倒装芯片

倒装芯片
倒装芯片

倒装芯片:向主流制造工艺推进

时间:2009-12-08来源:责任编辑:

对较小外形和较多功能的低成本电子设备的需求继续在增长。这些快速调整的市场挑战着电子制造商,降低制造成本以保证可接受的利润率。倒装芯片装配(flip chip assembly)被认为是推进低成本、高密度便携式电子设备的制造所必须的一项技术。

在低成本应用中,倒装芯片的成功是因为它可达到相对于传统表面贴装元件包装更大的成本效益。例如,一款新的寻呼机利用了倒装芯片技术将微控制器装配于PCB,因为倒装芯片使用较少的电路板空间,比传统的塑料球栅阵列(PBGA, plastic ball grid array)成本较低。

材料

集成电路(Integraded circuit)

在这款寻呼机中的集成电路(IC, integrated circuit)是一个5 x 5.6 mm 的微控制器,要求100个输入/输出(I/O)连接于PCB。将四周I/O重新分配为2.5排减少点数(depopulated)的球栅阵列形式来接纳PCB的线/空格以及通路孔焊盘的限制。锡球(bump)布局与间距如图一所示。

使用了电镀共晶锡/铅锡球,因为与其它的替代者比較,它的成本低得多。锡球的直径大约为125 %26mu;m,球下金属(UBM, under bump metalization)为一个顾客要求的45%26mu;m的铜柱,如图二。

印刷电路板(PCB, printed circuit board)

成本因素决定这款寻呼机的PCB的布局。PCB是标准的FR-4,四个金属层和一个无电镀镍/金表面涂层。因为增加材料成本和有限的可获得性,所以没有使用高密度互连(HDI, high-density interconnect)技术。无电镀镍/金表面涂层满足所有作品的要求。实录可靠性问题排除了选择有机可焊性保护层(OSP, organic solderability preservative),选择性镍-金的成本增加也没有吸引性。

最低成本的PCB供应商的工艺才能限制板的密度为100%26mu;m线/空和0.5mm的通路孔焊盘。因此,所有通路孔(via)都是通孔(t人力资源ough-hole)型,避免盲孔(blind via)的成本增加。这些限制和阻焊层公差决定IC的分布形式、锡球尺寸和装配间距,并定义芯片贴放要求。

限制通路孔的焊盘尺寸为最小的0.5mm,意味着芯片(die)底下只能放13个通路孔(via)剩下的I/O不得不用100%26mu;m的线与空在基板顶面走出去。只使用定面金属层来布线剩下的87个I/O,这给IC的重新分布形式定下了一个标准。100%26mu;m线与空的设计要求将最终装配间距固定在200%26mu;m(图三)。

阻焊层(soldermask)的设计与工艺限制对直接芯片安装(DCA, direct chip attachment)的装配过程是关键的。必须控制电镀共晶锡球的熔湿(wet),以防止回流期间焊接点的完全倒塌和断源。阻焊层可用来限制焊锡熔湿和控制锡球塌落的程度。这个控制是通过为每个锡球座设计离散的阻焊层开口来搞定的(图四)。在本文所述的应用中,工艺的限制和贴装设备的才能使得不能使用单独定义的锡球座。

低成本PCB供应商一般只能够维持大批量生产时的%26plusmn;75%26mu;m阻焊层对位精度。用于芯片贴装(die placement)的导向丝杆设备的精度才能为%26plusmn;50%26mu;m。这些公差的累积要求0.375mm的阻焊层开口来保

证贴装与回流过程达到6%26sigma;才能。这个尺寸的开口容纳阻焊层的偏移和贴装公差,而不会将120%26mu;m直径的锡球放到阻焊层上。

最后布局利用单个的阻焊条或%26ldquo;堤挡%26rdquo;来限制焊锡熔湿流出,并在关键区域防止断源。堤挡放在流道上,直接连接于内通孔的连线孔(via)或那些认为太长的线上。要求总共11条阻焊堤挡或条来足够地保护装配(图五)。这随机放置的阻焊条提供整个芯片的连续的毛细管作用,结果得到均匀的充胶(underfill)流峰,和无空洞的密封胶。

锡球(solder bump)

在阻焊层可用于控制低成本、密间距应用的芯片(die)塌落之前,必须改进材料的定位和孔的准确度。阻焊堤挡可有效的防止焊锡点断源,但不能充分地限制回流时的锡球倒塌(die collapse)。为了有效地控制芯片离板高度,锡球的铜UBM(锡球下的金属)需要改进。使用45%26mu;m的铜柱UBM可达到连续一致的工艺过程和可靠性。这个锡球结构提供阻焊层之上43%26mu;m的间隙,简单作底部充胶。图六显示最后的锡球结构和回流之后对应的力板高度。

工艺过程

建立最终的设计版本和材料规格,允许制造过程得到优化,达到最大的产量与最好的品质。虽然与标准的表面贴装相似,倒装芯片要求特殊的考虑因素。在工厂实施之前的准备将改进生产线产量,过程合格率和作品可靠性。倒装芯片工艺包括上助焊剂(fluxing)、芯片贴装(die placement)、回流(reflow)、底部充胶(underfill)和固化(cure)。

上助焊剂(fluxing)

上助焊剂(fluxing)是倒装芯片工艺的第一步,其重要性经常被低估了。在形成连接之前,助焊剂将芯片保持在位置上,减少氧化和加速共晶焊锡球的回流。本应用中使用的免洗助焊剂具有高粘着性(tack)、低粘度(viscosity)、长蒸发时间、最低回流焊后残留物、低毒性和最小气味。

在锡球回流之前芯片的移动是一个关注,因为200%26mu;m的装配间距几乎不允许有对位错误。造成未对准或相对移位芯片的原因可能不同,但包括:

PCB弯曲变形(warped PCB):当芯片(die)贴放到电路板表面时,弯曲的板可能会柔曲。已经贴装在板上的芯片,在剩下的芯片贴装时,要经受电路板的类似于崩床的运动。

板的传送:在芯片(die)贴装之后,装配传送到回流焊炉必须流畅。传送带对不准或贴装单元的升起定位机构或传送带的突然加速都可能造成芯片移位。

炉的情况:炉内高速气流将吹动芯片偏移定位。

具有高粘着性和低蒸发速率的助焊剂系统将减少这些材料处理的缺陷和提高更快的生产线效率。如果助焊剂在芯片贴装或回流之前蒸发,所以IC更可能移位。慢的蒸发保持最多的助焊剂,在回流炉的升温和保温区期间,把芯片固定在位。理想的,助焊剂不应当蒸发太多,直到元件达到回流温度曲线的液化区域。快速干燥的醇基助焊剂可能要求芯片贴装之前分阶段处理。

为了充分利用贴装单元,上助焊剂是使用一台专用的滴胶机在芯片贴装之前搞定的。没有采用诸如压印(stamping)、浸(dipping)或刷(brushing)等接触式技巧,因为作品专门的定位装置和对污染的关注。

量的控制是助焊剂滴涂的最重要方面。要求最少的量是百分之百的覆盖锡球座/滑道(site/runner)。不完全覆盖将造成电气开路和装配的报废。增加的量超过了百分之百的要求将改善粘着性能,但可能反过来影响作品的可靠性。过多的助焊剂可能造成回流焊后的残留物和不希望的区域侵蚀。有机残留物对底部充胶是有害的,降低系统的实录可靠性。助焊剂迁移或流动超出芯片座可能引起焊锡球(solder ball)、元件竖立(tombstoning)和PCB的离子污染(ionic

contamination)。对每个作品的最后量的规定必须平衡百分之百覆盖要求、最大粘着性能、最少助焊剂残留物和元件偏移控制。

上助焊剂不要求很高的放置精度。使用两个全局基准点作板的定位,可得到很高的可信水平。对每个贴片座的部分基准点是没有必要的,它会降低设备周期。设备购买时不能没有视觉系统,但多数便利设施能够省去- 快速简便的作品编程和设定确认等。

芯片贴装(die placement)

芯片贴装简单实施,因为设备对工厂人员都很熟悉。设备具有C4倒装芯片贴装头,只用于IC的贴装。贴装头有四个贴装转轴(spindle),维持X-Y贴装精度为%26plusmn;200%26mu;m和最大贴装力为2500g。芯片以盘带包装,用黑色迭尔林(Delrin)吸嘴来吸取元件。

