探讨制冷剂的选用与制冷剂的替代与发展

探讨制冷剂的选用与制冷剂的替代与发展
探讨制冷剂的选用与制冷剂的替代与发展

西南交通学院

毕业设计论文

题目:探讨制冷剂的选用与制冷剂的替代与发展系别:车辆工程系

专业:制冷与冷藏技术

学制:三年

姓名:

学号:

指导教师:

二0一一年十月二十日

目录

摘要 (4)

第一章引言 (5)

第二章当前的制冷剂 (6)

2.1 制冷剂的发展 (6)

2.2 制冷剂的使用现状 (6)

第三章制冷剂的替代 (8)

第四章制冷剂的发展趋势与环境的可持续发展 (10)

4.1 制冷剂的发展趋势 (10)

4.2 可持续发展的概念 (11)

4.3 制冷剂替代中的可持续发展观 (12)

第五章几种制冷剂的应用 (13)

5.1 二氧化碳(R744) (13)

5.2HFO-1234yf (13)

5.3 添加纳米材料的新型制冷剂 (14)

结束语 (16)

参考文献 (17)

摘要

中国第一台窗式空调器诞生在1965年的上海。现在,我国空调行业的房间空调器产量已经跃居为全球第一,成为名副其实的空调大国。家用空调器的市场竞争已经进入白热化,能效比、高空气品质成为竞争的焦点。回顾了制冷剂使用与发展的历程,阐述了现行制冷剂存在的问题与制冷剂替代的现状。探讨了未来方向与一些候选制冷剂。提出了对现有国际协定相关方案的展望,其中包括了分别为防止平流层臭氧耗损与全球气候变化的蒙特利尔与京都议定书的分析。提出了不能孤立的看待各个环境问题,应把若干环境问题作为整体而采取综合协调的的措施,实现可持续发展。

本文主要阐述制冷剂的替代物与环境的可持续发展。

关键词:制冷剂;环境;可持续发展;纳米材料、

第一章引言

随着时代的发展,制冷与空调行业已经成为衡量一个社会经济实力、科技水平与人民生活质量的重要标志之一,制冷技术在工业、农业、科学技术及国防等领域具有越来越重要的作用。与其他的技术型产业一样,环境保护、经济发展与技术进步的要求也是制冷空调产业发展的推动力。目前制冷空调业所面临的最重要的问题,也可以说最大的挑战与机遇就是如何实现制冷剂与环境的可持续发展目标。

在制冷技术飞速发展的过程中,制冷剂的发明与发展起着至关重要的作用,然而臭氧层的破坏和全球范围气候变化,成为当前世界所面临的主要环境问题。根据《蒙特利尔议定书》的要求,从2010年元月起,我国将全面禁用氟利昂类物质,特别是新生产的家电产品中将全面禁止使用氟利昂。目前,使用氟利昂的白色家电主要有空调、冰箱、冷柜。由于早在2007年国家就禁止销售含氟冰箱、冷柜,因此,目前国家禁止使用氟利昂影响最直接的就是空调业。在1997年签订《京都议定书》以前,CFCs和HCFCs类的制冷剂替代研究主要以保护臭氧为目的,主要研制HCFs类制冷剂,根据《蒙特利尔议定书》CFCs在发达国家已经被禁用,HCFCs因为对臭氧仍具有破坏作用也即将被淘汰。由于GWP较高,《京都议定书》将替代CFCs和HCFCs的HFCs物质列入限控物质清单中,要求发达国家控制HFCs的排放。由于制冷空调热泵行业广泛采用的CFC与HCFC 类制冷剂对臭氧层有破坏作用以及能产生温室效应.所以绿色环保制冷剂的替代和发展成为众多从事制冷剂研究的科研人员关注的热门话题。

本文通过对制冷剂的使用现状及替代物与环境的可持续发展进行分析。从而比较各种新型制冷剂对环境的影响。

第二章当前的制冷剂

2. 1制冷剂的发展

制冷的历史可以追溯到古代,当时用以储冰和一些蒸发进程。从历史上看,制冷剂的发展经历了三个阶段:

第一阶段:从1830年至1930年,1834年帕金斯第一次开发蒸汽压缩制冷循环,其制冷剂为二乙醚(乙基醚),后来又有NH3、HC、CO2,等作为制冷剂,然而它们多数是可燃的或有毒的,或者两者兼有,甚至有很强的腐蚀性和不稳定性,经常发生事故,出于安全性的考虑。尽管用了100年之久,当出现了CFC 和HCFC制冷剂后,还是当机立断,实现了第一次转轨

第二阶段:从1930年至1990年,1931年梅杰雷从众多碳氢化合物中选出R12,随后一系列卤代烃制冷剂相继出现,这些物质性能优良、无毒、不燃,能适应不同的温度区域,显著地改善了制冷剂的性能。几种制冷剂在空调中变得很普遍,包括CFC11、CFC12、CFC113、CFC114和HCFC22。到1970年代中期,对臭氧层变薄的关注浮出水面。出于环保的需要,不得不被迫实现第二次转轨。

第三阶段:从1990年至今,进入以HFC制冷剂为主的时期。

2. 2制冷剂的使用现状

目前使用较多的制冷剂是CFCs和HCFCs,其次是HFCs。对于CFCs发达国家已于1996年1月1日起禁止生产和使用,但一些发展中国家仍然在使用。CFCs的禁用是因为CFCs会在大气中分裂并释放出破坏臭氧层的氯原子。据UNEP (联合国环境规划署)提供的资料,如果平流层的臭氧总量减少1%,预计到达地面的有害紫外线将增加2%。有害紫外线的增加,会产生以下一些危害:

(1)使患皮肤癌的可能性增加。

(2)使患白内障的机会增加。

(3)破坏人体免疫系统。

(4)降低农作物产量和使质量劣化。

(5)对浮游植物的生长产生不利的影响。

(6)可能导致某些生物物种的突变。

因此保护臭氧已经引起了各国的高度重视,成为一项全球性的紧迫任务。同时CFCs,HCFCs和新一代HFCs制冷剂都被认为是温室气体,它们对全球气候变暖影响的大小,取决于它们吸收红外能量的能力和它们在大气中延续的时间,可用GWP(全球变暖潜值)来度量它们对全球变暖作用的大小,其大小是相对于CO2的温室效应而言的,规定CO2的GWP值为1。

由于温室效应将引起气候变化,目前国际社会所讨论的气候变化问题,主要是指温室气体增加产生的气候变暖的气候变化问题,近年来,世界各国出现了几百年来历史上最热的天气,厄尔尼诺现象也频繁发生,给各国造成了巨大经济损失。人类对气候变化,特别是气候变暖,所导致的气象灾害的适应能力是相当弱的,需要采取行动防范。按现在的一些发展趋势,科学家预测有可能出现的影响和危害有:

(1)海平面上升。全球气候变暖导致的海洋水体膨胀和两极冰雪融化,沿海地区可能会遭受淹没或海水入侵,海滩和海岸遭受侵蚀,土地恶化,海水倒灌并影响沿海养殖业。

(2)影响农业和自然生态系统。全球气温和降雨形态的迅速变化,可能使世界许多地区的农业和自然生态系统无法适应或不能很快适应这种变化,造成大范围的森林植被破坏和农业灾害。

(3)加剧洪涝、干旱及其他气象灾害。全球平均气温略有上升,就可能带来频繁的气候灾害——过多的降雨、大范围的干旱和持续的高温,造成大规模的灾害损失。

(4)影响人类健康。气候变暖有可能加大疾病危险和死亡率,增加传染病。高温会给人类的循环系统增加负担,热浪会引起死亡率的增加。

第三章制冷剂的替代

目前使用的制冷剂对环境产生巨大的破坏作用,促使着人们积极的寻求能够保护环境的新型替代制冷剂。自1987年《蒙特利尔议定书》签订以来,各国纷纷展开了对CFCs和HCFCs物质的替代物的研究,在1997年签订《京都议定书》以前,CFCs和HCFCs类的制冷剂替代研究主要以保护臭氧为目的,主要研制HCFs 类制冷剂。但《京都议定书》签订以后,人们转而同时注重臭氧保护和减小温室效应,要求制冷剂不但要OPD值较小,GWP值也要较小。根据《蒙特利尔议定书》CFCs在发达国家已经被禁用,HCFCs因为对臭氧仍具有破坏作用也即将被淘汰。由于GWP较高,《京都议定书》将替代CFCs和HCFCs的HFCs物质列入限控物质清单中,要求发达国家控制HFCs的排放。所有这些都对制冷剂的替代研究提出了更高的要求。因此理想的替代制冷剂除应有较低的ODP值和GWP值外,还应具有良好的安全性、经济性、优良的热物性等优点,争取做到既环保又节能。新型的替代制冷剂主要包括人工合成型和天然型两大类,有单一工质和混合工质两个方面,混合工质又可分为共沸混和物、近共沸混和物和非共沸混和物三种。

1. 目前合成制冷剂方面主要有以下几种:

(1) R134a

R134a的ODP=0,GWP=420,不可燃,无毒,无味,使用安全,其热物性质与R12十分接近,可用来替代R12,用于汽车空调和家用冰箱等领域。但使用R134a,会使能耗增大,且与CFC一12用的润滑油不相溶,与材料的兼容性方面也不同CFC一12。另外它还是一种温室效应气体,所以仍然存在一定的缺陷。

(2) R152a

从物化性方面看HFC一152a也与CFC一12接近,用R152a替代R12后能耗可降低3%一7%,但其在空气中含量达4.8%一16.8%时具有可燃性,因此推广使用收到一定的限制。而它可与其他物质混合,组成非共沸混合物来替代CFC一12。

(3) R410A

R410A是近共沸混合制冷剂,是由质量分数为50%R32和50%R125组成。

ODP=0,主要用来替代R22,单位容积制冷量较大,传热性能及流动性能较好,但同温度下压力值比R22高约60%。

(4) R407C

R407C是非共沸混合制冷剂,是由质量分数为23%的R32、25%的R125和51%的R134a组成,ODP=0,单位容积制冷量大,但传热性能较差。

2. 天然制冷剂方面主要有:

(1) 碳氢化合物

目前作为制冷剂应用的碳氢化合物主要是丙烷(R290)、丁烷(R600)和异丁烷(R600a)等,其中R600a已在欧洲和一些发展中国家广泛用于冰箱中,并

且它符合《京都议定书》的要求,ODP=0,GWP=15,环保性能好,成本低,运行压力低,噪声小,但其易燃,易爆。此外R290和R6OOa组成的混合制冷剂也有一定的发展使用。

(2) 氨(R717)

氨已被使用达120年之久而至今仍在使用。其ODP=0、GWP:0,具有优良的热力性质,价格廉且容易检漏。不过氨有毒性而且可燃,应当引起注意,不过一百多年的使用记录表明,氨的事故率是很低的,今后必须找到更好的安全办法,如减少充灌量,采用螺杆式压缩机,引入板式换热器等等。然而,其油溶性、与某些式压缩机,引入板式换热器等等。

(3) 二氧化碳(R744)

CO2是自然界天然存在的物质,ODP=0,GWP=1。来源广泛、成本低廉,CO2安全无毒,不可燃,适应各种润滑油常用机械零部件材料,即便在高温下也不分解产生有害气体。CO2的蒸发潜热较大,单位容积制冷量为人工制冷剂的3~10倍。经过汽车空调的实验,CO2系统的效率虽然比R12系统的效率低一些,但是CO2系统具有很大的提高潜力,未来可望达到与R12相当的效率水平。故压缩机及部件尺寸较小;绝热指数较高K=1.30,压缩机压比约为2.5~3.0,比其他制冷系统低,容积效率相对较大,接近于最佳经济水平,有很大的发展潜力。当然,除了以上提到的制冷剂外还有很多新型的替代产品,如清华大学研制的清华三号,清华四号等混合制冷剂也取得了不错的效果。

第四章制冷剂的发展趋势与环境的可持续发展

4.1制冷剂的发展趋势

为了保护环境,减小温室效应,那么制冷剂的发展趋势应符合两方面的要求:一是环保。纵观制冷剂的发展历史,我们不难看出环保是其中的决定性因素。使用绿色环保的制冷剂已经是大势所趋,绿色环保制冷剂可以是合成的,也可以是天然的,首先都应是环保的。虽然合成的环保制冷剂也对臭氧不会造成破坏,但从地球生态的可持续发展来看天然制冷剂是最理想的选择,因为天然制冷剂本来就是地球生态系统中存在的,无论是使用还是排放到环境中,取之于自然回之于自然,对环境的影响比合成制冷剂都小的多,相信随着技术的不断进步,天然制冷剂必将大有发展。2003年9月为纪念“国际臭氧层日”,联合国环境规划署和国际气象组织在巴黎发表了由37个国家250名专家联合作出的关于大气臭氧层状况的评估报告。报告指出,自从保护臭氧层的蒙特利尔协议得到183个国家签署之后,各国做了很多努力,大气臭氧层已出现了恢复的迹象,但在今后几十年中依然很脆弱。1998年以来的研究表明,破坏同温层臭氧层的气体水平几乎已经达到顶点,但是破坏对流层内臭氧层的化学物质总量正在以缓慢的速度下降。其表现形式是:南极上空的臭氧层空洞近几十年来一直在扩大,但近年来速度已经放慢低于20世纪80年代水平;北极上空的臭氧层空洞正在缩小,表明臭氧层正在恢复。

二是节能。随着人们生活水平的不断提高,人们对空调设备的需求也会越来越大。同时其消耗的大量的能源也越来越引起人们的注意,2009年,我国18个省市出现电力紧缺问题,中国电监会的一项调查显示,供需矛盾加剧造成今夏电力吃紧,其中空调制冷负荷快速增长是不可忽视因素。我国华东、华中、华南地区持续高温,空调制冷负荷猛增。华东电网、南方电网、华中电网空调制冷负荷比重已超过30%,个别省电网甚至接近40%。而电能的产生又要消耗大量的化石燃料,如煤、石油等,不但造成大量的不可再生能源的消耗,而且燃烧产物如CO2等还可引起温室效应等环境问题。因此,我们除了改进制冷技术外,还可以从制冷剂出发研究新型节能制冷剂,从而降低能耗。据了解,在国际市场上,目前发达国家将含氟量为低级的制冷剂作为含氟量为低级的制冷剂的替代品。但是其只是过渡产品,并不是完美替代品,因为含氟量为低级的制冷剂虽对臭氧层破

坏为零,但其造成的温室效应依然严重,未来无氟制冷剂将是发展趋势。

综上所述,制冷剂的发展是与环境保护和地球生态环境的可持续发展密切相关的,制冷剂的发展趋势体现了环境的可持续发展的要求。

自1987年生效的《蒙特利尔议定书》强制性逐步淘汰氟制冷剂以来,截至2010年底,发达国家在淘汰了含氟量为高级的制冷剂基础上,又已将含氟量为中级的制冷剂淘汰。

按照缔约国对《蒙特利尔议定书》的履约进程,氟制冷剂的淘汰顺序为:含氟量为高级的制冷剂(全氯氟烃)被含氟量为中级的制冷剂(氢氯氟烃)替代,含氟量为中级的制冷剂被含氟量为低级的制冷剂(氢氟烃)替代,含氟量为低级的制冷剂最终被无氟制冷剂替代。

据统计,1997年,在发达国家率先淘汰了含氟量为高级的制冷剂之后,含氟量为中级的制冷剂其生产量和消费量每年以超过20%的速度递增。21世纪初,在蒙特利尔议定书多边基金的资助下,中国建立了一大批含氟量为中级的制冷剂生产企业。并在2007年淘汰了含氟量为高级的制冷剂。但是很快含氟量为中级的制冷剂的致命伤——温室效应影响指数较高的问题被发现。于是,含氟量为中级的制冷剂也进入了被淘汰的行列。2007年9月,经修正的《蒙特利尔议定书》明确2030年完成其淘汰。

世界各国近几年已经陆陆续续停止含氟制冷剂,欧盟已于2002年全面禁止使用,日本已于2004年开始禁止使用,美国也于2010年起全面停止其生产和消费,而中国才刚刚开始。我国是目前全球最大的含氟量为中级的制冷剂生产和使用国,其产量占到全球的65%,使用量占到全球的40%。

根据《蒙特利尔议定书》的规定,2013年发展中国家含氟量为中级的制冷剂生产和使用分别冻结在2009和2010年两年平均水平,2015年在这一冻结水平上削减10%,2020年削减35%,2025年削减67.5%,2030年实现除维修和特殊用途以外的完全淘汰。我国作为发展中国家,要严格履约。

4.2可持续发展的概念

可持续发展的概念源于环境保护。可持续发展的思想是从20世纪70年代以后逐渐形成的。1980年,联合国向全世界呼吁:“必须研究自然的、社会的、生态的、经济的发展及自然资源利用过程中的基本关系,确保全球持续发展。”1987

年,联合国世界环境与发展委员会在《我们共同的未来》报告中指出,可持续发展是指“既满足当代人的需要,又不损害后代人满足需要的能力的发展”。这一定义在1992年联合国环境与发展大会上得到了各国的共识。可持续发展是指生态、经济和社会三者的协调发展。其中生态可持续发展以保护自然为基础,与资源和环境的承载能力相适应。在发展的同时,必须保护环境,包括控制环境污染和改善环境质量,保护生物多样性和地球生态的完整性,保证以持续的方式使用可再生资源,使人类的发展保持在地球承载能力之内。

