可以顺藤摸瓜将通项一并求出来

例3:已知数列{}n a 满足:1116,690,n n n a a a a n N *

--=-+=∈且2n ≥,求证:13n a ??

??-??

等差数列 解:设13n n b a =

-,则1

3n n

a b =

+代入11690n n n a a a ---+=可得: 11111336390n n n b b b --??????++-?++= ??? ???????

1111336

91890n n n n n b b b b b ---?

+++--+= 111330n n n n b b b b --?

-+=11

3

n n b b -?-= {}n b ∴为等差数列,即13n a ????-??

为等差数列

例4:已知曲线:1C xy =,过C 上一点(),n n n A x y 作一斜率为1

2

n n k x =-

+的直线交曲线C 于另一点()111,n n n A x y +++(1n n x x +≠且0n x ≠,点列{}n A 的横坐标构成数列{}n x ,其中

1117

x =

. (1)求n x 与1n x +的关系式; (2)令11

23

n n b x =

+-,求证:数列{}n b 是等比数列; 解:(1)曲线1

:C y x

=

()1:2n n n l y y x x x -=--+

()11111

121n n n n n n n n

n y x

y y x x x y x ++++?=??

?∴-=--?+?

?=??

12n n n x x x +∴=+

(2)111

21233

n n n n b x x b =

+?=+--,代入到递推公式中可得:

1111

2222111

333n n n b b b +???? ? ?+?+=++ ? ? ? ?---

???? 11111112211111133422=411133333333

n n n n n n n n n n b b b b b b b b b b +++++++

????????

?=+?++-+-- ??? ???????????---

()()1111121144

4439339

n n n n n n n n n b b b b b b b b b +++++?+++=-+-++

()()11124

33

n n n n n b b b b b +++?+=-+ 12n n b b +?=- {}n b ∴是公比为2-的等比数列

小炼有话说:本题(2)用构造法比较复杂,不易构造出n b 的形式,所以考虑用代入法直接求解

例5:已知数列{}n a 满足()()11

46410,21

n n n a n a a a n N n *

++++==

∈+,判断数列221n

a n +??

??+??

否为等比数列?若不是,请说明理由;若是,试求出n a 解:设()2

21221

n n n n a b a n b n +=

?=+-+ 代入到()14641021

n n n a n a n ++++=

+可得:

()()()146212410

23221

n n n n b n n b n +++-++????+-=

+

()()()()123214222321812410n n n n b n n n b n n +?++--=++--++ ()()()()1232122321n n n n b n n b +?++=++

12n n b b +?=

而112233

a a

b ++=

=

∴① 2a =-时,10b =,{}n b 不是等比数列

② 2a ≠-时,{}n b 是等比数列,即221n a n +??

?

?+??

为等比数列 1

1222213

n n a a n -++∴

=?+ ()()1221223n n a n a -++∴=

?- 例6:(2015山东日照3月考)已知数列{}n a 中,111

,1,33,n n n a n n a a a n n +?+?==??-?为奇数

为偶数

,求证:

数列232n a ?

?

-

????

是等比数列 思路:所证数列为232n a ??

-

???

?

,可发现要寻找的是{}n a 偶数项的联系,所以将已知分段递推关系转变为2n a 与()21n a -之间的关系,再进行构造证明即可

证明:由11

,33,n n n a n n a a n n +?+?=??-?为奇数

为偶数

可得:

()2211

213n n a a n -=+- ()2122322n n a a n --=-?-Q

()2221

322213

n n a a n n -∴=--+-???? 2222211

2221133

n n n a a n n a --∴=-++-=+

222223111323232n n n a a a --??∴-

=-=- ???

∴数列232n a ?

?-???

?是公比为13的等比数列

例7:(2015湖北襄阳四中阶段性测试)已知数列{}n a 满足11a =,且对任意非负整数

(),m n m n >均有: ()221

12

m n m n m n a a m n a a +-++--=

+ (1)求02,a a

(2)求证:数列{}1m m a a +-是等差数列,并求出n a 的通项公式 解:(1)令m n =可得:

202011m m a a a a +-=?=

再令0n =可得:

()201

212

m m a m a a +-=

+ 2423m m a a m ∴=+- 21413a a ∴=-= 021,3a a ∴==

(2)思路:考虑证明数列{}1m m a a +-是等差数列,则要寻找1m m a a +-,1m m a a --的关系,即所涉及项为11,,m m m a a a +-,结合已知等式令1n =,利用(1)中的2423m m a a m =+-,将

2m a 代换为m a 即可证明,进而求出通项公式

证明:在()221

12

m n m n m n a a m n a a +-++--=

+中令1n =得: ()11221

22

m m m a a m a a +-++-=

+ 11222224m m m a a m a a +-∴++-=+

由(1)得22423,3m m a a m a =+-=代入可得:

11222442m m m a a m a m +-∴++-=+

()()1111222m m m m m m m a a a a a a a +-+-∴+-=?---=

∴ 数列{}1m m a a +-是公差为2的等差数列

()()121212m m a a a a m m +∴-=-+-= ()121m m a a m -∴-=-

()-1222m m a a m --=- M 212a a -=

()()121211m a a m m m ∴-=+++-=-????L

()11m a m m ∴=-+

例8:(2010 安徽,20)设数列12,,,,n a a a L L 中的每一项都不为0,求证:{}n a 是等差数列的充分必要条件是:对n N *

?∈都有

1223111

111n n n n

a a a a a a a a +++++=L 思路:证明充要条件要将两个条件分别作为条件与结论进行证明,首先证明必要性,即已知

等差数列证明恒等式。观察所证等式可联想到求和中的裂项相消。所以考虑

11111111111n n n n n n n n a a a a a a d a a ++++????=-?=- ? ?-????

