近红外光谱无创血糖检测技术研究

近红外光谱无创血糖检测技术研究
近红外光谱无创血糖检测技术研究

近红外光谱无创血糖检测技术研究

姓名:雷鹏

学号:2013022057

专业:光学

摘要:红外技术(Infrared Technique)是指以红外线的物理特性为基础。红外线是由于物质内部带电微粒的能全发生变化而产生的,它是一种电磁波.处于可见光谱红光之外.突出特点是热作用显著。红外线的波长介于可见光与无线电波之间.从0 .75μm~1000μm,可分为四个波段:近红外(0.75~3μm)、中红外(3~6μm)、远红外(6~15μm)、和极远红外(15~1000μm),红外线具光电效应,红外辐射效应,红外反射效应,大气传输特性等,这些特性为红外技术的应用

CH)振动的合频和各级倍频的吸收区一致,通过扫描样品的近红外光谱,可以得到样品中有机分子含氢基团的特征信息,而且利用近红外光谱技术分析样品具有方便、快速、高效、准确和成本较低,不破坏样品,不消耗化学试剂,不污染环境等优点,因此该技术受到越来越多人的青睐。糖尿病是一组以高血糖为特征的代谢性疾病,其检查主要靠血糖含量判断,本文提出一种利用近红外光谱进行无创血糖含量的方法,从而能够对糖尿病进行判断。

关键词:红外技术近红外光谱血糖

一、前言

红外技术的英文名称是:Infrared Technique。红外技术的内容包含四个主要部分: 1.红外辐射的性质,其中有受热物体所发射的辐射在光谱、强度和方向的分布;辐射在媒质中的传播特性--反射、折射、衍射和散射;热电效应和光电效应等。 2.红外元件、部件的研制,包括辐射源、微型制冷器、红外窗口材料和滤光电等。 3.把各种红外元、部件构成系统的光学、电子学和精密机械。 4.红外技术在军事上和国民经济中的应用。由此可见,红外技术的研究涉及的范围相当广泛,既有目标的红外辐射特性,背景特性,又有红外元、部件及系统;既有材料问题,又有应用问题

红外技术发展的先导是红外探测器的发展。1800年,F·W·赫歇尔发现红外辐射时使用的是水银温度计,这是最原始的热敏型红外探测器。 1830年以后,相继研制出温差电偶的热敏探测器、测辐射热计等。在1940年以前,研制成的红外探测器主要是热敏型探器。 19世纪,科学家们使用热敏型红外探测器,认识了红外辐射的特性及其规律,证明了红外线与可见光具有相同的物理性质,遵守相同的规律。它们都是电磁波之一,具有波动性,其传播速度都是光速、波长是它们的特征参数并可以测量。 20世纪初开始,测量了大量的有机物质和无机物质的吸收、发射和反射光谱,证明了红外技术在物质分析中的价值。 30年代,首次出现红外光谱代,以后,它发展成在物质分析中不可缺少的仪器。 40年代初,光电型红外探测器问世,以硫化铅红外探测器为代表的这类探测器,其性能优良、结构牢靠。 50年

代,半导体物理学的迅速发展,使光电型红外探测器得到新的动。到60年初期,对于1~3、3~5和8~13微米三个重要的大气窗口都有了性能优良的红外探测器。在同一时期内,固体物理、光学、电子学、精密机械和微型致冷器等方面的发展,使红外技术在军、民两用方面都得到了广泛的应用。60年代中叶起,红外探测器和系统的发展体现了红外技术的现状及发展方向。在红外技术的发展中,需要特别指出的是:60年代激光的出现极大地影响了红外技术的发展,很多重要的激光器件都在红外波段,其相干性便于移用电子技术中的外差接收技术,使雷达和通信都可以在红外波段实现,并可获得更高的分辨率和更大的信息容量。在此之前,红外技术仅仅能探测非相干红外辐射,外差接收技术用于红外探测,使探测性能比功率探测高好几个数量级。另外,由于这类应用的需要,促使出现新的探测器件和新的辐射传输方式,推动红外技术向更先进的方向发展

二、近红外光谱技术

近红外光谱(NIRS)作为一种分析手段,可以测定有机物以及部分无机物。这些物质分子中化学键结合的各种基团(如C=C,N=C,O=C,O=H,N=H)的伸缩、振动、弯曲等运动都有它固定的振动频率。当分子受到红外线照射时,被激发产生共振,同时光的能量一部分被吸收,测量其吸收光,可以得到极为复杂的图谱,这种图谱表示被测物质的特征[3]。不同物质在近红外区域有丰富的吸收光谱,每种成分都有特定的吸收特征,这就为近红外光谱定量分析提供了基础。近红外技术是依据某一化学成分对近红外区光谱的吸收特性而进

行的定量测定,所以应用NIR光谱进行检测的技术关键就是在两者之间建立一种定量的函数关系。其基本流程包括:首先收集具有代表性的样品(其组成及其变化范围接近于要分析的样品),然后采集样品的光学数据;利用标准的化学方法对样品进行化学成分测定;通过数学方法将这些光谱数据和检测的数据进行关联,一般将光谱数据进行转换(一阶或二阶导数),与化学测定值进行回归计算,然后得出定标方程,建立数学模型;在分析未知样品时,先对待测样品进行扫描,根据光谱值利用建立的模型可以计算出待测样品的成分含量。确定回归模型的过程其实就是定标过程,定标的好坏直接关系到分析结果的准确性,因此,定标软件是近红外分析技术的核心。计算得到的定标方程必须通过实际测量调整它的准确性和精确性。精确性是指重复测定时测值间的相近程度。准确性的度量通常用定标方程的预测标准误(SEP)来表示。SEP表示测定值与“真值”间的相近程度。近红外光照射到被测样品后,从样品表面反射出来的光被检测器吸收,此为近红外反射光谱分析法(NIR)。它要求样品的粉碎程度一致,从而保证样品表面光滑一致。另一类为近红外穿过样品后,再被接受检测到,即为近红外投射光谱分析法(NIT)。该法优点是很少或不用制备样品,因此重复性较高,但灵敏度低。

三、血糖检测方法综述

检测血糖的方法主要是从体内抽取血液通过生化检测进行分析,这属于有创伤检测,有创伤检测给患者带来的痛苦和不便。无创性血糖检测已引起人们极大的关注,其意义是:(1)减少患者

天天采血丈量的痛苦,进步病人的生存质量;(2)可进步丈量次数,进步血糖控制精确度,降低糖尿病并发症发生的危险;(3)降低每次丈量的本钱;(4)有可能形成含有检测器和胰岛素注射的闭环循环系统;(5)其丈量方法和原理可以推广应用到其它血液成分的检测。在无创性血糖检测研究中使用较多的是红外光谱分析方法,通过对一束红外光透过人体组织或者由其反射的光谱信号分析,确定组织内葡萄糖的含量。目前较有效的光谱范围是近红外区(波长为0.7um-2.5um)。

四、近红外光谱检测葡萄糖的原理和方法

水溶液中葡萄糖的近红外吸收有机分子在近红外光谱区的吸收主要是由于含氢基团的分子振动的倍频与合频吸收造成的。有机分子的倍频和合频光谱能够得到分子结构、组成状态的信息。有机物近红外光谱,其特征性强,受分子内外环境的影响小,但倍频和合频比基频吸收带宽得多,使得多组分样品的近红外光谱在不同组分的谱带、同一组分中不同基团的谱带以及同一基团不同形式的倍频、合频谱带发生严重的重迭,从而使近红外光谱的图谱解析异常困难。在混合物中的化学组分,很难再分离出每种组分单一、无重叠的吸收光谱。在有强烈水的背景吸收情况下的生物混合液,常规方法很难丈量出低浓度物质的含量。水是生物组织中的主要成分,不但有单一的红外光谱,还有丰富的扩展到近红外区域的合频和倍频光谱。对水的红外光谱分析可知,水在波长为 2.01um-2.5um 的吸收较小,形成一个被称为水传输窗的区域,所以水溶液物质

