浅析大跨度建筑钢结构设计

浅析大跨度建筑钢结构设计

发表时间:2017-01-18T09:41:33.757Z 来源:《基层建设》2016年31期作者:郝茂山1 孙霞2 [导读] 摘要:钢结构强度高而质量轻且结构形式灵活,用于大跨度结构具有较大的优势。

1、山东西王建工有限公司山东省 256209;

2、身份证号:37030419830403xxxx

摘要:钢结构强度高而质量轻且结构形式灵活,用于大跨度结构具有较大的优势,因此在建筑结构中应用广泛,例如体育馆、候车室、飞机库、航站楼等大跨度结构都用到了钢结构。本文分析了大跨度钢结构的分类及其应用,同时也探讨了钢结构设计的方法和设计的重点。

关键词:大跨度;钢结构;设计

1大跨度房屋钢结构分类

1.1 刚性大跨度房屋钢结构

刚性大跨度房屋钢结构的构成如下:由大量钢杆件组成,如:空间桁架、网架等,根据结构单元的形式不同可以分为以下两种类型,一种称为空间网格结构,另一种称为空间结构。

1.2 柔性大跨度房屋钢结构

柔性大跨度结构可由其受力体系的不同分为以下三类:竖直平面结构、水平层面结构及空间结构。在柔性钢结构中,其受力较均匀,而且结构受力主要集中在竖直、水平和空间对称位置上。如:悬索结构、膜结构等。

2 大跨度钢结构的应用

2.1 大跨度钢结构在住宅建筑中的应用

在建筑设计中,钢结构则具有质量轻,强度高,制造简单,环境污染小,噪声低的优点。它更容易实现住宅的标准化制作、工业化生产,再配置环保节能的墙体材料,就能真正实现住宅的抗震性、健康性和环保性,从而符合我国的可持续发展要求,以及住宅产业化要求。在我国,目前的钢结构住宅尚处于启动时期,还不具备十分成熟的产品及配套技术,所以钢结构中的很多问题还有待研究解决。

2.2 大跨度钢结构在公共建筑中的应用

我国第一座有影响的大跨度圆柱面网壳钢结构是1956年建造的天津体育馆,52m×68m,矢高8.7m。第一座大跨度网架钢结构是1964年上海师范学院球类房的钢板节点网架,14.8m×23.3m。经过几十年的发展,大跨度钢结构已经成功地应用于各种大型体育场馆、文化建筑、候车厅等重要建筑中。随着2008年北京年奥运会、2010年上海世界博览会等国家重大社会经济活动的开展,我国建设了一批高标准、高规格的体育场馆、会议展览馆等社会公共建筑,这些大跨度建筑规模大、结构新,在提供实用功能的同时往往成为一个城市或国家的标志性建筑。

3 大跨度钢结构的设计方法

3.1 计算模型的选取

由于钢结构的计算模型具有较高的精确度,所以在设计中不能对计算模型随意地进行简化,要尽量建立与实际情况相符合的整体的分析模型。在设计中还要充分发挥次构件的作用,秉承安全性、经济性的设计宗旨,有效节约建筑材料,降低工程造价。另外,要想获得最佳设计结果,还就要树立优化设计的意识。

3.2 节点构造设计

由于钢结构构件之间的构造和连接复杂多变,所以设计人员要节点构造问题引起充分的重视。节点构造形式必须要根据构件截面形式、构件连接方法、建筑要求以及受力情况来确定,在满足相关条件后,还必须要进行设计计算。

3.3 稳定设计

与钢筋混凝土结构所不同的是,在钢结构设计的全过程中都必须注重稳定设计。稳定设计考虑的内容主要有:整体结构、构件整体、构件局部的稳定设计。

3.4 刚度控制

多数钢结构的构件截面是由整体刚度条件所决定的,而非稳定条件和强度条件所决定的,在薄壁构件组成的大跨度钢结构中体现尤为突出。因此,在结构设计过程中,设计者必须要重视结构整体分析,严格控制结构的整体刚度,以求获得最佳设计效果。

3.5 验算疲劳强度

在设计需要长期地、频繁地承受反复荷载作用的结构(如吊车梁)时,设计者必须要对结构疲劳问题加以考虑,在连续的反复荷载作用下,会使得钢材的微观裂纹不断扩大直到最终断裂,造成钢材的疲劳断裂。为了防止疲劳断裂的发生,就需要在设计过程中验算可能发生疲劳断裂的连接处及构件的疲劳强度。

3.6 结构布置

结构的布置过程中,必须确保屋盖结构分布的均衡和其下部支承结构刚度和质量的均衡分布,从而保证结构传力的明确性及其整体性。地震作用力要由屋盖通过支座向下进行传递,屋盖、支承和下部结构要均匀对称地布置,使用空间传力体系,避免形成突变或局部削弱的薄弱部位,从而保证屋盖的整体性,对屋面系统自重进行严格控制,宜使用轻型的屋面系统。

3.7 设置防震缝

为了增强建筑抗震效果,在大跨度钢结构中设置防震缝是非常必要而有效的。规范依据框架-抗震墙结构和下部支承结构的最小宽度,综合确定了防震缝的宽度不得<15mm。而在实际的建筑中,该规范中的规定还可能不足,因此建议设计者按照设防烈度下,两侧的独立结构在交界线上的相对位移的最大值来进行确定。规则的结构,其防震缝宽度可近似估计为,多遇地震情况下的最大的相对变形值的三倍。

4 大跨度房屋钢结构的设计重点

4.1精准的计算模型,可靠的结构设计

钢结构所使用的材料是非常均匀的,是一种较为理想化的统一的弹性体,与当下所使用的计算方式及理念完全相吻合。除此之外,钢结构构件连接模型跟现实状况较为一致,在进行模型计算的时候所使用到的公式比较少,计算起来较为简单。为此,钢结构计算模型在现实的工作当中对结构设计有着精准性、可靠性的显著优势。

