填料塔实验报告

填料塔实验报告
填料塔实验报告

填料吸收塔传质 数测定实验

一、实验目的

1.了解填料塔吸收装置的基本结构及流程; 2.掌握总体积传质系数的测定方法;

3.了解气体空塔速度和液体喷淋密度对总体积传质系数的影响; 二、基本原理

气体吸收是典型的传质过程之一。由于CO 2气体无味、无毒、廉价,所以气体吸收实验常选择CO 2作为溶质组分。本实验采用水吸收空气中的CO 2组分。一般CO 2在水中的溶解度很小,即使预先将一定量的CO 2气体通入空气中混合以提高空气中的CO 2浓度,水中的CO 2含量仍然很低,所以吸收的计算方法可按低浓度来处理,并且此体系CO 2气体的解吸过程属于液膜控制。因此,本实验主要测定K x a 和H OL 。 1.计算公式 填料层高度Z 为

OL OL x x x Z

N H x x dx

a K L dZ z ?=-=

=??*

120

令:吸收因数A=L/mG

])1ln[(11

1

121A mx y mx y A A N OL +----=

2.测定方法

(1)空气流量和水流量的测定

本实验采用转子流量计测得空气和水的流量,并根据实验条件(温度和压力)和有关公式换算成空气和水的摩尔流量。

(2)测定填料层高度Z 和塔径D ; (3)测定塔顶和塔底气相组成y 1和y 2; (4)平衡关系。

本实验的平衡关系可写成

y = mx

对清水而言,x 2=0,由全塔物料衡算 )()(2121x x L y y G -=- 可得x 1 。 三、实验装置 1.装置流程

实验装置如图1所示。

本实验装置流程:由自来水来的水经离心泵加压后送入填料塔塔顶经喷头喷淋在填料顶层。由压缩机送来的空气和由二氧化碳钢瓶来的二氧化碳混合后,一起进入气体中间贮罐,然后再直接进入塔底,与水在塔内进行逆流接触,进行质量和热量的交换,由塔顶出来的尾气经转子流量计后放空,由于本实验为低浓度气体的吸收,所以热量交换可略,整个实验过程看成是等温操作。

图1 吸收装置流程图

2.主要设备

(1)吸收塔:高效填料塔,塔径100mm,塔内装有金属丝网板波纹规整填料,填料层

总高度1200mm。塔顶有液体初始分布器,塔中部有液体再分布器,塔底部有栅板式填料支承装置。填料塔底部有液封装置,以避免气体泄漏。

(2)填料:金属丝网板波纹规整填料,规格:Φ100×100。

(3)转子流量计;

介质

条件

最大流量最小刻度标定介质标定条件

4m3/h 0.4 m3/h 空气20℃ 1.0133×105Pa 气

CO2250 L/h 25 L/h 空气20℃ 1.0133×105Pa 水600L/h 60 L/h 水20℃ 1.0133×105Pa

(4)空压机:压力0.8MPa,排气量0.08 m3/min;

(5)二氧化碳钢瓶钢瓶;

四、实验步骤与注意事项

1.实验步骤

(1)熟悉实验流程及弄清气相色谱仪及其配套仪器结构、原理、使用方法及其注意事项;

(2)打开仪表电源开关;

(3)开启液体调节阀门,让水进入填料塔润湿填料,仔细调节液体调节阀门,使液体转子流量计流量稳定在某一实验值。(塔底液封控制:仔细调节阀门2的开度,使塔底液位缓慢地在一段区间内变化,以免塔底液封过高溢满或过低而泄气;

(4)启动空压机,打开CO2钢瓶总阀,并缓慢调节钢瓶的减压阀(注意减压阀的开关方向与普通阀门的开关方向相反,顺时针为开,逆时针为关),使其压力稳定在0.1~0.2Mpa左右;

(5)调节CO2转子流量计的流量,使其稳定在某一值;

(6)待塔操作稳定后,读取各流量计的读数,并读取各温度读数,进行取样并分析出塔顶、塔底气相组成;

(7)实验完毕,关闭CO2转子流量计,液体转子流量计,再关闭空压机电源开关,清理实验仪器和实验场地。

2.注意事项

(1)固定好操作点后,应随时注意调整以保持各量不变。

(2)在填料塔操作条件改变后,需要有较长的稳定时间,一定要等到稳定以后方能

读取有关数据。

(3)由于CO2在水中的溶解度很小,因此,在分析组成时一定要仔细认真,这是做好本试验的关键。

五、实验报告

1. 将原始数据列表。

2. 在双对数坐标纸上绘图表示二氧化碳解吸时体积传质系数、传质单元高度与气体流量的关系。

3. 列出实验结果与计算示例。 水的流量 L/h

空气流量 m^3/h

二氧化碳流量 m^3/h

192 1.95 0.09 210 2.3 0.12 185 2.4 0.11 205 2.9

0.15

NaOH 物质量浓度为0.084mol/L

温度 水的温度 21.3C 空气温度 26.7C 1 2 3 4

NaOH 2.69 1.68 1.49 1.30 待测液

140

100

100

100

编号 水的摩尔流量 mol/h 二氧化碳的摩尔流量mol/h

空气摩尔流量 mol/h 吸

收因

数A 二氧化碳在塔底摩尔分数 液体中溶剂摩尔分数 传质系数

传质高度 1

10645 4.04

79.68

0.0

0.048 1.41*1

0.63

1.90

编 号

积 ml 物

.3 77 0^-5 2

2 11643

.3 5.39 89.79 0.0

75

0.057 2.55*1

0^-5

1.24 0.96

3 10257

.2 4.94 89.79 0.0

66

0.052 2.26*1

0^-5

1.15 1.40

6

4 11366

.1 6.74 108.5 0.0

6

0.058 1.97*1

0^-5

0.75 1.60

计算公式:

水的摩尔流量 Qm=0.192*998*1000/18=10645.3mol/h

空气的摩尔流量 Qm=1.95*1.085*1000/29=79.68mol/h

二氧化碳摩尔流量 Qm=0.09*1.976*1000/44=4.04mol/h

A=Qm水/((Qm空+Qm二氧化碳)*m)=10645.3/((4.04+79.68)*1638.2)=0.077

y1= Qm二氧化碳/ Qm空+Qm二氧化碳=4.04/(4.04+79.68)=0.048 x1=n二氧化碳/(n水+n二氧化碳)=1.41*10^-5

0.20.40.60.8

1

1.21.40.09

0.11

0.12

0.15

二氧化碳流量

传质系数

0.20.40.60.81

1.21.41.61.82传质高度

系列2系列1

最新浙江大学化工原理实验---填料塔吸收实验报告分析解析

实验报告 课程名称:过程工程原理实验(乙) 指导老师: 叶向群 成绩:__________________ 实验名称:吸收实验 实验类型:工程实验 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 填料塔吸收操作及体积吸收系数测定 1 实验目的: 1.1 了解填料吸收塔的构造并熟悉吸收塔的操作; 1.2 观察填料塔的液泛现象,测定泛点空气塔气速; 1.3 测定填料层压降ΔP 与空塔气速u 的关系曲线; 1.4 测定含氨空气—水系统的体积吸收系数K y a 。 2 实验装置: 2.1 本实验的装置流程图如图1: 专业: 姓名: 学号: 日期:2015.12.26 地点:教十2109

