再生医学研究新进展:DNA甲基化与细胞重编程

再生医学研究新进展:DNA甲基化与细胞重编程
再生医学研究新进展:DNA甲基化与细胞重编程

2020公需科目《当代科学技术前沿知识》考试(共50题,共100分)4

2020公需科目当代科学技术前沿知识考试(共50题,共100分) 一.单项选择题(共20题 ,共40分) (D) 是国际上首个独立掌握火星着陆巡视探测技术的国家。[2分] A前苏联 B美国 C日本 D中国 2.无人遥控潜水器最早出现在(A),主要用于考古方面的研究。[2分]。 A 1953年 B 1973年 C 1993年 D 2003年 3在生命起源的理论中, (B)主张从物质的运动变化规律来研究生命的起源,认为在原始地球的条件下,无机物可以转变为有机物,有机物可以发展为生物大分子和多分子体系,直到最后出现原始的生命体。[2分 A特创论 B生源论 C泛胚种论 D化学进化论 4.海洋立体观测监视系统是利用多种技术手段,进行海洋综台、立体观测监视的组合系统,下列不属于海洋立体观测监视系统的技术手段的是(B)。[2分] A调查船观测 B深海生物资源 C浮标监测 D卫星遥感 5.载人潜水器, 特别是载人深潜器是当代海洋科技的制高点之一。下列属于我国载人深潜器的是(D)。[2分] A“双鱼座”4号 B“深海6500"号 C”和平I”号 D“蛟龙”号 6.(B)年,前苏联成功发射人类第一颗人造地球卫星,开创了空间科技的新纪元,人类从此进入空间时代。 [2分] A 1947 B 1957

C 1967 D 1977 7.(A)由一层石墨层片卷曲而成,是结构最简单的碳纳米管。 [2分] A单壁碳纳米管 B多壁碳纳米管 C石墨烯 D富勒烯 8.海岸带生境具有独特的生物群落和极高的生态价值,下列不属于海岸带生境的是 (A )。[2分] A热液口 B珊瑚礁 C湿地 D三角洲 9.相比传统燃油车,以下哪点不属于纯电动汽车的缺点: (C)。[2分] A续航里程短 B充电时间长 C车辆能耗高 D仅适用于市区内通勤 10.1948年,(B) 物理学家伽莫夫等提出了大爆炸宇宙模型,该模型取得巨大的成功。[2分] A前苏联 B美国 C德国 D英国 11.近年来, -系列信息技术的发展及其在设施农业中的结合应用,颠覆了传统农业生产方式,发展出了智能高效的设施农业。以下哪项信息技术与设施农业的智能化发展无关: (D)。(2分] A物联网 B云计算 C人工智能 D集成电路 12.载人潜水器,特别是载人深潜器是当代海洋科技的制高点之一。下列不属于载人深潜器的是(A)。[2分] A“海翼”号 B“蛟龙”号 C“深海勇士”号 D“鹦鹉螺”号

DNA甲基化_去甲基化与癌症

收稿日期:2012-10-04 第一作者:周建生(1988-),男,硕士生,E-mail: zhoujiansheng0902@https://www.360docs.net/doc/d212672952.html, *通信作者:焦炳华(1962-),男,博士,教授, E-mail: jiaobh@https://www.360docs.net/doc/d212672952.html, DNA 甲基化/去甲基化与癌症 周建生,杨生生,缪明永,焦炳华* (第二军医大学基础部生物化学与分子生物学教研室,上海 200433) 摘要:DNA 甲基化是真核细胞基因组中常见的可遗传的表观遗传修饰,在调节细胞增殖、分化、个体发育等方面起重要作用,并且DNA 甲基化水平异常与肿瘤的发生发展密切相关。DNA 甲基化及被动去甲基化主要是在DNA 甲基转移酶家族参与下完成的,而DNA 的主动去甲基化机制尚不是很明确。在肿瘤细胞中DNA 的整体甲基化水平显著降低,但抑癌基因的启动子区域却出现高甲基化。目前尽管有DNA 去甲基化药物用于癌症的临床治疗,但药物特异性较差,因而研究特定基因的主动去甲基化机制有助于研发特异性高的药物用于癌症的治疗。 关键词:DNA 甲基化;DNA 去甲基化;癌症;表观遗传治疗 Relationship between DNA methylation/demethylation and cancer ZHOU Jiansheng, YANG Shengsheng, MIAO Mingyong, JIAO Binghua * (Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, the Second Military Medical University, Shanghai 200433, China) Abstract: DNA methylation, the most common heritable epigenetic marker of eukaryote genome, plays a critical role in cell proliferation, differentiation, and development. Aberrant DNA methylation is correlated with the onset and progression of cancer. It is well accepted that DNA methylation and DNA passive demethylation are mainly catalyzed by the family of DNA methyltransferases. However, the mechanism of DNA active demethylation is unclear. In cancer cells, the global genomic levels of DNA methylation are lower, but the promoter methylation levels of tumor suppressor genes are higher than in normal tissues. Several demethylating agents have been applied for the clinical treatment of cancer, but these agents are lack of specificity for target genes. So studying the mechanism of active demethylation of specific genes avails the research and development of high-specificity agents for the treatment of cancer.Key words: DNA methylation; DNA demethylation; cancer; epigenetic therapy 表观遗传的概念最初是由Conrad Hal Waddington 于1942年提出的,他认为基因型通过一些偶然的、不确定的机制决定了不同的表现型[1];1987年Holliday 将这一表观遗传概念用于DNA 甲基化水平改变引起基因表达活性改变现象[2];现代表观遗传是指在基因的DNA 序列不发生改变的情况下,基因的表达水平与功能发生改变,并产生可以遗传的表型。主要的表观遗传标记存在于染色体的不 同水平,包括DNA 和组蛋白修饰、组蛋白多样性、直接结合于DNA 或组蛋白上的染色体非组蛋白修饰、核内RNA(nuclear RNA, nRNA)、染色体高度有序的结构及位置效应等。其中,DNA 甲基化作为一种重要的表观遗传修饰,参与许多生物过程,包括基因转录调控、转座子沉默、基因印记、X 染色体失活及癌症的发生发展等。本文主要综述DNA 甲基化/去甲基化机制及DNA 甲基化/去