浅谈建筑钢结构设计现状及存在的问题 王爽

浅谈建筑钢结构设计现状及存在的问题王爽 发表时间:2020-01-13T14:10:21.833Z 来源:《基层建设》2019年第28期作者:王爽 [导读] 摘要:随着社会经济的发展,我国的建筑工程建设有了很大进展,在建筑工程中,钢结构的应用十分广泛。 四川俊成工程项目管理咨询有限公司四川省攀枝花市 617000 摘要:随着社会经济的发展,我国的建筑工程建设有了很大进展,在建筑工程中,钢结构的应用十分广泛。建筑钢结构逐渐代替了传统的砖混结构,为建筑行业的发展提供了支持。但是,在建筑钢结构应用过程中,仍存在一系列问题,影响着建筑钢结构的整体质量。基于此,文章介绍了建筑钢结构设计的相关内容,研究了建筑钢结构设计现状及存在的问题,并对建筑钢结构设计的发展进行了分析。 关键词:建筑工程;钢结构设计;现状 引言 在建筑钢结构的设计工作中,应正确设定钢材的等级,合理开展楼面系统与地基系统中的钢结构设计工作,确保在正确完成各方面设计任务的基础下,保证整体区域的设计工作质量与强度,并延长使用寿命。 1建筑钢结构安全施工技术概念 工程结构会涉及比较多的模式,其中应用比较普遍的一种结构技术就是钢结构模式,由于钢结构在使用过程中会呈现出复杂性特点,因此需要通过焊接工作,使其形成较稳固的建筑结构。相比于传统建筑,为保证工程质量,建筑结构一般是由混凝土和砖瓦等结构组成,其整体造价水平不高,且建筑性能也不是很高,甚至还会对施工环境带来较大影响。但钢结构的应用,就能对施工建设过程中的问题进行较好的解决,存在较大的应用空间,需要注意的是,由于钢结构自身具有的负载水平有限,所以施工时会存在较多限制。较多施工企业在钢结构工程中选择焊接方式,是由于焊接技术成本不高,且操作简单,使用材料较常见等,同时,焊接截面具有较高的工作效益。钢结构焊接技术主要分为电阻焊模式及电弧焊模式2种。电弧焊技术主要包含手动电弧模式及气体保护焊模式,相比于电阻焊技术,电弧焊技术被广泛应用于钢结构工程中。同时,电阻焊技术则在薄壁式钢焊接施工中得到了较高的应用。 2现阶段钢结构工程存在的质量问题 由于受到客观建筑施工条件带来的影响,常会出现钢结构工程质量问题,对其产生的影响因素相对来说比较多,因此需要结合问题进行相应的分析。在分析钢结构质量问题的过程中,应该从多个方面进行,由于焊接裂缝的出现会和焊接金属材质存在着比较密切的联系,与此同时还和焊接内部的相关结构以及母材状况等存在一定联系,如果选择的焊接材料出现问题,就会影响建筑工程在日后使用的质量,甚至质量不过关。钢结构工程如果不能科学合理的设计,就会阻碍工程整体质量,如焊接接缝出现进气现象,较多的氢气进入会在一定程度上致使裂缝延迟,再加上钢构件长时间都承载较重的压力,就会致使构件出现弯曲以及变形等现象,不能加强工程实际质量。 3建筑钢结构设计工作的要点 3.1明确具体的钢材等级 在选用材料的工作中,应正确开展屈服与抗拉强度的分析工作,了解伸长率,开展各种弯曲试验活动,调查硫元素与磷元素的含量,确保每项数据都能符合钢材的设计与应用标准。如果操作流程中有焊接环节,那么就要进行含碳量的分析调查,将其控制在规定范围之内。在地震带区域的钢结构方面,不仅要具备以上几点性能,还需确保冲击韧性符合要求,根据具体的抗震设计标准与规范等,明确钢材的物理指标与力学指标,提升整体设计工作水平。 3.2钢结构的抗火设计 钢主要是由非燃烧材料制成,在高温下热膨胀系数会不断增加,因而钢的热导率和电阻比较强,会引发火灾蔓延现象,部分钢在600℃的高温中会失去自身的强度,且在火灾中会很脆弱,在高层建筑中还会引发火灾,不易控制。因此,设计人员应该做好高层建筑耐火钢的设计工作。现阶段,我国高层建筑钢结构耐火设计相对落后,整体抗火设计应在组件级别和建筑防火设计的基础上确定。 3.3注重细部设计 为了进一步确保建筑钢结构设计能够最大程度满足其建设要求,相关工作人员在分析钢结构设计时,需要确保节点设计具有更高的科学性,因此,在进行细节部分设计时,必须对其进行氛围精确的计算,确保其完善。在我国目前开展建筑工程施工过程中,普遍选择使用杆系结构,该结构通常对钢材细部节点和内部结构都具有较为复杂的要求,在不同构件之间所具有的约束作用普遍较小,相关工作人员可以选择在施工现场直接进行刚才拼装,只有确保在建筑工程中进行钢结构设计时,严谨考虑细节部分并对其进行科学设计,才能进一步确保钢结构具有更高的稳定性,安和安全性,对其应用价值进行更高程度的保障。 3.4做好构件以及节点设计 为保证钢结构的设计效益得到提升,必须要对其软件界面的开展做出相应的优化,缩短钢结构的应用成本。对于一些复杂的钢结构而言,设计人员需要检测好每一个构件界面,特别是在节点模块的设计工作,这也是钢结构设计中的重点。在此过程中,需要做好等强设计以及实际受力情况的分析,设计时也包括了焊接及梁柱体等。在节点设计的同时,需要做好相处焊接施工的检查,做好螺栓安装工作,保证安装程序顺利的进行。 3.5钢结构设计的技术标准和规范 在钢结构设计过程中,设计人员需要引进先进的技术,加强对技术标准和规范的掌握,深入贯彻并理解这些标准和规范,形成遵循严格标准和规范的习惯,提升钢结构的整体质量。现阶段,在钢结构计算和绘图过程中,设计人员往往会借助电脑进行,不注重自身实践能力的提升。因此,设计人员需要做好钢结构设计中的各项工作,还要重视钢材、连接材料、焊接材料、应用标准等,合理地选择材料,以满足相关规范和质量要求。 结语 综上所述,在建筑钢结构设计工作中应形成与时俱进的观念意识,根据时代发展的特点与需求等,编制完善的设计方案,一旦发现其中有问题,就要按照具体的要求变更与完善设计方案。所在,要因地制宜开展设计工作,合理选择先进的原材料,确保材料的高质量使用,将不同设计方式的优势与作用发挥出来,保证相关设计工作质量与水平,为后续的进展夯实基础。 参考文献 [1]王聪,孙兰香,许颖颖.建筑工程项目中钢结构设计中稳定性分析[J].居舍,2017(36):78.