一般,贴装压力应当为每个I/O 6~12g。在这种情况下,100 I/O要求600~1200g之间的压力。过大贴装压力有一个缺点,虽然贴装头/视觉系统扫描后已经作了纠正,贴装压力可能产生元件偏移。还有,如果托盘的刚性不够,也许板的支撑错误,贴装时板可能会向下弯曲。

元件的视觉识别路线设定是,沿芯片周围识别48个锡球(bump),和中间附近一个定向锡球。锡球的数量经过优化达到最高的贴装精度和最大的机器产量。增加锡球数量大大地延长处理时间,而贴装精度保持不变。

一个解析度为每个象素1.3mil的相机用来抓拍芯片的图象。通过二级光强度的侧光,得到足够的对比度。贴装单元也配备一个每个象素0.5mil的可选相机,但要求抓拍两个芯片图象。

用三个全局基准点来决定PCB和贴装座的位置。基准点应当是金属作的,以保证锡球的贴放是相对于倒装芯片的焊盘,而不是阻焊层。

贴装之后、回流之前板的所有运动和传送必须平滑,不能影响元件的定位。如果元件的移位是来自贴装单元,所以机器传送带、升起定位和Z-轴的加效率和效率的设定可能需要降低。在高速运作期间,也必须使用适当的板支撑,以减少PCB挠曲。挠曲或反回可能引起前面贴装的芯片移出焊盘,特别是如果在表面贴装之前阵列(array)翘曲。

回流(Reflow)

在贴装工艺之后,装配通过一个空气对流炉,来回流共晶焊锡球,形成电气连接。炉设定按标准的表面贴装温度曲线。氮气流速提供良好的热传导,限制氧气污染。炉的进口处过大的氮气流速可能引起芯片偏移出焊盘,因此引发缺陷。如果这个偏移变成一个长期的问题,可增加分流板来防止气流直接冲击芯片。进行的温度斜率不应当超过每秒1.5~2.0%26deg;C。高的预热速率迅速蒸发助焊剂,引起回流焊接之前芯片偏移,甚至翻转。

每个作品都必须作温度曲线,以保证满足适当的回流条件。在生产线预防性维护或板有任何改动之后,应当再作温度曲线。表面上不重要的修改,如改变地线层的尺寸或位置,可影响热传递速率和倒装芯片的回流。氮气流速使用安装在炉前的流量计来监测。氧气水平可用也是安装在炉前的探测器来检查。

先进先出(FIFO, first-in, first-out)的缓冲器应当安装在回流炉的立即出口,在底部充胶单元之前。这个预防措施将收在集流水线关闭期间正在回流炉内的任何电路板。

底部充胶(Underfill)

底部充胶对倒装芯片装配的长期可靠性是必须的。胶减少焊接点的应力,将应力均匀地分散在倒装芯片的界面上。每个充胶系统的可靠性可能差别很大,决定于倒装芯片装配的结构;因素包括离板间隙(standoff)高度、芯片钝化、阻焊剂供应商和PCB材料。所希望的制造特性包括快速的流动速率、快速固化、长的储存稳定性和简单使用到倒装芯片座。为了达到成功,充胶的附着、颗粒尺寸分布和填充量必须修整,以满足制造和可靠性要求。

多数充胶材料是基于环氧树脂的系统,充入50~70%重量的硅来协调稳定膨胀系数(CTE, coefficient of thermal expansion)。所有元素预先混合包装在注射器内,适于所希望的速率和材料储存寿命。注射器大小应当限制操作员的干涉时间为每四到八个小时,因此减少停线期间的材料浪费,但又不太影响产量。

充胶材料储存在-40%26deg;C的冷冻机内,在装上滴胶机之前,解冻致少30分钟。解冻到一个稳定的稳定状态,防止不利的粘度调整,它会引起充胶量的调整。充胶的制造储存寿命应当致少四小时。在这个时间内,滴胶机应当展示连续的胶流、无针嘴滴漏(dripping/drool)和良好的滴胶点尾的断开。超过材料储存寿命可能造成充胶不完整和低劣的附着。

用旋转式胶泵将胶填充到基板。这个阀是坚固的,易于清洁,并可在胶剂寿命内滴出连续一致的胶量。基板温度是不受控制的,其调整决定于经过回流炉之后所持续的时间。胶剂是以充胶到芯片所有四条边的形式滴注的。这种形式提供良好的圆角成型,而且比曾经评估过的单线或L形滴胶更快速。

在滴胶之前,用设备的视觉程序来定位IC的每条边,减少滴胶嘴因为移位的芯片而被弯曲的机会。损坏的滴胶嘴将不会正确地滴胶,在发觉之前可能引起无数的缺陷。柔性的滴胶嘴是个可接受的替代者,如果视觉要求反过来影响设备的产量。柔性的滴胶嘴在受冲击时会弯曲,但是如果滴胶嘴变形,滴胶精度可能受影响。

芯片周围1~2mm 的元件非入区是所希望的,但并不绝对总是可行的,因为设计的局限。在本文所述的情况中,有热封装配、一个开关和几个离散元件处在非入区的里面或附近。滴在或流入热封元件和开关区域的胶可能毁坏整个PCB。密封的离散元件不会负面影响射频性能,但将抑制芯片下的胶流。这些元件也将在固化后永久地绑接在位置上,可能使得竖立的电容无法修理。12~16mg的底部充胶提供必要的覆盖并限制污染。

固化(cure)

底部充胶的装配通过一个固化炉,使胶剂聚合。卧式、立式和微波炉都可使用,决定于应用和固化时间的要求:

卧式固化炉,成本低、到处都可找到、可靠、也提供作为回流焊炉的双重功能。立式与微波炉一般是专门的固化炉,不能用于回流。

立式炉具有高容量,占地面积小,但复杂性增加可能导致可靠性和维护等问题。

微波炉提供快速的批量处理,但大大增加固定资产成本。从作品到作品来作炉的温度曲线也变得更困难。

5~15 分钟的充胶固化时间允许标准的卧式回流焊炉当作固化炉用。为了增加才能,将炉由单轨通道改为双轨通道。这个修改改进了利用率,消除了每条线多个固化炉的需要。

固化缺陷是一个关注,因为它们可能不被发觉,直到寻呼机到了顾客手中。进行的升温速率和温度上的时间(time-at-temperature)是重要的温度曲线参数,必须得到控制。过快的升温效率可能引起充胶的过早凝固,也许在系统中挥发低分子重量的单分子物体。过早的凝固在它适当地密封芯片之前就停止了材料流动,挥发的单分子物体将造成空洞。这两种情况都是不可接受的,并诱发可靠性问题。维持特定的固化时间和温度对充胶达到其完全功能是必须的。充胶的温度记录决定其物理特性,如玻璃态转化温度、CTE、粘着力和吸潮特性。加热时间不充分将造成不适当聚合的胶体,可能不能提供足够的完整的机械特性。

结论

工程师在实施一项倒装芯片应用时,应当应用两条设计规则:

限制倒装芯片将要经受的静态和动态的电路板弯曲。将芯片贴放在诸如螺钉头或键盘区域背面等高应力点,可能导致底部充胶的脱层和潜在的实录失效。

避免芯片背面可能受到冲击的区域。如有必要,增加一个冲击垫或盖来限制IC断裂或碎裂。

遵守这些规则将改善最后装配的可靠性,和避免潜在的实录失效。技术进步继续推动倒装芯片装配迈向表面贴装制造的主流。在许多领域的发展,如无流动(no-flow)低部充胶(underfill)、低成本HDI基板和高精度贴片设备,将继续降低成本和消除实施倒装芯片技术的障碍。