,然后恒等式左边进行求和即可证明。再证

明充分性,即已知恒等式证明等差数列:恒等式左侧为求和形式,所以考虑向前写一个式子两式相减,进而左边消去大量的项,可得:

121211

11n n n n n n

a a a a a a +++++=-,通过化简可得:

211n n n n a a a a +++-=-,从而利用等差中项完成等差数列的证明

证明:先证必要性:{}n a Q 是等差数列 ∴当0d =时

121n n a a a a -====L ∴左边22211111n a a a =

++=L 右边2

1n a =

当0d ≠时,考虑

11111111111n n n n n n n n a a a a a a d a a ++++????=-?=- ? ?-????

∴左边11

12231111111111111111n n n n n a a d a a a a a a d a a d a a ++++??????????-=

-+-++-=-=???

? ? ? ???????????L 1111

1n n nd n d a a a a ++=

?==右边 ∴所证恒等式成立

再证必要性:

1223111

111n n n n a a a a a a a a +++++=Q

L ① 122311212

11111

n n n n n n a a a a a a a a a a +++++∴

++++=L ② ①-②可得:

121211

11n n n n n n

a a a a a a +++++=-

两边同时乘以112n n a a a ++得:

()1121n n a n a na ++=+- ③

同理:()111n n a na n a +=-- ④

③-④可得:()121222n n n n n n na n a a a a a ++++=+?=+

{}n a ∴为等差数列

小炼有话说:(1)本题证明等差数列所用的是等差中项的方法,此类方法多在数列中存在三项关系时使用 (2)在充分性的证明中连续用到了构造新式并相减的方法,这也是变形递推公式的方法之一,当原递推公式难以变形时,可考虑使用这种方法构造出新的递推公式,尤其递推公式的一侧是求和形式时,这种方法可以消去大量的项,达到化简递推公式的目的。

例9:若数列{}n a 的各项均为正数,2

12,n n n n N a a a t *++?∈=+(t 为常数),且3242a a a =+

(1)求

13

2

a a a +的值 (2)求证:数列{}n a 为等差数列

解:(1)令1n =,则有2

213a a a t =+ ①

令2n =,则有2

324a a a t =+ ②

①-②可得:

()()2222231324224313224313a a a a a a a a a a a a a a a a a a -=-?+=+?+=+

1324

23

2a a a a a a ++∴

== (2)思路:所给的递推公式中含有t ,而且原递推公式也很难变形,所以考虑再写一个式子两式相减,构造新的递推公式,仿照(1)进行变形。

解:212n n n a a a t ++=+ ③ 2

213n n n a a a t +++=+④

∴③-④可得:

22221221311322n n n n n n n n n n n n a a a a a a a a a a a a ++++++++++-=-?+=+

()()11322n n n n n n a a a a a a +++++?+=+

132

21

n n n n n n a a a a a a +++++++∴

=

从而

1321124

213

2n n n n n n n n n a a a a a a a a a a a a +++-+++++++=====L

2

211

22n n n n n n a a a a a a +++++∴

=?+= 1+21n n n n a a a a ++∴-=-

∴ 数列{}n a 为等差数列

例10:在数列{}n a 中,10a =,且对任意k N *

∈,21221,,k k k a a a -+成等差数列,其公差为k d ,

若2k d k =,求证:22122,,k k k a a a ++成等比数列

思路:由21221,,k k k a a a -+的公差为2k d k =,而2121,k k a a -+表示数列中相邻的奇数项,所以可选择它们的关系作为突破口,即21214k k a a k +--=,从而可以求出{}n a 奇数项的通项公式,再利用2121,k k a a -+可求出2k a ,进而22122,,k k k a a a ++均可用含k 的式子表示,再从定义出发即可证明其成等比数列

解:21221,,k k k a a a -+Q 成等差数列且2k d k =

21214k k a a k +-∴-=

()212341k k a a k --∴-=-

M 314a a -=

[]()21141221k a a k k k +∴-=+++=+L

()()211121k a k k a k k +∴=++=+ ()2121k a k k -∴=-

21221,,k k k a a a -+Q 成等差数列

()222121122

k k k a a a k +-∴=

+= ()2

2221k a k +=+ ()2

222122

21222

221

41k k k k k k k a a a a a k k a a +++++∴=?=+?= 22122,,k k k a a a ++∴成等比数列

等差等比数列的证明例举

等差等比数列的证明 在数列的解答题中,有时第一问会要求证明某个数列是等差等比数列,既考察了学生证明数列的能力,同时也为后面的问题做好铺垫。 一、基础知识: 1、如何判断一个数列是等差(或等比)数列 (1)定义法(递推公式):1n n a a d +-=(等差), 1 n n a q a +=(等比) (2)通项公式:n a kn m =+(等差),()0n n a k q q =?≠(等比) (3)前n 项和:2n S An Bn =+(等差),n n S k q k =-(等比) (4)等差(等比)中项:数列从第二项开始,每一项均为前后两项的等差(等比)中项 2、如何证明一个数列是等差等比数列: (1)通常利用定义法,寻找到公差(公比) (2)也可利用等差等比中项来进行证明,即n N * ?∈,均有: 122n n n a a a ++=+(等差) 2 12n n n a a a ++=?(等比) 二、典型例题: 例1:已知数列{}n a 的首项1133,,521 n n n a a a n N a *+= =∈+. 求证:数列11n a ?? -? ??? 为等比数列 思路一:构造法,按照所给的形式对已知递推公式进行构造,观察发现所证的数列存在 1 n a 这样的倒数,所以考虑递推公式两边同取倒数:113121 213n n n n n n a a a a a a +++= ?=+ 即 1121 33n n a a +=+ ,在考虑构造“1-”:112111111333n n n a a a +?? -=+-=- ??? 即数列11n a ??-? ??? 是公比为1 3的等比数列