浅谈某大跨度学术报告厅的结构设计

浅谈某大跨度学术报告厅的结构设计 发表时间:2019-08-30T16:20:58.337Z 来源:《基层建设》2019年第16期作者:解辉 [导读] 摘要:本文以某学术报告厅为例。 中轻建设(安徽)设计工程有限公司合肥 230041 摘要:本文以某学术报告厅为例。针对该工程中存在的大跨度结构,从结构受力、正常使用状态等进行分析与比较,选择最优方案进行结构设计。 关键词:结构分析;大跨度结构 Abstract:This paper takes an academic lecture hall as an example. In view of the large-span structure existing in the project, this paper makes analysis and comparison from the structural stress and normal service state, and chooses the optimal scheme for structural design. Keywords:Structural arrangement; Long-span structure 0 引言 近年来,随着我国经济的不断发展进步,人们对建筑使用功能的不断提高,大跨度建筑被广泛的应用到不同类型的建筑场所中。大跨度建筑不管是在设计阶段还是在实际施工中难度都较大,本文主要是通过某一大跨度工程为实例,对其从结构方案、结构概念、结构设计与分析中应注意的问题进行了分析和阐述。 1 工程概况 某大跨度学术报告厅,建设地点位于蚌埠市,为公共建筑,建筑主要功能为会议、办公。采用框架结构,地下一层为地下车库,地上两层为办公及报告厅,建筑总高度20.1m。 2 结构概念 本建筑抗震设防类别为乙类,地区设防烈度为 7 度(0.10g),地震设计分组为一组,II 类场地,特征周期 0.35s【1】。基本风压 0.35KN/m⒉,地面粗糙度B类【2】。用钢筋混凝土框架结构,本工程存在多处的大跨度结构,重点以平面图中部大跨度结构为例,柱网8.4m×21m,详见典型结构平面图如图一 图一典型结构平面图 2.1抗震等级 该房屋属于重点设防类(乙类),由《建筑工程抗震设防分类标准(GB50223-2008)》3.0.3条第二款重点设防类(乙类)建筑应按本地设防烈度(7度)确定地震作用(地震作用计算用7度确定地震加速度等),抗震措施(包括内力调整措施和抗震构造措施)应按高于本地区设防烈度一度(8度)确定。故抗震等级及抗震构造措施均为二级。但大跨梁及与大跨梁相关的框架柱竖向结构构件抗震等级为一级。 2.2 结构选型 根据建筑抗震设计规范GB50011-2010(2016版) 3.5.2 结构体系应符合下列各项要求: 1 应具有明确的计算简图和合理的地震作用传递途径。2 应避免因部分结构或构件破坏而导致整个结构丧失抗震能力或对重力荷载的承载能力。3 应具备必要的抗震承载力,良好的变形能力和消耗地震能量的能力。4 对可能出现的薄弱部位,应采取措施提高其抗震能力【1】。对于大跨度结构部分若选用混凝土框架结构,梁截面过小,往往带来配筋超筋,挠度裂缝难以满足要求。但当梁截面偏大时,由于自重过大,大跨度结构往往带来弯矩急剧增加。

对建筑钢结构设计及安装的探讨

对建筑钢结构设计及安装的探讨 摘要:由于钢结构具有施工工期短、结构自重小、构件可循环利用等优点,近年来钢结构在我国的不同建筑功能、不同建筑高度以及不同地震烈度和场地类型的建筑中均获得了快速的发展。本文对建筑钢结构的设计和安装进行了浅要的探究和讨论。 关键词: 钢结构;设计;安装 一、引言 由于钢筋混凝土结构自重大,并且柱子所占的建筑面积比率较大;而同时,随着高强度钢材的横空出世已经钢结构理论研究的不断完善,钢结构已经越来越广泛地应用到了建筑结构当中。由于钢结构的构件可以进行工厂化批量生产,并且施工简单快捷,有利于缩短施工工期;同时钢结构在自重方面与钢筋混凝土结构相比,可以减轻建筑结构自重的30%;另外钢结构体系时一种环保型的绿色建筑体系,因为钢材具有极高的循环利用价值,而且不需要进行制模施工。综合上述特点,近年来钢结构在我国的不同建筑功能、不同建筑高度以及不同地震烈度和场地类型的建筑中均获得了快速的发展。 二、建筑钢结构的设计 1、钢结构的构件设计 建筑钢结构的设计首先是构件材料的选择,通常选用的是Q235或者Q345为钢构件材料,并且主结构一般选用单一的钢种以便于整个工程的管理,另外从经济方面来考虑,适当地选择不同强度的钢材作为组合截面也是很有效的。一般而言,当考虑强度来起控制作用时,应选择Q345钢;而考虑稳定来起控制作用时,则选择Q235钢。在钢构件的设计中,应注意采用弹塑性的方法来进行截面的验算,这和结构的内力计算中的弹性方法并不相同。 2、钢结构的节点设计 钢结构连接节点的设计是其设计中的一项重要内容,在钢结构的分析之前,就要对节点的形式进行充分的思考,以避免最终设计出的节点和结构的分析模型中采用的形式不一致的现象。根据节点传力特性的不同,共分为刚接、半刚接和铰接,通常选用刚接或者铰接。当节点采用焊接时,应对于节点焊缝的尺寸和形式进行符合规范要求的设计,其焊条的选用应当和被连接的材料性质相适应,具