2.2物系:水—空气—氨气。惰性气体由漩涡气泵提供,氨气由液氮钢瓶提供,吸收剂水采用自来水,他们的流量分别通过转子流量计。水从塔顶喷淋至调料层与自下而上的含氮空气进行吸收过程,溶液由塔底经过液封管流出塔外,塔底有液相取样口,经吸收后的尾气由塔顶排至室外,自塔顶引出适量尾气,用化学分析法对其进行组成分析。 3 基本原理: 实验中气体流量由转子流量计测量。但由于实验测量条件与转子流量计标定条件不一定相同,故转子流量计的读数值必须进行校正。校正方法如下:

3.2 体积吸收系数的测定 3.2.1相平衡常数m 对相平衡关系遵循亨利定律的物系(一般指低浓度气体),气液平衡关系为: 相平衡常数m与系统总压P和亨利系数E的关系如下: 式中:E—亨利系数,Pa P—系统总压(实验中取塔内平均压力),Pa 亨利系数E与温度T的关系为: lg E= 11.468-1922 / T 式中:T—液相温度(实验中取塔底液相温度),K。 根据实验中所测的塔顶表压及塔顶塔底压差△p,即可求得塔内平均压力P。根据实验中所测的塔底液相温度T,利用式(4)、(5)便可求得相平衡常数m。 3.2.2 体积吸收常数 体积吸收常数是反映填料塔性能的主要参数之一,其值也是设计填料塔的重要依据。本实验属于低浓气体吸收,近似取Y≈y、X≈x。 3.2.3被吸收的氨气量,可由物料衡算 (X1-X2) 式中:V—惰性气体空气的流量,kmol/h;

精馏实验报告范本

Record the situation and lessons learned, find out the existing problems and form future countermeasures. 姓名:___________________ 单位:___________________ 时间:___________________ 精馏实验报告

编号:FS-DY-20707 精馏实验报告 学院:化学工程学院姓名:学号:专业:化学工程与工艺班级:同组人员: 课程名称:化工原理实验实验名称:精馏实验实验日期 北京化工大学 实验五精馏实验 摘要:本实验通过测定稳定工作状态下塔顶、塔釜及任意两块塔板的液相折光度,得到该处液相浓度,根据数据绘出x-y图并用图解法求出理论塔板数,从而得到全回流时的全塔效率及单板效率。通过实验,了解精馏塔工作原理。关键词:精馏,图解法,理论板数,全塔效率,单板效率。 一、目的及任务 ①熟悉精馏的工艺流程,掌握精馏实验的操作方法。 ②了解板式塔的结构,观察塔板上汽-液接触状况。

③测定全回流时的全塔效率及单塔效率。 ④测定部分回流时的全塔效率。 ⑤测定全塔的浓度(或温度)分布。 ⑥测定塔釜再沸器的沸腾给热系数。 二、基本原理 在板式精馏塔中,由塔釜产生的蒸汽沿塔逐板上升与来自塔顶逐板下降的回流液,在塔板上实现多次接触,进行传热与传质,使混合液达到一定程度的分离。回流是精馏操作得以实现的基础。塔顶的回流量与采出量之比,称为回流比。回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。回流比存在两种极限情况:最小回流比和全回流。若塔在最小回流比下操作,要完成分离任务,则需要无穷多塔板的精馏塔。当然,这不符合工业实际,所以最小回流比只是一个操作限度。若操作处于全回流时,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔中,这在生产中午实际意义。但是由于此时所需理论板数最少,又易于达到稳定,故常在工业装置的开停车、排除故障及科学研究时采用。

填料塔各种填料

各种填料 (1)拉西环填料于1914年由拉西(F、 Rashching)发明,为外径与高度相等的圆环。拉西环填料的气液分布较差,传质效率低,阻力大,通量小,目前工业上已较少应用。 (2)鲍尔环填料就是对拉西环的改进,在拉西环的侧壁上开出两排长方形的窗孔,被切开的环壁的一侧仍与壁面相连,另一侧向环内弯曲,形成内伸的舌叶,诸舌叶的侧边在环中心相搭。鲍尔环由于环壁开孔,大大提高了环内空间及环内表面的利用率,气流阻力小,液体分布均匀。与拉西环相比,鲍尔环的气体通量可增加50%以上,传质效率提高30%左右。鲍尔环就是一种应用较广的填料。 (3)阶梯环填料就是对鲍尔环的改进,与鲍尔环相比,阶梯环高度减少了一半并在一端增加了一个锥形翻边。由于高径比减少,使得气体绕填料外壁的平均路径大为缩短,减少了气体通过填料层的阻力。锥形翻边不仅增加了填料的机械强度,而且使填料之间由线接触为主变成以点接触为主,这样不但增加了填料间的空隙,同时成为液体沿填料表面流动的汇集分散

点,可以促进液膜的表面更新,有利于传质效率的提高。阶梯环的综合性能优于鲍尔环,成为目前所使用的环形填料中最为优良的一种。 (4)弧鞍填料属鞍形填料的一种,其形状如同马鞍,一般采用瓷质材料制成。弧鞍填料的特点就是表面全部敞开,不分内外,液体在表面两侧均匀流动,表面利用率高,流道呈弧形,流动阻力小。其缺点就是易发生套叠,致使一部分填料表面被重合,使传质效率降低。弧鞍填料强度较差,容破碎,工业生产中应用不多。 (5)矩鞍填料将弧鞍填料两端的弧形面改为矩形面,且两面大小不等,即成为矩鞍填料。矩鞍填料堆积时不会套叠,液体分布较均匀。矩鞍填料一般采用瓷质材料制成,其性能优于拉西环。目前,国内绝大多数应用瓷拉西环的场合,均已被瓷矩鞍填料所取代。