4.3制冷剂替代中的可持续发展观

当前环境变暖引起的气候变化,臭氧层空洞等已成为全球性的环境问题,如果任其发展下去将对人类的生存和发展构成严峻的挑战。因此在制冷剂的替代研究过程中应该加强对生态环境的保护意识,不能只看到眼前的利益,而同时要注重生态环境与人类协调的,可持续的发展。可持续发展的核心是经济发展与保护资源、保护生态环境的协调一致,是为了让子孙后代能够享有充分的资源和良好的自然环境。通过近年来制冷剂替代工作的进展,可以看到人们不再只注重制冷剂的热物性,而更加注重其环保性。在《蒙特利尔议定书》签订以前制冷剂的研究一般以良好的热力学性质和物理、化学性质等为主,如CFC系列的R11,R12等都具有良好的热力性能和化学稳定性,且无毒,不燃,不爆等,但对臭氧层有很大的破坏作用,且能够引起温室效应。在《蒙特利尔议定书》签订以后,在制冷剂的研究替代中首先考虑到的是减小制冷剂对臭氧的破坏作用,比如HCFC系列的R22虽然仍对臭氧有破坏作用但比R11和R12小的多。而HFC制冷剂如R134a 已对臭氧没有任何破坏作用。1997年签订的《京都议定书》对于制冷剂的替代提出了很高的要求,也更加顺应了环境的可持续发展的要求,其不但要求替代制冷剂要有较低的ODP,而且具有较低的GWP,这样HFCs也面临淘汰的危险。从上面这些内容可以看出,在制冷剂的替代中是环境的可持续发展这只无形的大手在起着作用,它不但推动这制冷剂的替代研究工作的发展,而且也为制冷剂的发展指明了发展方向。

总的来说制冷剂的发展趋势应该满足生态环境可持续发展的要求,并且推动其进一步发展。

第五章几种制冷剂的应用

5.1二氧化碳(R744)

在常用的自然工质中, CO2最具竞争力,在可燃性和毒性有严格限制的场合,CO2是最理想的。2008年1月29日至30日,在日本东京召开了提名为“2008年汽车空调展望一更舒适的车仓和地球环境”的会议。会议主要涉及汽车空调发展技术和环境问题。美国Andersen认为,CO2将首先得到美国SNAP的正式批准,并首先允许在北美市场汽车空调中使用。对于CO2用于汽车空调系统,国内的相关技术还不成熟,如压缩机,有待于进一步的研发,挪威的SINTBF则一直致力于CO2技术的研究并支持其在汽车空调系统中的应用,德国的VDA也支持用CO2作为汽车空调用制冷剂在日本,CO2汽车空调的样机已研发成功,随时准备替换。

5.2 HFO-1234yf

对于欧洲国家,研究新型制冷剂并尽快完成替代将是其制冷行业的首要任务。美国不断地推出新型制冷剂,例如霍尼维尔公司的FluidH,其主要成分是2, 3, 3, 3四氟丙烯,次要成分-CF3I-的化学成分不稳定,并具有一定的ODP,已被否定,杜邦公司的DP-1的具体成分未知,但具有一定的毒性。现今霍尼维尔和杜邦两大国际化学公司联手研发工质R1234y,f制冷剂代号为HFO-1234yf。关干此种制冷剂的研究进展,目前已公开多份研究报告[3]。根据报告, R1234yf的热物理性质与R134a近似(见表1),其制冷量以及COP等性能参数与R134a的系统很相近。在实际汽车空调系统中,美国和日本的相关汽车空调行业也进行了测试,原R134a热泵空调系统可以不用改动就可直接用此新型制冷剂进行替代,被认为是潜在的更优越于R134a的替代物。但R1234yf具有微燃性,还有很多技术和安全等指标有待于进一步的测试结果报告。如果新型制冷剂R1234yf能够研发成功,在欧美、日本等发达国家,R1234yf的应用将成为制冷剂中的主流,不仅将直接替代现有的汽车空调系统中的R134a,在冰箱和冰柜等小型制冷系统中也可直接将其制冷剂替代或进行系统的改造。HFO-1234是四氟丙烯的代号,HFO-1234yf为四氟丙烯的异构体,也称2, 3, 3, 3四氟-1-丙烯,简称四氟丙烯,其分子结构式是CF3-CF=CH2。HFO即Hydro-Fluoro-Olefin,是不饱和烯烃类的制冷剂用代号。2, 3, 3, 3四氟丙烯中的“2, 3, 3,3”,代表了氟原子在

四氟丙烯中连接碳原子的位置。作为一种单一化合物的制冷剂, R1234yf提供了与R134a热力学性能相类似的性能,因此使汽车空调的设备变动最小,并且也满足了稳定性与相容性的标准。它还具有100年累积值为4这样格外低的GWP 值。R1234yf的慢性(长期、重复暴露)和生殖毒性试验( reproductive toxicity testing)还没有完成,但急性(短期、单次暴露)和次慢性(中间的、重复暴露)试验的结果是良好的。它的生产需要有严格的过程控制,可能还需要净化工艺,以防止毒性污染物的掺夹。与R1225的异构体的情况类似,对R1234yf毒性的进一步研究可能会显示出一些不可预料的、不良的结果,因为不饱和化合物通常会展示出不可接受的毒性。R1234yf的成本很可能要比R134a高很多,尤其在初期。尽管如此,至少有两家主要的化学品制造厂商已经把他们的研究(联合研究)焦点重新对准直接膨胀系统中的R1234y,f而一些主要汽车制造商现在也正在评价这种制冷剂。

5.3添加纳米材料的新型制冷剂

纳米科技与材料应用于制冷领域的最新进展主要有:

1. 纳米粒子能够显著地增大液体的导热系数(如果在水中添加5vol%的铜纳米粒子,可以使导热系数增加1.5倍)。

2. 将纳米微粒添加到制冷系统中运行发现:(1)添加了纳米颗粒的制冷系统蒸发器出口温度降低的速度要明显快于不含纳米介质的制冷系统,且系统达到稳态时的温度要略低;(2)制冷系统吸气压力和排气压力略有降低,吸排气压力的降幅都接近5%。由于吸排气压力各自降低的比例接近,所以采用纳米介质的制冷系统压缩机的吸排气压差要小于不含纳米介质的制冷系统,从而降低了压缩机的功耗;(3)添加纳米介质后,可以改善矿物油与氢氟烃制冷剂的互容性。

3. 用纳米粒子对空调器换热器外表面做渗透处理,可催化分解空气中的苯、甲醛等有害物质,而且分解率接近100%,从而起到杀菌消毒的效果。由于晶粒极细,处于晶界和晶粒内缺陷中心的原子及其本身具有的量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应等使纳米材料在润滑与摩擦学方面具有特殊的降摩减摩和高复合能力。纳米物质在摩擦表面以纳米颗粒或纳米膜的形式存在,具有良好的润滑性能和减摩性能,在润滑中添加纳米材料制成的润滑剂可以显著地提高润滑性能和承载性能,提高产品的质量,特别适合用于苛刻条件的润

滑场合。利用纳米粒子添加剂改善物质性质或利用纳米材料的特殊性质,从而达到优良的品质是近年来国内外的研究热点,已经在用于微电子表面的非金属纳米多孔绝热材料、纳米光催化技术用于室内空气净化、医学中的用纳米粒子运输药物、摩擦学中用纳米材料润滑等很多领域得到实际应用。有关研究人员[2 - 4] 已经开展了纳米粒子添加剂在制冷系统中应用的初步研究,研究表明特定介质的纳米粒子能够有效地改善HFC 制冷剂与矿物基冷冻油的相溶性,制冷系统的效率得到了一定提高,压缩机回油率性能良好。可以认为,利用纳米粒子添加剂改善制冷剂和冷冻油的热力学性质、传热特性、流动特性,从而达到优化参数、强化传热、改善油溶性、提高压缩机耐磨性、减少噪音等效果,将是提高制冷空调热泵设备的效率和可靠性的重要创新手段之一。

结束语

一个新型制冷剂在其初始发展阶段,会遇到很多问题,在不断的实验与实践中,能不断提高制冷剂的使用性能,从而更好的去适应环境,实现可持续发展。随着生活水平的提高,空调的需求会越来越大,同时制冷剂的使用率也会大大增加,那么对于新型制冷剂的研发更是迫在眉睫,只有保护了环境,才能让我们的生活更美好。论文提出了制冷剂的替代过程以及其替代研究与环境的关系,从中我们可以看到,在整个制冷剂的替代研究中环境的可持续发展的思想起了很重要的作用,应该说是环境的可持续发展的要求推动了制冷剂替代研究的发展,并且为其发展指明了方向,同时制冷剂的替代又进一步促进了环境的可持续的发展。

通过这次的毕业论文设计,我了解到了很多关于制冷剂的相关信息,也让自己对于空调行业的认识发生了一些变化。前途是光明的,道路是曲折的,在这漫长的替代与发展中,不是一朝一夕就能实现的,需要很多的人去关注,去研究的。同时自己也体会到,无论以后从事什么工作,都要脚踏实地,认真对待,只有通过自己的努力,得到的才是美好的。

参考文献

[1]朱明善. 21世纪制冷空调行业绿色环保制冷剂的趋势与展望[J].暖通空调,2000,30(2)

[2] 马一太,魏东,王景剐.国际自然工质研究现状与发展趋势[J].暖通空调,2003,33(1):4146.