浅析高层建筑结构设计的中震设计概念

浅析高层建筑结构设计的中震设计概念 发表时间:2016-06-27T14:51:54.553Z 来源:《基层建设》2016年5期作者:隆凡梅 [导读] 本文主要阐述了中中震设计的原理、设计方法及软件操作,并提出一些个人见解以供参考。 摘要:对于普通建筑物的结构抗震设计,目前我国是以小震为设计基础,中震和大震则是通过地震力的调整系数和各种抗震构造措施来保证的。但是对于较重要的、超高的、超限的建筑物则需要进行中震和大震的抗震计算。本文主要阐述了中中震设计的原理、设计方法及软件操作,并提出一些个人见解以供参考。 关键词:中震设计概念;地震影响系数;荷载 《建筑抗震设计规范》(GB50011-2001 2008年版)(下简称《抗规》)中对中震设计仅在总则中提到“小震不坏、中震可修、大震不倒”的抗震设防目标,但没有给出中震设计的设计要求和判断标准。 首先我们了解一下现行《抗规》存在几个问题: 1规范未对结构存在的薄弱构件进行分析并作出专门的设计规定,仅对框架类剪切型结构适用的薄弱层作了一些规定; 2在中震作用下,规范仅提出“中震可修”的概念设计要求,没有具体的抗震设计方法; 3“中震可修”的技术经济问题:可修的标准决定工程????造价、破坏损失、震后修复费用。 随着时代的进步,现在的建筑物体型复杂,结构新颖,超高超限越来越多,因此要求对结构进行中震的设计也越来越多。 2 中震设计 2.1 为何要进行中震设计呢? 《抗规》条文说明1.0.1条指出,对大多数结构,可只进行第一阶段设计(即小震下的弹性计算),而通过概念设计和抗震构造措施来实现“中震可修和大震不倒”的设计要求,但前提是建筑物的体型常规、合理,经验上一般能满足大中震的抗震要求。反之对于一些体型很不好的甚至超限的建筑物,在大震下的结构反应和小震完全不同,不进行相应的中震和大震计算是没法保证结构安全的。 为达到各阶段抗震要求,须对于上述体型异常、刚度变化大、超高超限等类型建筑物进行中震抗震设计,其余类型建筑物建议可按中震抗震进行验算。 2.2 中震设计的基本概念 抗震设计要达到的目标是在不同频数和强度的地震时,要求建筑物具有不同的抵抗能力。中震设计就是为了使建筑物满足该地区的基本设防烈度,即能够抵抗50年限期内可能遭遇超越概率为10%的地震烈度。 中震设计和大震设计都可称为性能设计。基于性能的抗震设计是建筑结构抗震设计的一个新的重要发展,它的特点是使抗震设计从宏观性、规范指定的目标向具体量化的多重目标过渡,业主(设计者)可选择所需的性能目标,而不仅仅是按现行规范通过分项系数、内力调整系数、抗震构造措施等粗略、定性的手段来满足中震和大震的设防要求。针对本工程的结构特点,设定本结构的抗震性能目标。对超限结构而言,利用这些指标能更合理地判断整体结构在中震、大震作用下的性能表现,给超限设计提供可靠的判断依据。 2.3 中震设计的分类 中震设计就是结构在地震影响系数按小震的2.875倍(αmax=0.23)取值下进行验算。目前工程界对于结构的中震设计有两种方法,第一种按照中震弹性设计,第二种是按照中震不屈服设计。 首先明确一点,中震弹性和中震不屈服是两个完全不同的概念,两者所采用的设计方法与设防目的均不相同。中震弹性设计,设计中取消《抗规》要求的各项地震组合内力调整系数,保留材料、荷载等分项系数,对应地保留了结构的安全度和可靠度,结构仍属于弹性阶段,属正常设计。中震不屈服设计,设计中除了地震内力不作调整,同时也取消了材料、荷载等分项系数,对应地不考虑结构的安全度和可靠度,结构已经处于弹塑性阶段,属承载力极限状态设计,是一种基于性能的设计方法。由此可见,中震弹性设计接近于平常的小震弹性设计,而中震不屈服设计则与大震设计同属于基于性能的设计。 3 基本方法及应用 根据中震设计的分类,以下分别阐述中震弹性及中震不屈服的具体设计方法,介绍如何在satwe、etabs、midas等软件中实现中震设计。 3.1 中震不屈服设计 3.3.1 不同抗震烈度下的各级屈服控制 若场地安评报告提供实际的地震影响系数,则应取用所提供的多遇地震、设防烈度地震下相应的地震影响系数,屈服判别地震作用1、2 的地震影响系数可相应插值求得。 3.3.2 SAWTE计算:地震信息中抗震等级均为四级;αmax按表3取值;总信息中风荷载不参加计算;勾选地震信息中的按中震(或大震)不屈服做结构设计选项;其它设计参数的定义均同小震设计。 3.3.3 MIDAS/Gen计算:主菜单→设计→钢筋混凝土构件设计参数→定义抗震等级:四级;主菜单→荷载→反应谱分析数据→反应谱函数:定义中震反应谱,在相应的小震反应谱基础上输入放大系数β即可,β值按表3计算所得;总信息中风荷载不参加计算;主菜单→结果→荷载组合:将各项荷载组合中的地震作用分项系数取为1.0;主菜单→设计→钢筋混凝土构件设计参数→材料分项系数:将材料分项系数取为1.0;其它同小震。 3.3.4 ETABS计算:选项→首选项→混凝土框架设计→定义抗震设计等级:四级;定义→反应谱函数→Add Chinese 2002 Spectrum→定义中震反应谱,地震影响系数最大值αmax取值,其余参数按《抗规》;静荷载工况中不定义风荷载作用;定义→荷载组合→各项荷载比例系数均取为荷载分项系数1.0x荷载组合系数φ;定义→材料属性→填写各材料的强度标准值其它同小震。 4 工程算例 4.1 示范算例 4.1.1 基本参数:二十二层框支剪力墙结构,三层楼面转换,无地下室,首、二层4.5米,标准层3.5米,总高79m。结构平面布置如图一所示。结构高宽比3.76,长宽比1.22;抗震参数,7 度,第一组,0.10g;场地II类;风荷载100年一遇为0.9kN/㎡。

钢结构建筑的分类

常用钢结构建筑,有一下的一些类型: (1)大跨结构 结构跨度越大,自重在荷载中所占的比例就越大,减轻结构的自重会带来明显的经济效益。钢材强度高结构重量轻的优势正好适合于大跨结构,因此钢结构在大跨空间结构和大跨桥梁结构中得到了广泛的应用。所采用的结构形式有空间桁架、网架、网壳、悬索(包括斜拉体系)、张弦梁、实腹或格构式拱架和框架等。 (2)工业厂房 吊车起重量较大或者其工作较繁重的车间的主要承重骨架多采用钢结构。另外,有强烈辐射热的车间,也经常采用钢结构。结构形式多为由钢屋架和阶形柱组成的门式刚架或排架,也有采用网架做屋盖的结构形式。 近年来,随着压型钢板等轻型屋面材料的采用,轻钢结构工业厂房得到了迅速的发展。其结构形式主要为实腹式变截面门式刚架。 (3)受动力荷载影响的结构 由于钢材具有良好的韧性,设有较大锻锤或产生动力作用的其他设备的厂房,即使屋架跨度不大,也往往由钢制成。对于抗震能力要求高的结构,采用钢结构也是比较适宜的。 (4)多层和高层建筑 由于钢结构的综合效益指标优良,近年来在多、高层民用建筑中也得到了广泛的应用。其结构形式主要有多层框架、框架-支撑结构、框筒、悬挂、巨型框架等。 (5)高耸结构 高耸结构包括塔架和桅杆结构,如高压输电线路的塔架、广播、通信和电视发射用的塔架和桅杆、火箭(卫星)发射塔架等。