倒装芯片(FC,Flip-Chip)装配技术

倒装芯片(FC,Flip-Chip)装配技术 时间:2010-05-27 23:04:25 来源:网络 倒装芯片焊接完成后,需要在器件底部和基板之间填充一种胶(一般为环氧树酯材料)。底部填充分为于“ 毛细流动原理” 的流动性和非流动性(No-follow )底部填充。 上述倒装芯片组装工艺是针对C4 器件(器件焊凸材料为SnPb 、SnAg 、SnCu 或SnAgCu )而言。另外一种工艺是利用各向异性导电胶(ACF )来装配倒装芯片。预先在基板上施加异性导电胶,贴片头用较高压力将器件贴装在基板上,同时对器件加热,使导电胶固化。该工艺要求贴片机具有非常高的精度,同时贴片头具有大压力及加热功能。对于非C4 器件(其焊凸材料为Au 或其它)的装配,趋向采用此工艺。这里,我们主要讨论C4 工艺,下表列出的是倒装芯片植球(Bumping )和在基板上连接的几种方式。 倒装倒装芯片几何尺寸可以用一个“ 小” 字来形容:焊球直径小(小到0.05mm ),焊球间距小(小到0.1mm ),外形尺寸小(1mm 2 )。要获得满意的装配良率,给贴装设备及其工艺带来了挑战,随着焊球直径的缩小,贴装精度要求越来越高,目前12μm 甚至10μm 的精度越来越常见。贴片设备照像机图形处理能力也十分关键,小的球径小的球间距需要更高像素的像机来处理。 随着时间推移,高性能芯片的尺寸不断增大,焊凸(Solder Bump)数量不断提高,基板变得越来越薄,为了提高产品可靠性底部填充成为必须。

对贴装压力控制的要求 考虑到倒装芯片基材是比较脆的硅,若在取料、助焊剂浸蘸过程中施以较大的压力容易将其压裂,同时细小的焊凸在此过程中也容易压变形,所以尽量使用比较低的贴装压力,一般要求在150g 左右。对于超薄形芯片,如0.3mm ,有时甚至要求贴装压力控制在35g 。 对贴装精度及稳定性的要求 对于球间距小到0.1mm 的器件,需要怎样的贴装精度才能达到较高的良率?基板的翘曲变形,阻焊膜窗口的尺寸和位置偏差,以及机器的精度等,都会影响到最终的贴装精度。关于基板设计和制造的情况对于贴装的影响,我们在此不作讨论,这芯片装配工艺对贴装设备的要求里我们只是来讨论机器的贴装精度。为了回答上面的问题,我们来

倒装芯片(FC-Flip-Chip)装配技术

摘要:倒装芯片在产品成本,性能及满足高密度封装等方面体现出优势,它的应用也渐渐成为主流。由于倒装芯片的尺寸小,要保证高精度高产量高重复性,这给我们传统的设备及工艺带来了挑战。 器件的小型化高密度封装形式越来越多,如多模块封装(MCM )、系统封装(SiP )、倒装芯片(FC ,Flip-Chip )等应用得越来越多。这些技术的出现更加模糊了一级封装与二级装配之间的界线。毋庸置疑,随着小型化高密度封装的出现,对高速与高精度装配的要求变得更加关键,相关的组装设备和工 艺也更具先进性与高灵活性。 由于倒装芯片比BGA 或CSP 具有更小的外形尺寸、更小的球径和球间距、它对植球工艺、基板技术、材料的兼容性、制造工艺,以及检查设备和方法提出了前所未有的挑战。 倒装芯片的发展历史 倒装芯片的定义 什么器件被称为倒装芯片?一般来说,这类器件具备以下特点: 1. 基材是硅; 2. 电气面及焊凸在器件下表面; 3. 球间距一般为4-14mil 、球径为2.5-8mil 、外形尺寸为1 -27mm ; 4. 组装在基板上后需要做底部填充。 其实,倒装芯片之所以被称为“倒装”,是相对于传统的金属线键合连接方式(Wire Bonding)与植球后的工艺而言的。传统的通过金属线键合与基板连接的芯片电气面朝上(图1),而倒装芯片的电气面朝下(图2),相当于将前者翻转过来,故称其为“倒装芯片”。在圆片(Wafer)上芯片植完球后(图3),需要将其翻转,送入贴片机,便于贴装,也由于这一翻转过程,而被称为“倒装芯片”。 图1 图2

图3 倒装芯片的历史及其应用 倒装芯片在1964年开始出现,1969年由IBM发明了倒装芯片的C4工艺(Controlled Collap se Chip Connection,可控坍塌芯片联接)。过去只是比较少量的特殊应用,近几年倒装芯片已经成为高性能封装的互连方法,它的应用得到比较广泛快速的发展。目前倒装芯片主要应用在Wi- Fi、SiP、M CM、图像传感器、微处理器、硬盘驱动器、医用传感器,以及RFID等方面(图5)。 图4

芯片制造倒装焊工艺与设备解决方案

倒装键合(Flip Chip)工艺及设备解决方案 前言:倒装芯片在产品成本、性能及满足高密度封装等方面体现出优势,它的应用也渐渐成为主流。由于倒装芯片的尺寸小,要保证高精度高产量高重复性,这给我们传统的设备及工艺带来了挑战。 器件的小型化高密度封装形式越来越多,如多模块封装 ( MCM )、系统封装( SiP )、倒装芯片( FC=Flip-Chip )等应用得越来越多。这些技术的出现更加模糊了一级封装与二级装配之间的界线。毋庸置疑,随着小型化高密度封装的出现,对高速与高精度装配的要求变得更加关键,相关的组装设备和工艺也更具先进性与高灵活性。 由于倒装芯片比BGA或CSP具有更小的外形尺寸、更小的球径和球间距,它对植球工艺、基板技术、材料的兼容性、制造工艺,以及检查设备和方法提出了前所未有的挑战。 一.倒装芯片焊接的概念 倒装芯片焊接(Flip-chip Bonding)技术是一种新兴的微电子封装技术,它将工作面(有源区面)上制有凸点电极的芯片朝下,与基板布线层直接键合。一般来说,这类器件具备以下特点: 1. 基材是硅; 2. 电气面及焊凸在器件下表面; 3. 球间距一般为 4-14mil 、球径为 2.5-8mil 、外形尺寸为 1 -27mm ; 4. 组装在基板上后需要做底部填充。 其实,倒装芯片之所以被称为“倒装”,是相对于传统的金属线键合连接方式(Wire Bonding)与植球后的工艺而言的。传统的通过

金属线键合与基板连接的芯片电气面朝上(图1),而倒装芯片的电气面朝下(图2),相当于将前者翻转过来,故称其为“倒装芯片”。在圆片(Wafer)上芯片植完球后(图3),需要将其翻转,送入贴片机以便于贴装,也由于这一翻转过程而被称为“倒装芯片”。 图1 图2 图3 倒装芯片在1964年开始出现,1969年由IBM发明了倒装芯片的C4工艺(Controlled Collapse Chip Connection可控坍塌芯片联接)。过去只是比较少量的特殊应用,近几年倒装芯片已经成为高性能封装的互连方法,它的应用得到比较广泛快速的发展。目前倒装芯片主要应用在Wi-Fi、SiP、MCM、图像传感器、微处理器、硬盘驱动器、医用传感器,以及RFID等方面(图4)。

FC倒装芯片装配技术介绍

FC倒装芯片装配技术介绍 器件的小型化高密度封装形式越来越多,如多模块封装(MCM)、系统封装(SiP)、倒装芯片(FC,Flip-Chip)等应用得越来越多。这些技术的出现更加模糊了一级封装与二级装配之间的界线。毋庸置疑,随着小型化高密度封装的出现,对高速与高精度装配的要求变得更加关键,相关的组装设备和工艺也更具先进性与高灵活性。 由于倒装芯片比BGA或CSP具有更小的外形尺寸、更小的球径和球间距、它对植球工艺、基板技术、材料的兼容性、制造工艺,以及检查设备和方法提出了前所未有的挑战。 倒装芯片的发展历史 倒装芯片的定义 什么器件被称为倒装芯片?一般来说,这类器件具备以下特点: 1. 基材是硅; 2. 电气面及焊凸在器件下表面; 3. 球间距一般为4-14mil、球径为2.5-8mil、外形尺寸为1-27mm; 4. 组装在基板上后需要做底部填充。 其实,倒装芯片之所以被称为“倒装”,是相对于传统的金属线键合连接方式(Wire Bonding)与植球后的工艺而言的。传统的通过金属线键合与基板连接的芯片电气面朝上(图1),而倒装芯片的电气面朝下(图2),相当于将前者翻转过来,故称其为“倒装芯片”。在圆片(Wafer)上芯片植完球后(图3),需要将其翻转,送入贴片机,便于贴装,也由于这一翻转过程,而被称为“倒装芯片”。 倒装芯片的历史及其应用 倒装芯片在1964年开始出现,1969年由IBM发明了倒装芯片的C4工艺(Controlled Collapse Chip Connection,可控坍塌芯片联接)。过去只是比较少量的特殊应用,近几年倒装芯片已经成为高