填料塔吸收实验报告

实验6 填料吸收塔实验报告 第四组成员:王锋,郑义,刘平,吴润杰 一、 实验名称 填料吸收塔实验 二、 实验目的 1、 了解填料吸收塔的构造并实际操作。 2、 了解填料塔的流体力学性能。 3、 学习填料吸收塔传质能力和传质效率的测定方法。 三、实验内容 测定填料层压强降与操作气速的关系曲线,并用ΔP/Z —u 曲线转折点与观察现象相结合的办法,确定填料塔在某液体喷淋量下的液泛气速。 四、实验原理 1.气体通过填料层的压强降 压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。压强降与气液流量有关,不同喷淋量下填料层的压强降ΔP 与空塔气速u 的关系如下图所示: 1 2 3 L 3L 2L 1 L 0 = >>0 图6-1 填料层的ΔP ~u 关系 当无液体喷淋即喷淋量L0=0时,干填料的ΔP ~u 的关系是直线,如图中的直线0。当有一定的喷淋量时,ΔP ~u 的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。这两个转折点将ΔP ~u 关系分为三个区段:恒持液量区、载液区与液泛区。

五、实验装置和流程 图6-2 填料吸收塔实验装置流程图 1-风机、2-空气流量调节阀、3-空气转子流量计、4-空气温度、5-液封管、6-吸收液取样口、7-填料吸收塔、8-氨瓶阀门、9-氨转子流量计、10-氨流量调节阀、11-水转子流量计、12-水流量调节阀、13-U型管压差计、14-吸收瓶、15-量气管、16-水准瓶、17-氨气瓶、18-氨气温度、20-吸收液温度、21-空气进入流量计处压力实验流程示意图见图一,空气由鼓风机1送入空气转子流量计3计量,空气通过流量计处的温度由温度计4测量,空气流量由放空阀2调节,氨气由氨瓶送出,?经过氨瓶总阀8进入氨气转子流量计9计量,?氨气通过转子流量计处温度由实验时大气温度代替。其流量由阀10调节5,然后进入空气管道与空气混合后进入吸收塔7的底部,水由自来水管经水转子流量计11,水的流量由阀12调节,然后进入塔顶。分析塔顶尾气浓度时靠降低水准瓶16的位置,将塔顶尾气吸入吸收瓶14和量气管15。?在吸入塔顶尾气之前,予先在吸收瓶14内放入5mL已知浓度的硫酸作为吸收尾气中氨之用。吸收液的取样可用塔底6取样口进行。填料层压降用∪形管压差计13测定。 六、实验操作方法及步骤 1、测量干填料层(△P/Z)─u关系曲线: 先全开调节阀2,后启动鼓风机,用阀2 调节进塔的空气流量,按空气流量从小到大的顺序读取填料层压降△P,转子流量计读数和流量计处空气温度,测量12~15组数据?然后在双对数坐标纸上以空塔气速u为横坐标,以单位高度的压降△P/Z为纵坐标,标绘干填料层(△P/Z)─u关系曲线。 2、测量某喷淋量下填料层(△P/Z)─u关系曲线: 用水喷淋量为30L/h时,用上面相同方法读取填料层压降△P,?转子流量计读数和流量计处空气温度并注意观察塔内的操作现象, ?一旦看到液泛现象时记下对应的空气转子流量计读数。在对数坐标纸上标出液体喷淋量为30L/h下(△P/z)─u?关系曲线,确定液泛气速并与观察的液泛气速相比较。 3、测量某喷淋量下填料层(△P/Z)─u关系曲线: 用水喷淋量为50L/h时,用上面相同方法读取填料层压降△P,?转子流量计读数和流量计处空气温度并注意观察塔内的操作现象, ?一旦看到液泛现象时记下对应的空气转子流量计读数。在对数坐标纸上标出液体喷淋量为

化工原理精馏实验报告

北 京 化 工 大 学 实 验 报 告 课程名称: 化工原理实验 实验日期: 2011.04.24 班 级: 化工0801 姓 名: 王晓 同 组 人:丁大鹏,王平,王海玮 装置型号: 精馏实验 一、摘要 精馏是实现液相混合物液液分离的重要方法,而精馏塔是化工生产中进行分离过程的主要单元,板式精馏塔为其主要形式。本实验用工程模拟的方法模拟精馏塔在全回流的状态下及部分回流状态下的操作情况,从而计算单板效率和总板效率,并分析影响单板效率的主要因素,最终得以提高塔板效率。 关键词:精馏、板式塔、理论板数、总板效率、单板效率 二、实验目的 1、熟悉精馏的工艺流程,掌握精馏实验的操作方法。 2、了解板式塔的结构,观察塔板上气-液接触状况。 3、测测定全回流时的全塔效率及单板效率。 4、测定部分回流时的全塔效率。 5、测定全塔的浓度或温度分布。 6、测定塔釜再沸器的沸腾给热系数。 三、实验原理 在板式精馏塔中,由塔釜产生的蒸汽沿塔逐板上升与来自塔顶逐板下降的回流液,在塔板上实现多次接触,进行传热和传质,使混合液达到一定程度的分离。 回流是精馏操作得以实现的基础。塔顶的回流量和采出量之比,称为回流比。回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。 回流比存在两种极限情况:最小回流比和全回流。若塔在最小回流比下操作,要完成分离任务,则需要有无穷多块塔板的精馏塔。当然,这不符合工业实际,所以最小回流比只是一个操作限度。若操作处于全回流时,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔中,这在生产中无实验意义。但是,由于此时所需理论板数最少,又易于达到稳定,故常在工业装置开停车、排除故障及科学研究时采用。 实际回流比常取用最小回流比的1.2-2.0倍。在精馏操作中,若回流系统出现故障,操作情况会急剧恶化,分离效果也将变坏。 板效率是体现塔板性能及操作状况的主要参数,有以下两种定义方法。 (1)总板效率E e N E N 式中 E —总板效率; N —理论板数(不包括塔釜); Ne —实际板数。

实验四填料塔吸收传质系数的测定

4 填料塔吸收传质系数的测定 4.1实验目的 1. 了解填料塔吸收装置的基本结构及流程; 2. 掌握总体积传质系数的测定方法; 3. 了解气体空塔速度和液体喷淋密度对总体积传质系数的影响; 4.了解气相色谱仪和六通阀在线检测CO 2浓度和测量方法。 4.2 实验原理 气体吸收是典型的传质过程之一。由于CO 2气体无味、无毒、廉价,所以气体吸收实验选择CO 2作为溶质组分是最为适宜的。本实验采用水吸收空气中的CO 2组分。一般将配置的原料气中的CO 2浓度控制在10%以内,所以吸收的计算方法可按低浓度来处理。又CO 2在水中的溶解度很小,所以此体系CO 2气体的吸收过程属于液膜控制过程。因此,本实验主要测定K xa 和H OL 。 1)计算公式 填料层高度Z 为 OL OL x x xa Z N H x x dx K L dZ z ?=-= =? ?* 1 2 (6-1) 式中: L 液体通过塔截面的摩尔流量,kmol / (m 2·s); K xa △X 为推动力的液相总体积传质系数,kmol / (m 3·s); H OL 传质单元高度,m ; N OL 传质单元数,无因次。 令:吸收因数A=L/mG (6-2) ])1ln[(11 1 121A mx y mx y A A N OL +----= (6-3) 2)测定方法 (1)空气流量和水流量的测定 本实验采用转子流量计测得空气和水的流量,并根据实验条件(温度和压力)和有关公式换算成空气和水的摩尔流量。 (2)测定塔顶和塔底气相组成y 1和y 2; (3)平衡关系。 本实验的平衡关系可写成 y = m x (6-4) 式中: m 相平衡常数,m =E /P ; E 亨利系数,E =f (t),Pa ,根据液相温度测定值由附录查得; p Pa ,取压力表指示值。 对清水而言,x 2=0,由全塔物料衡算 )()(2121x x L y y G -=- 可得x 1 。 4.3实验装置与流程 1〕装置流程