(6)可拆卸的结构 钢结构不仅重量轻,还可以用螺栓或其他便于拆装的手段来连接,因此非常适用于需要搬迁的结构,如建筑工地、油田和需野外作业的生产和生活用房的骨架等。钢筋混凝土结构施工用的模板和支架,以及建筑施工用的脚手架等也大量采用钢材制作。 (7)容器和其他构筑物 冶金、石油、化工企业中大量采用钢板做成的容器结构,包括油罐、煤气罐、高炉、热风炉等。此外,经常使用的还有皮带通廊栈桥、管道支架、锅炉支架等其他钢构筑物,海上采油平台也大都采用钢结构。 (8)轻型钢结构 钢结构重量轻不仅对大跨结构有利,对屋面活荷载特别轻的小跨结构也有优越性。因为当屋面活荷载特别轻时,小跨结构的自重也成为一个重要因素。冷弯薄壁型钢屋架在一定条件下的用钢量可比钢筋混凝土屋架的用钢量还少。轻钢结构的结构形式有实腹变截面门式刚架、冷弯薄壁型钢结构(包括金属拱形波纹屋盖)以及钢管结构等。 (9)钢和混凝土的组合结构 钢构件和板件受压时必须满足稳定性要求,往往不能充分发挥它的强度高的作用,而混凝土则最宜于受压不适于受拉,将钢材和混凝土并用,使两种材料都充分发挥它的长处,是一种很合理的结构。近年来这种结构在我国获得了长足的发展,广泛应用于高层建筑(如深圳的赛格广场)、大跨桥梁、工业厂房和地铁站台柱等。主要构件形式有钢与混凝土组合梁和钢管混凝土柱等。

浅谈建筑工程钢结构设计稳定性原则和设计要点

浅谈建筑工程钢结构设计稳定性原则和设计要点 摘要:新时代,我国工业迅猛发展,需要越来越多的厂房,给建筑行业带来了 挑战。钢结构受到当代人们的广泛认可,被应用于各种类型的建筑物建设过程中,相比于传统砖石、砼结构,其具有力学、材料等应用优势。通过分析钢结构应用 情况可知,在建筑工程中钢结构设计稳定性十分重要。 关键词:建筑工程;钢结构;设计;光明文化艺术中心项目 引言 建筑工程钢结构设计关乎到建筑物稳定性,对建筑质量具有较高影响,因此,研究稳定性设计原则与要点具有现实意义。通过规范、科学的稳定性设计能够充 分发挥钢结构作用,增强建筑工程安全性、稳固性,保障人们的生命财产安全。 1.钢结构设计稳定性概述 建筑工程钢结构具有多样性特点,其稳定性主要体现在钢结构设计环节,即 钢结构承载力设计部分,开展该部分设计工作时需要重点分析钢结构稳定性。钢 结构在应用过程中容易出现结构变形,导致未承载部分荷载,进而引发稳定性问题。钢结构设计要求多种结构吻合,若局部出现设计瑕疵会影响其他部分。另外,钢结构由众多构件组成,因此其若出现整体失稳情况,会影响其他构件。 2.钢结构设计稳定性原则 2.1结构稳定设计原则 钢结构较为特殊,其设计工艺相对复杂,在开展设计工作时需要依托于信息 技术检测质量,只有在确保质量达标的情况下才能够将设计图纸运用于建筑工程 实际施工中。实施检测工作时需要将钢结构水平承载、抗震系数以及结构阻尼比 等作为参数,设计师在设计环节需要结合施工现场自然环境,确定其水平荷载系数,进而保证水平层面稳固。钢结构整体稳固十分重要,保证整体稳固是设计重点,不管应用何种设计技术,必须将稳定性置于首位。钢结构构件对其稳定性有 重要影响,容易埋下安全隐患,严重的甚至可能引发安全事故。基于此,设计师 必须树立安全意识,应用科学、规范、合理的方法进行设计,以形成更多优质产品。 2.2剪力调整设计原则 目前,建筑工程形态愈加复杂,不对称设计广泛存在于建筑施工中,其逐渐 形成了一种建筑潮流,因此,斜柱使用频率越来越高,斜柱相较于垂直构件其具 有一定的倾斜角度,想要保证建筑物稳定就必须设计一定的剪力。设计师在设计 钢结构具体内容时,通常会为了简便,将垂直构件表述为柱子,将斜柱表述为斜杆,这种设计方式虽然不会影响建筑物实际稳定性,但若调整剪力容易受到干扰。于斜柱来讲,它具有水平受力的功能,但是垂直向也需要荷载,若设计师忽略了 垂直向的荷载,则会造成剪力误差,进而影响建筑工程钢结构稳定性。基于此, 设计师在实际设计环节,结合建筑工程实际状态,若需要进行剪力设计,必须坚 持剪力调整设计原则,针对具体施工状态灵活调整剪力,进而保障钢结构稳定性。 2.3强柱弱梁设计原则 若钢结构设计具有实效性,质量较高,则若水平承载过大或者需要强力荷载,塑性铰会出现在梁上,但若其设计质量较低,其会出现在柱子上。基于强柱弱梁 设计原则能够增强钢结构抗压能力,以提高强力下的钢结构荷载能力,使其能够

高层建筑结构设计分析论文

高层建筑结构设计分析论文 1结构分析及设计分析 1.1分析三种重要的体系 1.1.1剪力墙体系 剪力墙结构是利用建筑的内、外墙做成剪力墙以承受垂直和水平荷载的结构体系。剪力墙的变形状态和受力特性同剪力墙的开洞情况联系密切,其中依据轧受力特性的不同,单片剪力墙可以分为特殊开洞墙和单肢墙。类型不同的剪力墙,对应的也会有不同的截面应力分布,所以,在对位移和内力进行计算时,也应该对不同的计算和设计方法进行使用,将平面有限元法应用到剪力墙的结构计算中。此种方法能够比较准确地完成计算,能够应用到各类剪力墙之间,然而,也有一定的弊端存在于这种方法中,其有着较多的自由度。所以,在具体的应用时,较为普遍地应用了开洞墙这一类型。 1.1.2筒体结构 筒体结构分为框架—核心筒、筒中筒等结构体系,其中框架—核心筒受力特点为框架主要承受竖向荷载,筒体主要承受水平荷载,变性特点类似于框架剪力墙,但抗侧刚度较大。依据不同的计算机模型处理手段,有三种类型的分析方法:主要为离散化方法、三维空间分析和连续化方法,其中三维空间方法的精确性会更高。 1.1.3框架—剪力墙体系 框架—剪力墙结构,是由若干个框架和剪力墙共同作为竖向承重结构的建筑结构体系。此种结构位移和内力等计算方法尽管种类较