再生医学的研究创立与展望

?学术讲座? 再生医学的研究创立与展望 徐 荣 祥 大家好!今天交流的内容是一个最前沿的课题———再生医学的研究创立与展望。这是一个最新的概念,最新的学术体系。借此机会,给大家从再生医学的创立、研究现状以及学术发展规划作一个简要的报告 一、从医学模式的创立发展趋势,谈严谨的科学态度和科研思路 人类生命科学发展2500年以来,围绕着人类的健康和疾病的治疗作了大量的研究工作。而多年来人们不禁要问:我们应用的医学模式优点在哪里?缺点在哪里?我们今后将采用什么样的医学模式,才能更符合人体生理过程和有利于健康?人类寿命能否超过百岁?未来的医学是什么状况等等。围绕上述问题,科学界在世界上炒得轰轰烈烈,为什么炒得轰轰烈烈呢?原因是,在两千多年前,无论东方医学还是西方医学,都源于大自然,人们都想利用大自然的东西,来解决健康问题。我们祖国医学在有记载以来,从医学专著《黄帝内经》到秦始皇下令密制长生不老的灵丹妙药和华佗的手术疗法,逐渐形成了系统的医学体系和设想。而西方医学从古希腊医生希波格拉底通过人体解剖创立人体形态学以后才产生了具体的外科手术和“毒药治病”的医学观。从学术创立的起源来说,不管是东方医学的整体哲学观,还是西方医学的还原论,这两个医学体系在发展的过程当中,有进有退,有微观有宏观。通过2500年的发展,在医学上出现了两个医学学术阵营--东方医学阵营和西方医学阵营。东方医学阵营是我们先祖传下来的,也是世界医学中最古老的医学体系;祖国医学宏观的治疗方法,给人类带来了很多的益处,对人类健康做出了很大的贡献。西方医学的发展,经过了两大转折时期,第一个时期是古埃及战争时期,这个时期由于有大量的伤员,人类对形态学的研究从解剖学发展到对人体器官行手术处理的方法来抢救生命。第二个时期是文艺复兴发展时期,由于文化的大变革,使人类对人体的看法在炼金术的机理影响下产生了人体组织生物化学,使西方外科、毒性治疗医学发展成为现代微创外科和单分子物质的低毒性桔抗医学;东西方医学均把现代的科学技术溶于医学治疗中去,这就是医学发展史。但无论是祖国医学,还是西方医学,对人类的健康和疾病发挥了什么样的作用哪?很简单,打个形象的比喻,前辈们传到我们医生手里的医学传家宝就是:左手拿着刀,右手拿着“毒药”,面对病人说:“左手拿着刀,我要切除你损伤坏死的脏器,保护抢救你的生命,治疗你的疾病,同意吗?右手拿着毒药,我要以毒攻毒,治疗你的病,同意吗?”这就是现行医学的主体,西方医学的西药大多是体外化学物质,与人体生命规律不相符,没有副作用是不可能的,所以从生命规律的角度把它比喻为毒药并不为过。为了减少或者阻滞药物毒性,多少个世纪以来,世界各国的医学家们都一直在苦苦的研究,各国政府也为保障药物对人体的有限的安全,均成立了国家药物控制管理机构,但到目前为止,人们的思路并没有从毒药中走出来,从而并没有改变旧的医学体系;究竟符合人体生命规律的新的医学体系在那里?人类医学究竟应该走向何方?今天我将大胆的宣布我的研究成果———再生医学的创立研究和发展。 从二十世纪80年代末期,我们开始研究再生医学,1987年设立研究基地,虽然经过了风风雨雨,但我们现在的再生医学研究成果表明我们走在了世界的最前面。1989年,我在中国烧伤创疡杂志上公布了我们研究烧伤再生组织细胞的无疤痕愈合的研究成果,特别是公布了再生细胞和皮肤再生的组织学资料和临床效

DNA甲基化功能汇总

Functions of DNA methylation: islands, start sites, gene bodies and beyond DNA甲基化功能:岛,起始位点,基因体和其他 peter a. jones 摘要 DNA甲基化通常被描述为一个“沉默”的表观遗传标记,的确,5-甲基胞嘧啶的功能最初是在20世纪70年代提出。现在,归功于甲基化绘图的基因组规模的改良,我们可以评估在不同的基因组背景下的DNA甲基化:在基因体上,在调控元件和重复序列上,转录起始位点有或者没有CpG岛。新出现的图片是DNA甲基化功能似乎随背景而改变,DNA甲基化和转录的关系比我们最先认识到的更为微妙。有必要提高我们对DNA甲基化的功能的理解,为了解释这个疾病标记中观察到的变化,比如癌症。 两篇重要的文章在1975年分别表示胞嘧啶残基的甲基化在CpG二核苷酸背景中能作为表观遗传标记。这些文章提出序列可以被重新甲基化,即甲基化通过一种机制的体细胞分裂能够被遗传,包括一种能识别半甲基化CpG回文的酶,甲基基团的存在,可以由DNA结合蛋白和DNA甲基化直接沉默基因解释。虽然这些关键原则中的几个被证明是正确的,解开DNA甲基化与基因沉默的关系已被证明是具有挑战性的。 在CpG序列背景下,在动物身上的大部分工作都集中在5-甲基胞嘧啶(5mC)。据报道,在哺乳动物的其他序列的甲基化广泛分布在植物和一些真菌中。在哺乳动物中,非CpG甲基化的功能目前未知。在这里我主要集中在哺乳动物基因组中的CpG甲基化,包括在其他动物和植物中观察到的差异的讨论。 理解DNA甲基化的功能需要通过基因组考虑甲基化的分布。超过一半的基因脊椎动物的基因组包含短(约1 kb)CpG丰富的区域称为CpG岛(CGIS),其余的基因组因为CpGs而耗尽。当5mC通过自发或酶胸腺嘧啶脱氨基作用被转换成胸腺嘧啶,认为基因组的损失是由于甲基化的序列在种族中的脱氨基;认为CGI存在是因为他们可能是从来没有或只有瞬时甲基化。然而,有很多关于准确定义CGI是什么的讨论,虽然在