[3] 张忠民.浅谈环境保护与可持续发展[J].山西建筑,2003,29(5):258-259.

[4] 张凯.对环境保护几个问题的认识[J].山东环境,003(2):124.

[5]张昌,叶锋.新型制冷剂热物理性质研究与应用现状[J].流体机械, 2005, 33(10): 81-86.

[6] 韩宝琦,李树林.制冷空调原理及应用[M].北京:机械工业出版社,2002.

[7] 百度文库[OL].https://www.360docs.net/doc/d2315589.html,/

制冷剂替代的相关情况

CFC、HCFC、HFC等制冷剂替代的相关情况 1.《蒙特利尔议定书》对某种物质的禁用是明确的,而《京都议定书》只是对温室气体总排放量提出要求,并不涉及具体禁用。 2.现在需要作的是让两者统一。任何降低效率的制冷剂替代品在地球变暖方面的负面影响将超过正面影响(如寿命周期的温室效应气体(GHG)排放或TEWI)。当泄露非常低时,制冷剂ODP与GWP的重要性就会降低。低ODP与GWP的制冷剂对环境的最坏影响是制冷剂泄露所造成的能耗增加,从而提高了CO2和其它GHG的排放。即使是零GWP制冷剂,由于效率下降也会对环境造成影响。 3.蒙特利尔议定书成功地禁用了CFC制冷剂,并将最终禁用HCFC。发展中国家内CFC的禁用预期将在2010年完成。中国已于2006年提前实现。 4.1997年12月在日本京都召开了联合国气候变化框架公约会议(UNFCCC)的第3次会议,会上确定了6种温室效应气体。HFC也包括在京都议定书规定的气体中。 5.虽然研究人员在探索天然工质作为HCFC和HFC的替代物方面进行了卓绝的研究,但还没有找到R22的理想替代物。欧洲联盟国会要求加速R22(HCFC)的禁用日程,给制冷和空调业制造了强烈的反应。欧洲联盟对HCFC于2005年1月1日起禁用。 6.丹麦已经超出了京都议定书关于二氧化碳排放量的规定,并于20020年(可能是2000)在其领土范围内禁用HFC。 7.丹麦政府提议,现在制冷系统中所用的全部HFC都应被禁止。丹麦政

府关于禁用HFC的提议对欧洲制冷和空调业是一次冲击。而在美国和日本HFC原先被宣称是CFC的长期替代物。 8.由于关系到HFC制冷剂是否能长期应用,化工部门可能在决定投资兴建有关生产设施方面举棋不定,从而影响HFC的供应。 9.在《蒙特利尔协议》中已经规定包括R22的HCFC是过渡性制冷剂,发达国家从2004年、发展中国家从2015年开始,逐步限制并淘汰这类HCFC类制冷剂。欧盟实际于2005年1月1日起已经禁用HCFC,并且在促使其它国家也提前淘汰。发展中国家到2040年全面禁用。 10.R22在我国使用广泛。有一部分专家认为,如果R123能够最终解禁,那么R22解禁的日子也就不远了,他们也在极力行动,希望将R22也归为环保制冷剂,认为从环保、安全、效率等方面综合考虑,R22是最优秀的制冷剂,而臭氧层的破坏、温室效应也不仅仅是制冷剂的影响,不能因噎废食,一刀切的将R22淘汰。我国有部分专家指出,我国能使用R22至2040年,是付出了政治和外交代价而取得的,如果现在按某些厂家的要求,提前禁用R22,对经济的影响太大,制冷剂和润滑油都需要进口,是我国自己对自己不负责任;何况现在R123和R22的命运还不一定。 11.R123与R22一样,也是HCFC类制冷剂,现在有些厂家,将R123作为R22的替代物在宣传。另外,这些厂家以“R123在制冷系统蒸发器中负压运行,泄漏少”为理由,在极力对相关部门做工作,希望将R123 归为环保制冷剂。 12.R134a最初是作为R12的替代物出现的,其热物理性质及单位容积

自然工质制冷剂应用及发展

自然工质制冷剂应用及发展 程念庆刘阳秦鹏 (西部建筑抗震勘察设计研究院西安710054 西部建筑抗震勘察设计研究院西安710054 西安探矿机械厂,陕西西安,710065) 前言 自从1931年卤代烃制冷剂R21被开发出来后,相继涌现出一大批它的同族化合物,如R12,R114,R22等。它们以优良的热物性迅速占领了市场。然而由于其对臭氧层的破坏作用,《蒙特利尔协议》明确禁止了CFC 类和HCFC 类工质的继续使用。作为这类工质替代品的HFC 类工质,对臭氧层破坏值ODP=0,但是其对地球温室效应的贡献作用不可忽视,《京都议定书》为此对其作了相应的规定,限制使用。因此,HFC类工质只能作为过渡替代品,寻找ODP 值和GWP 值(温室效应值)均为0 的工质才是努力的方向。在此情况下,一些曾经被氟利昂淘汰的自然工质重新得到人们的关注,如氨、水、CO2等。表1比较了几种常用制冷剂的性质,这类物质取自自然,对自然界生态没有破坏。下面将阐述一些自然工质的应用现状,并对其讨论分析。 1、氨(NH3) 氨在制冷领域的应用已经超过了120年,其ODP=0、GWP=0,是一种环境友好的制冷剂。它具有以下优点:节流损失小,能溶解于水,有漏气现象时易被发现,价格低廉。氨的临界温度和临界压力分别为132. 3 ℃和11. 33MPa ,高于R22 ( 96. 2 ℃/4. 99MPa ) 和 R410A(70. 2 ℃/4. 79MPa),可在较高的热源温度和冷源温度下实现亚临界制冷循环。它的标准沸腾温度低( - 33.4 ℃) 。在冷凝器和蒸发器中的压力适中( - 15 ℃时的蒸发压力为0.24MPa ,30 ℃时的冷凝压力为11.7MPa),单位容积制冷量大,并且其导热系数大,蒸发潜热也大( - 15 ℃时的蒸发潜热是R12 的8.12 倍) 。

制冷剂 基础知识

碳氢制冷剂基础知识 (一)制冷剂概述制冷剂概述制冷剂概述制冷剂概述 1、什么是制冷剂? 答:制冷剂又称制冷工质,它是在制冷系统中不断循环并通过其本身的状态变化以实现制冷的工作物质。空调制冷中主要是采用卤代烃制冷剂,其中不含氢原子的称为氯氟烃(CFC),含氢原子的称为氢氯氟烃(HCFC),不含氯原子的称为氢氟烃(HFC)。 制冷剂在蒸发器内吸收被冷却介质(水或空气等)的热量而汽化,在冷凝器中将热量传递给周围空气或水而冷凝。它的性质直接关系到制冷装置的制冷效果、经济性、安全性及运行管理,因而对制冷剂性质要求的了解是不容忽视的。 2、对制冷剂性质有哪些要求? (1)环保性 要求工质的臭氧消耗潜能值(ODP)与全球变暖潜能值(GWP)尽可能小,以减小对大气臭氧层的破坏及引起全球气候变暖。 (2)具有优良的热力学特性 具有优良的热力学特性以便能在给定的温度区域内运行时有较高的循环效率。具体要求为:临界温度高于冷凝温度、与冷凝温度对应的饱和压力不要太高、

标准沸点较低、流体比热容小、绝热指数低、单位容积制热量较大等。 (3)具有优良的热物理性能 具体要求为:较高的传热系数、较低的粘度及较小的密度。 (4)具有良好的化学稳定性 要求工质在高温下具有良好的化学稳定性,保证在最高工作温度下工质不发生分解。 (5)与润滑油有良好互溶性。 (6)安全性。工质应无毒、无刺激性、无燃烧性及爆炸性。 (7)有良好的电气绝缘性。 (8)经济性。要求工质低廉,易于获得。 3、制冷剂是怎样分类的? 在压缩式制冷剂中广泛使用的是氨、氟里昂和烃类。 一、按照化学成分,制冷剂可分为五类:无机化合物制冷剂、氟里昂、饱和碳氢化合物制冷剂、不饱和碳氢化合物制冷剂和共沸混合物制冷剂。 (1)无机化合物制冷剂:这类制冷剂使用得比较早,如氨(NH3)、水(H2O)、空气、二氧化碳(CO2)和二氧化硫(SO2)等。对于无机化合物制冷剂,国际上规定的代号为R及后面的三位数字,其中第一位为“7”后两位数字为分子量。如水R718...等。 (2)氟里昂(卤碳化合物制冷剂):氟里昂是饱和碳氢化合物中全部或部分氢元素(CL)、氟(F)和溴(Br)代替后衍生物的总称。国际规定用“R”作为这类制冷剂的代号,如R22...等。又有人称之为氟利昂的。