等差、等比数列公式总结

一、等差数列 1.定义:)(1常数d a a n n =-+ 2.通项公式:d n a )1(a 1n -+= 3.变式:d m n a m n )(a -+= m n a a d m n --= 4.前n 项和:2 )(1n a a S n n += 或 d n n n a S n 2)1(1-+= 5.几何意义: ①d dn a d n a a n -+=-+=11)1(即q pn a n += 类似 q px y += ②n d a n d S n )2 (212-+= 即 Bn An S n +=2 类似 Bx Ax y +=2 6.}{n a 等差d a a a a a Bn An S q pn a n n n n n n n =-?+= ?+=?+=?++-11122 7.性质 ① q p n m +=+则 q p n m a a a a +=+ ② p n m 2=+ 则 p n m a a a 2=+ ③ =+=+=+--23121n n n a a a a a a ④ m S 、m -m 2S 、2m -m 3S 等差 ⑤ }{n a 等差,有12+n 项,则 n S S 1n +=偶奇 ⑥ 1212-= -n S a n n 二、等比数列 1.定义:常数)(a 1q a n n =+ 2.通项公式:11a -=n n q a 3.变式: m n m n q a -=a m n m n q a a -= 4. ?????≠--==)1( 1)1()1( 11q q q a q na S n n

前n 项和:n a S n 1= )1(=q 或 q q a S n n --=11() 1 )1(≠q 5.变式:m n m n q q S S --=11 )1(≠q 6.性质: ① r p n m +=+则 r p n m a a a a ?=? ② p n m 2=+ 则 2 p n m a a a =? ③ =?=?=?--23121n n n a a a a a a ④ m S 、m -m 2S 、2m -m 3S 等比 ⑤ }{n a 等比,有12+n 项 偶奇qS a a a a q a a a a S n n +=++++=++++=+1242112531)(a 三、等差与等比的类比 {}n a 等差 {}n b 等差 和 积 差 商 系数 指数 “0” “1” 四、数列求和 1.分组求和 本数列的和公式求和.进行拆分,分别利用基,则可或等比数列的和的形式数列,但通项是由等差通项虽不是等差或等比 项的和: 前如求n n n )}1({+ )2)(1(3 1 )1(21)12)(1(61 )321()321( ) ()22()11(] )1(22222222++=++++=++++++++=++++++=∴+=+n n n n n n n n n n n n S n n n n n 2.裂项相消法. ).11(11}{1 1 11+++-=??n n n n n n n a a d a a a n a a 为等差数列,项和,其中的前项为用于通 从而计算和的方法,适别裂开后,消去一部分把数列和式中的各项分

等差等比数列(学生用)

等差等比数列 【基础过关】 1.等差数列的定义: - =d (d 为常数); 等比数列的定义:( )( ) =q (q 为不等于零的常数). 2.等差数列的通项公式: (1)a n =a 1+ ×d ; (2)a n =a m + ×d 等比数列的通项公式: (1) a n =a 1q n -1; (2)a n =a m q n -m 3.等差数列的前n 项和公式:S n = = . 等比数列的前n 项和公式:S n = 1 1q q ≠??=? 4.等差中项:如果a 、b 、c 成等差数列,则b 叫做a 与c 的等差中项,即b = . 等比中项:如果a 、b 、c 成等比数列,那么b 叫做a 与c 的等比中项,即b 2= (或b = ). 5.等差数列{a n }的两个重要性质: (1)m ,n ,p ,q ∈N *,若m +n =p +q ,则 . (2)数列{a n }的前n 项和为S n ,S 2n -S n ,S 3n -S 2n 成 数列. 等比数列{a n }的几个重要性质: (1)m ,n ,p ,q ∈N *,若m +n =p +q ,则 . (2)S n 是等比数列{a n }的前n 项和且S n ≠0,则S n ,S 2n -S n ,S 3n -S 2n 成 数列. (3)若等比数列{a n }的前n 项和S n 满足{S n }是等差数列,则{a n }的公比q = . 6.判断和证明数列{a n }是等差(等比)数列常有三种方法: (1)定义法:对于n ≥2的任意自然数,验证a n ―a n ―1(1 n n a a -)为同一常数. (2)通项公式法: ①若a n =a 1+(n -1)d =a k +(n -k )d ,则{a n }为等差数列; ②若a n =a 1q n ―1=a k q n ―k ,则{a n }为等比数列. (3)中项公式法:验证2a n +1=a n +a n +2(21n a +=a n +a n +2)n ∈N 都成立. 【基础自测】 1.等差数列{a n }共有2n +1项,其中奇数项之和为319,偶数项之和为290,则其中间项为_________. 2.已知等差数列{a n }中,a 2与a 6的等差中项为5,a 3与a 7的等差中项为7,则a n = . 3.设S n 是等差数列{a n }的前n 项和,S 6=36,S n =324,S n -6=144(n >6),则n 等于 . 4.已知等比数列{a n }公比为13 q =,则135246a a a a a a ++++= . 5.首项为-24的等差数列从第10项起开始为正数,则公差d 的取值范围是 .