干细胞与再生医学

需要重点看的概念 1 embryonic stem cells, ES 胚胎干细胞 2 Stem cells 干细胞 3 hematopoietic stem cell 造血干细胞 4 Neural stem cells (NSCs) 神经干细胞are initially present in a single layer of pseudostratified epithelium spanning the entire distance from the central canal to the external limiting membrane. NSCs continue to proliferate, and are patterned over several days in vivo to generate mature neurons, oligodendrocytes, and astrocytes. 神经干细胞起先呈现为单层假复层上皮,覆盖于整个中央管到外部的限制性膜。神经干细胞能增殖,并在数天内产生成熟的神经元、星形胶质细胞和少突胶质细胞。 5 plasticity 可塑性一种成体干细胞具有生成另一个组织的特化细胞的能力,即成体干细胞具有一定跨系、甚至跨胚层分化的特性,称其为干细胞的可塑性,也称为成体干细胞的横向分化。Transdifferentiation (plasticity of stem cell): means the adult stem cell from one embryonic layer can differentiate into cells derives from other layer. 6 Human mesenchymal stem cells 人间充质干细胞 7.fate mapping 干细胞命运图:在正常环境下受各种稳态因素调节的分化趋势。这些趋势包括干细胞对机体正常发育活动的参与,以及干细胞对各种生物学危险诸如组织损伤、器官衰老以及疾病的反应。 判断 7 There must be stem cells that divide and generate neurons in the adult mammalian brain. (T) 在成年的哺乳类动物体内一定有能够分裂并产生神经元得干细胞存在 填空 8 (adult) stem cells have been identified in the brain, particularly in a region important in memory, known as the hippocampus. 研究者已经证实脑中含有成体干细胞,特别是在对记忆尤为重要的海马区 9 NEP cells continue to proliferate, and are patterned over several days in vivo to generate mature (neurons) , oligodendrocytes, and astrocytes in a characteristic spatial and temporal pattern. 神经上皮干细胞持续增殖,并在数天内被模式化,以特有的时空模式产生成熟的神经元、星形胶质细胞和少突胶质细胞。 问答 10 neuronal precursors can be isolated from 神经前体细胞可从哪些部位分离 1) the developing human brain, 发育中的人脑 2) adult human hippocampus, 成人的海马

三维细胞培养技术在再生医学研究中的应用

三维细胞培养技术在再生医学研究中的 应用 摘要:体外细胞培养技术已成为细胞生物学、药学、毒理学、干细胞、系统生物学和新药创制等领域必不可少的工具。传统平板细胞培养方法使细胞单层生长于二维环境,不能产生体内的细胞外基质屏障。且细胞表型也异于原代细胞,而三维细胞培养技术通过模拟机体内细胞生长的生理微环境,利用各种支架或设备来促进细胞生长和组织分化,产生具有合理形态结构和功能性的组织,具有细胞培养直观性和条件可控性的优势,故其在再生医学应用方面有着非常大的发展潜力。本文从干细胞、血管再生、器官移植、以及组织修复等方面综述了近期三维细胞培养技术在再生医学研究中的应用,并介绍了三维细胞培养技术在功能性生物材料方面研究中的作用,有助于对功能性生物材料的表面改性设计研究。 关键词:三维细胞培养技术;再生医学;干细胞;血管再生;器官与组织修复 随着生物医学的发展.疾病的治疗方式已得到了极大改进。但组织器官严重损伤后修复缓慢,或由于创伤过大而致组织器官无法修复,使得再生医学成为当今生物医学的关注焦点和研究热点。体外建立适合细胞和组织生长的生理微环境对再生医学研究至关重要,而传统的单层平面培养的细胞无论是在形态,结构和功能方面都与在体内自然生长的细胞相去甚远.由于无基质支持,细胞仅能贴壁生长。从而失去其原有的形态特征及生长分化能力,而三维细胞培养技术以其能为细胞和组织创造一个均衡获取营养物质、进行气体交换和废物排出的理想生理场所。又易于形成具有合理形态和生理功能的组织器官等特点,广泛应用于再生医学的研究[ ]。目前,三维细胞培养方式发展迅速,包括皮氏培养瓶、灌注小室、搅拌式生物反应器、中空纤维生物反应器、以及微重力旋转生物反应器等培养方式。其中微重力旋转细胞培养技术因其特有的微重力环境,使细胞与细胞、细胞与载体的交联度、沉降力、机械力、压力等发生相互作用、相互制约,模拟了近似生物体内细胞的生长状态和微环境,在再生医学领域应用中备受关注.。除再生医学以外,三维细胞培养技术也常被应用于药物载体、药物毒理、药物筛选、肿瘤治疗等方面的研究 1 三维细胞培养技术在再生医学应用中的优势 三维细胞培养技术使用三维支架或设备细胞提供类似体内生长环境的支架或基质.建立细胞问及细胞与胞外基质问的联系.促进细胞近似于体内的基因表达、基质分泌及细胞功能活动,形成一定的三维结构,既保留了体内细胞微环境的物质结构基础.又实现了细胞培养的直观性及条件可控制性,便于研究人体生理、病理状况,以及预防或疾病的治疗。三维细胞培养技术主要通过体内和体外两种方式。实现其在再生医学中的应用,两者皆采用从机体获得功能细胞。细胞体外扩增培养后,与三维结构的生物材料按一定比例混合。前者是直接植入体内