最好的分析波长为2.0um-2.5um。水在3um以上其吸收率大于6AU/mm,很难丈量其它物质葡萄糖光谱的特异性在葡糖固体和葡萄糖溶液中所得的葡萄糖红外吸收的基频早已有报导。葡萄糖伸缩振动能产生很强的合频和倍频吸收带。葡萄糖水溶液的近红外(2.0um-2.5um)光谱的丈量有吸收峰,葡萄糖的光谱是唯一的,但葡萄糖红外区的合频和倍频光谱与水、脂肪和血红蛋白电子吸收波段的几个合频和倍频频率相互重迭,即被其它成分的光谱所覆盖。这是葡萄糖红外光谱丈量的主要干扰。有机混合物对在近红外区吸收谱带的重迭以及漫反射光谱并不是各成分单独存在时光谱的迭加。组织吸收对葡萄糖丈量也有影响,在手指这样小的部位中近红外光会削弱3-4个吸收单位,而5mmoL/L的葡萄糖浓度变化,光谱吸收的变化约10-5个吸收单位。组织光散射对葡萄糖丈量的影响也很大,组织散射的光强、定位误差和身体各因素的影响是最主要的丈量误差,这些都影响近红外光谱学在血糖检测中的应用。化学计量学(Chemometrics)采用多元分析校正统计学方法与计算技术,解析化学丈量数据,由红外光谱算出样品各成分的含量。现在常用的多元分析校正方法中,进行血糖检测光谱分析效果较好的是偏最小二乘法(PLS),它将已知的葡萄糖浓度的光谱组,用主因子分析作定量计算的方法,对光谱矩阵进行特征向量分析,然后使用多元线性回回,找出极小的光谱变化和分析物浓度之间的关系,消除与葡萄糖无关的光谱变数,得出校正光谱,通过校正光谱和样品光谱的内积(即点积)确定葡萄糖浓度。

五、近红外光谱在无创检测血糖中存在的问题

在体近红外光谱血糖丈量在体近红外光谱血糖丈量的关键是建立在体环境下的校正光谱,由于有很多误差来源影响丈量,需要通过定标来消除或予以补偿。有些影响丈量的误差却不轻易合并到定标中,这样的误差来源主要有探测器定位误差、温度和脉搏的影响、检测设备的机械压力、水合作用、出汗、血容量以及血流比容积的变化等。现在主要有两种研究方法,一种是实验方法,在进行口服耐糖检测(OGTT)时从非糖尿病人群和糖尿病患者中无创地收集光谱信号,同时用有创伤的方法丈量血糖浓度,最后在所得血糖值和无创性收集的光信号的关系基础上建立模型。这种方法不能丈量出其它的代谢物、干扰物、生物噪声或者仪器与身体接触面的变化等信息,但它可计算出这些噪声所带来的影响。另一种方法是物理模型方法,在这种方法中,首先在一组标准葡萄糖溶液中丈量葡萄糖的信号。然后逐渐增加标准液的复杂性来模拟人体组织,并描述每一步的精度和正确度,再用数学模型把数据关联起来,用于组织中的光线传播,最后把研究的丈量方法和系统应用到人体中。

所得的体内信号又与通过化学丈量技术的有创伤数据关联起来。这种方法可以鉴别噪声成分,因此利用这种方法在使用化学丈量技术之前消除噪声对信号的影响。

近红外在体检测葡萄糖浓度的缺点:1)丈量精度较低;2)需要反复定标;3)受到服用药物的影响,其它干扰因素较多;4)

水的近红外波段的吸收强度对溶解物的浓度和温度很敏感;5)使用的仪器设备较昂贵且很难小型化。

六、总结

近红外光谱技术具有1)分析速度快。2)对样品无化学污染。3)仪器操作和维护简单,4)测量精度高等优点。而近红外光谱无创血糖检测技术是一种新型的血糖检测技术,其无创特性避免了病人的痛苦,同时能够快速得到结果,尽管目前近红外无创血糖检测技术还存在一定的问题,但是我想在日后技术不断成熟和器件不断发展的条件下,该技术一定能够成为一种快速,方便的血糖检测技术,会为更好检测糖尿病的提供技术支持。

参考文献:

[1]苏君红红外技术[J]昆明物理所

[2]纪红红外技术基础与应用[M]科学出版社,1979

[3] A.R.杰哈(美)著张孝霖等译《红外技术应用》光电光子器件及传感器[M]化学工业出版社 2004

[4] 张小青徐智红外光谱技术在医学中的应用[J] 光谱学与光谱分析2010,30(1)pp30-34;

[5]罗苏秦,张世英.近红外光谱仪器之分析技术及其应用[J].科仪新知,1999,25(5):13-30.

[6] 徐广通,袁洪福,陆婉珍.现代近红外光谱技术及应用进展[J].光谱学与光谱分析,2000,20(2):134-142

[7] 李长治编.分子光谱新技术[M].北京:科学出版社,1986.97-98

[8] 李文永王玉玲红外技术在临床医学领域中的应用[J] 科技信息

[9] 相秉仁李睿吴拥军近红外光谱分析技术在药学领域中的应用[J] 计算机与应用化学1999年9月16卷第5期

[10] 曲如燕近红外光谱在药品快速鉴别中的应用[J] 实用医技杂志2010年7月第17卷第7期

[11] 季忠秦子辉血糖无创检测原理及仪器实现研究[J] 生物医学工程学杂志2010年2月第27卷第1期

[12]付冠军近红外无创血糖检测技术研究硕士论文[J] 2009

[13]张艳洁杨艳芳近红外光谱无创血糖检测模拟样品的试验研究[J] 中国医学物理学杂志 2008年七月第25卷第4期

[14]李庆波刘强基于近红外光谱技术的人体血糖浓度的无创检测系统的研制[J]光谱学与光谱技术2012年3月第32卷第3期

[15]罗云瀚陈哲近红外光谱无创血糖浓度测量的极限检测浓度[J] 光学精密工程2008年5月第16卷第5期

[16]刘蓉谷筱玉近红外光谱无创血糖测量中的背景扣除方法的研究[J]光谱与光谱技术 2008年8月第28卷第8期

[17]刘蓉徐可欣近红外光谱无创血糖测量中体温变化的影响分析[J] 天津大学学报 2008年1月第41卷第1期

红外反射光谱原理实验技术及应用

高级物理化学实验讲义 实验项目名称:红外反射光谱原理、实验技术及应用 编写人:苏文悦编写日期:2011-7-7 一、实验目的(宋体四号字) 1、了解并掌握FTIR-ATR、FTIR-DRS和FTIR-RAS等红外光谱表面分析技术的原理、实验技术及应用 2、比较分析FTIR-ATR、FTIR-DRS和FTIR-RAS等红外光谱技术各自适用的样品、同一样品不同红外光谱的谱带位置及形状。 二、实验原理 衰减全反射(ATR)、漫反射(DRS)和反射吸收(RAS)都是傅里叶变换红外反射光谱,是FTIR常用的表面分析技术。 图1 入射角(θ)及折射率(n1,n2)对光在界面上行为的影响 θc为临界角,sinθc=n2/n1 1全反射光谱原理、实验技术及应用 全反射:光由光密(即光在此介质中的折射率大的)媒质射到光疏(即光在此介质中折射率小的)媒质的界面时,全部被反射回原媒质内的现象。很多材料如交联聚合物、纤维、纺织品和涂层等,用一般透射法测量其红外光谱往往很困难,但使用FTIR及ATR技术却可以很方便地测绘其红外光谱。 (1)入射角与临界角 在通常情况下,光透射样品时是从光疏介质的空气射向光密介质样品的,当垂直入射(入射角θ为0°)时,则全部透过界面;当θ≠0°时,如果两者的折射率相差不大,则光是以原方向透射的,但如折射率差别较大,则会产生折射现象。 当n2与n1有足够的差值(0.5以上),且入射光从光密介质(n1)射向光疏介