证明或判断等差(等比)数列的常用方法

证明或判断等差(等比)数列的常用方法 湖北省 王卫华 玉芳 翻看近几年的高考题,有关证明、判断数列是等差(等比)数列的题型比比皆是,如何处理这些题目呢且听笔者一一道来. 一、利用等差(等比)数列的定义 在数列 {} n a 中,若 1n n a a d --=(d 为常数)或 1 n n a q a -=(q 为常数),则数列{}n a 为等差(等比)数列.这是证明数列{}n a 为等差(等比)数更最主要的方法.如: 例1.(2005北京卷)设数列{}n a 的首项114a a =≠,且11 214 n n n a n a a n +???=??+??为偶数为奇数 , 记211 1234 n n b a n -=-=,,,,…. (Ⅰ)求23a a ,;(Ⅱ)判断数列{}n b 是否为等比数列,并证明你的结论. 解:(Ⅰ)213211111 44228a a a a a a =+=+==+,; (Ⅱ)43113428a a a =+=+,所以54113 2416 a a a ==+, 所以1123351111111144424444b a a b a a b a a ????=- =-=-=-=-=- ? ????? ,,, 猜想:{}n b 是公比为 1 2 的等比数列. 证明如下:因为121221111111()424242 n n n n n b a a a b n *++-??=-=-=-=∈ ???N , 所以{}n b 是首项为14a - ,公比为1 2 的等比数列. 评析:此题并不知道数列{}n b 的通项,先写出几项然后猜测出结论,再用定义证明,这是常规做法。

等差数列、等比数列知识点梳理

等差数列和等比数列知识点梳理 第一节:等差数列的公式和相关性质 1、等差数列的定义:对于一个数列,如果它的后一项减去前一项的差为一个定值,则称这个数列为等差数列,记:d a a n n =--1(d 为公差)(2≥n ,*n N ∈)注:下面所有涉及n ,*n N ∈省略,你懂的。 2、等差数列通项公式: 1(1)n a a n d =+-,1a 为首项,d 为公差 推广公式:()n m a a n m d =+- 变形推广:m n a a d m n --= 3、等差中项 (1)如果a ,A ,b 成等差数列, 那么A 叫做a 与b 的等差中项.即:2 b a A += 或b a A +=2 (2)等差中项:数列{}n a 是等差数列 )2(211-≥+=?+n a a a n n n 212+++=?n n n a a a 4、等差数列的前n 项和公式: 1()2n n n a a S += 1(1) 2n n na d -=+ 211()2 2 d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 特别地,当项数为奇数21n +时,1n a +是项数为2n+1的等差数列的中间项 ()()()12121121212 n n n n a a S n a +++++= = +(项数为奇数的等差数列的各项 和等于项数乘以中间项) 5、等差数列的判定方法

(1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列. (2)等差中项:数列{}n a 是等差数列 )2(211-≥+=?+n a a a n n n 212+++=?n n n a a a (3)数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。 (4)数列{}n a 是等差数列?2n S An Bn =+,(其中A 、B 是常数)。 6、等差数列的证明方法 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列. 7、等差数列相关技巧: (1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、 d 、n 、n a 及n S ,其中1a 、d 称作为基本元素。只要已知这5个元素中 的任意3个,便可求出其余2个,即知3求2。 (2)设项技巧: ①一般可设通项1(1)n a a n d =+- ②奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差为d ); ③偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(注意;公差为2d ) 8、等差数列的性质: (1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ;前n 和 211(1)()222 n n n d d S na d n a n -=+ =+-是关于n 的二次函数且常数项为0。 (2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。 (3)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=。(注:12132n n n a a a a a a --+=+=+=???,)当然扩充到3项、4项……都是可以的,但要保证等号两边项数相同,下标系

等差等比数列练习题(含答案)

一、选择题 1、如果一个数列既是等差数列,又是等比数列,则此数列 ( ) (A )为常数数列 (B )为非零的常数数列 (C )存在且唯一 (D )不存在 2.、在等差数列 {}n a 中,41=a ,且1a ,5a ,13a 成等比数列,则{}n a 的通项公式为 ( ) (A )13+=n a n (B )3+=n a n (C )13+=n a n 或4=n a (D )3+=n a n 或4=n a 3、已知c b a ,,成等比数列,且y x ,分别为a 与b 、b 与c 的等差中项,则 y c x a +的值为 ( ) (A ) 2 1 (B )2- (C )2 (D ) 不确定 4、互不相等的三个正数c b a ,,成等差数列,x 是a ,b 的等比中项, y 是b ,c 的等比中项,那么2x ,2b ,2y 三个数( ) (A )成等差数列不成等比数列 (B )成等比数列不成等差数列 (C )既成等差数列又成等比数列 (D )既不成等差数列,又不成等比数列 5、已知数列 {}n a 的前n 项和为n S ,n n S n 24212+=+,则此数列的通项公式为 ( ) (A )22-=n a n (B )28-=n a n (C )12-=n n a (D )n n a n -=2 6、已知))((4)(2z y y x x z --=-,则 ( ) (A )z y x ,,成等差数列 (B )z y x ,,成等比数列 (C ) z y x 1,1,1成等差数列 (D )z y x 1 ,1,1成等比数列 7、数列 {}n a 的前n 项和1-=n n a S ,则关于数列{}n a 的下列说法中,正确的个数有 ( ) ①一定是等比数列,但不可能是等差数列 ②一定是等差数列,但不可能是等比数列 ③可能是等比数列,也可能是等差数列 ④可能既不是等差数列,又不是等比数列 ⑤可能既是等差数列,又是等比数列 (A )4 (B )3 (C )2 (D )1 8、数列1 ?,16 1 7,815,413,21,前n 项和为 ( ) (A )1212+-n n (B )212112+-+n n (C )1212+--n n n (D )212 112 +--+n n n 9、若两个等差数列 {}n a 、{}n b 的前n 项和分别为n A 、n B ,且满足 5 524-+= n n B A n n ,则 13 5135b b a a ++的值为 ( ) (A ) 9 7 (B ) 7 8 (C ) 2019 (D )8 7 10、已知数列 {}n a 的前n 项和为252+-=n n S n ,则数列{}n a 的前10项和为 ( ) (A )56 (B )58 (C )62 (D )60 11、已知数列 {}n a 的通项公式5+=n a n 为, 从{}n a 中依次取出第3,9,27,…3n , …项,按原来的顺序排成一个新的数列,则此数列 的前n 项和为 ( )

等差、等比数列证明(补差1)