DNA甲基化和肿瘤的关系

DNA 甲基化与肿瘤 一、DNA甲基化与基因表达 5-甲基胞嘧啶是天然存在的修饰碱基,甲基化的 mCpG ,在DNA 双链中对称出现。哺乳类动物基因组约60 %的表达基因5′端启动子存在未被甲基化的CpG岛,而启动子区域外的CpG岛大都为 mCpG。正常情况下,非活化的X染色体、印迹基因等的启动子区域的CpG岛为甲基化状态,而看家基因的 CpG岛则是去甲基化状态。 DNA 甲基化状态与基因表达呈负相关。其调控作用主要在转录水平抑制基因表达。 DNA甲基化的检测方法 经过亚硫酸盐处理后的DNA中胞嘧啶(C)转变为胸腺嘧啶(T),但是甲基化的中的CpG二核苷酸C 未转变为T,而无甲基化的CpG二核苷酸则发生这种转变,由此可以推断DNA是否发生甲基化。TATAGGGCGAATTGGGCCCTCTAGATGCATGCTCGAGCGG CCGCCAGTGTGATGGATATCTGCAGAATTGCCCTTTAGTAT TGTTTGGTGAAATGGTACGTGTTTATAATTTTAGTTATTTAG GAGGTTGAGGTAGGAGGATTTTTTGAGTTTAGGAGTTTAA GTTTAGTTTGGGTAATATAGTTTAGTGGTTATATTAAAAAA AGTAAAATAGTCGGGCGCGGTGGTTTACGTTTGTAATTTTA GTATTTTGGGAGGTCGAGGCGGGTGGATTACGAGGTTAGG AGGTTGAGATTATTTTAAGGGCAAT

DNA 甲基化抑制基因转录的分子机制 ①DNA 双螺旋结构的大沟为DNA 与多种转录因子的作用部位,mCpG的甲基化胞嘧啶突入大沟,抑制转录因子的结合而抑制转录。②mCpG 激活阻遏蛋白因子,如DMAP1、TSG101、 Mi2等,通过阻遏蛋白因子的作用抑制转录。③DNA甲基化与组蛋白乙酰化的研究发现,组蛋白H3、H4 的赖氨酸去乙酰化后带负电荷,与带正电荷的DNA 结合更紧密,不利于转录过程中的聚合物解聚,从而抑制基因转录。甲基化的CpG 结合蛋白(MeCPs) 与DNA 的mCpG结合,并与组氨酸去乙酰化酶(HDAC) 形成复合物共同抑制转录。 二、DNA甲基化与肿瘤 以往的研究认为癌基因激活、抑癌基因失活主要是基因突变、缺失导致的DNA 序列改变。在肿瘤研究中,检测到许多肿瘤的重要基因并未发生突变、缺失,基因表达的异常主要通过DNA 甲基化实现。癌基因的去甲基化和抑癌基因的甲基化状态,可导致癌基因激活、抑癌基因的失活。癌基因的低甲基化和抑癌基因的高甲基化改变是肿瘤细胞的一个重要特征。 DNA 甲基化状态的改变导致基因结构和功能的异常,与肿瘤发生的关系是近年来研究的热点。 DNA甲基化的异常与基因突变、缺失等基因组异常也有密切的关系

2019甘肃省 中考专题训练语文试卷:阅读理解 附答案.

优质大题 说明文 2 篇 (一)(2019 抚本铁辽葫黑白卷改编)阅读下面的文章,完成1~4 题。(13 分) 用“面粉”修复牙齿 ①俗话说“牙痛不是病,痛起来真要命”,随着生活水平的提高和饮食结构的变化,牙病的发病率不断上升,主要的牙齿疾病就是牙齿缺损。造成牙齿缺损的原因有很多,主要是龋齿,其次为外伤、磨蚀、酸蚀等。修复方法可根据牙体缺损情况和使用材料情况,选用树脂修复、全瓷修复、烤瓷修复等。可以采取的方法也有很多,如拔牙、补牙、种植假牙等方式,但这些方法不仅给患者带来痛苦,还耗时费力、花费不菲。有没有更简便的办法治疗牙病? ②最近,一项获得中国专利银奖的再生医学材料展示出美好的应用前景。所谓再生医学,是指利用生命科学、材料科学、计算机科学和工程学等学科的原理与方法,研究和开发用于替代、修复、改善或再生人体各种组织器官技术,其技

术和产品可用于因疾病、创伤、衰老或遗传因素所造成的组织器官缺损或功能障碍的再生治疗。基于这种研究方向研究出的用于牙齿修复的再生医学材料,会给现在传统的口腔疾病治疗方法,打开一片新的天地。 ③这种再生医学材料外貌朴实,长得像我们平时司空见惯的“面粉”。可这面粉来头不小,可别小看它,它是由纳米级的颗粒组成。研发团队成员仇越秀博士告诉记者,人体的软硬组织其实是三维网状结构,组织受损后如何恢复是一个世界难题。她所带领的团队瞄准这个方向,历经上万次实验,研制成功这种高科技再生医学材料。在显微镜下,这些再生医学材料颗粒表面看起来就像马蜂窝状的孔洞,其内部也布满密密麻麻但大小均匀的孔洞。孔洞虽小,它们的表面积加在一起却非常巨大,100 克材料的孔洞面积相当于 5 个足球场大小。 ④这些细小颗粒的基础材料是硅、钙、磷:硅元素通过植酸改变前驱分子结构,将硅键有序排序,形成和人体组织接近的三维网状细胞支架,诱导细胞的键合、修复、再生,形成和原来一样的组织。这些细小颗粒材料进入牙齿表面缺