性能封装的互连方法,它的应用得到比较广泛快速的发展。目前倒装芯片主要应用在Wi- Fi、SiP、MCM、图像传感器、微处理器、硬盘驱动器、医用传感器,以及RFID等方面(图5)。 与此同时,它已经成为小型I/O应用有效的互连解决方案。随着微型化及人们已接受SiP,倒装芯片被视为各种针脚数量低的应用的首选方法。从整体上看,其在低端应用和高端应用中的采用,根据TechSearch International Inc对市场容量的预计,焊球凸点倒装芯片的年复合增长率(CAGR)将达到31%。 倒装芯片应用的直接驱动力来自于其优良的电气性能,以及市场对终端产品尺寸和成本的要求。在功率及电信号的分配,降低信号噪音方面表现出色,同时又能满足高密度封装或装配的要求。可以预见,其应用会越来越广泛。 倒装芯片的组装工艺流程 一般的混合组装工艺流程在半导体后端组装工厂中,现在有两种模块组装方法。在两次回流焊工艺中,先在单独的SMT生产线上组装SMT器件,该生产线由丝网印刷机、贴片机和第一个回流焊炉组成。然后再通过第二条生产线处理部分组装的模块,该生产线由倒装芯片贴片机和回流焊炉组成。底部填充工艺

倒装芯片研究

倒装芯片研究 1.为什么倒装? (1)由于P型GaN传导性能不佳,为获得良好的电流扩展,需要通过蒸镀技术在P区表面形成一层ITO层。P区引线通过该ITO膜引出。为获得好的电流扩展,ITO层就不能太薄。为此,器件的发光效率就会受到很大影响,通常要同时兼顾电流扩展与出光效率二个因素。但无论在什麼情况下,ITO膜的存在,总会使透光性能变差。此外,引线焊点的存在也使器件的出光效率受到影响。采用GaN LED倒装芯片的结构可以从根本上消除上面的问题。而且p电极也会遮挡住部分光,限制了LED芯片的出光效率。 采用倒装结构的LED芯片,不但可以同时避开P电极上导电层吸收光和电极垫遮光的问题,还可以通过在p-GaN表面设置低欧姆接触的反光层来将往下的光线引导向上,这样可同时降低驱动电压及提高光强。另一方面,图形化蓝宝石衬底(PSS)技术和芯片表面粗糙化技术同样可以增大LED芯片的出光效率50%以上。 (2)散热更好。LED是靠电子在能带间跃迁产生光的,其光谱中不含有红外部分,所以LED的热量不能靠辐射散发。一旦LED的温度超过最高临界温度(跟据不同外延及工艺,芯片温度大概为150℃),往往会造成LED永久性失效。与传统正装结构以蓝宝石衬底作为散热通道相比,垂直及倒装焊芯片结构有着较佳的散热能力。垂直结构芯片直接采用铜合金作为衬底,有效地提高了芯片的散热能力。倒装焊(Flip-Chip)技术通过共晶焊将LED芯片倒装到具有更高导热率的硅衬底上(导热系数约120W/mK,传统正装芯片蓝宝石导热系数约20W/mK),芯片与衬底间的金凸点和硅衬底同时提高了LED芯片的散热能力,保障LED的热量能够快速从芯片中导出。 (3)防静电能力增强。抗静电释放(ESD)能力是影响LED芯片可靠性的另一因素。对于InGaN/AlGaN/GaN 双异质结,InGaN 活化簿层厚度仅几十纳米,对静电的承受能力有限,很容易被静电击穿,使器件失效。可以在LED芯片中加入齐纳保护电路防止静电。通常需要在封装过程中通过金线并联一颗齐纳芯片以提高ESD防护能力,不仅增加封装成本和工艺难度,可靠性也有较大的风险。通过在硅衬底内部集成齐纳保护电路的方法,可以大大提高LED芯片的抗静电释放能力(ESDHBM=4000~8000V),同时节约封装成本,简化封装工艺,并提高产品可靠性。 (4)在封装过程中通过焊线(Wire-bonding)的方式实现芯片与支架的电路连接,而焊接过程中瓷嘴对LED的芯片的冲击是导致LED漏电、虚焊等主要原因,传统正装和垂直结构LED,电极位于芯片的发光表面,因此焊线过程中瓷嘴的正面冲击极易造成发光区和电极金属层等的损伤,在LED芯片采取倒装结构中,电极位于硅基板上,焊线过程中不对芯片进行冲击,极大地提高封装可靠性和

LED倒装工艺流程分析

LED倒装工艺流程分析 近年来LED在电视机背光、手机、和平板电脑等方面的应用也迎来了爆发式的增长,LED具有广阔的应用发展前景。 倒装LED技术的发展及现状 倒装技术在LED领域上还是一个比较新的技术概念,但在传统IC行业中已经被广泛应用且比较成熟,如各种球栅阵列封装(BGA)、芯片尺寸封装(CSP)、晶片级芯片尺寸封装(WLCSP)等技术,全部采用倒装芯片技术,其优点是生产效率高、器件成本低和可靠性高。 倒装芯片技术应用于LED器件,主要区别于IC在于,在led芯片制造和封装过程中,除了要处理好稳定可靠的电连接以外,还需要处理光的问题,包括如何让更多的光引出来,提高出光效率,以及光空间的分布等。 针对传统正装LED存在的散热差、透明电极电流分布不均匀、表面电极焊盘和引线挡光以及金线导致的可靠性问题,1998年,J.J.Wierer等人制备出了1W倒装焊接结构的大功率AlGaInN-LED蓝光芯片,他们将金属化凸点的AIGalnN芯片倒装焊接在具有防静电保护二极管(ESD)的硅载体上。 测试结果表明,在相同的芯片面积下,倒装led芯片(FCLED)比正装芯片有着更大的发光面积和非常好的电学特性,在200-1000mA的电流范围,正向电压(VF)相对较低,从而导致了更高的功率转化效率。 2006年,O.B.Shchekin等人又报道了一种新的薄膜倒装焊接的多量子阱结构的LED(TFFC-LED)。所谓薄膜倒装LED,就是将薄膜LED与倒装LED的概念结合起来。 在将LED倒装在基板上后,采用激光剥离(Laser lift-off)技术将蓝宝石衬底剥离掉,然后在暴露的N型GaN层上用光刻技术做表面粗化。 随着硅基倒装芯片在市场上销售,逐渐发现这种倒装LED芯片在与正装芯片竞争时,其成本上处于明显的劣势。 由于LED发展初期,所有封装支架和形式都是根据其正装或垂直结构LED 芯片进行设计的,所以倒装LED芯片不得不先倒装在硅基板上,然后将芯片固定在传统的支架上,再用金线将硅基板上的电极与支架上的电极进行连接。 使得封装器件内还是有金线的存在,没有利用上倒装无金线封装的优势;而且还增加了基板的成本,使得价格较高,完全没有发挥出倒装LED芯片的优势。 为此,最早于2007年有公司推出了陶瓷基倒装led封装产品。这一类型的产品,陶瓷既作为倒装芯片的支撑基板,也作为整体封装支架,实现整封装光源的小型化。

倒装封装介绍

倒装封装介绍 什么是LED倒装芯片?近年来,在芯片领域,倒装芯片技术正异军突起,特别是在大功率、户外照明的应用市场上更受欢迎。但由于发展较晚,很多人不知道什么叫LED倒装芯片,LED倒装芯片的优点是什么?今天慧聪LED屏网编辑就为你做一个简单的说明。先从LED正装芯片为您讲解LED倒装芯片,以及LED倒装芯片的优势和普及难点。 要了解LED倒装芯片,先要了解什么是LED正装芯片 LED正装芯片是最早出现的芯片结构,也是小功率芯片中普遍使用的芯片结构。该结构,电极在上方,从上至下材料为:P-GaN,发光层,N-GaN,衬底。所以,相对倒装来说就是正装。 LED倒装芯片和症状芯片图解 为了避免正装芯片中因电极挤占发光面积从而影响发光效率,芯片研发人员设计了倒装结构,即把正装芯片倒置,使发光层激发出的光直接从电极的另一面发出(衬底最终被剥去,芯片材料是透明的),同时,针对倒装设计出方便LED封装厂焊线的结构,从而,整个芯片称为倒装芯片(Flip Chip),该结构在大功率芯片较多用到。 正装、倒装、垂直LED芯片结构三大流派