质(n 2 ),入射角θ 大于一定数值时,光线会产生全反射现象。这个“一定数值”的角度称为临界角,也即当折射角φ 等于90°时的入射角θ称为临界角θc ,如图1,其中临界角θc 和折射率n 1和n 2有如下关系: sin θ=n 2/n 1 显然,临界角的数值取决于样品折射率与全反射晶体的折射率之比,对同一种全反射晶体,不同材质的样品会有不同的临界角值,表1所列数值可看出这一关系。 表1 在ATR 和MIR 方法中必须选用远大于临界角的入射角,即sin θ>n 2/n 1,以确保全反射的产生和所获光谱的质量,本实验运用单次衰减全反射ATR 附件,反射晶体是锗,入射角固定为45°,远大于临界角。 (2)衰减全反射 衰减全反射(Attenuated Total Reflectance)缩写为ATR 。当入射角大于临界角时,入射光在透入光疏介质(样品)一定深度后,会折回射入全反射晶体中。进入样品的光,在样品有吸收的频率范围内光线会被样品吸收而强度衰减,在样品无吸收的频率范围内光线被全部反射。因此对整个频率范围而言,由于样品的选择性吸收,使ATR 中的入射光能被部分衰减,除穿透深度dp 外,其衰减的程度与样品的吸收系数有关,还与多次内反射中的光接触样品的次数有关。这种衰减程度在全反射光谱上就是它的吸收强度。 全反射光谱的强度及分布 ATR 光谱的强度取决于穿透深度dp 、反射次数和样品与棱镜的紧密贴合情况以及样品本身吸收的大小。 内反射次数则是设计装置时的一个参数,入射角?越小,对同样尺寸的全反射晶体,全反射的次数就越多,谱峰越增强。 在全反射过程中光线穿透入样品的深度dp 的表示公式如下: 其中,dp :是光透入样品的垂直深度,称穿透深度 λl :是光在内反射晶体材料中的波长,与入射光波长λ成正比λ1=λ/n 1 ?:为入射角, n 21=n 2/n 1 :是样品与全反射晶体的折射率之比 21221 21)(sin 2n dp -=θπλ

红外光谱(FTIR)实验报告

红外光谱仪调查及实验报告 第一部分红外光谱仪调查 1.1 简介 傅里叶红外光谱仪: 全名为傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,FTIR Spectrometer),是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。傅里叶红外光谱仪不同于色散型红外分光的原理,可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。 滤光片型近红外光谱仪器: 滤光片型近红外光谱仪器以滤光片作为分光系统,即采用滤光片作为单色光器件。滤光片型近红外光谱仪器可分为固定式滤光片和可调式滤光片两种形式,其中固定滤光片型的仪器时近红外光谱仪最早的设计形式。仪器工作时,由光源发出的光通过滤光片后得到一宽带的单色光,与样品作用后到达检测器。 色散型近红外光谱仪器: 色散型近红外光谱仪器的分光元件可以是棱镜或光栅。为获得较高分辨率,现代色散型仪器中多采用全息光栅作为分光元件,扫描型仪器通过光栅的转动,使单色光按照波长的高低依次通过样品,进入检测器检测。根据样品的物态特性,可以选择不同的测样器件进行投射或反射分析。 傅里叶变换型近红外光谱仪器: 傅里叶变换近红外分光光度计简称为傅里叶变换光谱仪,它利用干涉图与光谱图之间的对应关系,通过测量干涉图并对干涉图进行傅里叶积分变换的方法来测定和研究近红外光谱。其基本组成包括五部分:①分析光发生系统,由光源、分束器、样品等组成,用以产生负载了样品信息的分析光;②以传统的麦克尔逊干涉仪为代表的干涉仪,以及以后的各类改进型干涉仪,其作用是使光源发出的光分为两束后,造成一定的光程差,用以产生空间(时间)域中表达的分析光,即干涉光;③检测器,用以检测干涉光;④采

无创血糖仪市场现状

1.背景 目前的血糖测量方法主要为生化血糖测量法和微创血糖检测法。生化血糖检测法和微创血糖检测法的技术已较成熟,也是目前血糖测量的主要方法,但此两种测量方法都需要取血检测,由于抽血或手指扎针取血会造成疼痛,而且有感染的危险,这就限制了测定血糖的频率,使糖尿病患者无法获得满意的血糖监测,因此迫切需要采取无创式血糖测量技术来克服有创式采血的缺点。 2.主要的无创血糖检测技术 2.1.近红外光谱技术 当用红外线照射人体时,与血糖无关的人体组织,如皮肤、骨骼、肌肉、水等将吸收大部分红外线、余少量代表血糖特征的反射或吸收红外线,称为血糖特征频谱信号,可用来提取血糖值。最新由格罗夫仪器(Grove Instruments)开发的运用此技术的血糖仪可在20s之内对患者的血糖值进行实时检测。首款推出的试验性产品没有额外的附件且可由电池驱动,测量部位则是在指尖或者耳垂。 针对此仪器的一项拥有4000组数据的实验研究显示该设备的测量准确性符合ISO15197标准。同时在运用此技术开发无创血糖仪的公司有DIRAmed, C8 MediSensors 和InLight Solutions。 2.2.测试人体的射频阻抗,提取血糖值 波长较红外线更长的电磁波对人体辐射时,像血糖这种非离子可溶性物质,将吸收一定的电磁波,提取其吸收特征值,理论上可以得到血糖值。但是,体液中还有其他非离子可溶物质,它们也吸收电磁波。因此,如何将血糖的吸收特征值分离及提取,是这种方法的关键。 2.3.偏振式 其原理是光学活性物质致使偏振光的偏振面发生旋转,产生的角度与偏振光在其中传播的光程、波长、温度以及溶液的浓度有关。当一束线偏振光入射到含有葡萄糖的溶液时,其透射光也是线偏振光,而且偏振方向与原入射光的偏振方向有一个夹角,这就是葡萄糖的旋光特性。利用这个特性可以制成血糖检测仪器。这种方法一般是通过测量眼球房水中的葡萄糖浓度来反推出血糖浓度。 1991年美国得克萨斯农业与工程大学的Gerald L Cote、Martin D.Fox等人利用这样的测量方法设计了完整的实验系统,并详细地分析各种影响因素。但是,偏振式也有它的缺点,例如:其测量位置多为敏感的眼球,而且存在血糖浓度与眼球房水之间的时间滞后等问题。因此到目前尚未有商品化仪器的报道。 2.4.用皮下间质液中的糖分子,测试血糖值

无水乙醇红外光谱分析实验报告

竭诚为您提供优质文档/双击可除无水乙醇红外光谱分析实验报告 篇一:红外光谱分析实验报告 一、【实验题目】 红外光谱分析实验 二、【实验目的】 1.了解傅立叶变换红外光谱仪的基本构造及工作原理 2.掌握红外光谱分析的基础实验技术 3.学会用傅立叶变换红外光谱仪进行样品测试 4.掌握几种常用的红外光谱解析方法 三、【实验要求】 利用所学过的红外光谱知识对碳酸钙、聚乙烯醇、丙三醇、乙醇的定性分析制定出合理的样品制备方法;并对其谱图给出基本的解析。 四、【实验原理】 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在0.78~300μm。通常又把这个波段分成三个区域,即近红外区:波长在0.78~2.5μm(波数在12820~