有关再生医学学习的感想

有关再生医学学习的感想 再生医学是21世纪生物学和医学科学研究的重要发展方向,并将成为临床转化医学发展的重点,它的概念有广义和狭义之分。广义上讲,再生医学可以认为是一门研究如何促进创伤与组织器官缺损生理性修复以及如何进行组织器官再生与功能重建的新兴学科,可以理解为通过研究机体的正常组织特征与功能、创伤修复与再生机制及干细胞分化机理,寻找有效的生物治疗方法,促进机体自我修复与再生,或构建新的组织与器官以维持、修复、再生或改善损伤组织和器官功能。狭义上讲是指利用生命科学、材料科学、计算机科学和工程学等学科的原理与方法,研究和开发用于替代、修复、改善或再生人体各种组织器官的定义和信息技术,其技术和产品可用于因疾病、创伤、衰老或遗传因素所造成的组织器官缺损或功能障碍的再生治疗。 再生医学的内涵已不断扩大,包括组织工程、细胞和细胞因子治疗、基因治疗、微生态治疗等,国际再生医学基金会(IFRM)已明确把组织工程定为再生医学的分支学科。第一位提出“组织工程学”术语的是美籍华裔科学家冯元桢教授。组织工程学的基本原理是,从机体获取少量活组织的功能细胞,与可降解或吸收的三维支架材料按一定比例混合,植入人体内病损部位,最后形成所需要的组织混器官,以达到创伤修复和功能重建的目的。王正国认为,组织工程的科学意义不仅在于提出了一个新的治疗手段,

更主要的是提出了复制组织、器官的新理念,使再生医学面临重大机遇与挑战。王正国说,一般情况下,组织工程学和再生医学没有严格区分。现在学术界认为,凡是能引导组织再生的各种方法和技术均被列入组织工程范畴内,如干细胞治疗、细胞因子和基因治疗。从外科学的发展历程来看,在先后经历了三个“R”阶段,即“切除(Resection)、诊疗(Repair)和替代(Replacement)”之后,组织工程学的出现,意味着外科学已经进入“再生医学”的新阶段,即第四个“R”。 目前机体损伤和疾病康复过程中受损组织和器官的修复与重建,仍然是生物学和临床医学面临的重大难题。借助于现代科学技术的发展,使受损的组织器官获得完全再生,或在体外复制出所需要的组织或器官进行替代性治疗,已经成为生物学、基础医学和临床医学关注的焦点。据报道,全世界每年约有上千万人遭受各种形式的创伤,有数百万人因在疾病康复过程中重要器官发生纤维化而导致功能丧失,有数十万人迫切希望进行各种器官移植。但令人遗憾的是,一方面,目前的组织器官修复无论是体表还是内脏,仍然停留在瘢痕愈合的解剖修复层面上,离人们所希望的“再生出一个完整的受损器官”差距甚远;另一方面,器官移植作为一种替代治疗方法尽管有其巨大的治疗作用,但它仍然是一种“拆东墙补西墙”的有损伤和有代价的治疗方法,而且由于受到伦理以及机体免疫排斥等方面的限制,很难满足临床救治的需要。而再生医学的出现,就可以解决这一系列的问题。

混合式教学在再生医学研究生教学中的应用研究

混合式教学在再生医学研究生教学中的应用研究 作者:宋方茗 来源:《教育教学论坛》2020年第40期 [摘要] 混合式教学理念作为一种全新的教学模式,随着信息化时代的来临,获得了极大的关注。线上线下教学有机融合的混合式教学既拓展了教学时空,又保证了教师引导下教学中足够量的语言交际活动,有助于提高学生的学习效果,非常适合于高校教学。 [关键词] 混合式教学;研究生教学;再生医学;双主体 [作者简介] 宋方茗(1985—),男,江西兴国人,医学博士,广西医科大学副教授,主要从事骨代谢疾病的药物防治研究。 [中图分类号] G642; ; [文献标识码] A; ; [文章编号] 1674-9324(2020)40-0260-02; ; [收稿日期] 2020-04-29 一、引言 随着信息技术的发展以及教育信息化的不断推进,其对教学模式产生的深刻影响日益凸显。近年来兴起的微课、慕课、翻转课堂、混合式教学等信息化教学范式都是为适应信息化时代发展而进行的有益探索。例如慕课教育就是一项大规模的教育课程,不同于传统的教学方式,慕课形式的教学可以让学生自由选取教育内容进行自主学习,以此来提升学习成绩[1,2]。虽然以上方式很好地改变了传统的高校课堂教学模式,使老师无须再通过讲座式的讲授就能很好地指导学生学习。但是,有学者认为以上方式与传统的授课方式无本质区别,依然以教师为中心,无法顾及学生的个体差异,且由于大多数教师不是技术人员,视频制作的质量难以保障,而低质量的视频不利于知识的传授[3],所以单纯的互联网式教学可能并不完全适用于高校教学。 混合式教学,是为了达到教学目标,将传统教学的优势和数字化、网络化的学习优势结合起来的一种教学模式,最早由美国加州大学洛杉矶分校的两位学者提出。混合式教学能最大限度地优化和提高学生的学习效率。它可以根据教学内容,学习者的需要以及老师自身的条件进行教学设计,既能发挥教师引导的主导作用,又能充分体现学生作为学习主体的主动性,从而实现优势互补,最终达到提高教学效果的目的。 二、混合式教学的方案设计