实验七填料塔吸收实验

实验七填料吸收塔的操作和吸收系数的测定 一、实验目的 1.了解填料吸收塔的结构、填料特性及吸收装置的基本流程。 2.熟悉填料塔的流体力学性能。 3.掌握总传质系数K Y a测定方法。 4.了解空塔气速和液体喷淋密度对传质系数的影响。 二、实验内容 1.测定干填料及不同液体喷淋密度下填料的阻力降?P与空塔气速u的关系曲线,并确定液泛气速。 2.测量固定液体喷淋量下,不同气体流量时,用水吸收空气—氨混和气体中氨的体积吸收系数K Y a。 三、基本原理 1.填料塔流体力学特性 填料塔是一种重要的气液传质设备,其主体为圆柱形的塔体,底部有一块带孔的支撑板来支承填料,并允许气液顺利通过。支撑板上的填料有整堆和乱堆两种方式,填料分为实体填料和网体填料两大类,如拉西环、鲍尔环、θ网环都属于实体填料。填料层上方有液体分布装置,可以使液体均匀喷洒在填料上。液体在填料中有倾向于塔壁的流动,故当填料层较高时,常将其分段,段与段之间设置液体再分布器,以利液体的重新分布。 吸收塔中填料的作用主要是增加气液两相的接触面积,而气体在通过填料层时,由于克服摩擦阻力和局部阻力而导致了压强降?P的产生。填料塔的流体力学特性是吸收设备的主要参数,它包括压强降和液泛规律。了解填料塔的流体力学特性是为了计算填料塔所需动力消耗,确定填料塔适宜操作范围以及选择适宜的气液负荷。填料塔的流体力学特性的测定主要是确定适宜操作气速。 在填料塔中,当气体自下而上通过干填料(L=0)时,与气体通过其它固体颗粒床层一样,气压降?P与空塔气速u的关系可用式?P=u1.8-2.0表示。在双对数坐标系中为一条直线,斜率为1.8-2.0。在有液体喷淋(L≠0)时,气体通过床层的压降除与气速和填料有关外,还取决于喷淋密度等因素。在一定的喷淋密度下,当气速小时,阻力与空塔速度仍然遵守?P∝u1.8-2.0这一关系。但在同样的空塔速度下,由于填料表面有液膜存在,填料中的空隙减小,填料空隙中的实际速度增大,因此床层阻力降比无喷淋时的值高。当气速增加到某一值时,由于上升气流与下降液体间的摩擦阻力增大,开始阻碍液体的顺利下流,以致于填料层内的气液量随气速的增加而增加,此现象称为拦液现象,此点为载点,开始拦液时的空塔气速称为载点气速。进入载液区后,当空塔气速再进一步增大,则填料层内拦液量不断增高,到达某一气速时,气、液间的摩擦力完全阻止液体向下流动,填料层的压力将急剧升高,在?P∝u n关系式中,n的数值可达10左右,此点称为泛点。在不同的喷淋密度下,在双对数坐标中可得到一系列这样的折线。随着喷淋密度的增加,填料层的载点气速和泛点气速下降。 本实验以水和空气为工作介质,在一定喷淋密度下,逐步增大气速,记录填料层的压降与

筛板精馏塔精馏实验报告标准范本

报告编号:LX-FS-A15629 筛板精馏塔精馏实验报告标准范本 The Stage T asks Completed According T o The Plan Reflect The Basic Situation In The Work And The Lessons Learned In The Work, So As T o Obtain Further Guidance From The Superior. 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

筛板精馏塔精馏实验报告标准范本 使用说明:本报告资料适用于按计划完成的阶段任务而进行的,反映工作中的基本情况、工作中取得的经验教训、存在的问题以及今后工作设想的汇报,以取得上级的进一步指导作用。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 筛板精馏塔精馏实验 6.1实验目的 1.了解板式塔的结构及精馏流程 2.理论联系实际,掌握精馏塔的操作 3.掌握精馏塔全塔效率的测定方法。 6.2实验内容 ⑴采用乙醇~水系统测定精馏塔全塔效率、液泛点、漏液点 ⑵在规定时间内,完成D=500ml、同时达到xD≥93v%、xW≤3v%分离任务 6.3实验原理

塔釜加热,液体沸腾,在塔内产生上升蒸汽,上升蒸汽与沸腾液 体有着不同的组成,这种不同组成来自轻重组份间有不同的挥发度, 由此塔顶冷凝,只需要部分回流即可达到塔顶轻组份增浓和塔底重 组份提浓的目的。部分凝液作为轻组份较浓的塔顶产品,部分凝液 作为回流,形成塔内下降液流,下降液流的浓度自塔顶而下逐步下 降,至塔底浓度合格后,连续或间歇地自塔釜排出部分釜液作为重 组份较浓的塔底产品。 在塔中部适当位置加入待分离料液,加料液中轻组份浓度与塔截

化工原理实验报告-填料塔吸收实验

填料吸收塔吸收操作及体积吸收系数的测定 课程名称:过程工程原理实验(乙) 指导老师: 成绩:__________________ 实验名称: 同组学生姓名: 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的 1.了解填料吸收塔的构造并熟悉吸收塔的操作。 2.观察填料吸收塔的液泛显现,测定泛点空塔气速。 3.测定填料层压降ΔP与空塔气速u的关系曲线。 4.测定含氨空气—水系统的体积吸收系数K Yα。 二、实验装置 1.本实验装置的流程示意图见图5-1。主体设备是内径70毫米的吸收塔,塔内装10×9×1陶瓷拉西环填料。 2.物系是(水—空气—氨气)。惰性气体空气由漩涡气泵提供,氨气由液氨钢瓶供应,吸收剂水采用自来水,它们分别通过转子流量计测量。水葱塔顶喷淋至填料层与自下而上的含氨空气进行吸收过程,溶液由塔底经液封管流出塔外,塔底有液相取样口,经吸收后的尾气由塔顶排至室外,自塔顶引出适量尾气,用化学分析法对其进行组成分析。 1—填料吸收塔2—旋涡气泵3—空气转子流量计4—液氨钢瓶5—氨气压力表6—氨气减压阀7—氨气稳压罐8—氨气转子流量计9—水转子流量计10—洗气瓶11—湿式流量计12—三通旋塞13、14、15、16—U型差压计17、18、19—温度计