多,然而,连梁连续化假定方法会经常被使用,在对位移协调条件进行计算时,应该按照框架水平位移和剪力墙转角进行设计,将外荷载和位移的关系用微分方程建立起来。然而,应该考虑需求和因素量会存在的差异,所以,也会有着不同形式的解答方式。 1.2具体的设计与分析 1.2.1合理地确定水平荷载 每一个建筑结构都应该一同承受风产生的水平荷载和垂直荷载,对于抵抗地震的能力也应该具备。高层建筑中,尽管结构设计会较大程度上受到竖向荷载的影响,然而,水平荷载却占据着重大的比重。随着不断增多的高层建筑层数,在高层建筑的结构设计中,水平荷载成为了其中一个重要的影响因素。首先,由于楼面使用荷载和楼房自重在竖构件中发挥的功能,对应水平荷载会将一定的倾覆作用施加到结构中,并且竖构件中就会出现高层建筑结构的作用力;其次,就高层建筑结构而言,地震作用和竖向荷载,也会跟着建筑结构的动力情况而出现较大的改变。 1.2.2合理地确定侧控 同低层建筑不同,在高层建筑结构设计中,结构侧移已经成为 了其中一个非常重要的影响因素。随着不断增加的楼层数量,结构侧移在水平荷载侧向变形下会逐渐增大。在高层建筑结构进行设计中,不但规定结构要有一定的强度,对于荷载作用带来的内力能够有效的予以承受,同时,还应该确保具备一定的抗侧刚度,确保在某一限度内控制结构在水平荷载作用出现的侧移情况。

基于性能下大跨度钢结构设计的分析 许霞

基于性能下大跨度钢结构设计的分析许霞 发表时间:2018-08-13T14:43:36.510Z 来源:《基层建设》2018年第19期作者:许霞[导读] 摘要:随着社会经济的发展和建筑施工技术的不断进步,大跨度钢结构在建筑工程中的应用越来越广泛,基于性能的大跨度钢结构设计也逐渐成为关注热点。 广州市设计院 510620 摘要:随着社会经济的发展和建筑施工技术的不断进步,大跨度钢结构在建筑工程中的应用越来越广泛,基于性能的大跨度钢结构设计也逐渐成为关注热点。本文从基于性能的大跨度钢结构设计思路、大跨度钢结构性能设计以及几何非线性承载力的研究三个方面入手,对基于性能的大跨度钢结构设计展开论述,同时对基于性能下大跨度钢结构设计要点进行深入分析,希望能为相关设计工作的开展提供参考。 关键词:大跨度钢结构;性能设计;施工技术前言:大跨度钢结构在建筑工程中的广泛应用对于提高建筑结构的抗变形能力有着重要作用,但是由于大跨度钢结构比普通钢结构设计更为复杂,在实际设计过程中容易出现各种问题,所以需要在大跨度钢结构设计中严格遵循设计原则,正确选用科学的使用功能结构类型。同时,为了进一步提高钢结构的作用效果,还需要在基于性能的大跨度钢结构设计实践过程中,结合实际情况对设计方案进行不断优化。 一、基于性能的大跨度钢结构设计概述(一)基于性能的大跨度钢结构设计思路从当前建筑工程中钢结构设计的应用情况来看,基于性能的大跨度钢结构设计是应用最为广泛的一类设计方法,通过对建筑工程中设计需要的以及钢结构自身的基本特性的综合考虑,利用科学性的设计理念和严格的结构分析标准,对建筑过程中钢结构的整体性能进行客观判断[1]。从建筑工程整体设计方案的角度出发,基于性能的大跨度钢结构设计思路大致如下:(1)将钢结构中的某个横截面作为判断钢结构受力与基线荷载的基础;(2)重点关注大跨度钢结构设计中相关材料的延性性能;(3)在大跨度钢结构设计过程中应用充分考虑到结构荷载到达最大限度的同时,结构材料对于能量的吸收作用。(二)大跨度钢结构性能设计 大跨度钢结构性能的设计主要是指通过利用工程方法对钢结构设计目标和设计方案的确立过程。通常情况下,设计人员在进行大跨度钢结构性能设计时,会在充分掌握大跨度钢结构设计的实际性能需求的基础上,对其结构进行分析与计算,同时对大跨度钢结构在不同条件下的具体表现情况进行合理预测,从而帮助设计人员可以进一步了解大跨度钢结构的性能是否符合相关规定标准以及能否满足实际的设计需求,保证基于性能下大跨度钢结构设计方案的合理性与科学性。(三)几何非线性承载力的研究 大跨度钢结构设计中几何非线性承载力的研究是随着科学技术的发展和建筑工程中高强度材料的广泛应用而出现的,目前国内建筑工程中关于大跨度钢结构的应用逐渐向着轻质量的方向发展。从钢材料本身具有的特征与性能的角度考虑,钢结构设计在建筑工程整体中的应用在未达到屈服荷载之前,通常会出现一定程度的形变现象,进而呈现出较为明显的几何非线性性质。针对这种现象,设计人员需要在大跨度钢结构设计过程中,不断加强几何非线性与材料非线性两者之间的耦合双重非线性考量,灵活的借助有限元方法来实现对钢结构中位移弹性过程的分析与计算,从而为设计人员提供精准可靠的钢结构设计全过程计算分析方案。 二、基于性能的大跨度钢结构设计要点(一)大跨度钢结构设计需要面对的问题大跨度钢结构与其他材料结构相比,在整体的性能与结构稳定性等方面占有一定的优势,当前建筑工程施工中应用的钢结构最大跨度已经达到了百米以上。从当前材料市场的实际情况来看,钢材由于自身较强的实用性和多用性特点,其价格始终处于较高的位置,而建筑工程施工中的钢结构设计一般需要耗费大量的钢材,所以考虑到钢材材料价格和相关防火涂料价格相对较高的问题,设计人员会实际的设计中往往会延用传统的钢筋混凝土柱代替钢材,从而为建筑工程带来很大的安全隐患[2]。此外,大跨度钢结构设计在建设过程中的应用虽然为建筑物的设计与施工提供了可靠的支持,但是由于当前针对大跨度钢结构设计还缺乏完善的参数研究,也会在很大程度上为基于性能的大跨度钢结构设计工作增添难度。 (二)基于性能的大跨度钢结构整体受力特性分析基于性能的大跨度钢结构整体受力特性的分析工作,主要目的是为了进一步提高建筑结构的合理性。从传统的建筑工程钢筋混凝土柱与钢屋梁的设计方案分析来看,其拉杆设置显然存在很多问题,其中对于结构设计整体受力计算的不明确也会在很大程度上造成后期结构受力分析的难度增加。因此,为了保证建筑工程结构设计的科学性,需要对大跨度钢结构整体受力特性展开必要的分析。基于性能的大跨度钢结构受力特性分析大多依靠平面杆系计算软件来实现,具体操作流程如下:(1)充分掌握钢结构设计的实际需求,提出一个平截面假设,然后在不同构件持续受力的过程中保证平截面始终处于稳定不变的状态,同时严格控制杆件支架的夹角以及杆件受力过程中钢梁与钢柱之间夹角的位置不变;(2)在对门式钢架进行设计时,需要保持结构受力的合理性,在设置拉杆过程中应当尽量避免构件出现水平位移现象;(3)如果在受力分析过程中出现构件水平位移情况,会使软件计算结果与工程实际受力情况产生一定的误差,这时设计人员应用充分掌握计算误差与工程误差两种的差别,切实保证结构受力分析的准确度。(三)大跨度钢结构设计中的构件性能设计基于性能的大跨度钢结构设计中的构件性能设计主要包括以下两个部分:第一,钢结构设计中构件承载力性能的设计。从当前建筑工程施工中大跨度钢结构设计的实际作业情况来看,钢结构设计的整体稳定性与各个组成构件的实际性能和局部稳定性有着直接的关系[3]。因此,为了保证大跨度钢结构设计的质量,设计人员在具体的设计操作过程中需要严格遵守相关设计规范进行,(比如现行规范GB50017-2003等),通过对钢结构设计中钢构件开展的经验式指导性设计,进一步提高钢构件的自身的稳定系数,从而为大跨度钢结构设计奠定坚实基础;第二,钢结构设计中的钢构件变形性能设计。钢构件变形性能的设计需要遵循以下两种原则,一是不能对钢结构设计整体的实用性与美观性造成影响,二是需要将钢构件自身变形状态控制在额定范围之内。(四)大跨度钢结构设计中的荷载类型设计