倒装技术并不是一个新的技术,其实很早之前就存在了。倒装技术不光用在LED行业,在其他半导体行业里也有用到。目前LED芯片封装技术已经形成几个流派,不同的技术对应不同的应用,都有其独特之处。 目前LED芯片结构主要有三种流派,最常见的是正装结构,还有垂直结构和倒装结构。正装结构由于p,n电极在LED同一侧,容易出现电流拥挤现象,而且热阻较高,而垂直结构则可以很好的解决这两个问题,可以达到很高的电流密度和均匀度。未来灯具成本的降低除了材料成本,功率做大减少LED颗数显得尤为重要,垂直结构能够很好的满足这样的需求。这也导致垂直结构通常用于大功率LED应用领域,而正装技术一般应用于中小功率LED。而倒装技术也可以细分为两类,一类是在蓝宝石芯片基础上倒装,蓝宝石衬底保留,利于散热,但是电流密度提升并不明显;另一类是倒装结构并剥离了衬底材料,可以大幅度提升电流密度。 LED倒装芯片的优点 一是没有通过蓝宝石散热,可通大电流使用;二是尺寸可以做到更小,光学更容易匹配;三是散热功能的提升,使芯片的寿命得到了提升;四是抗静电能力的提升;五是为后续封装工艺发展打下基础。 什么是LED倒装芯片 据了解,倒装芯片之所以被称为“倒装”是相对于传统的金属线键合连接方式(Wire Bonding)与植球后的工艺而言的。传统的通过金属线键合与基板连接的晶片电气面朝上,而倒装晶片的电气面朝下,相当于将前者翻转过来,故称其为“倒装芯片”。 倒装LED芯片,通过MOCVD技术在蓝宝石衬底上生长GaN基LED结构层,由P/N结发光区发出的光透过上面的P型区射出。由于P型GaN传导性能不佳,为获得良好的电流扩展,需要通过蒸镀技术在P区表面形成一层Ni- Au组成的金属电极层。P 区引线通过该层金属薄膜引出。为获得好的电流扩展,Ni-Au金属电极层就不能太薄。为此,器件的发光效率就会受到很大影响,通常要同时兼顾电流扩展与出光效率二个因素。但无论在什麼情况下,金属薄膜的存在,总会使透光性能变差。此外,引线焊点的存在也使器件的出光效率受到影响。采用GaN LED倒装芯片的结构可以从根本上消除上面的问题。 在倒装芯片的技术基础上,有厂家发展出了LED倒装无金线芯片级封装。 什么是LED倒装无金线芯片级封装 倒装无金线芯片级封装,基于倒装焊技术,在传统LED芯片封装的基础上,减少了金线封装工艺,省掉导线架、打线,仅留下芯片搭配荧光粉与封装胶使用。作为新封装技术产品,倒装无金线芯片级光源完全没有因金线虚焊或接触不良引起的不亮、闪烁、

FC(倒装)

倒装芯片 Flip chip(倒装芯片):一种无引脚结构,一般含有电路单元。设计用于通过适当数量的位于其面上的锡球(导电性粘合剂所覆盖),在电气上和机械上连接于电路。 起源于60年代,由IBM率先研发出,具体原理是在I/Opad上沉积锡铅球,然后将芯片翻转加热利用熔融的锡铅球与陶瓷板相结合,此技术已替换常规的打线接合,逐渐成为未来封装潮流。Flip Chip既是一种芯片互连技术,又是一种理想的芯片粘接技术.早在30年前IBM公司已研发使用了这项技术。但直到近几年来,Flip-Chip已成为高端器件及高密度封装领域中经常采用的封装形式。今天,Flip-Chip封装技术的应用范围日益广泛,封装形式更趋多样化,对Flip-Chip封装技术的要求也随之提高。同时,Flip-Chip也向制造者提出了一系列新的严峻挑战,为这项复杂的技术提供封装,组装及测试的可靠支持。以往的一级封闭技术都是将芯片的有源区面朝上,背对基板和贴后键合,如引线健合和载带自动健全(TAB)。FC则将芯片有源区面对基板,通过芯片上呈阵列排列的焊料凸点实现芯片与衬底的互连.硅片直接以倒扣方式安装到PCB从硅片向四周引出I/O,互联的长度大大缩短,减小了RC延迟,有效地提高了电性能.显然,这种芯片互连方式能提供更高的I/O密度.倒装占有面积几乎与芯片大小一致.在所有表面安装技术中,倒装芯片可以达到最小、最薄的封装。 Flip chip又称倒装片,是在I/O pad上沉积锡铅球,然后将芯片翻转佳热利用熔融的锡铅球与陶瓷机板相结合此技术替换常规打线接合,逐渐成为未来的封装主流,当前主要应用于高时脉的CPU、 GPU(GraphicProcessor Unit)及Chipset 等产品为主。与COB相比,该封装形式的芯片结构和I/O端(锡球)方向朝下,由于I/O引出端分布于整个芯片表面,故在封装密度和处理速度上Flip chip已达到顶峰,特别是它可以采用类似SMT技术的手段来加工,因此是芯片封装技术及高密度安装的最终方向。倒装片连接有三种主要类型C4(Controlled Collapse Chip Connection)、DCA(Direct chip attach)和FCAA(Flip Chip Adhesive Attachement)。 C4是类似超细间距BGA的一种形式与硅片连接的焊球阵列一般的间距为0.23、 0.254mm。焊球直径为0.102、0.127mm。焊球组份为97Pb/3Sn。这些焊球在硅片上可以呈完全分布或部分分布。 由于陶瓷可以承受较高的回流温度,因此陶瓷被用来作为C4连接的基材,通常是在陶瓷的表面上预先分布有镀Au或Sn的连接盘,然后进行C4形式的倒装片连接。C4连接的优点在于:

芯片封装的主要步骤是什么啊

芯片封装的主要步骤是什么啊? 悬赏分:0 - 解决时间:2007-6-21 13:53 芯片封装的主要步骤是什么啊?谁能告诉我啊?尽量说详细些,谢谢 提问者:zorariku - 试用期一级最佳答案 板上芯片(Chip On Board, COB)工艺过程首先是在基底表面用导热环氧树脂(一般用掺银颗粒的环氧树脂)覆盖硅片安放点,然后将硅片直接安放在基底表面,热处理至硅片牢固地固定在基底为止,随后再用丝焊的方法在硅片和基底之间直接建立电气连接。 裸芯片技术主要有两种形式:一种是COB技术,另一种是倒装片技术(Flip Chip)。板上芯片封装(COB),半导体芯片交接贴装在印刷线路板上,芯片与基板的电气连接用引线缝合方法实现,芯片与基板的电气连接用引线缝合方法实现,并用树脂覆盖以确保可靠性。虽然COB是最简单的裸芯片贴装技术,但它的封装密度远不如TAB和倒片焊技术。 COB主要的焊接方法: (1)热压焊 利用加热和加压力使金属丝与焊区压焊在一起。其原理是通过加热和加压力,使焊区(如AI)发生塑性形变同时破坏压焊界面上的氧化层,从而使原子间产生吸引力达到“键合”的目的,此外,两金属界面不平整加热加压时可使上下的金属相互镶嵌。此技术一般用为玻璃板上芯片COG。 (2)超声焊 超声焊是利用超声波发生器产生的能量,通过换能器在超高频的磁场感应下,迅速伸缩产生弹性振动,使劈刀相应振动,同时在劈刀上施加一定的压力,于是劈刀在这两种力的共同作用下,带动AI丝在被焊区的金属化层如(AI膜)表面迅速摩擦,使AI丝和AI膜表面产生塑性变形,这种形变也破坏了AI层界面的氧化层,使两个纯净的金属表面紧密接触达到原子间的结合,从而形成焊接。主要焊接材料为铝线焊头,一般为楔形。 (3)金丝焊 球焊在引线键合中是最具代表性的焊接技术,因为现在的半导体封装二、三极管封装都采用AU线球焊。而且它操作方便、灵活、焊点牢固(直径为25UM的AU丝的焊接强度一般为0.07~0.09N/点),又无方向性,焊接速度可高达15点/秒以上。金丝焊也叫热(压)(超)声焊主要键合材料为金(AU)线焊头为球形故为球焊。 COB封装流程 第一步:扩晶。采用扩张机将厂商提供的整张LED晶片薄膜均匀扩张,使附着在薄膜表面紧密排列的LED