4000cm-1),又称泛频区;中红外区:波长在2.5~25μm(波数在4000~400cm-1),又称基频区;远红外区:波长在25~300μm(波数在400~33cm-1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数(wavenumber)σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: 作为红外光谱的特点,首先是应用面广,提供信息多且具有特征性,故把红外光谱通称为"分子指纹"。它最广泛的应用还在于对物质的化学组成进行分析。用红外光谱法可以根据光谱中吸收峰的位置和形状来推断未知物的结构,依照特征吸收峰的强度来测定混合物中各组分的含量。其次,它不受样品相态的限制,无论是固态、液态以及气态都能直接测定,甚至对一些表面涂层和不溶、不熔融的弹性体(如橡胶)也可直接获得其光谱。它也不受熔点、沸点和蒸气压的限制,样品用量少且可回收,是属于非破坏分析。而作为红外光谱的测定工具-红外光谱仪,与其他近代分析仪器(如核磁共振波谱仪、质谱仪 等)比较,构造简单,操作方便,价格便宜。因此,它已成为现代结构化学、分析化学最常用和不可缺少的工具。根据红外光谱与分子结构的关系,谱图中每一个特征吸收谱带都对应于某化合物的质点或基团振动的形式。因此,特征吸收

近红外光谱分析技术在煤质检测中的应用

近红外光谱分析技术在入炉煤煤质 在线检测中的应用 一.煤质分析的意义: 煤炭在我国占一次能源消费的68%,大部分用于发电或燃煤锅炉,在热电厂的成本核算中,燃料消耗占到成本的70%左右。 充分了解当前燃煤质量,可以有效的提高锅炉燃烧效率、提升企业经济效益,同时还可以减少炉受热面结焦、积灰等情况,极大的提高锅炉运行的安全性。 二.煤质分析现状: 国内企业目前多采用传统的煤质分析方法,主要测定灰分、水分、发热量等指标,分析精度高,但检测周期长,严重滞后于当前生产,只能进行抽检,不能实时指导生产。 国内还有少量企业使用γ射线来分析煤质,实时性较好,但由于采用辐射源,给工作人员和企业带来了很大的安全隐患,并且价格昂贵,增大了企业的成本负担。 国外相关企业普遍采用近红外光谱技术来分析煤质,实时性好、精确度高、无安全隐患、成本适中。 三.近红外光谱技术检测煤质: 1.近红外光谱的原理: 近红外波长范围为780~2526nm,当近红外光照射到对于含氢基团X—H(X=C、N、O)的物质上时,组成物质的化学键就会吸收一定波长的特征波,吸光度与成分的含量大小有关,而煤炭中燃烧成分主要是含氢基团,正适用于近红外技术。 2.建立近红外模型: 近红外技术是二次测量方法,通过取样,测量样品的近红外光谱、并用

传统分析方法得到该样品的灰分、发热量、水分等含量,通过算法建立光谱与成分和含量之间的联系(模型)。 3.在线实时测量: 近红外仪器安装在入炉煤传送皮带上方,采集皮带上当前煤炭的近红外光谱,通过近红外模型,使用化学计量学方法分析光谱,即可获得该煤炭的灰分、发热量、水分等含量信息。 4.技术特点: ●分析速度快,分析效率高:不到1分钟就可以采集一次光谱,并同时得到 多个组分的性质和含量数据。 ●安装方便:采用非接触的方式进行检测,可以根据生产线的工况采用俯 视、仰视、侧视等方式进行安装。比如安装在入炉煤传送皮带上方。 ●适应复杂环境:仪器具有防尘、防水、防暴等多种特点。 ●运行成本低:近红外仪器自动化程度非常高,日常运行中基本不需要维 护人员,没有消耗品,不产生运行费用。 ●样品不需要预处理,不需要使用化学试剂,不会产生化学、生物或电磁 污染。 ●安全性:近红外仪器使用的是近红外光,没有高温、高压、辐射、易燃 品等构件,保证人员、设备和生产环境的安全。

无创血糖仪市场报告(第2版)

无创血糖仪市场报告 1.背景 目前的血糖测量方法主要为生化血糖测量法和微创血糖检测法。生化血糖检测法和微创血糖检测法的技术已较成熟,也是目前血糖测量的主要方法,但此两种测量方法都需要取血检测,由于抽血或手指扎针取血会造成疼痛,而且有感染的危险,这就限制了测定血糖的频率,使糖尿病患者无法获得满意的血糖监测,因此迫切需要采取无创式血糖测量技术来克服有创式采血的缺点。 2.主要的无创血糖检测技术 2.1.近红外光谱技术当用红外线照射人体时,与血糖无关的人体组织,如皮肤、骨骼、 肌肉、水等将吸收大部分红外线、余少量代表血糖特征的反射或吸收红外线,称为血糖特征频谱信号,可用来提取血糖值。最新由格罗夫仪器(Grove Instruments)开发的运用此技术的血糖仪可在 20s之内对患者的血糖值进行实 时检测。首款推出的试验性产品 没有额外的附件且可由电池驱动, 测量部位则是在指尖或者耳垂。 针对此仪器的一项拥有4000组数 据的实验研究显示该设备的测量 准确性符合ISO15197标准。同时 在运用此技术开发无创血糖仪的公司有DIRAmed, C8 MediSensors 和 InLight Solutions。 2.2.测试人体的射频阻抗,提取血糖值波长较红外线更长的电磁波对人体辐射时,像血 糖这种非离子可溶性物质,将吸收一定的电磁波,提取其吸收特征值,理论上可以得到血糖值。但是,体液中还有其他非离子可溶物质,它们也吸收电磁波。因此,如何将血糖的吸收特征值分离及提取,是这种方法的关键。 2.3.偏振式:其原理是光学活性物质致使偏振光的偏振面发生旋转,产生的角度与偏振光 在其中传播的光程、波长、温度以及溶液的浓度有关。当一束线偏振光入射到含有葡

近红外光谱分析及其应用简介

近红外光谱分析及其应用简介 1、近红外光谱分析及其在国际、国内分析领域的定位 近红外光谱分析是将近红外谱区(800-2500nm)的光谱测量技术、化学计量学技术、计算机技术与基础测试技术交叉结合的现代分析技术,主要用于复杂样品的直接快速分析。近红外分析复杂样品时,通常首先需要将样品的近红外光谱与样品的结构、组成或性质等测量参数(用标准或认可的参比方法测得的),采用化学计量学技术加以关联,建立待测量的校正模型;然后通过对未知样品光谱的测定并应用已经建立的校正模型,来快速预测样品待测量。 近红外光谱分析技术自上世纪60年代开始首先在农业领域应用,随着化学计量学与计算机技术的发展,80年代以来逐步受到光谱分析学家的重视,该项技术逐渐成熟,90年代国际匹茨堡会议与我国的BCEIA等重要分析专业会议均先后把近红外光谱分析与紫外、红外光谱分析等技术并列,作为一种独立的分析方法;2000年PITTCON 会议上近红外光谱方法是所有光谱法中最受重视的一类方法,这种分析方法已经成为ICC(International Association for Cereal Science and Technology国际谷物科技协会)、AOAC(American Association of Official Analytical Chemists美国公职化学家协会)、AACC(American Association of Cereal Chemists美国谷物化学家协会)等行业协会的标准;各发达国家药典如USP(United States Pharmacopoeia美国药典)均收入了近红外光谱方法;我国2005年版的药典也将该方法收入。在应用方面近红外光谱分析技术已扩展到石油化工、医药、生物化学、烟草、纺织品等领域。发达国家已经将近红外方法做为质量控制、品质分析和在线分析等快速、无损分析的主要手段。 我国对近红外光谱技术的研究及应用起步较晚,上世纪70年代开始,进行了近红外光谱分析的基础与应用研究,到了90年代,石化、农业、烟草等领域开始大量应用近红外光谱分析技术,但主要是依靠国外大型分析仪器生产商的进口仪器。目前国内能够提供完整近红外光