我国重大建筑钢结构工程用钢市场分析及展望

随着我国经济建设水平的提高和钢结构行业的发展,我国钢结构用材市场需求加大,同时国内外钢结构用材情况对我国钢厂生产提出了新的要求。本文以中央电视台新址主楼、广州新电视塔钢结构工程用钢情况为例,介绍了大型钢结构工程用钢的要求和特点,并对今后我国重大建筑钢结构用钢的设计、选材提出了建议。 一、重大建筑钢结构工程用钢概况改革开放以来,中国的经济迅速发展,钢材产量2005年已达到3.71亿吨,占全球产量的30.93%.钢材质量不断提高,品种规格不断增加,为钢结构行业的发展提供了动力和物质基础。钢结构本身具有重量轻、强度高、抗震性能好等优点,便于工厂制造、现场施工安装,有利于提高建筑工业产业化水平。同时钢材又是可回收使用的节能环保型材料,符合循环经济发展的要求,因此钢结构行业得到快速发展。据中国钢结构协会统计,2004年钢结构生产量达1300万吨,占钢材产量的4.8%;2005年钢结构生产量达1400万吨。 钢结构总量及预测笔者经过半年多调研统计出,2004年我国钢结构加工总量为1300万吨,并具有以下特点(统计包括工业与民用建筑、铁路与公路桥梁、水电与火电建设、城市建设等): 1.上海、浙江、江苏地区钢结构加工量约为350万吨以上,约占全国钢结构加工量1/3以上。 2.2005年中冶集团下属冶金建设公司钢结构加工总量达120万吨。 3.工业建筑(厂房)钢结构用量约为230万吨,民用建筑(房屋)约为150万吨,他们之间的比例约为6 4. 4.钢材品种比例,中厚板(包括特厚板)约占50%以上,热轧H 型钢占15%左右,彩涂板(包括镀锌板)占12%,管材占3.5%左右,其他型钢及冷弯型钢约占19%.近年我国钢结构行业消耗钢材总量及预测见下表。 今后几年在下列几个领域内钢结构用量会增加1.火力电厂的建设还会加快,主厂房

大跨度复杂钢结构连廊的设计思考

大跨度复杂钢结构连廊的设计思考 阳耀锋 / 511023************ 【摘 要】近年来,随着我国城市化建设进程的不断加快,推动了建筑业的发展速度,各类建筑工程随之与日俱增。出于对建筑使用功能和外观造型的要求,一些建筑工程项目建设中需要采用连廊结构,其主要起连接作用。想要确保连廊结构的安全性和稳定性,就必须保证连廊的设计质量,特别是对于一些大跨度复杂钢结构连廊的设计其质量更为重要。若是设计中存在差错,很可能导致非常严重的后果。基于此点,本文首先对连廊结构的特点进行分析,并在此基础上提出大跨度复杂钢结构连廊的设计要点。 【关键词】高层建筑;大跨度;钢结构;连廊 一、连廊结构的特点分析 现代建筑结构学对连廊给出了如下定义:所谓的连廊是复杂高层建筑结构体系中的一种,其具体是指两幢及以上的高层建筑之间由架空连接体互相连接,进而满足建筑造型和使用功能的要求,这里的连接体即连廊。连廊的跨度少则几米,多则几十米。通常情况下,连廊都是按照建筑功能的要求进行设置的,它能够方便两个塔楼之间的相互联系,并且还能为建筑结构增添一定的特色。消防连廊是连廊结构中的一种特殊形式,其能够起到安全通道的作用,所有的消防连廊都对防火有着十分严格的要求,在结构设计中必须全部采用防火材料。由于连廊结构自身的特殊性,使其具有一系列不同于普通结构的特点,具体体现在以下几个方面上: (一)扭转效应 与其它的体型结构相比,连廊结构的扭转振动变形比较大,这使得该结构形式的扭转效应非常明显,这也是采用连廊结构时必须特别注意的问题之一。通常情况下,在风荷载或是地震荷载作用下,结构本身除了会产生出一定平动变形之外,也会产生出扭转变形,而扭转效应则会随着两个塔楼之间不对称性的不断增加而进一步增大,即便是对称双塔连廊结构,连廊楼板发生变形后,也有可能引起两个塔楼的相向运动,此时这种振动形态也会随之变得更加复杂,相应的扭转效应就会更加明显。 (二)连廊部分的受力情况较为复杂 在带有连廊的建筑结构当中,连廊是较为重要的部位之一,它的受力也相对比较复杂。这是因为连廊部分不但要协调两端结构的变形,从而在水平荷载的作用下需要承受较大的内应力,同时,当连廊自身跨度较大时,除了会受到竖向荷载的作用之外,竖向地震作用对连廊结构的影响也十分明显。为了确保结构的整体安全性,我国现行的JGJ3-2003规范中明确规定,连接体结构应当加强构造措施,其边梁截面应加大且楼板实际厚度不得小于150mm,并且应当采用双向双层钢筋网,每一层每个方向上的钢筋网配筋率不得小于25%。在建模过程中,由于连接体结构本身体型的特殊性,使得连接部位较为复杂,所以应当采用有限元分析法进行建模,而连体部位的楼板则应当采用弹性楼板进行计算。JGJ3-2003中还规定8度抗震设计时,连体结构的连接体应当充分考虑竖向地震作用的影响,这一点在实际设计过程中必须予以特别注意。 (三)连廊两端结构的连接方式 连廊结构与两端塔楼的支座连接是整个结构设计中最为关键的环节,若是该部分处理不当,会使结构的整体安全性受到严重影响。连接处理方式通常都是按照建筑方案与实际布置情况进行确定的,可以采用的方式主要包括以下几种:刚性连接、柔性连接、铰接连接以及滑动连接等等。由于每一种连接方式的处理方法均不相同,所以都需要进行详细的分析和设计,这有助于确保结构的整体稳定性。 二、大跨度复杂钢结构连廊的设计要点 为了便于本文的研究,下面以某工程实例为依托对大跨度复杂钢结构连廊的设计进行介绍。 (一)工程概况 该工程项目的开发功能为办公与商业综合体,其中具体包括3栋办公塔楼(1-3号楼)和一座多层商业楼(4号楼),四栋楼之间利用5座连廊相互连通,进而使整个建筑形成一个有机的整体,该工程建好后将会成为当地的标志性建筑之一。各塔楼之间均由连廊进行互相连接,连廊采用的是带钢拉杆的桁架结构形式,连廊结构与两端塔楼以滑动连接方式相连接。在五座连廊当中,2号连廊的跨度最大,为45.8m。下面对该连廊的设计要点进行详细阐述。 (二)连廊的结构设计 2号连廊为双层结构,宽7.5m,跨度为45.8m,属于比较典型的大跨度连廊,总体高度12m,主要负