20—液位计 图5-1 填料塔吸收操作及体积吸收系数测定实验装置流程示意图 三、基本原理 (一)填料层压力降ΔP 与空塔气速u 的关系 气体通过干填料层时(喷淋密度L =0),其压力降ΔP 与空塔气速u 如图6中直线A 所示,此直线斜率约为1.8,与气体以湍流方式通过管道时ΔP 与u 的关系相仿。如图6可知,当气速在L 点以下时,在一定喷淋密度下,由于持液量增加而使空隙率减小,使得填料层的压降随之增加,又由于此时气体对液膜的流动无明显影响,在一定喷淋密度下,持液量不随气速变化,故其ΔP ~u 关系与干填料相仿。 在一定喷淋密度下,气速增大至一定程度时,随气速增大,液膜增厚,即出现“拦液状态”(如图6中L 点以上),此时气体通过填料层的流动阻力剧增;若气速继续加大,喷淋液的下流严重受阻,使极具的液体从填料表面扩展到整个填料层空间,谓之“液泛状态”(如图6中F 点),此时气体的流动阻力急剧增加。图6中F 点即为泛点,与之相对应的气速称为泛点气速。 原料塔在液泛状态下操作,气液接触面积可达最大,其传质效率最高。但操作最不稳定,通常实际操作气速取泛点气速的60%~80%。 塔内气体的流速以其体积流量与塔截面积之比来表示,称之为空塔气速u 。 Ω = ' V u (1) 式中: u ——空塔气速,m/s V’——塔内气体体积流量,m 3/s Ω——塔截面积,m 2。 实验中气体流量由转子流量计测量。但由于实验测量条件与转子流量计标定条件不一定 相同,故转子流量计的读数值必须进行校正,校正方法详见附录四。 填料层压降ΔP 直接可由U 型压差计读取,再根据式(1)求得空塔气速u ,便可得到 一系列ΔP ~u 值,标绘在双对数坐标纸上,即可得到ΔP ~u 关系曲线。 (二)体积吸收系数K Y α的测定 1.相平衡常数m 对相平衡关系遵循亨利定律的物系(一般指低浓度气体),气液平衡关系式为: mx y =* (2) 相平衡常数m 与系统总压P 和亨利系数E 的关系如下:

填料塔吸收综合实验报告

竭诚为您提供优质文档/双击可除填料塔吸收综合实验报告 篇一:实验七填料塔吸收实验 实验七填料吸收塔的操作和吸收系数的测定 一、实验目的 1.了解填料吸收塔的结构、填料特性及吸收装置的基本流程。2.熟悉填料塔的流体力学性能。3.掌握总传质系数KYa测定方法。4.了解空塔气速和液体喷淋密度对传质系数的影响。 二、实验内容 1.测定干填料及不同液体喷淋密度下填料的阻力降?p 与空塔气速u的关系曲线,并确定液泛气速。 2.测量固定液体喷淋量下,不同气体流量时,用水吸收空气—氨混和气体中氨的体积吸收系数KYa。 三、基本原理 1.填料塔流体力学特性 填料塔是一种重要的气液传质设备,其主体为圆柱形的塔体,底部有一块带孔的支撑板来支承填料,并允许气液顺

利通过。支撑板上的填料有整堆和乱堆两种方式,填料分为实体填料和网体填料两大类,如拉西环、鲍尔环、?网环都属于实体填料。填料层上方有液体分布装置,可以使液体均匀喷洒在填料上。液体在填料中有倾向于塔壁的流动,故当填料层较高时,常将其分段,段与段之间设置液体再分布器,以利液体的重新分布。 吸收塔中填料的作用主要是增加气液两相的接触面积,而气体在通过填料层时,由于克服摩擦阻力和局部阻力而导致了压强降?p的产生。填料塔的流体力学特性是吸收设备的主要参数,它包括压强降和液泛规律。了解填料塔的流体力学特性是为了计算填料塔所需动力消耗,确定填料塔适宜操作范围以及选择适宜的气液负荷。填料塔的流体力学特性的测定主要是确定适宜操作气速。 在填料塔中,当气体自下而上通过干填料(L=0)时,与气体通过其它固体颗粒床层一样,气压降?p与空塔气速u的关系可用式?p=u1.8-2.0表示。在双对数坐标系中为一条直线,斜率为1.8-2.0。在有液体喷淋(L?0)时,气体通过床层的压降除与气速和填料有关外,还取决于喷淋密度等因素。在一定的喷淋密度下,当气速小时,阻力与空塔速度仍然遵守?p?u1.8-2.0这一关系。但在同样的空塔速度下,由于填料表面有液膜存在,填料中的空隙减小,填料空隙中的实际 速度增大,因此床层阻力降比无喷淋时的值高。当气速增加

精馏实验报告范文

精馏实验报告范文 学院:化学工程学院姓名:学号:专业:化学工程与工艺班级:同组人员: 课程名称:化工原理实验实验名称:精馏实验实验日期北京化工大学 实验五精馏实验 摘要:本实验通过测定稳定工作状态下塔顶、塔釜及任意两块塔板的液相折光度,得到该处液相浓度,根据数据绘出x-y图并用图解法求出理论塔板数,从而得到全回流时的全塔效率及单板效率。通过实验,了解精馏塔工作原理。关键词:精馏,图解法,理论板数,全塔效率,单板效率。 一、目的及任务 ①熟悉精馏的工艺流程,掌握精馏实验的操作方法。 ②了解板式塔的结构,观察塔板上汽-液接触状况。 ③测定全回流时的全塔效率及单塔效率。 ④测定部分回流时的全塔效率。

⑤测定全塔的浓度(或温度)分布。 ⑥测定塔釜再沸器的沸腾给热系数。 二、基本原理 在板式精馏塔中,由塔釜产生的蒸汽沿塔逐板上升与来自塔顶逐板下降的回流液,在塔板上实现多次接触,进行传热与传质,使混合液达到一定程度的分离。回流是精馏操作得以实现的基础。塔顶的回流量与采出量之比,称为回流比。回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。回流比存在两种极限情况:最小回流比和全回流。若塔在最小回流比下操作,要完成分离任务,则需要无穷多塔板的精馏塔。当然,这不符合工业实际,所以最小回流比只是一个操作限度。若操作处于全回流时,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔中,这在生产中午实际意义。但是由于此时所需理论板数最少,又易于达到稳定,故常在工业装置的开停车、排除故障及科学研究时采用。 实际回流比常取最小回流比的1.2~2.0倍。在精馏操作中,若回流系统出现故障,操作情况会急剧恶化,分离效果也将变坏。 板效率是体现塔板性能及操作状况的主要参数,有以下两种定义方法。 (1)总板效率E