混合制冷剂发展与应用

混合制冷剂的应用与发展 一、前言 自70年代美国教授莫利纳(M.J.Molina)和罗兰(F.S.Rowland)提出CFC破坏同温层中的臭氧层的观点以来,臭氧层的破坏问题已引起越来越多的关注。87年9月签署了《制破坏大气臭氧层物品的蒙特利尔议定书》,明确了受控物质及其限用时间表。而受控的CFC目前广泛用于制冷,空调等系统,这势必给这些行业造成巨大的冲击。因此,尽快找到合适的替代物以逐步取代受控的CFC制冷剂已势在必行。目前国内外提出的CFC12替代方案近20种。主要从单一工质和混合工质两个途径着手。单一工质方面,用HFC134a替代CFC12的呼声甚高。发达国家已集中注意于HFC134a的应用研究,并已取得初步成果,开始商业化生产。但一般认为如没有化学合成和物质结构方面的突破,要筛选出具有满意的热物性且无毒不可燃的纯工质实在有限。为此发展替代制冷剂的另一途径是开展混合工质的研究。混合制冷剂做为替代制冷剂为我们提供了更多的选择余地。 关键词:混合制冷剂共沸制冷剂非共沸制冷剂 二、混合制冷剂历史发展 混合制冷剂是由两种或两种以上性质不同的制冷剂按一定比例混合,使之达到一定要求的产物。按相变过程中表现出的特征,混合制冷剂可分为共沸,非共沸和近共沸三类。在相变过程中,平衡汽相和平衡液相具有相同的成分,即各相中混合物的组分不发生变化,则该种混合物为共沸混合制冷剂。汽、液相中组分的浓度不同,且在任何浓度比下都不发生共沸现象的混合物称为非共沸混合物。露点线和泡点线比较接近的称非共沸混合物。 在制冷循环中使用混合制冷剂的尝试至少可以追溯到1888年(R.Piotet),但当时还没有考虑到混合制冷剂需要满足哪些要求才能使循环性能得到改善。1939年,G.Maiuri首先提出混合制冷剂的优点是在变温下制冷。1949年,F.Carr用热力学观点阐述了利用混合制冷剂在变温下制冷达到降低功耗的可能性。从1961年起,Mcb.rness和ChaPmeu对纯制冷剂、共沸与非共沸制冷剂进行了大量运行测试,发现采用非共沸制冷剂引起了制冷量变化,但在热交换器中的变温过程引起的能量节约仍未考虑。1975年,Lor-enz首次成功地进行了R12/R11混合物的变温度实验。 现在,在苏联、东德、西德和印度,旨在挖掘制冷装置潜力,使用混合制冷剂的研究一直特别活跃[1]。 三、常用共沸与非共沸制冷剂 (一)共沸制冷剂 现在常用的共沸制冷剂有R500、R502、R503等。R12/R31用在小型制冷机中代替R12,当蒸发压力相同时,它有较高的容积制冷量与换热流动特性,适用于陈列柜、冷藏车、轿车空调器等。另外,美国凯利亚公司应用R500当制冷机由60Hz转到50Hz运转时,已测得制冷量不变。同样R502及R503也有较高的单位容积制冷量。由RC318/R12组成的共沸制冷剂,Ke值比R12高5-12%,排温低,是最安全的制冷剂。在一系列条件下,用R501代替R22,可以降低压缩机的热应力以及改善系统中油的循环条件。R502是六十年代出现的一种共沸制冷剂,有良好的热物理及化学性能。目前,国外已将R502的使用从开始的全封闭压缩机推广到半封闭和开启式低温压缩机中[2]。 (二)非共沸制冷剂 目前应用较普遍的ODS替代品是R407C和R410A、HFC-32/HFC-134a、HFC-152a/HFC-125,R407C是HFC-32/HFC-125/HFC-134a的三元混合物,其主要优点是能效比、压比接近HCFC-22,可以直接充灌,主要缺点系统泄漏时成分会发生变化,对系统维修及性能产生影响。R410A是

制冷剂的演变及展望

制冷剂的演变与展望 制冷剂的演变及展望 摘要:介绍了制冷剂发展史中三个具有代表性的阶段,提供了几种常用制冷剂的替代方案并展望了制冷剂的未来。 关键词:演变天然制冷剂CFC替代 Refrigerants in evolvement and prospect By Xie Xuming Abstract Reviews three representational changes in the history of the refrigerants used in mech anical refrigeration, provides some projects substituting for widely used refrigerants, and prospe cts the future of refrigerant. Keywords evolvement,natural refrigerant, CFCs replacement 1.前言 制冷剂必须具备一定的特性,包括热力学性质(即沸点、蒸发与冷凝压力、单位容积制冷量、循环效率、压缩终了温度等)、安全性(毒性、燃烧性和爆炸性)、腐蚀性与润滑油的溶解性、水溶性、充注量、导热系数等。 臭氧层的破坏和全球气候变化是当今全球面临的两大主要环境问题。因此,在开发制冷剂时除考虑以上性质外,还需遵循两个重要的选择原则(1)ODP值,即臭氧层破坏潜能;(2)GWP值,即温室效应能力。 制冷剂本身所必须具备的特性和所要遵循的原则决定了制冷剂的发展方向和演变过程。同时,正因为这样,决定了寻找理想的或者环保的制冷剂之路是非常困难和漫长的。为此,本文回顾了制冷剂的发展历史,探讨了未来发展趋势。 2.制冷剂的发展史 从时间上看,制冷剂的发展经历了三个阶段。第一阶段是十九世纪的早期制冷剂;第二阶段是二十世纪时代的CFC与HCFC类制冷剂;第三阶段是二十一世纪的绿色环保制冷剂。 2.1 早期制冷剂 1805年,Oliver Evans最早提出了在封闭循环中,使用挥发性流体的思路,用以将水冷冻成冰。具体描述为,在真空下将乙醚蒸发,并将蒸汽泵到水冷式换热器,冷凝后再利用。1824年, Richard Trevithick首先提出了空气制冷循环设想,但未建成此装置。1834年, Jacob Perkins则第一次开发了蒸气压缩制冷循环,并获得了英国专利(6662号)[1]。在他所设计的蒸气压缩制冷设备中使用二乙醚(乙基醚)作为制冷剂。

r290新型制冷剂作为一种新型制冷剂是必然趋势

R290新型制冷剂作为一种新型制冷剂是必然趋势 R290新型制冷剂作为一种新型制冷剂是必然趋势 摘要:论述了当前使用的制冷剂以及其存在的问题,指出现行制冷剂对臭氧层的破坏作用及引起的温室效应,将严重影响环境的可持续发展。分析了R290的性能特点,总结出R290制冷剂替代R22是必然的趋势以及确保R290的安全使用和生产应采取的措施。 关键词: R290 新型制冷剂趋势 目前制冷空调行业中使用的制冷剂多为CFC(氯氟烃的统称)和HCFC(含氢氯氟烃)。这些物质由于对臭氧层具有破坏作用并产生温室效应。人们迫切需要研发一种可替代现有制冷剂的安全绿色环保型制冷剂。 一、当前使用的制冷剂及其存在的问题 制冷剂的发展经历了三个阶段[1]: 第一阶段,从1830年到1930年,主要采用NH3、CO2、H2O等作为制冷剂,它们有的有毒,有的可燃,有的效率低,用了约100年的时间。 第二阶段,从1930年到1990年,主要采用CFCs和HCFCs制冷剂,使用了约60年。 第三阶段,从1990年至今,进入了以HFCs(含氟烃)为主的时期。由于行业发展的惯性,目前使用较多的制冷剂是CFCs和HCFCs。同时也造成了一定的危害: 海平面上升,全球气候变暖导致的海洋水体膨胀和两极冰雪融化,沿海地区可能会遭受淹没或海水入侵,海滩和海岸遭受侵蚀,土地恶化,海水倒灌并影响沿海养殖业。 影响农业和自然生态系统,全球气温和降雨形态的迅速变化,可能使世界许多地区的农业和自然生态系统无法适应或不能很快适应 这种变化,造成大范围的森林植被破坏和农业灾害。加剧洪涝、干旱及其他气象灾害,全球平均气温略有上升,就可能带来频繁的气候灾害――过多的降雨、大范围的干旱和持续的高温,造成大规模的灾害