仪器分析实验有机化合物的红外光谱分析解读

仪器分析实验有机化合物的红外光谱分析 2015年4月21日 有机化合物的红外光谱分析 开课实验室:环境资源楼312 【实验目的】 1、初步掌握两种基本样品制备技术及傅里叶变换光谱仪器的简单操作; 2、通过谱图解析及网上标准谱图的检索,了解由红外光谱鉴定未知物的一般过程; 3、掌握有机化合物红外光谱测定的制样方法,回顾基础有机化学光谱的相关知识。 【基本原理】 ? 原理概述:物质分子中的各种不同基团,在有选择地吸收不同频率的红外辐射后,发生振动能级之间的跃迁,形成各自独特的红外吸收光谱。据此,可对物质进行定性和定量分析。特别是对化合物结构的鉴定,应用更为广泛。 ? 红外吸收法: 类型:吸收光谱法; 原理:电子的跃迁:电子由于受到光、热、电等的激发,从一个能级转移到另一个能级的现象。这是因为分 子中的电子总是处在某一种运动状态中,每一种状态都具有一定的能量,属于一定的能级。当这些电子有选择地吸收了不同频率的红外辐射的能量,发生振动能级之间的跃迁,形成各自独特的红外吸收光谱。据此,可对化合物进行定性和定量分析; 条件:分子具有偶极矩。 【仪器与试剂】 1、仪器: 傅里叶变换红外光谱仪(德国Bruker公司,TENSOR 27型; 美国Thermo Fisher 公司, Nicolet 6700型);压片机; 玛瑙研钵; 红外灯。 2、试剂:NaCl窗片、KBr晶体,待分析试样液体及固体。 【实验步骤】 1、样品制备 (1)固体样品:KBr压片法 在玛瑙研钵将KBr晶体充分研磨后加入其量5%左右的待测固体样品,混合研磨直至均匀。在一个具有抛光面的金属模具上放一个圆形纸环,用刮勺将研磨好的

红外光谱分析实验报告

仪器分析实验 实验名称:红外光谱分析实验 学院:化学工程学院专业:化学工程与工艺班级: 姓名:学号: 指导教师: 日期:

一、 实验目的 1、掌握溴化钾压片法制备固体样品的方法; 2、学习并掌握美国尼高立IR-6700型红外光谱仪的使用方法; 3、初步学会对红外吸收光谱图的解析。 二、实验原理 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在0.75~1000μm 。通常又把这个波段分成三个区域,即近红外区:波长在0.75~2.5μm (波数在13300~4000cm -1),又称泛频区;中红外区:波长在 2.5~50μm (波数在4000~200cm -1),又称振动区;远红外区:波长在50~1000μm (波数在200~10cm -1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: )(10)(4 1 cm cm λσ=- 三、仪器和试剂 1、仪器: 美国尼高立IR-6700 2、试剂: 溴化钾,聚乙烯,苯甲酸 3、傅立叶红外光谱仪(FTIR)的构造及工作原理 计算机检测器样品室干涉仪光源?→??→??→??→? 四、实验步骤 1、打开红外光谱仪并稳定大概5分钟,同时进入对应的计算机工作站。 2、波数检验:将聚乙烯薄膜插入红外光谱仪的样品池处,从4000-650cm -1进行 波数扫描,得到吸收光谱。然后将所得的谱图与计算机上的标准谱图进行匹配,分析得到最吻合的图谱,即可判断物质结构。 3、测绘苯甲酸的红外吸收光谱——溴化钾压片法 取1-2mg 苯甲酸,加入在红外灯下烘干的100-200mg 溴化钾粉末,在玛瑙研钵中充分磨细(颗粒约2μm ),使之混合均匀。取出约80mg 混合物均匀铺洒在干净的压模内,于压片机上制成直径透明薄片。将此片装于固体样品架上,样品架插入红外光谱仪的样品池处,从4000-400cm -1进行波数扫描,得到吸收光谱。然后将所得的谱图与计算机上的标准谱图进行匹配。 4、结束实验,关闭工作站和红外光谱仪。

近红外光谱技术在药物分析中的应用

近红外光谱技术在药物分析中的应用 1·前言 近红外光谱分析技术是分析化学领域迅猛发展的高新分析技术,越来越引起国内外分析专家的注目,在分析化学领域被誉为分析“巨人”,它的出现可以说带来了又一次分析技术的革命。 近红外(NIR)谱区是人类认识最早的非可见光谱区,波长范围在0.75—2.5 m之间,用波数表示时则在13330—4000cm-1之间。由于近红外的吸收谱带复杂,谱峰重叠,信号弱,在分析上难以应用,长期以来没有受到人们的重视。近十多年来,随着近红外仪器的改良,新的光谱理论和光度分析方法的建立,特别是计算机技术和化学计量学的广泛应用和迅速发展,使近红外光谱技术成为目前发展最快、最引人注目的分析技术,并以其简单快速、实时在线、无损伤无污染分析等特点,在复杂物质的分析上得到广泛应用。在包括制糖和制药的许多与化学分析和品质管理有关的行业中的应用前景极其广阔。 关于近红外光谱技术在制药行业中应用的文献报道越来越多,显示了近红外光谱技术在制药领域中越来越受到人们的重视。近红外光谱分析具有的快速实时、操作简单、无损伤测定、不受样品状态影响的特点很符合药物分析的要求。因此,在制药业中原料药的分析、药物制剂中水分、有效成分的分析、药物生产品质的过程控制等方面近红外光谱技术得到了十分广泛的应用。 2·光谱介绍 近红外光是介于可见光和中红外光之间的电磁波,根据ASTM(美国试验和材料检测协会)定义是指波长在780~2526nm范围内的电

磁波,习惯上又将近红外区划分为近红外短波(780~1100nm)和近红外长波(1100~2526nm)两个区域。 近红外光谱属于分子振动光谱的倍频和主频吸收光谱,主要是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的,具有较强的穿透能力。近红外光主要是对含氢基团X-H(X=C、N、O)振动的倍频和合频吸收,其中包含了大多数类型有机化合物的组成和分子结构的信息。由于不同的有机物含有不同的基团,不同的基团有不同的能级,不同的基团和同一基团在不同物理化学环境中对近红外光的吸收波长都有明显差别,且吸收系数小,发热少,因此近红外光谱可作为获取信息的一种有效的载体。近红外光照射时,频率相同的光线和基团将发生共振现象,光的能量通过分子偶极矩的变化传递给分子;而近红外光的频率和样品的振动频率不相同,该频率的红外光就不会被吸收。因此,选用连续改变频率的近红外光照射某样品时,由于试样对不同频率近红外光的选择性吸收,通过试样后的近红外光线在某些波长范围内会变弱,透射出来的红外光线就携带有机物组分和结构的信息。通过检测器分析透射或反射光线的光密度,就可以确定该组分的含量。 3·近红外光谱技术在制药业中的应用 3·1 原料和活性组分的测定 药物加工过程中第一步就是原料的鉴定,其质量的好坏直接决定后续加工过程的成败于否,而同一类型的原料中多变因素主要是湿度和颗粒大小,近红外光谱在湿度测定中的灵敏度及其适于固体表面的表征的特性,使他能够很快地得到样品的湿度和颗粒大小的信息,然