DNA甲基化实验操作原理及方法-Hxg

DNA 甲基化重亚硫酸氢盐修饰法(DNA METHYLATION BISULFITE MODIFICATION) 实验操作原理及方法 一、实验目的: 通过本实验,可以检测特定DNA序列的甲基化状态。 二、实验原理: DNA 甲基化是指由S-腺苷甲硫氨酸(SAM)提供甲基基团,在DNA 甲基转移酶(DNA methyltransferases,DNMTs)的作用下,将CpG 二核苷酸的胞嘧啶(C)甲基化为5-甲基化胞嘧啶(5-m C)的一种化学反应。DNA 甲基化是调节基因转录表达的一种重要的表观遗传的修饰方式。 DNA 甲基化主要在转录水平抑制基因的表达。DNA 甲基化引起基因转录抑制的机制可能主要有以下3 种:(1)DNA甲基化直接干扰特异性转录因子与各基因启动子中识别位置的结合。(2)序列特异性的甲基化DNA 结合蛋白与启动子区甲基化CpG 岛结合,募集一些蛋白,形成转录抑制复合物,阻止转录因子与启动子区靶序列的结合,从而影响基因的转录。(3)DNA 甲基化通过改变染色质结构,抑制基因表达。 重亚硫酸氢盐修饰法检测DNA甲基化的基本原理是基于DNA变性后用重亚硫酸氢盐处理,可将未甲基化胞嘧啶修饰成尿嘧啶。此反应的步骤是:1、在C-6位点磺化胞嘧啶残基;2、在C-4处水解去氨基来产生尿嘧啶磺酸盐;3、在碱性条件下去硫酸化。在这个过程中,5-甲基胞嘧啶由于甲基化基团干扰了重亚硫酸氢盐进入到C-6位点而保持着未反应的状态。在重亚硫酸氢盐处理后,使用针对每个修饰后DNA链的引物进行PCR反应。在这个PCR产物中,每5-甲基胞嘧啶显示为胞嘧啶,而由未甲基化胞嘧啶转变成的尿嘧啶则在扩增过程中被胸腺嘧啶所取代。 BSP(bisulfate sequencing PCR) :重亚硫酸盐使DNA中未发生甲基化的胞嘧啶脱氨基转变成尿嘧啶,而甲基化的胞嘧啶保持不变,进行PCR扩增。最后,对PCR产物进行测序,并且与未经处理的序列比较,判断是否CpG位点发生甲基化。

中国及中国科学院干细胞与再生医学研究概述_周琪

第28卷 第8期2016年8月V ol. 28, No. 8Aug., 2016 生命科学 Chinese Bulletin of Life Sciences 文章编号:1004-0374(2016)08-0833-06 DOI: 10.13376/j.cbls/2016109 收稿日期:2016-07-01 基金项目:中国科学院“干细胞与再生医学研究”战略性先导科技专项(XDA01020101)*通信作者:E-mail: zhouqi@https://www.360docs.net/doc/d212672952.html, 中国及中国科学院干细胞与再生医学研究概述 周 琪 (中国科学院动物研究所,北京 100101) 摘 要:干细胞与再生医学研究已成为当今生命科学研究领域的前沿和热点,日益表现出巨大的临床应用前景和产业潜力,有望解决人类面临的重大医学难题。近年来,我国干细胞与再生医学研究获得了突飞猛进的发展,取得了多项重大成果,已成为世界干细胞研究领域中的重要力量。概述了我国干细胞与再生医学研究的发展现状,介绍了中国科学院“干细胞与再生医学研究”战略性先导科技专项的实施进展情况,并为我国干细胞研究领域的发展提出了建议。 关键词:干细胞;再生医学;中国科学院战略性先导科技专项 中图分类号:Q813 文献标志码: A An overview of stem cell and regenerative medicine in China and at Chinese Academy of Sciences ZHOU Qi (Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China) Abstract: Stem cell and regenerative medicine represents one of the most important areas that is advancing life sciences. Stem cell research and its clinical application have promised a successful cure of a variety of serious human diseases such as neural degenerative diseases and injuries. Over the past decades, a blossom is appearing in 周琪,中国科学院动物研究所研究员,干细胞与生殖生物学国家重点实验室主任,中国科学院院士。中国科学院干细胞与再生医学战略性科技先导专项首席科学家。主要从事细胞重编程机制和命运调控、干细胞多能性获得与维持等研究工作,并致力于推动再生医学的发展和干细胞的转化应用。国际首次获得体细胞克隆大鼠、诱导多能干细胞来源的小鼠;建立了孤雌胚胎干细胞、单倍体胚胎干细胞等多种新型多能性干细胞系,获得单倍体胚胎干细胞来源的转基因小鼠和大鼠;首次创建了新型的异种杂合二倍体胚胎干细胞;利用经过基因组印记修饰的孤雌单倍体干细胞建立了“同性生殖”的新方法;发现可以判断干细胞多能性水平的分子标识并揭示其调控机制;建立了包括灵长类动物在内的多种人类疾病动物模型;合作在体外获得功能性精子等。推动建立了国际干细胞临床标准和临床级胚胎干细胞库;建立了多株临床级干细胞,开展了细胞治疗及药物筛选等临床前基础研究及安全性评估等工作。现已在Cell 、Nature 、Science 、Nature Biotechnology 、Cell Stem Cell 等多家刊物发表SCI 论文一百余篇。获得国家自然科学奖二等奖、中科院杰出科技成就奖、何梁何利基金科学与技术进步奖等多项奖励。 网络出版时间:2016-08-24 11:37:48 网络出版地址:https://www.360docs.net/doc/d212672952.html,/kcms/detail/31.1600.Q.20160824.1137.020.html