填料塔吸收过程实验

实验4 填料塔吸收过程实验 一、实验目的 (1)了解填料吸收塔的基本结构,熟悉吸收实验装置的基本流程,搞清楚每一个附属设备的作用和设计意图。 (2)掌握产生液泛现象的原因和过程。 (3)明确吸收塔填料层压降ΔP与空塔气速u在双对数坐标中的关系曲线及其意义,了解实际操作气速与泛点气速之间的关系。 (4)掌握测定含氨空气-水系统的体积吸收系数Kya的方法。 (5)熟悉分析尾气浓度的方法。 (6)掌握气液体积转子流量计使用方法和安装要求,湿式流量计的使用方法和连接要求。 二、实验任务 (1)观察在一定液体喷淋密度下,当气速增大到一定程度时产生的液泛现象,测得液泛气速,并根据液泛气速确定操作气速。 (2)根据实际测得的原始数据,在双对 数坐标中画出填料层压降ΔP与空塔气速 u的关系曲线。 (3)测定含氨空气-水系统在一定的操 作条件下的体积吸收系数Kya。 (4)根据改变气相流量和改变液相流 量测得不同的Kya的变化值的大小,判断 此吸收过程是属气膜控制还是液膜控制。 (5)讨论影响吸收操作系统稳定的因 素。 三、实验装置 填料塔吸收操作及体积吸收系数的测 定实验装置流程示意图见图1。 本实验装置的主要设备有填料吸收塔 1、旋涡泵 2、空气转子流量计 3、四个U形管差压计(13、1 4、1 5、16)、氨气钢瓶4、氨气压力表5、氨气减压阀 6、氨气稳压罐 7、氨气转子流量计 8、水转子流量计 9、吸收瓶10、湿式流量计11、三通旋塞12、温度计17、18、19。 本实验物系为水-空气-氨气。由旋涡气泵产生的空气与从液氮钢瓶经过减压阀后的氨气混合后进入填料塔底部。吸收剂水从塔顶喷淋而下,从塔底经液封装置排出。气液在填料层内接触、传质,经吸收后的尾气从塔顶排出。很少量的一小部分尾气通过三通阀引进洗气瓶,洗气瓶内装有已知浓度和一定体积量的稀硫酸,尾气与稀硫酸进行中和反应,经吸收后的尾气通入湿式流量计后放空。从湿式流量计可以测出此小部分尾气经过洗气瓶的空气体积量。 四、实验原理和方法 与空塔气速u的关系 1.填料塔压力降p 填料塔的压力降与泛点气速是填料塔设计与操作的重要流体力学参数。气体通过填料层的压力降将

填料塔吸收实验数据及处理

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.5 1 1.5 2 空塔气速 单位高度压降 空气流量u(m 3) H1(cm) Ppa P/H 0.375 0.18 17.64 0.027 0.5 0.3 29.4 0.045 0.7 0.45 44.1 0.068 0.9 0.75 73.5 0.113 1.1 1.05 102.9 0.158 1.3 1.3 127.4 0.196 1.5 1.6 156.8 0.241 1.7 1.9 186.2 0.286 1.9 2.2 215.6 0.332

0.000 1.000 2.000 3.000 4.000 5.000 6.000 0.000 0.2000.4000.6000.800 1.000 1.200 1.400 1.600 流量 液体喷淋量20L /h 空气流量u H1 Ppa P/H 0.375 0.550 53.900 0.083 0.500 1.100 107.800 0.166 0.600 1.500 147.000 0.226 0.700 1.850 181.300 0.279 0.800 2.200 215.600 0.332 0.900 2.700 264.600 0.407 1.000 4.100 401.800 0.618 1.100 5.100 499.800 1.428 1.200 6.370 624.260 0.960 1.300 7.150 700.700 1.078 1.400 21.000 2058.000 3.166 1.500 33.000 3234.000 4.975

化工大学精馏实验报告

北京化工大学学生实验报告 姓名: 学号: 专业: 班级: 同组人员: 课程名称:化工原理实验 实验名称:精馏实验 实验日期: 2016.5.13 北京化工大学

实验五精馏实验 摘要:本实验通过测定稳定工作状态下塔顶、塔釜及任意两块塔板的液相折光度,得到该处液相浓度,根据数据绘出x-y图并用图解法求出理论塔板数,从而得到全回流时的全塔效率及单板效率。通过实验,了解精馏塔工作原理。 关键词:精馏,图解法,理论板数,全塔效率,单板效率。 一、目的及任务 ①熟悉精馏的工艺流程,掌握精馏实验的操作方法。 ②了解板式塔的结构,观察塔板上汽-液接触状况。 ③测定全回流时的全塔效率及单塔效率。 ④测定部分回流时的全塔效率。 ⑤测定全塔的浓度(或温度)分布。 ⑥测定塔釜再沸器的沸腾给热系数。 二、基本原理 在板式精馏塔中,由塔釜产生的蒸汽沿塔逐板上升与来自塔顶逐板下降的回流液,在塔板上实现多次接触,进行传热与传质,使混合液达到一定程度的分离。 回流是精馏操作得以实现的基础。塔顶的回流量与采出量之比,称为回流比。回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。 回流比存在两种极限情况:最小回流比和全回流。若塔在最小回流比下操作,要完成分离任务,则需要无穷多塔板的精馏塔。当然,这不符合工业实际,所以最小回流比只是一个操作限度。若操作处于全回流时,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔中,这在生产中午实际意义。但是由于此时所需理论板数最少,又易于达到稳定,故常在工业装置的开停车、排除故障及科学研究时采用。 实际回流比常取最小回流比的1.2~2.0倍。在精馏操作中,若回流系统出现故障,操作情况会急剧恶化,分离效果也将变坏。 板效率是体现塔板性能及操作状况的主要参数,有以下两种定义方法。