倒装芯片工艺与SMT组装探讨

倒装芯片工艺挑战SMT组装 1引言 20世纪90年代以来,移动电话、个人数字助手(PDA)、数码相机等消费类电子产品的体积越来越小,工作速度越来越快,智能化程度越来越高。这些日新月异的变化为电子封装与组装技术带来了许多挑战和机遇。材料、设备性能与工艺控制能力的改进使越来越多的EMS公司可以跳过标准的表面安装技术(SMT)直接进入先进的组装技术领域,包括倒装芯片等。由于越来越多的产品设计需要不断减小体积,提高工作速度,增加功能,因此可以预计,倒装芯片技术的应用范围将不断扩大,最终会取代SMT当前的地位,成为一种标准的封装技术。 多年以来,半导体封装公司与EMS公司一直在携手合作,在发挥各自特长的同时又参与对方领域的技术业务,力争使自己的技术能力更加完善和全面。在半导体工业需求日益增加的环境下,越来越多的公司开始提供\\\"完整的 解决方案\\\"。这种趋同性是人们所期望看到的,但同时双方都会面临一定的挑战。 例如,以倒装芯片BGA或系统封装模块为例,随着采用先进技术制造而成的产品的类型由板组装方式向元件组装

方式的转变,以往似乎不太重要的诸多因素都将发挥至关 重要的作用。互连应力不同了,材料的不兼容性增加了,工艺流程也不一样了。不论你的新产品类型是否需要倒装芯片技术,不论你是否认为采用倒装芯片的时间合适与否,理解倒装芯片技术所存在的诸多挑战都是十分重要的。 2 倒装芯片技术 \\\"倒装芯片技术\\\",这一名词包括许多不同的方法。每一种方法都有许多不同之处,且应用也有所不同。例如,就电路板或基板类型的选择而言,无论它是有机材料、陶瓷材料还是柔性材料,都决定着组装材料(凸点类型、焊剂、底部填充材料等)的选择,而且在一定程度上还决定着所需设备的选择。在目前的情况下,每个公司都必须决定采用哪一种技术,选购哪一类工艺部件,为满足未来产品的需要进行哪一些研究与开发,同时还需要考虑如何将资本投资和运作成本降至最低额。 在SMT环境中最常用、最合适的方法是焊膏倒装芯片组装工艺。即使如此,为了确保可制造性、可靠性并达到成本目标也应考虑到该技术的许多变化。目前广泛采用的倒装芯片方法主要是根据互连结构而确定的。如,柔顺凸点技术的实现要采用镀金的导电聚合物或聚合物/弹性体凸

倒装焊芯片

倒装焊芯片(Flip-Chip)是什么意思作者:佚名来源:https://www.360docs.net/doc/d23184396.html, 发布时间:2010-3-4 14:08:08 [收藏] [评论] 倒装焊芯片(Flip-Chip)是什么意思 Flip Chip既是一种芯片互连技术,又是一种理想的芯片粘接技术.早在30年前IBM公司已研发使用了这项技术。但直到近几年来,Flip-Chip已成为高端器件及高密度封装领域中经常采用的封装形式。今天,Flip-Chip封装技术的应用范围日益广泛,封装形式更趋多样化,对Flip-Chip封装技术的要求也随之提高。同时,Flip-Chip也向制造者提出了一系列新的严峻挑战,为这项复杂的技术提供封装,组装及测试的可靠支持。以往的一级封闭技术都是将芯片的有源区面朝上,背对基板和贴后键合,如引线健合和载带自动健全(TAB)。FC则将芯片有源区面对基板,通过芯片上呈阵列排列的焊料凸点实现芯片与衬底的互连.硅片直接以倒扣方式安装到PCB从硅片向四周引出I/O,互联的长度大大缩短,减小了RC延迟,有效地提高了电性能.显然,这种芯片互连方式能提供更高的I/O密度.倒装占有面积几乎与芯片大小一致.在所有表面安装技术中,倒装芯片可以达到最小、最薄的封装。 而FC-BGA(Flip Chip Ball Grid Array:倒装芯片球栅格阵列)是一种较新的支持表明安装板的封装形式,采用C4可控塌陷芯片法焊接,大幅度改善电器性能,据称能提高封装成品率(没有查到具体数据是多少)。这种封装允许直接连接到底层,具体来说由倒装在元件底部上的硅核组成,使用金属球代替原先的针脚来连接处理器,如果把焊接比喻成缝衣的话,那么这种焊接方式可以让针脚均匀一致,连接距离更短引脚间距增大,避免了虚焊和针脚弯曲弯曲现象。FC-BGA封装共使用了479个直径仅为0.78毫米的封装球使得封装高度大为减小,怎么样,“针脚”的确够小吧?采用这种工艺带来的好处也是很明显的:那就是可以大大减小芯片封装后的尺寸(核心/封装比可做到1:1.5)令核心外露,热传导效率增加,毫无疑问,这种工艺非常适合高速芯片的封装。除此以外,因为芯片的引脚是由中心方向引出的,和基板距离缩短,因此干扰少,电信号传递更快速稳定而纯净,十分有助于超频。目前台湾主要的封装厂如全懋、日月光、景硕、南亚等都有能力做FC-BGA封装。当然喽,成本方面,FC-BGA比Wirebond封装要贵上许多(2.5美圆V S1美圆)!下面就是两种封装能达到的频率理论值: * 频率和晶体管数目/功耗等密切相关,以上注明的频率均针对VPU 我们看到,FC-BGA封装的理论极限大概是Wirbond的1.45倍! 普通版本的FX5600XT核心的售价是47美圆,FC-BGA封装的VPU要贵近20美圆,出货量之比是100:1,十分稀少。

影响倒装芯片底部填充胶流动的因素分析解读

第2卷第2期 2008年6月 材料研究与应用MATERIALSRESEARCHANDAPPLICATION Vo112,No12Jun12008 文章编号:167329981(2008)0120151204 影响倒装芯片底部填充胶流动的因素分析 张良明 (广州大学,广东广州510006) 摘要:材料特性对倒装芯片底部填充胶流动的影响因素主要有表面张力、1在考虑焊球点影响的情况下,主要影响因素有焊球点的布置密度及边缘效应.关键词:倒装芯片;填充胶;焊球点;表面张力;接触角中图分类号:O35文献标识码:A 在对外形尺寸要求苛刻的中,,在温,使连接芯片与电路基板的焊球点(凸点)断裂,从而使元件的电热阻增加,甚至使整个元件失效.解决这个问题既直接又简单的办法是,在芯片与电路基板之间填充密封剂(简称填充胶).这样可以增加芯片与基板的连接面积,提高二者的结合强度,对凸点起到保护作用.底部填充是倒装芯片互连工艺的主要工序之一,对倒装芯片可靠性的影响很大,所以研究填充胶的流动性有着重 要的意义. σ为填充胶流动前端与空气之间的表式(1)中: 面张力,xf为填充胶流动前端所走过的距离,θ为填充胶流动过程中与芯片所形成的接触角,μ为牛顿流体的填充胶的粘度,h为芯片与电路底板之间的缝隙高度.当填充完成时,填充胶流动的距离L即为方形芯片的长度.在不考虑焊球的影响和假设填充胶是牛顿流体的情况下,上述因素都会影响填充胶的流动.1.1.1表面张力 填充胶在流动的过程中,壁面的粘滞力是其在晶片与基板间隙间流动的唯一推动力.表面张力σ与压力差VP和接触角θ之间的关系[3]可以表示为: VP= . h (2)