1. 等差、等比数列证明 例 1:已知数列前n 项和n s n n 22 +=,求通项公式n a ,并说明这个数列是否为等差数列。 解:1=n 时,32111=+==s a ; 2≥n 时,()()[]121222 1-+--+=-=-n n n n s s a n n n 12+=n 因为1=n 时,31121=+?=a 所以12+=n a n 因为2≥n 时,21=--n n a a 为常数,所以{}n a 为等差数列。 例2: 设数列{}n a 的前n 项的和为n S ,且()*11,24,1N n a S a n n ∈+==+。 (1)设n n n a a b 21-=+,求证:数列{}n b 是等比数列; (2)设n n n a c 2=,求证:数列{}n c 是等差数列; 证明:(1)2≥n 时 11144-++-=-=n n n n n a a S S a , ()11222-+-=-∴n n n n a a a a , 12-=∴n n b b 又3232112121=+=-=-=a a S a a b {}n b ∴是首项为3,公比为2的等比数列。 (2),232,23111 -+-?=-∴?=n n n n n a a b (),432321 22122111111 1=??=-=-=-∴-++++++n n n n n n n n n n n a a a a c c 又21 21 1==a c , {}n c ∴是首项为21,公差为43 的等差数列。

例3:设数列{}n a 的前n 项的和() +∈++=N n n n S n ,422, ⑴写出这个数列的前三项321,,a a a ; ⑵证明:数列{}n a 除去首项后所成的数列 432,,a a a 是等差数列。 解:⑴由n s 与n a 的关系 ???≥-==-)2()1(11n S S n S a n n n 得到 74121211=+?+==S a 5742222122=-+?+=-=S S a ()75743232233=+-+?+=-=S S a ⑵当2≥n 时, ()()()[] 12412142221+=+-+--++=-=-n n n n n S S a n n n ∴()[](),2121121=+-++=-+n n a a n n 对于任意2≥n 都成立,从而数列 432,,a a a 是等差数列。 注:由于212-=-a a ,故21=-+n n a a 不对任意N n ∈成立,因此,数列{}n a 不是等差数列。 例4:设数列{}n a 的首项11=a ,前n 项和n s 满足关系()t s t ts n n 33231=+--,求证{}n a 为等比数列。 证明如下:3≥n 时: ()t s t ts n n 33231=+-- ()t s t ts n n 332321=+--- 两式相减得:()()()0323211=-+-----n n n n s s t s s t 即:()03231=+--n n a t ta 所以:t t a a n n 3321+=- (这只能说明从第二项开始,后一项与前一项的比为定值,所以需要对第二项与第一项的比另外加以证明,以达到定义的完整性。) 又因为2=n 时: ()t s t ts 332312=+-

(完整版)等差等比数列知识点总结

1.等差数列: 一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数d ,那么这个数列就叫做等差数列,这个常数d 叫做等差数列的公差,即 d a a n n =--1(d 为常数)(2≥n );. 2.等差中项: (1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2 b a A +=或 b a A +=2 ( 2 ) 等 差 中 项 : 数 列 {} n a 是等差数列 )2(211-≥+=?+n a a a n n n 212+++=?n n n a a a 3.等差数列的通项公式: 一般地,如果等差数列{}n a 的首项是1a ,公差是d ,可以得到等差数列的通项公式为: ()d n a a n 11-+= 推广: d m n a a m n )(-+=. 从而m n a a d m n --=; 4.等差数列的前n 项和公式: 1()2n n n a a S += 1(1)2n n na d -=+211 ()22 d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 5.等差数列的判定方法 (1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列. (2) 等差中项:数列{}n a 是等差数列 )2(211-≥+=?+n a a a n n n 212+++=?n n n a a a . (3) 数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。 (4) 数列{}n a 是等差数列?2n S An Bn =+,(其中A 、B 是常数)。 6.等差数列的证明方法 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列.

证明数列是等差或等比数列的方法

一、证明或判断数列为等差数列的方法 1.定义法 在数列{}n a 中,若d a a n n =--1(d 为常数),则数列{}n a 为等差数列 例:已知正项数列{}n a 的前n 项和为n S ,3 21=a ,且满足2 11322++=+n n n a S S (*N n ∈) 证明:数列{}n a 是等差数列 证明:由2 11322++=+n n n a S S 得2 1132)(2++=++n n n n a S a S 整理得12 1234++-=n n n a a S 则n n n a a S 23421-=- 两式相减得n n n n n a a a a a 2233412 2 1+--=++ n n n n a a a a 2233122 1+=-++ 因为{}n a 是正项数列,所以01>++n n a a 所以()231=-+n n a a ,即3 21=-+n n a a 所以{}n a 是首项为32,公差为3 2 的等差数列 2.等差中项法 212{}n n n n a a a a +++=?是等差数列 例:设数列{}n a 的前n 项和为n S ,已知11=a ,62=a ,113=a ,且 1(58)(52)123n n n S n S An B n +--+=+=,,,,,其中A 、B 为常数 (1)求A 与B 的值 (2)证明数列{}n a 是等差数列 解:(1)因为11=a ,62=a ,113=a ,所以1231718S S S ===,, 把1=n ,2=n 分别代入()()B An S n S n n n +=+--+25851 得B A +=?-?-1773 B A +=?-?2712182 解得:20-=A ,8-=B (2)由(1)知()()82025851--=+--+n S n S n n n 整理得()82028511--=---++n S S S S n n n n n