无创血糖检测分析报告总结(图片)

无创血糖检测分析报告 1项目背景 “国家核心竞争力越来越表现为对知识产权的拥有、运用能力”,胡锦涛主席已经把知识产权战略提升到国家核心竞争力的高度。 在市场经济高速发展的今天,企业之间的竞争越来越集中于科学技术实力的竞争,其中最为突出的表现即为专利技术等知识产权资产的竞争。企业拥有专利技术的数量和质量,在很大程度上决定了企业间竞争力的高低。随着国际间竞争的不断加剧,各企业都把知识创新、技术改造作为自身发展的重中之重。作为技术和市场经济发展的双重产物,专利战略可以说是企业实施企业经营、技术创新和品牌策略的基本点。另外,专利战略与企业全球战略相结合,针对竞争对手,通过对对手专利申请情况进行深入分析,并对专利技术信息深度挖掘占据国际竞争的制高点;针对特定区域的企业,可以通过构建专利池去设置技术壁垒阻碍对手的发展,并通过收取高额专利许可费用获益。总之,专利申请战略正在成为当前企业竞争的重要组成部分。 而近几年来发生的DVD侵权、打火机索赔等事件也表明,单纯地进行高新技术的研制已不足以拥有市场竞争优势,只有将取得的专利信息等知识产权进行保护才能最终形成自身独特的市场竞争优势;另外通过对专利信息的研究,可以发现竞争对手的研究热点,构筑外部的专利网络,突破竞争对手的技术垄断,变被动借鉴为主动进攻,从而取得企业竞争的制高点。

2专利研究目的和技术范围 2.1 专利研究的目的 本报告通过对无痛(无伤)血糖检测行业的专利信息进行检索整理,分析出无痛(无伤)血糖检测行业专利申请总体趋势、主要技术领域分布、主要申请人的技术热点等信息,同时结合了大量的技术信息和市场信息,为我所制定企业发展战略提供知识产权方面的参考。 2.2 专利技术范围 无痛(无伤)血糖检测作为目前较为流行的检测方式,其主要技术包括以下几个方面: 1)通过身体的分泌物进行测试 2)通过身体对葡萄糖的消化产生的热量进行检测 3)采用光学方法检测血糖 方法及其设备 3主要分析方法和工具 3.1 SWOT战略分析法 SWOT战略分析法是一种综合考虑企业内部条件和外部环境的各种因素,进行系统评价,从而选择最佳经营战略的方法。这里,S 是指企业内部的优势(Strengths),W是指企业内部的劣势

近红外无创血糖测量的研究

项目基金:国家自然科学基金(30170261) 近红外无创血糖测量的研究3 陈民森 陈文亮 杜振辉 徐可欣 蒋诚志 (天津大学精密测试技术及仪器国家重点实验室 天津 300072) 摘 要 本文分析了光在手掌组织中的传播特性,以及经皮近红外无创血糖浓度测量原理。基于AOTF (声光可调谐滤波器)分光系统,构建了近红外经皮无创血糖检测系统, 并利用该系统对3名健康青年志愿者进行OG TT (口服葡萄糖耐量试验)实验,得到较好的测量结果。三次实验中P LS (偏最小二乘)校正集模型的RMSEP (预测均方根误差)分别为0169mm ol/L 、0149mm ol./L 、0154mm ol/L 。关键词 近红外 经皮的 无创血糖检测 糖尿病及其并发症已成为严重威胁人类健康的 世界性公共卫生问题。目前还没有根治糖尿病的有效手段,主要是采取控制血糖浓度以预防或减轻并发症的发生,特别是通过频繁地监测血糖浓度并及时调整口服降糖药物和胰岛素的用量。在各种血糖浓度测量方法中,近红外光谱无创血糖检测技术具有检测快速、无创伤、不易感染、无污染等优点,是血糖测量技术的发展趋势,也是能够真正实现糖尿病人实时自测血糖的最佳方案1。利用近红外光谱分析技术进行人体血糖浓度的无创测量,已成为当前国内外研究的热点课题。 血液中的糖类主要是葡萄糖,简称血糖。其分子式为C 6H 12O 6,包含有多个羟基(O —H )和甲基(C —H ),均是能够在近红外光谱区产生吸收的主要含氢官能团,从而为利用近红外光谱测定葡萄糖提供了理论基础。皮肤和大多数组织一样,以葡萄糖和脂肪作为能源物质。尤其在真皮乳头层中含有丰富的血管丛,通过分析经过真皮的近红外光谱特征来测量血糖浓度,被认为是一种可行的血糖浓度测量方法。近年来,近红外经皮漫反射光谱测量血糖浓度检测技术得到了较好的发展2。 本文构建了近红外光谱无创血糖检测系统,以手掌作为测量部位,对真皮内的血糖浓度进行测量研究。 1 经皮漫反射光谱无创血糖测量原理 111 手掌组织的光学特性 手掌组织具有明显的分层结构特性3 ,由表皮层、真皮层、皮下组织层和肌肉层组成。其中,皮 肤(包括表皮层和真皮层)的全层厚度约为4mm , 图1 近红外光在手掌组织中的传输示意图 表皮层的厚度约为013mm 左右,具体厚度随不同人的年龄、性别等有所差别。由于手掌组织的皮肤层较厚,而测量所用近红外光源能量相对较弱,因此,光子进入皮下脂肪组织和肌肉层的概率很低。近红外光在手掌组织内的传输特性(见图1)。I 0光射入手掌组织,忽略光在皮下组织层中的传递,则经手掌表面出射的光实际由3部分组成:入射光在手掌表面的镜面反射光I 1,直接由表皮层扩散反射出的光I 2,达到真皮层后扩散反射出的光I 3。 由于表皮层内不含有血管,皮肤组织中的血管都分布在真皮层中,因此,在经皮测量血糖浓度时,只需要分析经过真皮后扩散反射出来的光谱l 3下即可。设某一波长入射光在手掌组织内传输的光程长为l λ,则其扩散反射光的表达式为: I 3( λ)=I 0(λ)e -μeff (λ)l λ(1)μeff (λ)为该波长光的有效衰减系数(mm -1)μeff =μeff-epi +μeff-derm (2)μeff-epi =3μs -epi [μa-epi +U s -epi (1-g epi )](3)μeff-derm =3μs -derm [μa-derm +μs -derm (1-g derm )] (4) 8 3现代仪器 二○○四年?第四期

仪器分析红外光谱实验

仪器分析实验报告 实验名称:红外光谱分析(IR)实验学院:化学工程学院 专业:化学工程与工艺 班级:化工112 姓名:王文标学号11402010233 指导教师:张宗勇 日期:2014.4.29