钢结构设计计算书

《钢结构设计原理》课程设计 计算书 专业:土木工程 姓名 学号: 指导老师:

目录 设计资料和结构布置- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -1 1.铺板设计 1.1初选铺板截面 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 1.2板的加劲肋设计- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3 1.3荷载计算 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 3.次梁设计 3.1计算简图- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5 3.2初选次梁截面 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5 3.3内力计算 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6 3.4截面设计 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6 4.主梁设计 4.1计算简图 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7 4.2初选主梁截面尺寸 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7 5.主梁内力计算 5.1荷载计算- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9 5.2截面设计- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9 6.主梁稳定计算 6.1内力设计- - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - 11 6.2挠度验算- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 13 6.3翼缘与腹板的连接- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 13 7主梁加劲肋计算 7.1支撑加劲肋的稳定计算 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14 7.2连接螺栓计算 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14 7.3加劲肋与主梁角焊缝 - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - 15 7.4连接板的厚度 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 15 7.5次梁腹板的净截面验算 - - - - - - - - - - - - - - - - - - - - - - - - - - - - 15 8.钢柱设计 8.1截面尺寸初选 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 16 8.2整体稳定计算 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 16 8.3局部稳定计算 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 17 8.4刚度计算 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 17 8.5主梁与柱的链接节点- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 18 9.柱脚设计 9.1底板面积 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 21 9.2底板厚度 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 21 9.3螺栓直径 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 21 10.楼梯设计 10.1楼梯布置 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 22

浅谈钢结构在某高层建筑结构设计中的实际应用

浅谈钢结构在某高层建筑结构设计中的实际应用 摘要:在高层建筑结构设计中,钢结构设计是一项复杂且艰巨的工作,科学、合理应用钢结构,可优化和完善高层建筑结构,提高建筑的整体质量。本文结合高层建筑的实际情况,对钢结构在高层建筑结构设计中的应用进行分析与探讨,以推动城市高层建筑的发展。 关键词:高层建筑;结构设计;钢结构;应用 随着社会经济的迅速发展,高层建筑日益驱多,其在城市发展过程中发挥着重要的作用,是城市发展的缩影。由于高层建筑自重大,结构构件的截面尺寸也相应较大,在高层建筑结构设计中,钢结构的应用越来越广泛。钢结构设计是高层建筑整体结构设计中不可忽视的重要环节,关系到高层建筑整体的施工质量,因此需给予高度重视。本文着重阐述某高层建筑结构设计中钢结构的应用情况。 1 工程概况及结构选型 某高层建筑工程共43层,其中地上40层,地下3层,总建筑面积13万m2,建筑物总高度167m。抗震设防烈度为6度。 高层建筑钢结构的类型,按材料区分有全钢结构、钢-混凝土组合结构和钢-混凝土混合结构3种类型,根据工程条件和特点,结合建筑使用功能、荷载情况、材料供应等因素,本工程采用了钢-混凝土组合结构,其结构型式如下:地下3层至地上3层均采用框架-筒体结构,第4层为梁式转换层,层高3.5m,梁截面尺寸最大为1200mm×3500mm,板厚190mm,5层以上采用剪力墙-核芯筒结构。基础方案为预应力管桩,采用型钢混凝土柱,±0.000楼面采用钢筋混凝土楼板及型钢混凝土梁。 2 钢结构的设计 根据结构受力情况,型钢混凝土梁柱中的型钢均采用Q345B级钢材。高强度螺栓采用10.9级扭剪型高强螺栓,表面喷砂处理,摩擦面抗滑移动系数取0.45。 采用实腹式┼字形为型钢混凝土柱中型钢的截面形式,型钢混凝土柱中的型钢含钢率控制在5%左右,而型钢混凝土梁中的型钢则采用H型钢,采用中国建筑科学研究院编制的PKPM系列程序中多、高层建筑结构空间有限元分析与设计软件SATWE进行整体计算,并根据计算结果合理调整梁柱截面钢筋及钢骨大小。本工程若采用钢筋混凝土柱,则底层柱的截面需要1600mm×1600mm,而采用钢骨混凝土柱,底层柱的截面仅需要1100mm×1100mm。 钢板的厚度均不小于6mm,一般为翼缘厚度≥20mm,腹板厚度≥16mm;由于在轧制过程中,较厚的钢板存在各向异性,常在焊缝附近形成约束,焊接时易引致层状撕裂,很难保证焊接质量,因此当钢板厚度大于36mm时,必须按《厚

相关文档
最新文档