浅论制冷系统未来的发展方向

浅论制冷系统未来的发展方向 6月3日6时06分,位于吉林省德惠市米沙子镇的宝源丰禽业有限公司发生火灾,造成 120人不幸遇难,70多名伤员住院,是近十年来我国死亡人数最多的一次火灾。至今关于冷库起 火的原因尚未明确,无论是氨气泄漏爆炸引起大火,还是发生火灾引发氨气爆炸,面对如此惨 重的事故我们深感痛惜,在此对遇难的同胞表示沉痛的哀悼! 事故发生后氨成为了民众舆论的众矢之的,大家一致将矛头指向氨的毒性和易燃易爆性,更有些人提出了禁用氨的言论,觉得氨的存在和使用威胁到了民众的人身安全。痛定思痛,我们回想整个事件,反思“氨”的安全性,难道真的只是因为氨有毒、易燃就成了此次灾难的罪魁祸首么? 在工业制冷中,氨系统已经被应用了70多年,技术相当成熟。氨具有优良的热力学 性能和环境性能,消耗臭氧的潜能值ODP=0,温室效应潜能值GWP=0,是一种对环境友好 的天然制冷剂,且价格低廉,在世界行业内被广泛采用,目前中国超过90%的大型冷库都 采用氨制冷系统。 但是NH3的毒性、可燃性和刺鼻的气味,对眼、鼻、喉、肺及皮肤均有强烈刺激及中毒危险,空气中浓度超过15%时有造成火灾及爆炸的危险。基于上述缺点,国家对氨制冷系统的安全问题十分重视,从安全防护、环境保护等方面提出的相关要求越来越严格。尤其是近些年,我国的冷冻食品加工业和冷库建设发展十分迅速,为确保生产的有序进行,保障人民群众生命财产安全,与氨制冷系统相关的各种法律、规范制度逐步建立健全,如《中华人民共和国安全生产法》、《危险化学品安全管理条例》,在2010年1月发布的新《冷库设计规范》中,针对氨作为制冷剂的特殊性,以及制冷设备在运行过程中的复杂性和危险性,在系统的设计、设备的购置、安装等前期阶段,要求充分考虑系统的“优生” 问题,做到安全、合理、可靠,消防和环保设施齐全。从机房、库房的选址、设备的选型及管道匹配入手,把各种安全工程技术方法考虑周全,符合规范,从本质上提高了氨制冷系统的安全性。总之一般情况只要操作得当、使用设备品质有保障、平常做好正常的维护和保养,氨制冷系统出现问题的可能性很小。 我们再次将镜头回放,宝源丰公司几百人聚集在两个大车间里,没有安全措施保障,特别是对防火、防泄漏无有效的制度和措施;工厂的设计、建筑材料的选择、建设,一直到投产验收,都存在严重的问题;企业管理混乱,消防通道、安全出口不畅通,人跑不出来。厂房尤其是房顶大量使用了未达标的保温材料,这种采购价低的材料,触火即燃。根 据调查推断,应是厂房着火后的高温,让制冷管道内残存的液氨压力升高而导致爆裂。由此可见此次事故绝不是偶然,而是必然;不是天灾,而是本可以避免的人祸;不是氨的错,管理漏洞才是罪魁祸首! 类似的人为因素导致的氨事故屡有发生,如更早些年部分企业发生的“液爆”事故,因操作人员未按《安全操作规程指导》的要求进行,导致冷风机或是单冻机蒸发器进行融霜时,换热管内氨液未完全排空,又同时关闭了管道进出口截止阀,管内氨液因吸收外界 冲霜水的热量,液体产生体积膨胀而导致了设备及管道的“液爆”,液爆大都在阀门处崩裂,造成了较严重的后果。

制冷剂的淘汰与替代进展

制冷剂的淘汰与替代进展华中科技大学何国庚

目录 一、制冷剂替代 二、我国的行动 三、HFCs的削减 四、房间空调器行业制冷剂替代 五、R290房间空调器标准进展 六、R290制冷剂D的应用进展 七、制冷剂的替代正当时

一、制冷剂替代

1834年在伦敦工作的美国发明家帕金斯(Jacob Perkins)正式 呈递了乙醚在封闭循环中膨胀制冷的英国专利申请(No.6662)。这是蒸气压缩式制冷机的雏型, 1874年德国人林德(Linde)建造第一台氨制冷机后,氨压缩式制冷机在工业上获得了较普遍的使用。1929年发现氟利昂,氟利昂制冷剂快速发展,并在应用中超过氨制冷机 1974年美国加利福尼亚大学的莫利纳(M.J.Molina)和罗兰(F.S.Rowland)教授首次指出卤代烃中的氯原子会破坏大气臭氧层。 1980年代初,南极考察发现南极上空的臭氧空洞。 1987年,《关于破坏臭氧层物质的蒙特利尔议定书》诞生1995年的诺贝尔化学奖授予了这两位教授以表彰他们在大气化学特别是臭氧的形成和分解研究方面作出的杰出贡献。

1834年在伦敦工作的美国发明家帕金斯(Jacob Perkins)正式呈递了乙醚在封闭循环中膨胀制冷的英国专利申请(No. 6662)。这是蒸气压缩式制冷机的雏型。 1874年德国人林德(Linde)建造第一台氨制冷机后,氨压缩式制冷机在工业上获得了较普遍的使用。 1929年发现氟利昂,氟利昂制冷剂快速发展,并在应用中超过氨制冷机

1974年美国加利福尼亚大学的莫利纳 (M.J.Molina)和罗兰(F.S.Rowland)教授首次指出卤代烃中的氯原子会破坏大气臭氧层。1980年代初,南极考察发现南极上空的臭氧空洞。 1987年,《关于破坏臭氧层物质的蒙特利尔议定书》诞生。 1995年的诺贝尔化学奖授予了这两位教授以表彰他们在大气化学特别是臭氧的形成和分解研究方面作出的杰出贡献。

汽车空调制冷剂对全球气候的影响及发展前景

郑州交通职业学院 毕业论文(设计) 论文(设计)题目:汽车空调制冷剂对全球气候的 影响及发展前景 所属系别汽车运用工程系 专业班级 10级汽运7班 姓名 Young 学号 指导教师 撰写日期2013年4月

摘要 我们居住的地球周围包围着一层大气,臭氧层就存在于地球上方15~50 km的大气平流层中,它保存了大气中90%左右的臭氧,将这一层高浓度的臭氧称为“臭氧层”。它可以有效地吸收对生物有害的太阳紫外线。如果没有臭氧层这把地球的“保护伞”,强烈的紫外线辐射不仅会使人死亡,而且会消灭地球上绝大多数物种。当前环境变暖引起的气候变化,臭氧层空洞等已成为全球性的环境问题,如果任其发展下去将对人类的生存和发展构成严峻的挑战。因此在汽车空调制冷剂的替代研究过程中应该加强对生态环境的保护意识,不能只看到眼前利益,而同时要注重生态环境与人类的协调和可持续的发展氟利昂缩写为CFCs,主要用于制冷剂、溶剂、塑料发泡剂、气溶胶喷雾剂及电子清洗剂等。当制冷系统破裂、渗漏或更换、清洗时均有可能造成氟利昂的外漏。 关键词:汽车空调,制冷,气候,影响

Abstract Around the earth we live surrounded by a layer of the atmosphere, the ozone layer there is in the 15 to 50 km of the atmosphere above the earth in the stratosphere, which holds about 90% of the ozone in the atmosphere, the ozone concentration of this highly known as the "ozone layer. "It can effectively absorb the sun's harmful ultraviolet biological. If there is no ozone layer of the Earth "umbrella", strong ultraviolet radiation not only make people die, and will eliminate the vast majority of species on Earth. Current the environmental warming-induced climate change, the ozone hole has become a global environmental problem, if unchecked will human survival and development constitute a serious challenge. Should be strengthened in the automotive air conditioning refrigerant alternative course of the study on the ecological environment protection awareness, can not only see the immediate benefits, while at the same time to pay attention to the ecological environment and human coordinated and sustainable development of Freon abbreviated as CFCs, mainly used for refrigerants, solvents, plastic foam, aerosol sprays, and electronic cleaning agent. When the refrigeration system is broken, leaking or replacement, cleaning both may cause leakage of Freon. Keywords: Automotive air-conditioning, Refrigeration, Climate, Impact

制冷剂发展与研究前沿

制冷剂的发展与研究前沿 田玉保安全工程0901 200901145025 摘要:回顾了制冷剂从早期使用至现在的进步历程,探讨了未来方向与一些候选制冷剂。 根据所定义的选择标准把此历程划分为四代制冷剂。考察了对现有国际协定相关方案的展 望,其中包括了分别为防止平流层臭氧耗损与全球气候变化的蒙特利尔与京都议定书的分 析。介绍了多种HCFCs制冷剂的替代物,包括R1234yf,DME,CO2和氨的混合物等。对 下一代制冷剂做出了展望。 关键词:制冷剂温室效应臭氧损耗潜能值全球变暖潜能值 Development on Refrigrants an Reseach Fronts Abstracts Reviews the progression of refrigerants,from early uses to the present,and then addresses future directions and candidates.Breaks the history into four refrigerant generations based on defining selection criteria.refrigerants”.Examines the outlook for current options in the contexts of existing international agreements,including the Montreal and Kyoto Protocols to avert stratospheric ozone depletion and global climate change,respectively.This paper introduced several alternative refrigerants from the basic thermal physical and circulation performance,etc.,including R1234yf,DME and the combination of carbon dioxide an ammonia etc.Also,a briefe glance of the future of next generation of refrigrantsis given. Keywords Refrigetants Greenhouse effects ODP GWP 臭氧层的破坏和全球气候变化,是当前世界所面临的主要环境问题。由于制冷空调热泵行业广泛采用的CFC与HCFC类制冷剂对臭氧层有破坏作用以及产生温室效应,使全世界这一行业面临严重挑战。但是,迄今为止,国外的一些HFC类和碳氢类替代制冷剂均或多或少地存在一些问题,还不太理想,例如大多数HFC类制冷剂及其混合制冷剂的温室效应潜能值(GWP)还比较高,被列为“温室气体”,需控制其排放量;而碳氢类制冷剂则存在强可燃性引起的安全问题,特别对于大中型制冷空调热泵设备,需要行之有效的安全措拖和技术。因此,这一行业均在探索如何从制冷剂的发展历史中,总结经验,寻求正确、科学地解决由于环保要求提出的制冷剂替代问题,力争少走弯路。 1.制冷剂的发展历程 制冷的历史可追溯到古代,当时用以储冰和一些蒸发过程。从历史上看,制冷剂的发展经历了四个阶段[1](图1)。第一阶段是十九世纪的早期制冷剂;第二阶段是二十世纪时代的CFC与HCFC类制冷剂;第三阶段是二十一世纪的绿色环保制冷剂。第四阶段是今后制冷剂发展的主要方向,即以防止全球变暖为主要目标的制冷剂的研发。