一、 实验目的 1、掌握溴化钾压片法制备固体样品的方法; 2、学习并掌握美国尼高立IR-6700型红外光谱仪的使用方法; 3、初步学会对红外吸收光谱图的解析。 二、实验原理 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在0.75~1000μm 。通常又把这个波段分成三个区域,即近红外区:波长在0.75~2.5μm (波数在13300~4000cm -1),又称泛频区;中红外区:波长在 2.5~50μm (波数在4000~200cm -1),又称振动区;远红外区:波长在50~1000μm (波数在200~10cm -1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: )(10)(4 1 cm cm λσ=- 作为红外光谱的特点,首先是应用面广,提供信息多且具有特征性,故把红外光谱通称为“分子指纹”。它最广泛的应用还在于对物质的化学组成进行分析。用红外光谱法可以根据光谱中吸收峰的位置和形状来推断未知物的结构,依照特征吸收峰的强度来测定混合物中各组分的含量。其次,它不受样品相态的限制,无论是固态、液态以及气态都能直接测定,甚至对一些表面涂层和不溶、不熔融的弹性体(如橡胶)也可直接获得其光谱。它也不受熔点、沸点和蒸气压的限制,样品用量少且可回收,是属于非破坏分析。而作为红外光谱的测定工具-红外光谱仪,与其他近代分析仪器(如核磁共振波谱仪、质谱仪等)比较,构造简单,操作方便,价格便宜,最常用于工业及实验研究领域,如医药鉴别,人造皮革中异氰酸酯基确定等等。因此,它已成为现代结构化学、分析化学最常用和不可缺少的工具。 根据红外光谱与分子结构的关系,谱图中每一个特征吸收谱带都对应于某化合物的质点或基团振动的形式。因此,特征吸收谱带的数目、位置、形状及强度取决于分子中各基团(化学键)的振动形式和所处的化学环境。只要掌握了各种基团的振动频率(基团频率)及其位移规律,即可利用基团振动频率与分子结构的关系,来确定吸收谱带的归属,确定分子中所含的基团或键,并进而由其特征振动频率的位移、谱带强度和形状的改变,来推定分子结构。 红外光谱仪可分为色散型和干涉型。色散型红外光谱仪又有棱镜分光型和光栅分光型,干涉型为傅立叶变换红外光谱仪(FTIR ),最主要的区别是FTIR 没

固体红外光谱实验报告

KBr压片法测定固体样品的红外光谱 一、实验目的 1、掌握红外光谱分析法的基本原理。 2、掌握Nicolet5700智能傅立叶红外光谱仪的操作方法。 3、掌握用KBr压片法制备固体样品进行红外光谱测定的技术和方法。 4、了解基本且常用的KBr压片制样技术在红外光谱测定中的应用。 5、通过谱图解析及标准谱图的检索,了解由红外光谱鉴定未知物的一般过程。 二、仪器及试剂 1 仪器:美国热电公司Nicolet5700智能傅立叶红外光谱仪;HY-12型手动液压式红外压片机及配套压片模具;磁性样品架;红外灯干燥器;玛瑙研钵。 2 试剂:苯甲酸样品(AR);KBr(光谱纯);无水丙酮;无水乙醇。 三、实验原理 红外吸收光谱法是通过研究物质结构与红外吸收光谱间的关系,来对物质进行分析的,红外光谱可以用吸收峰谱带的位置和峰的强度加以表征。测定未知物结构是红外光谱定性分析的一个重要用途。根据实验所测绘的红外光谱图的吸收峰位置、强度和形状,利用基团振动频率与分子结构的关系,来确定吸收带的归属,确认分子中所含的基团或键,并推断分子的结构,鉴定的步骤如下: (1)对样品做初步了解,如样品的纯度、外观、来源及元素分析结果,及物理性质(分子量、沸点、熔点)。 (2)确定未知物不饱和度,以推测化合物可能的结构; (3)图谱解析 ①首先在官能团区(4000~1300cm-1)搜寻官能团的特征伸缩振动; ②再根据“指纹区”(1300~400cm-1)的吸收情况,进一步确认该基团的存在以及与其它基团的结合方式。

图1 仪器的基本结构 四、实验步骤 1. 红外光谱仪的准备 (1)打开红外光谱仪电源开关,待仪器稳定30 分钟以上,方可测定; (2)打开电脑,选择win98系统,打开OMNIC E.S.P软件;在Collect菜单下的Experiment Set-up 中设置实验参数; (3)实验参数设置:分辨率 4 cm-1,扫描次数32,扫描范围4000-400 cm-1;纵坐标为Transmittance 2.固体样品的制备 (1)取干燥的苯甲酸试样约1mg于干净的玛瑙研钵中,在红外灯下研磨成细粉,再加入约150mg干燥且已研磨成细粉的KBr一起研磨至二者完全混合均匀,混合物粒度约为2μm以下(样品与KBr的比例为1:100~1:200)。 (2)取适量的混合样品于干净的压片模具中,堆积均匀,用手压式压片机用力加压约30s,制成透明试样薄片。 3.样品的红外光谱测定 (3)小心取出试样薄片,装在磁性样品架上,放入Nicolet5700智能傅立叶红外光谱仪的样品室中,在选择的仪器程序下进行测定,通常先测KBr的空白

现代近红外光谱分析仪工作原理

现代近红外光谱分析仪工作原理 现代近红外光谱分析仪工作原理 2011年02月08日 20世纪90年代初,外国厂商开始在我国销售近红外光谱分析仪器产品,但在很长时间内,进展不大,其原因主要是:首先,近红外光谱分析要求光谱仪器、光谱数据处理软件(主要是化学计量学软件)和应用样品模型结合为一体,缺一不可。但被分析样品会由于样品产地的不同而不同,国内外的样品通常有差异,因此,进口仪器的应用模型一般不适合分析国内样品。如果自己建立模型,就需要操作人员了解和熟悉化学计量学知识和软件,而外商在中国的代理机构缺乏这方面的专业人才,不能有效地根据用户的需要组织培训,因此,用户对这项技术缺乏全面了解,影响到了它的推广使用。其次,进口仪器价格昂贵,售后技术服务费用也往往超出大多数用户的承受能力。 现代近红外光谱分析技工作原理 近红外光谱主要是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的。近红外光谱记录的是分子中单个化学键的基频振动的倍频和合频信息,它常常受含氢基团X-H(X-C、N、O)的倍频和合频的重叠主导,所以在近红外光谱范围内,测量的主要是含氢基团X-H振动的倍频和合频吸收。 由于倍频和合频跃迁几率低,而有机物质在NIR光谱区为倍频与合频吸收,所以消光系数弱,谱带重叠严重。因此从近红外光谱中提取有用信息属于弱信息和多元信息,需要充分利用现有的光机技术、电子技术和计算机技术进行处理。计算机技术主要包括光谱数据处理和数据关联技术。光谱数据处理是消除仪器因素(灯及测量方式等)环境因素(如温度等)和样品物态(如颜色、形态等)等对光谱的影响。常采用的方法有平滑、微分、基线漂移扣减、多元散射校正(MSC)和有限脉冲响应滤波(FIR)等也可以用小波变换来进行部分处理。数据关联技术主要是化学计量学方法。化学计量学的发展使多组分分析中多元信息处理理论和技术日益成熟,解决了近红外光谱区重叠的问题。通过关联技术可以实现近红外光谱的快速分析。在近红外光谱的应用中我们所关心的是被测样品的组成或各种物化性质,因此,如何提取这些有用信息是近红外光谱分析的技术核心。现在的许多研究与应用表明,

无创血糖检测分析报告图片

无创血糖检测分析报告1项目背景 “国家核心竞争力越来越表现为对知识产权的拥有、运用能力”,胡锦涛主席已经把知识产权战略提升到国家核心竞争力的高度。 在市场经济高速发展的今天,企业之间的竞争越来越集中于科学技术实力的竞争,其中最为突出的表现即为专利技术等知识产权资产的竞争。企业拥有专利技术的数量和质量,在很大程度上决定了企业间竞争力的高低。随着国际间竞争的不断加剧,各企业都把知识创新、技术改造作为自身发展的重中之重。作为技术和市场经济发展的双重产物,专利战略可以说是企业实施企业经营、技术创新和品牌策略的基本点。另外,专利战略与企业全球战略相结合,针对竞争对手,通过对对手专利申请情况进行深入分析,并对专利技术信息深度挖掘占据国际竞争的制高点;针对特定区域的企业,可以通过构建专利池去设置技术壁垒阻碍对手的发展,并通过收取高额专利许可费用获益。总之,专利申请战略正在成为当前企业竞争的重要组成部分。 而近几年来发生的DVD侵权、打火机索赔等事件也表明,单纯地进行高新技术的研制已不足以拥有市场竞争优势,只有将取得的专利信息等知识产权进行保护才能最终形成自身独特的市场竞争优势;另外通过对专利信息的研究,可以发现竞争对手的研究热点,构筑外部的专利网络,突破竞争对手的技术垄断,变被动借鉴为主动进攻,从而取得企业竞争的制高点。