DNA甲基化的总结

DNA甲基化是指在DNA甲基转移酶(DNMTs)的催化下,将甲基基团转移到胞嘧啶碱基上的一种修饰方式。它主要发生在富含双核苷酸CpG岛的区域,在人类基因组中有近5万个CpG岛[5]。正常情况下CpG岛是以非甲基化形式(活跃形式)存在的,DNA甲基化可导致基因表达沉默。DNMTs的活性异常与疾病有密切的关系,例如位于染色体上的DNMT3B基因突变可导致ICF综合征。有报道[6]表明,重度女性侵袭性牙周炎的发生与2条X染色体上TMP1基因去甲基化比例增高有关。DNMT基因的过量表达与精神分裂症和情绪障碍等精神疾病的发生也密切相关。风湿性疾病等自身免疫性疾病特别是系统性红斑狼疮(SLE)与DNA甲基化之间关系已经确定[7],在SLE病人的T细胞发现DNMTs活性降低导致的异常低甲基化。启动子区的CpG岛过度甲基化使抑癌基因沉默,基因组总体甲基化水平降低导致一些在正常情况下受到抑制的基因如癌基因被激活[8],都会导致细胞癌变。 甲基化作用是转录水平上表达调控的基本方式之一。由于宿主细胞基因组DNA中不 同位点的甲基化程度存在某种平衡,并形成一定的空间结构特点。一旦转基因的整合破坏了这种平衡及空间特征,破坏后的结构便成为宿主基因组防御系统识别的信号,使新整合的DNA 序列发生不同程度的甲基化,甲基化基因序列则通过抑制甲基化DNA结合蛋白(MeCP2)的结合而抑制转录的顺利进行Ⅲo。在拟南芥中发现了DNA甲基化可以导致基因沉默汹埘]。在基因沉默过程中,外源或内源性信号引起部分DNA序列中CpG的甲基化,甲基化CpG结合域蛋白2(MeCP2)结合到甲基化的胞嘧啶上聚集HDACs使组蛋白去乙酰化,该蛋白与去乙酰化的组蛋白通过聚集更多的DNA 甲基转移酶来加强沉默信号,从而引起基因沉默H?。 ?。DNA甲基化对染色质结构和基因表达的作用很可能是通过一组蛋白介导的,这些蛋白可能含有共同的高度保守的甲基化的CpG结合结构域(MBD)L45 J。DNA甲基化在基因印记、x染色体失活、某些疾病的发生发展中发挥重要作用。其直接作用机制可能是CpG岛甲基化干扰了一些转录因子(transcription factor,TF)与基因调控区的结合,使甲基从DNA分子大沟中突出,从而阻止转录 因子与基因相互作用。间接机制可能是由于甲基化DNA与甲基化DNA结合蛋白结合或DNA甲基化改变染色质结构,这2种情况都间接阻碍TF与DNA结合从而抑制转录m1。DNA甲基化一般是通过转录抑制机制来调节特定基因的,具体的机制可能有:5一MeC伸入DNA双螺旋大沟,影响转录因子的结合;序列特异的甲基化DNA结合蛋白(MDBP一1,MDBP一2)与甲基化的启动子序列特异性结合而抑制转录因子与靶序列的结合;甲基化CpG结合蛋白(MeCPl,MeCP2)与甲基化的二核苷酸CpG结合,发挥类似转录抑制蛋白的作用H“。一般DNA甲基化会通过干扰转录因子与识别位点结合和招募组蛋白乙酰转移酶(histon acefltransfeI"SeS,HATs)、组蛋白去乙酰化酶(histone deacetylases,HDACs)形成辅助阻遏复合体,使基因沉默而抑制其表达,而去甲基化则使沉默的基因重新激活Ⅲ卜 DNA甲基化尤其是基因启动子区CpG岛的高甲基化,会导致基因表达的下降或沉默。甲基化抑制基因的表达目前认为要有两个方面,一方面甲基化引起的基因结构改变可直接阻碍一些转录因子与其结合位的结合;另一方面可能与一些甲基化