SMT环境中倒装芯片工艺与技术应用

SMT环境中倒装芯片工艺与技术应用 1、引言 倒装芯片的成功实现与使用包含诸多设计、工艺、设备与材料因素。只有对每一个因素都加以认真考虑和对待才能够促进工艺和技术的不断完善和进步,才能满足应用领域对倒装芯片技术产品不断增长的需要。 2、倒装芯片技术 “倒装芯片技术”这一名词包括许多不同的方法。每一种方法都有许多不同之处,且应用也有所不同。例如,就电路板或基板类型的选择而言,无论它是有机材料、陶瓷材料还是柔性材料,都决定着组装材料(凸点类型、焊剂、底部填充材料等)的选择,而且在一定程度上还决定着所需设备的选择。在目前的情况下,每个公司都必须决定采用哪一种技术,选购哪一类工艺部件,为满足未来产品的需要进行哪一些研究与开发,同时还需要考虑如何将资本投资和运作成本降至最低额。 在SMT环境中最常用、最合适的方法是焊膏倒装芯片组装工艺。即使如此,为了确保可制造性、可靠性并达到成本目标也应考虑到该技术的许多变化。目前广泛采用的倒装芯片方法主要是根据互连结构而确定的。如,柔顺凸点技术的实现要采用镀金的导电聚合物或聚合物/弹性体凸点。 焊柱凸点技术的实现要采用焊球键合(主要采用金线)或电镀技术,然后用导电的各向同性粘接剂完成组装。工艺中不能对集成电路(1C)键合点造成影响。在这种情况下就需要使用各向异性导电膜。焊膏凸点技术包括蒸发、电镀、化学镀、模版印刷、喷注等。因此,互连的选择就决定了所需的键合技术。通常,可选择的键合技术主要包括:再流键合、热超声键合、热压键合和瞬态液相键合等。 上述各种技术都有利也有弊,通常都受应用而驱动。但就标准SMT工艺使用而言,焊膏倒装芯片组装工艺是最常见的,且已证明完全适合SMT。 3、焊膏倒装芯片组装技术 传统的焊膏倒装芯片组装工艺流程包括:涂焊剂、布芯片、焊膏再流与底部填充等。但为了桷保成功而可靠的倒装芯片组装还必须注意其它事项。通常,成功始于设计。 首要的设计考虑包括焊料凸点和下凸点结构,其目的是将互连和IC键合点上的应力降至最低。如果互连设计适当的话,已知的可靠性模型可预测出焊膏上将要出现的问题。对IC键合点结构、钝化、聚酰亚胺开口以及下凸点治金(UBM)结构进行合理的设计即可实现这一目的。钝化开口的设计必须达到下列目

正装与倒装芯片的封装

倒装芯片的封装 倒装芯片通常是功率芯片主要用来封装大功率LED(>1W),正装芯片通常是用来进行传统的小功率φ3~φ10的封装。因此,功率不同导致二者在封装及应用的方式均有较大的差别,主要区别有如下几点: 1. 封装用原材料差别: 2.封装制程区别: (1).固晶:正装小芯片采取在直插式支架反射杯内点上绝缘导热胶来固定芯片,而倒装芯片多采用导热系数更高的银胶或共晶的工艺与支架基座相连,且本身支架基座通常为导热系数较高的铜材; (2).焊线:正装小芯片通常封装后驱动电流较小且发热量也相对较小,因此采用正负电极各自焊接一根φ0.8~φ0.9mil金线与支架正负极相连即可;而倒装功率芯片驱动电流一般在350mA以上,芯片尺寸较大,因此为了保证电流注入芯片过程中的均匀性及稳定性,通常在芯片正负级与支架正负极间各自焊接两根φ1.0~φ1.25mil的金线; (3).荧光粉选择:正装小芯片一般驱动电流在20mA左右,而倒装功率芯片一般在350mA左右,因此二者在使用过程中各自的发热量相差甚大,而现在市场通用的荧光粉主要为YAG, YAG自身耐高温为127℃左右,而芯片点亮后,结温(Tj)会远远高于此温度,因此在散热处理不好的情况下,荧光粉长时间老化衰减严重,因此在倒装芯片封装过程中建议使用耐高温性能更好的硅酸盐荧光粉; (4).胶体的选择:正装小芯片发热量较小,因此传统的环氧树脂就可以满足封装的需要;而倒装功率芯片发热量较大,需要采用硅胶来进行封装;硅胶的选择过程中为了匹配蓝宝石衬底的折射率,建议选择折射率较高的硅胶(>1.51),防止折射率较低导致全反射临界角增大而使大部分的光在封装胶体内部被全反射而损失掉;同时,硅胶弹性较大,与环氧树脂相比热应力比环氧树脂小很多,在使用过程中可以对芯片及金线起到良好的保护作用,有利于提高整个产品的可靠性; (5).点胶:正装小芯片的封装通常采用传统的点满整个反射杯覆盖芯片的方式来封装,而倒装功率芯片封装过程中,由于多采用平头支架,因此为了保证整个荧光粉涂敷的均匀性提高出光率而建议采用保型封装(Conformal-Coating)的工艺;示意图如下:

芯片倒装技术及芯片封装技术

芯片倒装技术及芯片封装技术 引言世纪90年代以来,移动电话、个人数字助手(PDA)、数码相机等消费类电子产品的体积越来越小,工作速度越来越快,智能化程度越来越高。这些日新月异的变化为电子封装与组装技术带来了很多挑战和机遇。材料、设备机能与工艺控制能力的改进使越来越多的EMS 公司可以跳过尺度的表面安装技术(SMT)直接进入提高前辈的组装技术领域,包括倒装芯片等。因为越来越多的产品设计需要不断减小体积,进步工作速度,增加功能,因此可以预计,倒装芯片技术的应用范围将不断扩大,终极会取代SMT当前的地位,成为一种尺度的封装技术。 多年以来,半导体封装公司与EMS公司一直在通力进行,在施展各自特长的同时又介入对方领域的技术业务,力争使自己的技术能力更加完善和全面。在半导体产业需求日益增加的环境下,越来越多的公司开始提供\\\"完整的解决方案\\\"。这种趋同性是人们所期望看到的,但同时双方都会面对一定的挑战。 例如,以倒装芯片BGA或系统封装模块为例,跟着采用提高前辈技术制造而成的产品的类型由板组装方式向元件组装方式的转变,以往好像不太重要的诸多因素都将施展至关重要的作用。互连应力不同了,材料的不兼容性增加了,工艺流程也不一样了。不论你的新产品类型是否需要倒装芯片技术,不论你是否以为采用倒装芯片的时间合适与否,理解倒装芯片技术所存在的诸多挑战都是十分重要的。 倒装芯片技术倒装芯片技术\\\",这一名词包括很多不同的方法。每一种方法都有很多不同之处,且应用也有所不同。例如,就电路板或基板类型的选择而言,不管它是有机材料、陶瓷材料仍是柔性材料,都决定着组装材料(凸点类型、焊剂、底部填充材料等)的选择,而且在一定程度上还决定着所需设备的选择。在目前的情况下,每个公司都必需决定采用哪一种技术,选购哪一类工艺部件,为知足未来产品的需要进行哪一些研究与开发,同时还需要考虑如何将资本投资和运作本钱降至最低额。 在SMT环境中最常用、最合适的方法是焊膏倒装芯片组装工艺。即使如斯,为了确保可制造性、可靠性并达到本钱目标也应考虑到该技术的很多变化。目前广泛采用的倒装芯片方法主要是根据互连结构而确定的。如,和婉凸点技术的实现要采用镀金的导电聚合物或聚合物/弹性体凸点。 焊柱凸点技术的实现要采用焊球键合(主要采用金线)或电镀技术,然后用导电的各向同性粘接剂完成组装。工艺中不能对集成电路(1C)键合点造成影响。在这种情况下就需要使用各向异性导电膜。焊膏凸点技术包括蒸发、电镀、化学镀、模版印刷、喷注等。因此,互连的选择就决定了所需的键合技术。通常,可选择的键合技术主要包括:再流键合、热超声键合、热压键合和瞬态液相键合等。 上述各种技术都有利也有弊,通常都受应用而驱动。但就尺度SMT工艺使用而言,焊膏倒装芯片组装工艺是最常见的,且已证实完全适合焊膏倒装芯片组装技术传统的焊膏倒装芯片组装工艺流程包括:涂焊剂、布芯片、焊膏再流与底部填充等。但为了桷保成功而可靠的倒装芯片组装还必需留意其它事项。通常,成功始于设计。 首要的设计考虑包括焊料凸点和下凸点结构,其目的是将互连和IC键合点上的应力降至最低。假如互连设计适当的话,已知的可靠性模型可猜测出焊膏上将要泛起的题目。对IC 键合点结构、钝化、聚酰亚胺启齿以及下凸点治金(UBM)结构进行公道的设计即可实现这一目的。钝化启齿的设计必需达到下列目的:降低电流密度;减小集中应力的面积;进步电迁移的寿命;最大限度地增大UBM和焊料凸点的断面面积。 凸点位置布局是另一项设计考虑,焊料凸点的位置尽可能的对称,识别定向特征(去掉一个边角凸点)是个例外。布局设计还必需考虑顺流切片操纵不会受到任何干扰。在IC的有