新一代制冷剂趋势

新一代制冷剂趋势 目前,人们认为制冷技术已经历了三代制冷剂。第一代是1930年以前的原生代,以NH3和CO2等自然工质为主;第二代是含氯的合成制冷剂,即CFCs(R11、R12、R114等)和HCFCs(R22、R142b),从诞生开始就逐渐取代了原生代,被广泛推广应用。 随着人类对臭氧层破坏的发现和认识,发现是这两类化合物中的氯原子或溴原子与大气上空的平流层的臭氧发生反应,消耗了臭氧。自从1987年国际上签订了蒙特利尔议定书,便逐步削减并停止生产严重破坏臭氧层的CFC等,并开发第三代替代制冷剂。第三代制冷剂解决了臭氧层破坏问题,在当时被称为"环保工质"、"绿色工质"等,被称之为中长期替代物。但随后人们又发现,这些第三代制冷剂具有强烈的温室效应,成为1997年《京都议定书》中受限物质之一。目前,欧盟对此的淘汰已经提上了日程,出台了相应的限制和淘汰氟化气体的规章制度。这预示着人们面临着研发第四代制冷工质:零ODP并低GWP。在第四代制冷剂的发展方向上,存在着两个方向。一个是再寻找更难于合成的新化合物,另一是退回第一代制冷剂,即自然工质。自然工质主要包括氨、二氧化碳及丙烷等碳氢化合物,还包括水、空气以及用于低温制冷的甲烷、氦、氮等,这些自然工质过去早被熟悉和使用,有些目前仍在使用。 低沸点物质,即氦、氮和甲烷在低达-120℃的深冷和气体液化等应用中被广泛采用,但它们由于有太高的可用能损失而不适合中等温度范围的制冷。从近10年替代物的发展看,无论从理论上或从实践上,很难找到一种不影响环境的完全理想的替代物(消耗臭氧潜能值ODP=0,GWP值小于100),高效、安全且价格不贵。因此,许多专家提出,第四代制冷剂退回自然工质是必然的趋势。 间接冷却制冷系统载冷剂的选择非常重要,会影响系统安全性与综合性能。一些非专业载冷剂对系统有腐蚀性,存在安全隐患。间接制冷系统载冷剂的选择非常重要。本文推荐使

制冷剂替换

CFC & HCFC制冷剂无氟替换指引 ※主要的服务型环保制冷剂(臭氧消耗潜值ODP=0)——用于现存设备的无氟替换、更新 R423A环保制冷剂 替换:氟利昂R12(FREON 12) 应用:用于直接替换现存的离心式冷水机组(中央空调)上使用的R12的一种新型环保制冷剂。 优点:提供简单、快速、高效的直接替换;HFC类制冷剂,ODP值为零;替换时只需将冷冻机油更换成酯类油(POE),而无需对系统进行额外冲洗;仍可继续使用现有的冷水设备,避免昂贵的工程改造,节省成本;充注使用后,若发现系统内制冷剂容量不足时,可以直接重新补足,而无须排走全部已灌充的制冷剂。 R422D环保制冷剂 替换:氟利昂R22(FREON 22) 应用:用于直接替换现存的直接膨胀式(DX)水冷系统上使用的R22的一种新型环保制冷剂;同时也可用于家用、商用空调、以及中温制冷系统。 优点:提供简单、快速、高效的直接替换;HFC类制冷剂,ODP值为零;多数情况下,替换过程中不需要更换冷冻机油类型,兼容传统的MO油和新的POE油;容许现有设备使用;充注使用后,若发现系统内制冷剂容量不足时,可以直接重新补足,而无须排走全部已灌充的制冷剂。 R417A环保制冷剂 替换:氟利昂R22(FREON 22) 应用:用于直接替换现存的直接膨胀式固定空调系统上使用的R22的一种新型环保制冷剂;同时也可用于中温商用制冷系统。 优点:提供简单、快速、高效的直接替换;HFC类制冷剂,ODP值为零;多数情况下,替换过程中不需要更换冷冻机油类型,兼容传统的MO油和新的POE油;容许现有设备使用;充注使用后,若发现系统内制冷剂容量不足时,可以直接重新补足,而无须排走全部已灌充的制冷剂。 R422A环保制冷剂 替换:氟利昂R22(FREON 22)、氟利昂R502(FREON 502)、以及含HCFC的混配制冷剂(R402A、R402B,R408A)。 应用:用于直接替换现存的直接膨胀式(DX)水冷系统上使用的R22一种新型环保制冷剂;同时也可用于家用、商用空调、以及中温制冷系统。 优点:提供简单、快速、高效的直接替换,替换过程比使用R404A、R507更简单方便;HFC类制冷剂,ODP值为零;多数情况下,替换过程中不需要更换冷冻机油类型,兼容传统的MO油和新的POE油;容许现有设备使用;具有比R404A、R507低20%的全球温室效应值(GWP);充注使用后,若发现系统内制冷剂容量不足时,可以直接重新补足,而无须排走全部已灌充的制冷剂。

制冷剂的发展历史和应用..

制冷剂的发展历史和应用 摘要 社会生产力的随着快速发展和人民生活水平的显著提高,制冷技术在工程和生活中的应用越发的深入和广泛。而在蒸汽压缩式制冷系统中,制冷剂被形象的称之为“血液”。本文对制冷剂的发展历史进行了简单的介绍,并列举出了一些制冷剂在各个应用领域的最新研究和进展。制冷剂随着制冷技术的发展而不断变迁,大致可分为4个阶段。从最初能用即可的原则,因为工业发展的需要,进入到以安全及耐久性为主的第二阶段。随着环境问题的加剧,制冷剂步入围绕臭氧层保护的第三阶段。而今,对制冷剂的探索没有停止,防止全球变暖,低ODP,低GWP,短寿命,高效是我们对制冷剂的目标。制冷剂在各个领域应用广泛,家用空调,中大型冰库,车载空调等,都可以看到制冷剂活跃的身影,而针对各个领域的制冷剂的技术革新研究也将会被提及。 关键词制冷剂发展阶段应用环境问题发展方向 引言 当前世界的环境问题主要是臭氧层遭受破坏和全球范围的变暖。然而,CFC 与HCFC类制冷剂在制冷空调热泵等行业广泛的采用,它对臭氧层有一定的破坏作用还是温室效应的一个重要因素。它对环境的负面影响使得这一行业在全世界都面临重大的压力。但是,到现在为止,一些在国外使用的HFC类和碳氢类替代制冷剂还不太理想,多多少少都存在一些瑕疵。比如说大部分的HFC类制冷剂及其混合制冷剂的GWP还是相当的高,对温室效应影响显著,对排放量还需要严格的控制;而碳氢类制冷剂的安全问题也普遍存在,它的强可燃性令人担忧,当在大中型制冷空调热泵设备使用时,安全措施很技术的要求很高。所以,从制冷剂的发展历史中探索,吸收经验,寻求科学、正确地解决满足环保要求的制冷剂在各种生产和生活的应用的替代问题,避免我们走弯路是非常重要的。为此,本文回顾了制冷剂的发展历史,综述了制冷剂在各个领域的应用及其相关最新研究,探讨了未来发展趋势。 根据J . M . Calm[1-2]的描述,目前人们将制冷剂的发展分为4个阶段,各阶段的特征如表1所示,以下对各发展时期的情况做一简述。