一轮复习等差等比数列证明练习题

4 4 n 1 n +1 n n a a +2 n 2S - 1 n S ? ? ? 1.已知数列{a }是首项为a = 1 ,公比 q = 1 的等比数列,b n 1 n + 2 = 3log 1 4 a n (n ∈ N *) ,数列 {c }满足 c = a ? b . n n n n (1)求证:{b n }是等差数列; {a } a = 2, a = a 2 + 6a + 6(n ∈ N * ) 2.数列 满足 , 设 c n = log 5 (a n + 3) . (Ⅰ)求证: {c n } 是等比数列; 3.设数列 { n }的前 n 项和为 S n ,已知 a + 2a + 3a + 1 2 3 + na = (n - 1)S + 2n (n ∈ N * ) . n n (2)求证:数列{S + 2}是等比数列; n 4.数列{a } 满足 a = 1, a n 1 n +1 = 2 n +1 a n n (n ∈ N ) + 2 n (1)证明:数列{ } 是等差数列; a n 5.数列 {a }首项 a n 1 2S 2 = 1 ,前 n 项和 S 与 a 之间满足 a = ( n ≥ 2) n n n n (1)求证:数列 ? 1 ? 是等差数列 ? n 6.数列{ a }满足 a = 3 , a n 1 n +1 = 2 a + 1 n , (1)求证:{ a n - 1 } 成等比数列; a + 2 n 7.已知数列{a } 满足 a n n +1 = 3a + 4 , (n ∈ N * ) 且 a = 1 , n 1 (Ⅰ)求证:数列{a + 2}是等比数列; n

等差数列与等比数列的证明方法

等差数列与等比数列的证明方法 证明或判断等差(等比)数列的方法常有四种:定义法、等差或等比中项法、数学归纳法、反证法。 一、 定义法 01.证明数列是等差数列的充要条件的方法: {}1()n n n a a d a +-=?常数是等差数列 {}2222()n n n a a d a +-=?常数是等差数列 {}3333()n n n a a d a +-=?常数是等差数列 02.证明数列是等差数列的充分条件的方法: {}1(2)n n n a a a d n --=≥?是等差数列 {}11(2)n n n n n a n a a a a +--=-≥?是等差数列 03.证明数列是等比数列的充要条件的方法: {}1 (00)n n n a q q a a +=≠≠?1且为常数,a 为等比数列 04.证明数列是等比数列的充要条件的方法: 1 n n a q a -=(n>2,q 为常数且≠0){}n a ?为等比数列 注意事项:用定义法时常采用的两个式子1n n a a d --=和1n n a a d +-=有差别,前者必须加上“2n ≥”,否则1n =时0a 无意义,等比中一样有:2n ≥时,有 1 n n a q a -== (常数0≠);②

n *∈N 时,有 1 n n a q a +== (常数0≠) . 例1. 设数列12,,,,n a a a 中的每一项都不为0。 证明:{}n a 为等差数列的充分必要条件是:对任何n ∈N ,都有 1223111 111n n n n a a a a a a a a +++++= 。 证明:先证必要性 设{}n a 为等差数列,公差为d ,则 当d =0时,显然命题成立 当d ≠0时, ∵ 111111n n n n a a d a a ++?? =- ??? 再证充分性: ∵ 122334 111 a a a a a a ++???1111n n n n a a a a ++++= ?? ………① ∴ 122334 111 a a a a a a ++???11212111n n n n n n a a a a a a ++++++++= ??? ………② ②﹣①得: 121211 11n n n n n n a a a a a a +++++=- ??? 两边同以11n n a a a +得:112(1)n n a n a na ++=+- ………③ 同理:11(1)n n a na n a +=-- ………④ ③—④得:122()n n n na n a a ++=+ 即:211n n n n a a a a +++-=- {}n a 为等差数列 例2. 设数列}{n a 的前n 项和为n S ,试证}{n a 为等差数列的充要条件是

等比数列和等差数列公式

等比数列:是一种特殊数列。它的特点是:从第2项起,每一项与前一项的比都是一个常数。称为公比,符号为q。 公比公式 根据等比数列的定义可得: 通项公式 我们可以任意定义一个等比数列 这个等比数列从第一项起分别是,公比为q,则有: a2 = a1q, a3 = a2q = a1q2, a4 = a3q = a1q3, , 以此类推可得,等比数列的通项公式为: a n = a n ? 1q = a1q n ? 1, 求和公式 对于上面我们所定义的等比数列,即数列。我们将所有项进行累加。 于是把称为等比数列的和。记为: 如果该等比数列的公比为q,则有: (利用等比数列通项公式)(1) 先将两边同乘以公比q,有: (1)式减去该式,有: (q ? 1)S n = a1? a1q n (2) 然后进行一定的讨论 当时,

而当q = 1时,由(2)式无法解得通项公式。 但我们可以发现,此时: = na1 ?综上所述,等比数列的求和公式为: ?经过推导,可以得到另一个求和公式:当q≠1时 (更正:分母为1-q) 当时, 等比数列无限项之和 由于当及n 的值不断增加时,q n的值便会不断减少而且趋于0,因此无限项之和: (更正:分母为1-q)性质 如果数列是等比数列,那么有以下几个性质: ? 证明:当时, ?对于,若,则 证明: ∵ ∴

?等比中项:在等比数列中,从第二项起,每一项都是与它等距离的前后两项的等比中项。即等比数列中有三项,,,其中,则有 ?在原等比数列中,每隔k项取出一项,按原来顺序排列,所得的新数列仍为等比数列。 ?也成等比数列。 等差数列 等差数列是数列的一种。在等差数列中,任何相邻两项的差相等。该差值称为公差。例如数列 就是一个等差数列。在这个数列中,从第二项起,每项与其前一项之差都等于2,即公差为2。 通项公式 如果一个等差数列的首项标为,公差标为,那么该等差数列第项的表达式为: . 等差数列的任意两项之间存在关系: 等差中项 给定任一公差为的等差数列。从第二项开始,前一项加后一项的和的値为该项的两倍。例: 证明: 设, 则 ∵(矛盾) ∴ 证毕