倒装芯片底部填充工艺

倒装芯片底部填充工艺 梁凤梅 (太原理工大学,山西 太原 030024) 摘 要:从热疲劳故障的角度论述了倒装芯片底部填充的必要性,介绍了倒装芯片底部填充的 参数控制。通过正确的底部填充,可提高倒装芯片组装的成品率和可靠性。 关键词:倒装片;可靠性;生产辅料 中图分类号:TN 4 文献标识码:A 文章编号:1001-3474(2000)06-0252-03 Flip Chip Underfill Technology LIANG Feng -mei (Taiyuan University of Technology,Taiyuan 030024,China) Abstract:Discuss the necessary of flip chip underfill to thermal fatigue failures.Put forward controlling parameter for flip chip underfill.Then show that correct underfill can dramatically increase thermal reliability. key words:Flip chip;Reliability;Manufacture subsidiary Document Code:A Article ID:1001-3474(2000)06-0252-03 尽管有一些成熟的工艺适用于PCB 的芯片贴装,但倒装片(FC)技术是最独特的。倒装片是一种直接芯片贴装(DC A)技术。先在芯片底部制作出很小的焊接用凸起阵列,然后将芯片倒转装在基板上。随着芯片尺寸的增加,以及在倒装片贴装中采用非陶瓷新型材料作为基底,沿用了20年的传统技术面临着新的挑战。倒装片工艺的关键问题之一是由于热膨胀系数(TCE)不同而引起的芯片与基板之间的应力,为了消除这一应力,下填充工艺被应用于基板与芯片之间。 1 倒装片底部填充的必要性 1.1 热疲劳故障 通过在芯片和基板之间的空隙中填充环氧树脂材料,可以获得较高的可靠性。如果不采用这种底部填充方法,失效率达50%时的热循环次数甚至会低于200次。若精心选择底部填充材料,就有可能将热疲劳可靠性提高10倍以上。对底部填充材料和空隙形状的深入了解,还可使性能进一步提高。 在采用底部填充材料和不采用底部填充材料的情况下,分别完成倒装芯片的组装。为一个厚0.6mm 、面积为10mm 2的芯片建立一个二维有限元分析模型。该芯片是贴装在一个1.2mm 厚的FR4PCB 上的倒装芯片。这一测试得出了文中的结论。1.2 非底部填充组装 这种情况下,焊点的剪切变形处于支配地位,这是由芯片和基板之间位移差造成的。预期的失效率达50%时的热循环(-55 到125 )次数较低,为200次。在模型中,增加芯片的尺寸将使热疲劳寿命以对数率降低。此外,降低焊点高度也将使50%失效率时的热循环次数以相同的方式减小。另一方面,可以通过将焊点变凹的方法,使热循环次数提高到600次。 硅片和基板材料之间热膨胀系数(C TE)的差别也决定了剪切变形的程度。所以,正确选择基板材料非常重要。研究人员发现,使用C TE 值为5.6 10-6/K 的氧化铝作为基板材料,其失效率达50% 作者简介:梁凤梅(1969-),女,毕业于西安交通大学,硕士,现为太原理工大学信息工程学院讲师。 252 电子工艺技术Electronics Process Technology 第21卷第6期 2000年11月

LED芯片倒装工艺原理

LED芯片倒装工艺原理以及应用简介 倒装晶片所需具备的条件: ①基材材是硅;②电气面及焊凸在元件下表面;③组装在基板后需要做底部填充。 倒装晶片的定义: 其实倒装晶片之所以被称为“倒装”是相对于传统的金属线键合连接方式(Wire Bonding)与植球后的工艺而言的。传统的通过金属线键合与基板连接的晶片电气面朝上,而倒装晶片的电气面朝下,相当于将前者翻转过来,故称其为“倒装晶片”。 倒装芯片的实质是在传统工艺的基础上,将芯片的发光区与电极区不设计在同一个平面这时则由电极区面朝向灯杯底部进行贴装,可以省掉焊线这一工序,但是对固晶这段工艺的精度要求较高,一般很难达到较高的良率。 倒装芯片与与传统工艺相比所具备的优势: 通过MOCVD技术在兰宝石衬底上生长GaN基LED结构层,由P/N结髮光区发出的光透过上面的P型区射出。由于P型GaN传导性能不佳,为获得良好的电流扩展,需要通过蒸镀技术在P区表面形成一层Ni-Au组成的金属电极层。P区引线通过该层金属薄膜引出。为获得好的电流扩展,Ni-Au金属电极层就不能太薄。为此,器件的发光效率就会受到很大影响,通常要同时兼顾电流扩展与出光效率二个因素。但无论在什麼情况下,金属薄膜的存在,总会使透光性能变差。此外,引线焊点的存在也使器件的出光效率受到影响。采用GaN LED倒装芯片的结构可以从根本上消除上面的问题。 倒装LED芯片技术行业应用分析: 近年,世界各国如欧洲各国、美国、日本、韩国和中国等皆有LED照明相关项目推行。其中,以我国所推广的“十城万盏”计划最为瞩目。路灯是城市照明不可缺少的一部分,传统路灯通常采用高压钠灯或金卤灯,这两种光源最大的特点是发光的电弧管尺寸小,可以产生很大的光输出,并且具有很高的光效。但这类光源应用在道路灯具中,只有约40%的光直接通过玻璃罩到达路面,60%的光通过灯具反射器反射后再从灯具中射出。因此目前传统灯具基本存在两个不足,一是灯具直接照射的方向上照度很高,在次干道可达到50Lx以上,这一区域属明显的过度照明,而两个灯具的光照交叉处的照度仅为灯下中心位置的照度的20%-40%,光分布均匀度低;二是此类灯具的反射器效率一般仅为50%-60%,因此在反射过程中有大量的光损失,所以传统高压钠灯或金卤灯路灯总体效率在70-80%,均匀度低,且有照度的过度浪费。另外,高压钠灯和金卤灯使用寿命通常小于6000小时,且显色指数小于30;LED有着高效、节能、寿命长(5万小时)、环保、显色指数高(>75)等显著优点,如何有效的将LED应用在道路照明上成为了LED及路灯厂家现时最热门的话题。一般而言,根据路灯的使用环境对LED的光学设计、寿命保障、防尘和防水能力、散热处理、光效等方面均有严格的要求。作为LED路灯的核心??LED芯片的制造技术和对应的封装技术共同决定了LED未来在照明领域的应用前景。 1) LED芯片的发光效率提升 LED芯片发光效率的提高决定着未来LED路灯的节能能力,随着外延生长技术和多量子阱结构的发展,外延片的内量子效率已有很大提高。要如何满足路灯使用的标准,很大程度上取决于如何从芯片中用最少的功率提取最多的光,简单而言,就是降低驱动电压,提高光强。传统正装结构的LED芯片,一般需要在p-GaN上镀一层半透明的导电层使电流分布更均匀,而这一导电层会对LED发出的光产生部分吸收,而且p 电极会遮挡住部分光,这就限制了LED芯片的出光效率。而采用倒装结构的LED芯片,不但可以同时避开P电极上导电层吸收光和电极垫遮光的问题,还可以通过在p-GaN表面设置低欧姆接触的反光层来将往下的光线引导向上,这样可同时降低驱动电压及提高光强。(见图1)另一方面,图形化蓝宝石衬底(PSS)技术和

相关文档
最新文档