制冷空调行业制冷剂的发展趋势与展望_secret

制冷空调行业制冷剂发展方向与展望 张永康 提要本文简单介绍了制冷剂的发展历史;臭氧层的部分知识、以及现阶段CFC和HCFC制冷剂怎样对臭氧层进行破坏;并以“蒙特利尔协议书”制定的规定为基 础,介绍了世界各国对制冷空调行业制冷剂发展方向与主流趋势;并且介绍了世 界各国所形成的不同的观点以及现阶段的主要应对方案。 一、制冷剂的由来 制冷的历史可以追溯到古代,当时用以储冰和一些蒸发进程。从历史上看,制冷剂的发展经历了三个阶段: 第一阶段:从1830年至1930年,主要采用NH3、HC、CO2,空气等作为制冷剂,有的有毒,有的可燃,有的效率很低。主要出于安全性的考虑。尽管用了100年之久,当出现了CFC和HCFC 制冷剂后,主要出于安全性的考虑,还是当机立断,实现了第一次转轨第二阶段:从1930年至1990年,主要用CFC和HCFC制冷剂。使用了60年后,发现这些制冷剂破坏臭氧层。出于环保的需要,不得不被迫实现第二次转轨。 第三阶段:从1990年至今,进入以HFC制冷剂为主的时期。 二、关于臭氧层 臭氧(O3)是一种在地球大气中发现的气体,由三个氧原子组成,当强烈的太阳紫外线造成氧分子破 烈时,就生成了氧原子。氧原子再与氧分子反应生成臭氧。臭氧作为一种微量气体颁布在离地面 15-60KM高度的大气平流层。臭氧的这一分布区域就叫做臭氧层。 臭氧的独特之处,在于能吸收大气中的任何其他气体不能吸收的太阳辐射中波长在300mm以下的紫外线。尽管一定量的紫外线对生命来说是需要的,但是太多的紫外辐射却有不利影响。一些可能的不利影响包括: (1)使患皮肤癌的可能性增加。 (2)使患白内障的机会增加。 (3)破坏人体免疫系统 (4)降低农作物产量和使质量劣化。 (5)对浮游植物的生长产生不利的影响。 在1974年,美国加利福尼亚大学教授莫利纳(M.J.Molina)和罗兰(F.S.Rowland)在自然杂志上指出,正在世界上大量生产和使用的CFCs,由于其化学稳定性好,不易在对流层分解,通过大气环流进入臭氧层所在的平流层,在短波紫外线UV-C的照射下,分解出Cl自由基,参与了对臭氧的消耗。图1为以CFC12为例的臭氧被Cl自由基消耗的过程。可以看出,CFC12分子在强烈的紫外线照射下破裂,释放出Cl自由基,这些Cl自由基与臭氧发生反应,产生氧分子O2,Cl自由基只起催化剂的作用,在反应过程中并未消耗,因此单个Cl自由基可以通过成千上万次的这样类似的反应把臭氧转化成氧分子。1个CL自由基可以消耗10万个臭氧分子。

制冷剂的发展及应用

制冷剂的发展及应用 摘要:制冷剂是制冷装置必不可少的部分。本文回顾了制冷剂的发展的三个历史阶段历史,综述了目前适应环保需要的国外制冷剂现状及其使用中的主要技术问题,探讨了制冷剂未来发展趋势。 关键词:制冷剂;环境保护;氟里昂;发展 The development and application of the refrigerant Abstract:The refrigerant is an essential part of the refrigeration apparatus. This paper reviews the three historical stages of the development of the refrigerant history reviewed to adapt to the needs of environmental protection abroad refrigerant status quo and its use mainly technical issues, discusses the future trends of the refrigerant. Key words: Refrigerant; Environmental protection; Freon; The development 前言(引言): 每当烈日炎炎人们自然会想起空调带来的丝丝凉意和舒适;想喝一杯冰箱里透心凉的冷饮。这一切都是制冷技术带给人类的巨大福音。在科技发展的今天,空调器、冰箱走进了社会各个领域,给人们的生产生活带来了极大的便利,特别是近年来,制冷技术得到飞跃,尤其是制冷剂的使用得到很大的发展,更新换代的脚步日益加快。 然而臭氧层的破坏和全球范围气候变化,已成为房前世界所面临的主要环境问题。由于制冷空调热泵行业广泛采用的CFC与HCFC类制冷剂对臭氧层有破坏作用以及能产生温室效应,所以绿色环保制冷剂的替代和发展成为众多从事制冷剂研究的科研人员关注的热门话题。 正文: 1.制冷剂的介绍 制冷剂又称制冷工质,在南方一些地区俗称雪种。它是在蒸发器内吸收被冷却介质(水或空气等)的热量而汽化,在冷凝器中将热量传递给周围空气或水而冷凝。它在系统的各个部件间循环流动以实现能量的转换和传递,达到制冷机向高温热源放热;从低温热源吸热,实现制冷的目的。 1.1.制冷剂的分类 根据制冷剂的分子结构可将制冷剂分为无机化合物和有机化合物;根据制冷剂的组成可分为单一制冷剂和混合制冷剂;根据制冷剂的物理性质可将制冷剂分为高温(低压)、中温(中压)、低温(高压)制冷剂。 通常按照化学成分,制冷剂可分为五类:无机化合物制冷剂、氟里昂、饱和碳氢化合物

制冷剂的发展史及种类介绍

制冷剂的基本知识 一、制冷剂介绍 (一)制冷剂的概述 制冷剂又称制冷工质,它是在制冷系统中不断循环并通过其本身的状态变化以实现制冷的工作物质。由于制冷剂的沸点一般比较低,在-20~-50摄氏度之间,所以由压缩机将它压缩成为高温高压的液体,经冷凝器后将它冷凝成为常温高压的液体,然后在蒸发器内与外界常温气体产生热交换,制冷剂会吸收外界气体的热量而汽化,从而达到制冷的目的。 (二)制冷剂的发展史 19世纪中期出现了机械制冷。雅各布.帕金斯(Jacob Perkins)在1834年建造了首台实用机器。它用乙醚作制冷剂,是一种蒸气压缩系统。二氧化碳(CO2) 和氨(NH3)分别在1866年和1873年首次被用作制冷剂。其他化学制品包括化学氰(石油醚和石脑油)、二氧化硫(R-764)和甲醚,曾被作为蒸气压缩用制冷剂。其应用限于工业过程。多数食物仍用冬天收集或工业制备的冰块来保存。 20世纪初,制冷系统开始作为大型建筑的空气调节手

段。位于德克萨斯圣安东尼奥的梅兰大厦是第一个全空调高层办公楼. 1926年, 托马斯.米奇尼(Thomas Midgely)开发了首台CFC(氯氟碳)机器,使用R-12. CFC族(氯氟碳)不可燃、无毒(和二氧化硫相比时)并且能效高。该机器于1931年开始商业生产并很快进入家用。威利斯.开利(Willis Carrier)开发了第一台商用离心式制冷机,开创了制冷和空调的纪元。 20世纪30年代,一系列卤代烃制冷剂相继出现,杜邦公司将其命名为氟利昂(Freon)。这些物质性能优良、无毒、不燃,能适应不同的温度区域,显著地改善了制冷机的性能。几种制冷剂在空调中变得很普遍,包括CFC-11、CFC-12、 CFC-113、CFC-114和HCFC-22. 20世纪50年代,开始使用共沸制冷剂。 60年代开始使用非共沸制冷剂。 空调工业从幼小成长为几十亿美元的产业,使用的都是以上几种制冷剂。到1963年,这些制冷剂占到整个有机氟工业产量的98%。 到1970年代中期, 对臭氧层变薄的关注浮出水面,CFC族物质可能要承担部分责任。这导致了1987年蒙特利

常见制冷剂及代换

常见制冷剂及代换 制冷剂有R12. R22. R134a. R152a. R600a. h-01. RH. H. R404. R401. R152a和R22混合制冷剂. 常用制冷剂有R12. R22. R134a. R152a. R600a. 一般都可以用R12。 R22代换 R152a. H-01. RH. H. R404.R152a和R22的混合制冷剂,可以用R12代换。 R404. R152a和R22的混合制冷剂,可以用R22代换。 R12和R22一般不可以互相代换。 电冰箱常用制冷剂有R12、R134、R600、R152/R22共沸 空调常用的制冷剂有R22,新型制冷剂有R404 电冰箱维修 可以用R12代替 R134系统代换时须换压缩机系统,主要是冷冻油区别,所以要清洗管路。 空调维修 R404专用,厂家不允许和R22代换 空调加氟压力对照表 大家都清楚,外界的温度不同,那么压力也就不同,在现实中,很多的空调维修人员都是凭经验来决定加多少个压的,这其实是不科学的. 那么到底具体的温度与压力的对应关系是怎么样的呢,我下面与大家分享一下这个对应表. 空调正常时系统压力和电流对照表(空调加氟压力也是这个不同大小的空调都有) 机型:27型35型48型 (压力/电流)(压力/电流)(压力/电流) 环境温度 26-27度 0.4MPa/3.85A 0.39MPa/5 A 0.45MPa/7.95A 28-29度0.42MPa/4A 0.41MPa5.2 A 0.47MPa/8.15A 30-31度0.45MPa/4.15A 0.43MPa/5.4 A 0.48MPa/8.35A 34-35度0.48MPa/4.5A 0.46MPa/5.7 A 0.50MPa/8.92A 36-37度0.50MPa/4.65A 0.47MPa/5.8 A 0.505MPa/9.60A 38-39度0.52MPa/4.8A 0.48MPa/6 A 0.51MPa/9.80A 另外提示一下: 1.如果是夏天出现高压管(即细管)结霜情况,99%是几乎没氟了

相关文档
最新文档