2专利研究目的和技术范围 2.1 专利研究的目的 本报告通过对无痛(无伤)血糖检测行业的专利信息进行检索整理,分析出无痛(无伤)血糖检测行业专利申请总体趋势、主要技术领域分布、主要申请人的技术热点等信息,同时结合了大量的技术信息和市场信息,为我所制定企业发展战略提供知识产权方面的参考。 2.2 专利技术范围 无痛(无伤)血糖检测作为目前较为流行的检测方式,其主要技术包括以下几个方面: 1)通过身体的分泌物进行测试 2)通过身体对葡萄糖的消化产生的热量进行检测 3)采用光学方法检测血糖 方法及其设备 3主要分析方法和工具 3.1 SWOT战略分析法 SWOT战略分析法是一种综合考虑企业内部条件和外部环境的各种因素,进行系统评价,从而选择最佳经营战略的方法。这里,S 是指企业内部的优势(Strengths),W是指企业内部的劣势

红外光谱实验报告

红外光谱实验报告 一、实验原理: 1、红外光谱法特点: 由于许多化合物在红外区域产生特征光谱,因此红外光谱法广 泛应用于这些物质的定性和定量分析,特别是对聚合物的定性 分析,用其他化学和物理方法较为困难,而红外光谱法简便易 行,特别适用于聚合物分析。 2、红外光谱的产生和表示 红外光谱定义:分子吸收红外光引起的振动能级跃迁和转动能级跃 迁而产生的吸收信号。 分子发生振动能级跃迁需要的能量对应光波的红外区域分类为: i.近红外区:10000-4000cm-1 ⅱ.中红外区:4000-400cm-1——最为常用,大多数化合物的化键振 动能级的跃迁发生在这一区域。 ⅲ.远红外区:400-10cm-1 产生红外吸收光谱的必要条件: 1)分子振动:只有在振动过程中产生偶极矩变化时才能吸收红外辐射。 ⅰ.双原子分子的振动:(一种振动方式)理想状态模型——把两个 原子看做由弹簧连接的两个质点,用此来 描述即伸缩振动;

图1 双原子分子的振动模型 ⅱ.多原子分子的振动:(简正振动,依据键长和键角变化分两大类) 伸缩振动:对称伸缩振动 反对称伸缩振动 弯曲振动:面内弯曲:剪切式振动 (变形振动)平面摇摆振动 面外弯曲振动:扭曲振动 非平面摇摆振动 ※同一种键型,不对称伸缩振动频率大于对称伸缩振动频率,伸缩振动频率大于弯曲振动频率。 ※当振动频率和入射光的频率一致时,入射光就被吸收,因而同一基团基本上总是相对稳定地在某一特定范围内出现吸收峰。ⅲ.分子振动频率: 基频吸收(强吸收峰):基态到第一激发态所产生分子振动 的振动频率。 倍频吸收(弱吸收峰):基态到第二激发态,比基频高一倍 处弱吸收,振动频率约为基频两倍。 组频吸收(复合频吸收):多分子振动间相互作用,2个或2

近红外光谱

近红外光谱在果蔬品质无损检测中的应用研究进展 摘要 本论文介绍了近红外光谱无损检测机理,近红外光谱在果实品质的定量分析和定性分析的研究概况,并对近红外光谱对果实品质无损检测存在问题及前景做了简单的分析。 关键词 无损检测;近红外光谱;内部品质;果蔬 1 引言 1.1 果蔬无损检测研究概况 果蔬品质主要是指果蔬形态、颜色、密度、硬度以及含糖量、水分、酸度、病变等。果蔬品质检测技术作为保障果蔬质量、提升产品市场竞争力的一种手段,可以分为有损检测和无损检测两种。有损检测一般需要借助传统的化学分析测定方法或是现代仪器分析方法( 如高效液相色谱分析、气相色谱分析、质谱分析等) ,测定过程比较烦琐、人力物力耗费大、检测成本非常高。无损检测又称为非破坏性检测,是利用果蔬的物理性质,如力学性质、热学性质、电学性质、光学性质和声学性质等,在获取样品信息的同时保证了样品的完整性,检测速度较传统的化学方法迅速,且能有效地判断出从外观无法获得的样品内部品质信息。目前,果蔬品质与安全的无损检测技术主要包括: 光谱分析技术、光谱成像技术、机器视觉技术、介电特性检测技术、声学特性及超声波检测技术、力学检测技术、核磁共振检测技术、生物传感器技术、电子鼻与电子舌技术等等。针对不同的检测对象和检测指标,这些无损检测技术各具优势。 1.2 近红外光谱无损检测研究概况 近红外光谱分析( Near Infrared Spectroscopy,NIR) 技术是近十年来发展最为迅速的高新分析技术之一,以其快速、简便、高效等优势已被人们认识和接受,并且其应用范围也由谷物、饲料扩展到食品和果蔬等领域。水果是重要的农产品,消费者在选购水果时对于内部品质如口感、糖度和酸度等极为看重。而近红外光谱分析技术将其用于水果内部品质检测具有快速、非破坏性、无需前处

红外光谱实验报告

一、实验目的 1、掌握溴化钾压片法制备固体样品的方法; 2、学习并掌握美国尼高立IR-6700型红外光谱仪的使用方法; 3、初步学会对红外吸收光谱图的解析。 二、实验原理 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在~1000μm。通常又把这个波段分成三个区域,即近红外区:波长在~μm(波数在13300~4000cm-1),又称泛频区;中红外区:波长在~50μm(波数在4000~200cm-1),又称振动区;远红外区:波长在50~1000μm(波数在200~10cm-1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: 三、仪器和试剂 1、仪器:美国尼高立IR-6700 2、试剂:溴化钾,聚乙烯,苯甲酸 3、傅立叶红外光谱仪(FTIR)的构造及工作原理 四、实验步骤

1、波数检验:将聚苯乙烯薄膜插入红外光谱仪的样品池处,从4000-650cm-1进行波数扫描,得到吸收光谱。 2、测绘苯甲酸的红外吸收光谱——溴化钾压片法 取1-2mg苯甲酸,加入在红外灯下烘干的100-200mg溴化钾粉末,在玛瑙研钵中充分磨细(颗粒约2μm),使之混合均匀。取出约80mg混合物均匀铺洒在干净的压模内,于压片机上制成直径透明薄片。将此片装于固体样品架上,样品架插入红外光谱仪的样品池处,从4000-400cm-1进行波数扫描,得到吸收光谱。 五、注意事项 1、实验室环境应该保持干燥; 2、确保样品与药品的纯度与干燥度; 3、在制备样品的时候要迅速以防止其吸收过多的水分,影响实验结果; 4、试样放入仪器的时候动作要迅速,避免当中的空气流动,影响实验的准确性。 5、溴化钾压片的过程中,粉末要在研钵中充分磨细,且于压片机上制得的透明薄片厚度要适当。 六、数据处理 该图中在波数700~800、1500~1600、2800~2975左右有峰形,证明了该物质中可能有烯烃的C-H变形振动,C-C间的伸缩振动,同时也拥有烷烃的C-H伸缩振动,推测为聚乙烯的红外谱图。 谱带位置/cm-1吸收基团的振动形式 )n—C— n≥4) (—C—(CH 2

相关文档
最新文档