填料塔吸收实验

实验一填料塔吸收实验 一、实验目的 1. 了解吸收过程的流程、设备结构,并掌握吸收操作方法。 2. 在不同空塔气速下,观察填料塔中流体力学状态。测定气体通过填料层的压降与气速的关系曲线。 3. 通过实验了解ΔP—u曲线对工程设计的重要意义。 二、实验原理(填料塔的流体力学特性) 吸收塔中填料的作用主要是增加气液两相的接触面积,而气体在通过填料层时,由于有局部阻力和摩擦阻力而产生压强降。 它 包括压强降和液泛规律。测定填料塔的流体力学特 性是为了计算填料塔所需动力消耗和确定填料塔 的适宜操作范围,选择适宜的气液负荷,因此填料 塔的流体力学特性是确定最适宜操作气速的依据。 气体通过干填料(L=0)时,其压强降与空塔 气速之间的函数关系在双对数坐标上为一直线,如 图中AB线,其斜率为1.8~2。当有液体喷淋时, 在低气速时,压强降和气速间的关联线与气体通过 AB线几乎平行,但压降大于同一气速下干填料的压降,如图中CD段。随气速的进一步增加出现载点(图中D点),填料层持液量开始增大,压强降与空塔气速的关联线向上弯曲,斜率变大,如图中DE段。当气速增大到E点,填料层持液量越积越多,气体的压强几乎是垂直上升,气体以泡状通过液体,出现液泛现象,此点E称为泛点。 三、装置及流程 空气由风机供给进入空气缓冲罐再由阀调节空气流量,经空气转子流量计计量,并在管路中与氨(经转子流量计计量)混合后进入塔底,混合气在塔中经水吸收后,尾气从塔顶排出。出口处有尾气稳压阀,以维持一定的尾气压力(约100-200mmH2O)作为尾气通过分析器的推动力。

自来水经转子流量计计量后,进入塔顶喷淋气喷出,塔底吸收液经排液管证液封。 氨气由氨瓶供给,缓慢开启氨瓶阀,二氨气即进入自动减压阀,稳压0.1Mpa 范围以内。氨压表指示氨瓶内部压力,氨压表指示减压后的压力。 流程图如下所示 1、氨气阀 2、6氨压表 3、减压阀 4、氨瓶 5、11温度计 7、空气缓冲罐 8、氨压表 9、15、28转子流量计 10、氨压计 12、空气缓冲罐 13、放净阀 14、空气调节阀 1 6、塔顶尾气压力计 1 7、填料支撑板 1 8、排液管 1 9、塔压降 20、填料塔 21、喷淋器 22、尾气稳压阀 23、尾气采样管 24、稳压瓶 25、采样考克 26、吸收分析盒 27、湿式体积流量计 29、放净阀 30、进水调节阀 四、操作要点 (1)测定于填料压强降时,塔内填料务必事先吹干,为开空气调解阀,开启气泵,缓慢调解改变空气流量6次左右,测定塔压降,得到ΔP 干—U 关系。 (2)测定式填料压强降。 a 、测定前要进行预液泛时,使填料表面充分润湿。 b 、实验接近液泛时,进塔气体的增长速度要放慢,不然图中泛点不易找到。密切观察填料表面气液接触状况,并注意填料层压降变化幅度, 待各参数稳定后再

填料塔吸收实验

序号:34 化工原理实验报告 实验名称:填料吸收传质系数测定 学院:化学工程学院 专业:化学工程与工艺 班级:化工09-3班 姓名:曾学礼学号09402010337

同组者姓名:周锃刘翰卿 指导教师:王志强 日期:2011年9月20日 一、实验目的 1.熟悉填料塔的构造与操作。 2.观察填料塔流体力学状况,测定压降与气速的关系曲线。 3.掌握总传质系数Kxa的测定方法并分析影响因素。 4.学习气液连续接触式填料塔,利用传质速率方程处理传质问题的方法。 二、实验原理 本装置先用吸收柱将水吸收纯氧形成富氧水后(并流操作),送入解吸塔顶再用空气进行解吸,实验需测定不同液量和气量下的解吸总传质系数K x a,并进行关联,得到K x a=AL a·V b的关联式,同时对四种不同填料的传质效果及流体力学性能进行比较。本实验引入了计算机在线数据采集技术,加快了数据记录与处理的速度。 1.填料塔流体力学特性 气体通过干填料层时,流体流动引起的压降和湍流流动引起的压 降规律相一致。在双对数坐标系中△P/Z对G'作图得到一条斜率为 1.8~2的直线(图1中的aa线)。而有喷淋量时,在低气速时(c 点以前)压降也比例于气速的1.8~2次幂,但大于同一气速下干填 料的压降(图中bc段)。随气速增加,出现载点(图中c点),持 液量开始增大。图中不难看出载点的位置不是十分明确,说明汽液两 相流动的相互影响开始出现。压降~气速线向上弯曲,斜率变徒(图中cd段)。当气体增至液泛点(图中d点,实验中可以目测出)后在几乎不变的气速下,压降急剧上升。 图1 填料层压降–空塔气速关系示意图 2、传质实验 填料塔与板式塔气液两相接触情况不同。在填料塔中,两相传质主要是在填料有效湿表面上进行,需要计算完成一定吸收任务所需填料高度,其计算方法有:传质系数法、传质单元法和等板高度法。 本实验是对富氧水进行解吸。由于富氧水浓度很小,可认为气液两相的平衡关系服从亨利定律,即平衡线为直线,操作线也是直线,因此可以用对数平均浓度差计算填料层传

化工原理精馏实验报告

北京化工大学 实验报告 精馏实验 一、摘要 精馏是实现液相混合物液液分离的重要方法,而精馏塔是化工生产中进行分离过程的主要单元,板式精馏塔为其主要形式。本实验用工程模拟的方法模拟精馏塔在全回流的状态下及部分回流状态下的操作情况,从而计算单板效率和总板效率,并分析影响单板效率的主要因素,最终得以提高塔板效率。 关键词:精馏、板式塔、理论板数、总板效率、单板效率 二、实验目的 1、熟悉精馏的工艺流程,掌握精馏实验的操作方法。 2、了解板式塔的结构,观察塔板上气- 液接触状况。 3、测测定全回流时的全塔效率及单板效率。 4、测定部分回流时的全塔效率。 5、测定全塔的浓度或温度分布。 6、测定塔釜再沸器的沸腾给热系数。 三、实验原理 在板式精馏塔中,由塔釜产生的蒸汽沿塔逐板上升与来自塔顶逐板下降的回流液,在塔 板上实现多次接触,进行传热和传质,使混合液达到一定程度的分离。 回流是精馏操作得以实现的基础。塔顶的回流量和采出量之比,称为回流比。回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。 回流比存在两种极限情况:最小回流比和全回流。若塔在最小回流比下操作,要完成分离任务,则