再生医学

再生医学 再生医学的概念与范畴 有位专家认为,再生医学是通过研究机体的正常组织特征与功能、创伤修复与再生机制及干细胞分化机理,寻找有效的生物治疗方法,促进机体自我修复与再生,或构建新的组织与器官,以改善或恢复损伤组织和器官的功能的科学。他提出移植干细胞可优势分布于损伤局部,但数量有限(<3%),将基因克隆到腺病毒表达载体能加强定向,转染干细胞使之增加基因表达,增强了促愈合作用。同时还发现了3个来源于大鼠、5个来源于人的真皮干细胞克隆、体外长期连续培养过程中全部发生恶性转化。不同干细胞克隆转化时间从5 0代至80代不等,建议在临床实际应用中不要用培养很多代的干细胞。 有的专家指出,再生医学是指利用生物学及工程学的理论方法创造丢失或功能损害的组织和器官,使其具备正常组织和器官的机构和功能。卢世璧院士还介绍了软骨组织工程方面的进展。 还有专家认为,再生医学的概念应有广义和狭义之分。广义上讲,再生医学可以认为是一门研究如何促进创伤与组织器官缺损生理性修复以及如何进行组织器官再生与功能重建的新兴学科,可以理解为通过研究机体的正常组织特征与功能、创伤修复与再生机制及干细胞分化机理,寻找有效的生物治疗方法,促进机体自我修复与再生,或构建新的组织与器官以维持、修复、再生或改善损伤组织和器官功能。狭义上讲是指利用生命科学、材料科学、计算机科学和工程学等学科的原理与方法,研究和开发用于替代、修复、改善或再生人体各种组织器官的定义和信息技术,其技术和产品可用于因疾病、创伤、衰老或遗传因素所造成的组织器官缺损或功能障碍的再生治疗。 英国《再生医学》杂志1月刊登了一份由加拿大麦克劳克林—罗特曼全球卫生中心完成的关于中国再生医学研究现状的报告。该报告认为,进入21世纪以来,中国再生医学领域的研究迅速发展,在国际学术期刊上发表的相关论文数量位居世界第五,一些研究成果处于世界领先地位。 所谓再生医学,是指利用生物学及工程学的理论方法,促进机体自我修复与再生,或构建新的组织与器官,以修复、再生和替代受损的组织和器官的医学技术。这一技术领域涵盖了干细胞技术、组织工程和基因工程等多项现代生物工程技术,力图从各个层面寻求组织和器官再生修复和功能重建的可能性。 “再生医学”这一名词的提出还不到20年时间。这是在生命科学、材料科学、工程学、计算机技术等多学科的飞速发展和日益交融的基础上发展起来的一门新兴学科,是人类医学发展的一次飞跃。再生医学的发展同时也带动了上述各学科向应用领域的发展以及交叉合作。 干细胞具有再生各种组织器官的潜在功能,干细胞技术因而成为再生医学的基础。干细胞是一群尚未完全分化的细胞,它就像是万能细胞,在特定条件下可以向各种组织细胞分化,在生命体的胚胎发育、组织更新和修复过程中扮演着关键的角色。1968年,美国明尼苏达大学医学中心首次采用骨髓造血干细胞移植,成功治疗了一例先天性联合免疫缺陷病。干细胞移植技术现已用于多种疾病的临床治疗和相关基础研究,几乎涉及人体所有的组织和器官。 组织工程是指采用各种种子细胞和生物材料在体外进行组织构建,再造各种人工组织或器官,它涉及生命科学、材料学和工程学等多个领域。目前,多种生物材料已经成功应用于人工骨和关节、人工晶体、医用导管、人工心脏瓣膜以及血管支架,人造肺、心脏、肝、肾和角膜等各种人工器官也在大力研究开发。 基因工程技术是再生医学中必不可少的手段。对干细胞甚至已经分化的体细胞进行基因重新编程,可以用于治疗各种基因缺陷造成的遗传性疾病或恶性肿瘤。人工器官中的种子细胞往往也需要通过基因重新构建向特定方向分化。结合基因打靶技术以及干细胞克隆技术可以改变异种组织和器官的表型,使得异种移植有望成为可能。 再生医学的核心和终极目标是修复或再生各种组织和器官,解决因疾病、创伤、衰老或遗传因素造成的组织器官缺损和功能障碍。可以想象,如果将来人类有能力对任何细胞都进行编程和干细胞诱导分化,生产制造出任何一种人工器官,那么,绝大多数疾病就能治愈,人类可实现延长寿命之梦。

DNA甲基化研究综述

DNA甲基化研究综述 The summarize of the research on DNA methylation 郭文媛 (生物技术 1353227) 摘要:DNA 甲基化是真核生物表观遗传学中一种重要的基因表达调控方式,是一种酶催化的修饰过程。其是在DNA 甲基转移酶催化下,将甲基基团转移到胞嘧啶的5 位碳原子上,使之转变成5-甲基胞嘧啶的化学修饰过程。在人类和其他哺乳动物中,此修饰过程通常发生在5'-CpG-'二核苷酸的胞嘧啶上。大量相关研究表明,DNA 甲基化与人类疾病密切相关。 Abstract:DNA methylation is an important epigenetic regulation of gene expression in eukaryotes.It is a kind of enzyme catalysis modification process: refers to the chemical modification process of DNA methyltransferase catalysis,the transfer of methyl groups onto cytosine carbon atom 5,making them into 5-methyl cytosine.In humans and other mammals,the modification process usually occurs in 5'CpG -'dinucleotide cytosine.A large number of relevant studies have shown that DNA methylation is closely related to human diseases. 关键词: DNA 甲基化; 甲基转移酶;表观遗传学; CpG 岛; Dnmt1; Dnmt3a; Dnmt3b; 基因沉默; DNA甲基化结合蛋白; 人类表观基因组计划 Key words:DNA methylation; Methyltransferase; Epigenetics; CpG island; Dnmt1; Dnmt3a; Dnmt3b ; Gene Silencing ;MBD; human epigenomeproject 表观遗传学研究的是不改变DNA 的一级结构而改变表型的一种基因表达调控机制,主要包括DNA 甲基化、组蛋白修饰、染色体重构、RNA 干扰等。 DNA甲基化是重要的表观遗传修饰之一,在大多数真核生物中广泛存在。DNA 甲基化水平受到环境、疾病、年龄和性别等因素的影响,处于动态的变化过程中。不同的细胞、组织或个体之间,甚至同一细胞或个体的不同发育时期,其DNA 甲基化状态和程度都可能存有差异。 2003 年10 月,人类表观基因组计划委员会正式宣布投资和启动人类表观基因组计划( human epigenomeproject,HEP) 。HEP 的主要目标是研究人类所有基因在主要组织以及200 多种细胞中正常和疾病状态下的甲基化模式,并在基因组水平绘制不同组织正常和疾病状态时的甲基化变异位点图谱[4],本文结合2013年至今DNA甲基化研究文献,综述了DNA甲基化分布特点和与疾病关系等方面的研究情况。 1.DNA甲基化 1.1DNA甲基化与DNA去甲基化 DNA 甲基化是表观遗传( Epigenetic) 的一种重要表现方式,指在DNA 甲基转移酶( DNA methyltransferase,DMT) 的催化下,以s -腺苷甲硫氨酸( SAM) 为甲基供体,将甲基转移到特定碱基上的过程。 DNA 去甲基化也被称为DNA 甲基化丢失(lossof DNA methylation), 即甲基基团从胞嘧 啶上消失的过程。包含主动去甲基化与被动去甲基化2 种模式。 1.2DNA甲基化分布 DNA 甲基化在生物体内的分布并不是随机的,而是呈现一定的规律性。

相关文档
最新文档