等差数列与等比数列解题技巧

等差数列与等比数列解题技巧 【摘要】在高中数学课程内容中,数列作为离散函数的典型代表之一,不仅在高中数学中具有重要位置,而且,在现实生活中有着非常广泛的作用.因此掌握数列的解题技巧,在我们高中数学中是很有必要的. 引言:数列在高考中主要考察用数列的递推公式、等差数列的通项公式参数的确定和性质、前n 项和公式和性质及常见的数列的求和方法. 一、求数列通向公式的方法 1、分析法 通过与一些已知通向公式的基本数列进行比较、分析、归纳综合找数列的项与项数之间的关系,求出数列的通向公式. 例1、写出数列的一个通向公式 (1)、0.7,0.77,0.777.0.7777,... (2)、2,, (16) 81 ,833,413,25 解:(1)原列各项可以写成有数列 {}得到,而乘的每一项除以79,...999.0,99.0,9.0:n a ,1.01n n a -=故原数列的一个通向公式为() n n n a b 1.019 7 97-== (2)、原数列可改写为,...,21 5,214,213,212,21143210+++++ 故其通向公式为12 1 -+=n n n a 例2、根据下面各个数列的首项和递推公式,写出它的前4项并归纳出数列的一个通向公式 (1)、)(2,111 *+∈+==N n a a a n n ;)(2 2,1)2(11*+∈+= =N n a a a a n n n 解:分析:写出前4项,找出规律,然后归纳出通向公式. (1)、由已知,得 312,1121=+==a a a ,1512,7123423=+==+=a a a a 即,12,12221 -=-=a a ,12,124433-=-=a a 故数列的一个通向公式为)(12*∈-=N n a n n (2)、由已知,得,3 2 22,11121 =+= =a a a a ,5 2 22,2122334223=+==+= a a a a a a

等差、等比数列证明的几种情况

等差、等比数列证明的几种情况 在高中数学教材中,对等差,等比数列作了如下的定义:一个数列从第二项起,每一项与前一项的差等于一个常数d ,则这个数列叫等差数列,常数d 称为等差数列的公差。一个数列从第二项起,每一项与前一项的比等于一个常数q ,则这个数列叫等比数列,常数q 称为等比数列的公比。在涉及到用定义来说明一个数列为等差数列或等比数列时,很多时候往往容易忽略定义的完整性,现举一些例子来加以说明。 1、简单的证明 例 :已知数列前n 项和n s n n 22+=,求通项公式n a ,并说明这个数列是否为等差数列。 解:1=n 时,32111=+==s a ; 2≥n 时,()()[]1212221-+--+=-=-n n n n s s a n n n 12+=n 因为1=n 时,31121=+?=a 所以12+=n a n 因为2≥n 时,21=--n n a a 为常数,所以{}n a 为等差数列。 2、数列的通项经过适当的变形后的证明 例: 设数列{}n a 的前n 项的和为n S ,且()*11,24,1N n a S a n n ∈+==+。 (1)设n n n a a b 21-=+,求证:数列{}n b 是等比数列; (2)设n n n a c 2= ,求证:数列{}n c 是等差数列;

证明:(1)2≥n 时 11144-++-=-=n n n n n a a S S a , ()11222-+-=-∴n n n n a a a a , 12-=∴n n b b 又3232112121=+=-=-=a a S a a b {}n b ∴是首项为3,公比为2的等比数列。 (2),232,23111-+-?=-∴?=n n n n n a a b (),432321221221 1 11111=??=-=-= -∴-++++++n n n n n n n n n n n a a a a c c 又2 1 211== a c , {}n c ∴是首项为21,公差为4 3 的等差数列。 3、证明一个数列的部分是等差(等比)数列 例3:设数列{}n a 的前n 项的和()+∈++=N n n n S n ,422, ⑴写出这个数列的前三项321,,a a a ; ⑵证明:数列{}n a 除去首项后所成的数列 432,,a a a 是等差数列。 解:⑴由n s 与n a 的关系 ???≥-==-)2() 1(11n S S n S a n n n 得到 74121211=+?+==S a 5742222122=-+?+=-=S S a ()75743232233=+-+?+=-=S S a ⑵当2≥n 时, ( )()()[] 124121422 21+=+-+--++=-=-n n n n n S S a n n n

等比等差数列练习题及答案

等差等比数列练习题 一、选择题 1.{a n }是等比数列,下面四个命题中真命题的个数为 ( ) ①{a n 2}也是等比数列 ②{ca n }(c ≠0)也是等比数列 ③{ n a 1 }也是等比数列 ④{ln a n }也是等比数列 A .4 B .3 C .2 D .1 2.等比数列{a n }中,已知a 9 =-2,则此数列前17项之积为 ( ) A .216 B .-216 C .217 D .-217 3.等比数列{a n }中,a 3=7,前3项之和S 3=21, 则公比q 的值为 ( ) A .1 B .- 2 1 C .1或-1 D .-1或 2 1 4.在等比数列{a n }中,如果a 6=6,a 9=9,那么a 3等于 ( ) A .4 B . 2 3 C . 9 16 D .2 5、从前180个正偶数的和中减去前180个正奇数的和,其差为( ) A. 0 B. 90 C. 180 D. 360 6、等差数列{}n a 的前m 项的和为30,前2m 项的和为100,则它的前3m 项的和为( ) A. 130 B. 170 C. 210 D. 260 7、在等差数列{}n a 中,62-=a ,68=a ,若数列{}n a 的前n 项和为n S ,则( ) A.54S S < B.54S S = C. 56S S < D. 56S S = 8、一个等差数列前3项和为34,后3项和为146,所有项和为390,则这个数列的项数为( ) A. 13 B. 12 C. 11 D. 10