需要有无穷多块塔板的精馏塔。当然,这不符合工业实际,所以最小回流比只是 一个操作限度。若操作处于全回流时,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔中,这在生产中无实验意义。但是,由于此时所需理论板数最少,又易于达到稳定,故常在工业装置开停车、排除故障及科学研究时采用。 实际回流比常取用最小回流比的倍。在精馏操作中,若回流系统出现故障,操作情况会急剧恶化,分离效果也将变坏。 板效率是体现塔板性能及操作状况的主要参数,有以下两种定义方法。 (1)总板效率E N e 式中E —总板效率;N—理论板数(不包括塔釜);Ne —实际板数。 2)单板效率E ml E x n 1 x n E ml * x n 1 x n* 式中E ml—以液相浓度表示的单板效率; x n,x n-1—第n 块板的和第(n-1 )块板得液相浓度; x n*—与第n 块板气相浓度相平衡的液相浓度。 总板效率与单板效率的数值通常由实验测定。单板效率是评价塔板性能优劣的重要数据。物系性质、板型及操作负荷是影响单板效率的重要因素。当物系与板型确定后,可通过改变气液负荷达到最高的板效率;对于不同的板型,可以在保持相同的物系及操作条件下,测定其单板效率,已评价其性能的优劣。总板效率反映全塔各塔板的平均分离效果,常用于板式塔设计中。 若改变塔釜再沸器中电加热器的电压,塔板上升蒸汽量将会改变,同时,塔釜再沸器电加热器表面的温度将发生变化,其沸腾给热系数也将发生变化,从而可以得到沸腾给热系数也加热量的关系。由牛顿冷却定律,可知 Q A t m

填料塔各种填料

各种填料 (1)拉西环填料于1914年由拉西(F. Rashching)发明,为外径与高度相等的圆环。拉西环填料的气液分布较差,传质效率低,阻力大,通量小,目前工业上已较少应用。 (2)鲍尔环填料是对拉西环的改进,在拉西环的侧壁上开出两排长方形的窗孔,被切开的环壁的一侧仍与壁面相连,另一侧向环内弯曲,形成内伸的舌叶,诸舌叶的侧边在环中心相搭。鲍尔环由于环壁开孔,大大提高了环内空间及环内表面的利用率,气流阻力小,液体分布均匀。与拉西环相比,鲍尔环的气体通量可增加50%以上,传质效率提高30%左右。鲍尔环是一种应用较广的填料。 (3)阶梯环填料是对鲍尔环的改进,与鲍尔环相比,阶梯环高度减少了一半并在一端增加了一个锥形翻边。由于高径比减少,使得气体绕填料外壁的平均路径大为缩短,减少了气体通过填料层的阻力。锥形翻边不仅增加了填料的机械强度,而且使填料之间由线接触为主变成以点接触为主,这样不但增加了填料间的空隙,同时成为液体沿填料表面流动的汇集分

散点,可以促进液膜的表面更新,有利于传质效率的提高。阶梯环的综合性能优于鲍尔环,成为目前所使用的环形填料中最为优良的一种。 (4)弧鞍填料属鞍形填料的一种,其形状如同马鞍,一般采用瓷质材料制成。弧鞍填料的特点是表面全部敞开,不分内外,液体在表面两侧均匀流动,表面利用率高,流道呈弧形,流动阻力小。其缺点是易发生套叠,致使一部分填料表面被重合,使传质效率降低。弧鞍填料强度较差,容破碎,工业生产中应用不多。 (5)矩鞍填料将弧鞍填料两端的弧形面改为矩形面,且两面大小不等,即成为矩鞍填料。矩鞍填料堆积时不会套叠,液体分布较均匀。矩鞍填料一般采用瓷质材料制成,其性能优于拉西环。目前,国内绝大多数应用瓷拉西环的场合,均已被瓷矩鞍填料所取代。

吸收(解吸)实验报告

实验名称:吸收(解吸)实验 一、实验目的 1 了解填料塔吸收装置的基本结构及流程; 2 掌握总体积传质系数的测定方法; 3 测定填料塔的流体力学性能; 4 了解气体空塔速度和液体喷淋密度对总体积传质系数的影响; 5 了解气相色谱仪和六通阀在线检测CO2浓度和测量方法; 6 学会化工原理实验软件库的使用。 二、实验装置流程示意图及实验流程简述 1〕装置流程 本实验装置流程如图6-1所示:水经转子流量计后送入填料塔塔顶再经喷淋头喷淋在填料顶层。由风机输送来的空气和由钢瓶输送来的二氧化碳气体混合后,一起进入气体混合稳压罐,然后经转子流量计计量后进入塔底,与水在塔内进行逆流接触,进行质量和热量的交换,由塔顶出来的尾气放空,由于本实验为低浓度气体的吸收,所以热量交换可略,整个实验过程可看成是等温吸收过程。

2〕主要设备 (1)吸收塔:高效填料塔,塔径100mm,塔内装有金属丝网板波纹规整填料,填料层总高度2000mm.。塔顶有液体初始分布器,塔中部有液体再分布器,塔底部有栅板式填料支承装置。填料塔底部有液封装置,以避免气体泄漏。 (2)填料规格和特性: 金属丝网板波纹填料:型号JWB—700Y,填料尺寸为φ100×50mm,比表面积700m2/m3。 (4)气泵:层叠式风机,风量0~90m3/h,风压40kPa; (5)二氧化碳钢瓶; (6)气相色谱仪(型号:SP6801); (7)色谱工作站:浙大NE2000。 三、简述实验操作步骤及安全注意事项 1 实验步骤 (1)熟悉实验流程及弄清气相色谱仪及其配套仪器结构、原理、使用方法及其注意事项;(2)打开仪表电源开关及风机电源开关; (3)开启进水总阀,使水的流量达到400L/h左右。让水进入填料塔润湿填料。 (4)塔底液封控制:仔细调节阀门○2的开度,使塔底液位缓慢地在一段区间内变化,以免塔底液封过高溢满或过低而泄气。 (5)打开CO2钢瓶总阀,并缓慢调节钢瓶的减压阀(注意减压阀的开关方向与普通阀门的开关方向相反,顺时针为开,逆时针为关),使其压力稳定在0.1Mpa左右; (6)仔细调节空气流量阀至1m3/h,并调节CO2调节转子流量计的流量,使其稳定在100L/h~160 L/h; (7)仔细调节尾气放空阀的开度,直至塔中压力稳定在实验值; (8)待塔操作稳定后,读取各流量计的读数及通过温度数显表、压力表读取各温度、压力,通过六通阀在线进样,利用气相色谱仪分析出塔顶、塔底气相组成; (9)改变水流量值,重复步骤(6)(7)(8)。 (10)实验完毕,关闭CO2钢瓶总阀,再关闭风机电源开关、关闭仪表电源开关,清理实验仪器和实验场地。 2 注意事项 (1)固定好操作点后,应随时注意调整以保持各量不变。 (2)在填料塔操作条件改变后,需要有较长的稳定时间,一定要等到稳定以后方能读取有关数据。

相关文档
最新文档