9、已知某数列前n 项之和3 n 为,且前n 个偶数项的和为)34(2 +n n ,则前n 个奇数项的和为( ) A .)1(32 +-n n B .)34(2 -n n C .2 3n - D . 3 2 1n 10若一个凸多边形的内角度数成等差数列,最小角为100°,最大角为140°,这个凸多边形 的边比为( ) A .6 B .8 C .10 D .12 二.填空题 11、各项都是正数的等比数列{}n a ,公比1≠q 875,,a a a ,成等差数列,则公比q = 12、已知等差数列{}n a 的公差是正整数,且a 4,126473-=+-=?a a a ,则前10项的和 S 10= 13、一个等差数列共有10项,其中奇数项的和为25 2 ,偶数项的和为15,则这个数列的第6项是 14、两个等差数列{}n a 和{}n b 的前n 项和分别为n S 和n T ,若 337++=n n T S n n ,则88 a b = . 三.解答题 15.已知数列满足a 1=1,a n +1=2a n +1(n ∈N *) (1) 求证数列{a n +1}是等比数列; (2) 求{a n }的通项公式. 16、己知}{n a 为等差数列,122,3a a ==,若在每相邻两项之间插入三个数,使它和原数 列的数构成一个新的等差数列,求:

第52炼 证明等差等比数列

第52炼 等差等比数列的证明 在数列的解答题中,有时第一问会要求证明某个数列是等差等比数列,既考察了学生证明数列的能力,同时也为后面的问题做好铺垫。 一、基础知识: 1、如何判断一个数列是等差(或等比)数列 (1)定义法(递推公式):1n n a a d +-=(等差), 1n n a q a +=(等比) (2)通项公式:n a k n m =+(等差),()0n n a k q q =?≠(等比) (3)前n 项和:2 n S A n B n =+(等差),n n S k q k =- (等比) (4)等差(等比)中项:数列从第二项开始,每一项均为前后两项的等差(等比)中项 2、如何证明一个数列是等差等比数列: (1)通常利用定义法,寻找到公差(公比) (2)也可利用等差等比中项来进行证明,即n N * ?∈,均有: 122n n n a a a ++=+ (等差) 2 12n n n a a a ++=? (等比) 二、典型例题: 例1:已知数列{}n a 的首项1133,,521 n n n a a a n N a * += = ∈+. 求证:数列11n a ?? -? ??? 为等比数列 思路一:构造法,按照所给的形式对已知递推公式进行构造,观察发现所证的数列存在1n a 这 样的倒数,所以考虑递推公式两边同取倒数:11 312121 3n n n n n n a a a a a a +++= ? = + 即 1 1213 3n n a a += + ,在考虑构造“1-”: 1 12 1 11111333 n n n a a a +??-= +-= - ??? 即数列11n a ??-? ??? 是公比为1 3的等比数列

(完整版)等差等比数列知识点总结

等差等比数列知识点总结 1. 等差数列: 一般地,如果一个数列从第 2 项起,每一项与它的前一项的差等于同一个常数d ,那么这个数列就叫做等差数列,这个常数d叫做等差数列的公差,即 a n a n 1 d (d为常数)(n 2); 2. 等差中项: 1)如果a , A ,b成等差数列,那么A叫做a与b的等差中 项.即: 或2A a b 3. 等差数列的通项公式: 一般地,如果等差数列 a n 的首项是a1 ,公差是 d ,可以得到等差数列的通 项公式为: a n a1 n 1d 推广:a n a m(n m)d .a n a m 从而 d ; nm 4.等差数列的前n 项和公式: n(a1 a n)n(n 1) d 2 1 2 S n na1 d n (a1 d)n An Bn 2 2 2 2 (其中A、B是常数,所以当d≠ 0时,S n是关于n的二次式且常数项为0)5.等差数列的判定方法 (1)定义法:若a n a n 1 d或a n 1 a n d(常数n N )a n 是等差数列.(2)等差中项:数列a n是等差数列 2a n a n-1 a n 1(n 2)2a n 1a n a n 2 . (3)数列a n 是等差数 列a n kn b (其中k,b 是常数)。 (4)数列a n 是等差数 列S n An2Bn, (其中A、B是常数)。 6.等差数列的证明方法 定义法:若a n a n 1 d 或 a n1a n d (常数n N )a n 是等差数列. ab 2 2)等差中项数列a n是等数列2a n a n-1 a n 1(n 2) 2a n 1 a n a n 2

等差数列与等比数列的证明

3.2.3 证明数列是等差、等比数列 证明一个数列是等差数列或者等比数列是高考的常考题型,是近几年出现的 高频考点。证明一个数列是等差数列的方法有(1)定义法: 1()n n a a d n N ++-=∈,其中d 为常数;则数列}{n a 是等差数列(2)等差中项法:112(2)n n n a a a n -+=+≥,则数列}{n a 是等差数列;(3)通项公式法:若一个数列的通项公式为n a qn p =+,其中,p q 则数列}{n a 是等差数列。 证明一个数列是等比数列的方法:(1)定义法:1(0)n n a q q a +=≠其中q 为常数,则数列}{n a 为等比数列(2)定比中项法:211n n n a a a +-=(2)n ≥,则数列}{n a 为等比数列。 例1、数列{}n a 满足12211,2,22n n n a a a a a ++===-+. (1)设1n n n b a a +=-,证明{}n b 是等差数列; (2)求{}n a 的通项公式. 解:2122n n n a a a ++=-+Q ,2112n n n n a a a a +++∴-=-+,即112,2n n n n b b b b ++=+∴-= 1211b a a =-=,1(1)221n b n n ∴=+-?=- (2)1213221,1,3n n n a a b n a a a a +-==-∴-=-=Q 1...23n n a a n --=- 21(1)n a a n ∴-=-,222n a n n ∴=-+ 例2、已知数列}{n a 的前n 项和为n S ,111,0,1,n n n n a a a a S λ+=≠=-其中λ为常数 (1)证明:2n n a a λ+-=;(2)是否存在λ,使得}{n a 为等差并说明理由 解:1121(1)1,(2)1n n n n n n a a S a a S λλ++++=-=-Q ,(2)(1)∴-得:121()n n n n a a a a λ+++-=

相关文档
最新文档