正文牛顿插值法

正文牛顿插值法
正文牛顿插值法

牛顿插值法

摘要:值法利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。如果这特定函数是多项式,就称它为插值多项式。利用插值基函数很容易得到拉格朗日插值多项式,公式结构紧凑,在理论分析中甚为方便,但当插值节点增减时全部插值基函数均要随之变化,整个公式也将发生变化,这在实际计算中是很不方便的,为了克服这一缺点,提出了牛顿插值。

牛顿插值通过求各阶差商,递推得到的一个公式:f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x 0)...(x-xn-1)+Rn(x)

关键词:牛顿插值法流程图程序实现

一、插值法的由来

在许多实际问题及科学研究中,因素之间往往存在着函数关系,然而,这种关系经常很难有明显的解析表达,通常只是由观察与测试得到一些离散数值。有时,即使给出了解析表达式,却由于表达式过于复杂,不仅使用不便,而且不易于进行计算与理论分析。解决这类问题的方法有两种:一种是插值法,另一种是拟合法。插值法是一种古老的数学方法,它来自生产实践,早在一千多年前,我国科学家在研究历法上就应用了线性插值与二次插值,但它的基本理论却是在微积分产生之后才逐渐完善的,其应用也日益增多,特别是在计算机软件中,许多库函数,如等的计算实际上归结于它的逼近函数的计算。逼近函数一般为只含有算术运算的简单函数,如多项式、有理分式(即多项式的商)。在工程实际问题当中,我们也经常会碰到诸如此类的函数值计算问题。被计算的函数有时不容易直接计算,如表达式过于复杂或者只能通过某种手段获取该函数在某些点处的函数值信息或者导数值信息等。因此,我们希望能用一个“简单函数”逼近被计算函数,然后用该简单函数的函数值近似替代被计算函数的函数值。这种方法就叫插值逼近或者插值法。

逐次线性插值法优点是能够最有效地计算任何给定点的函数值,而不需要写出各步用到的插值多项式的表达式。但如果解决某个问题时需要插值多项式的表达式,那么,它的这个优点就成了它的缺点了。能不能根据插值条件构造一个插值多项式,它既有具体的表达式,又很容易用它计算任何点的函数值呢?牛顿插值法能作到这一点。

二、牛顿插值法的概念

牛顿插值多项式的表达式

)

())(())(()(1

1

1

2

1

x

x x x x x c x x x x c x x c c N n n

n

--???--???+--+-+=

问题是如何根据插值条件

()y x N i

i

n

=,i=0,1,2???n

来计算待定系数c c c c n ???210,,? 由

)

()(00

x y

x N f n

==

知, )

(00

0x y

c f ==。 由 ()(1

1

1

x y

x N f n

==

y x x c c 1

1

1

)(=-+

因而

[]

x x x x x x x x y y c f

f f 1

1010

1

11

,)

()(?--=

-

-=,

其中 []x x f 10, 称为函数f(x)在x x 10,点的一阶商。

)

()(22

2

x y

x N f n

==

y x x x x c x x c c 2

1

2

2

2

1

1

))(()(=--+-+

因而

()()()]

,,[)

(],[],[)

(]

,[)

)(()](,[)](,[)

)(()](,[))(()](,[2

1

2

1

2

1

2

1

12

1

21

2

2

2

1

1

1

1

2

1

2

2

2

1

1

1

2

1

2

2

2

1

2

2

x x x x x x x x x x x x x x x y y x x x x x x x x x x x x y y x x x x x x x x y y y y x x x x x x x x y y c f f f f f f f f ?--=----=

-----+-=

-----+-=

-----=

其中],,[210x x x f 称为函数f (x)在x x x 210,,点的二阶差商。实际上,它是一阶差商的差商。一般地,如果已知一阶差商],[],,[11x x x x i i i i f f +-, 那么就可以计算二

阶差商 x x

x x x x x x x i i i i i i i i i f f f 1

1

1111_]

,[],[],,[-+-++--=

类似于上述过程不断地推导下去,可得

],

,,[)

(]

,,[],[],

,,,,[)

(]

,,,[],,,[],

,,,[)

(]

,,[],,[210012102144321004321043214

3210032103213x x x x x x x x x x x x x c x x x x x x x x x x x x x x x c

x x x x x x x x x x x x c n n n n f f f f f f f f f ????-???-???=

?

????--=

?--=-

其中,

],,,,[3210x x x x f ,,,,[43210x x x x x f ],,,,,,[543210x x x x x x f 分别称为函数

f (x)在相应点处的三阶差商,四阶差商和n 阶差商。实际上,

c

c c c n

???2

1

,, 的计算可通过以下简易地构造函数的差商来完成。 x

c x f 0

0)(=

x

1

)

(1x f

c x x f 1

10],[=

x

2

)

(2x f

]

,[21x x f

c x x x f 2210],,[=

x

3

)

(3x f

]

,[32x x f

]

,1[32

,x x x f

c x x x x f 33210],,,[=

x

4

)

(4x f

]

,[43x x f

]

,,[432x x x f

]

,,1[432

,x x x x f

c x x x x x f 4

43210],,,,[=

. . .

. . .

. . .

. . .

. . .

. . .

按上述方式构造插值多项式的方法叫做牛顿插值法。根据插值多项式的惟一性知,其截断误差与拉格朗日插值法相同, 即:

)

()()!

1(1

π1)

1(x n n n n f

R +++=

ξ

但也可以表示成差商形式。这是因为以x x x x n ???210,,为节点的多项式

)

(],[)()(11101

x x x x N

N

n n n

n f x x ∏???+=

+++

从而 )(],[)()()(111101111x x x x x N x N x n n n n n n n n f f +++++++∏???+==

于是)(x N n 的截断误差可表为

)

(],,,[)(1110x f x n n n

x x x x R ∏++???=

顺便指出,因为牛顿插值多项式具有性质:

)

())(](,[)()(121101

x x x x x x x x x N

N

n n n n

f x x ---???--???+=

所以,类似于逐次线性插值法,也可以把上述和式中的第二项

)

())(](,[12110x x x x x x x x x n n f --???--???

看成是估计

)

(1

x N

n - 的一种实用误差估计式。

与差商概念密切联系的另一个概念是差分,它是指在等距节点上函数值的差。所谓等距节点,是指对给定的常数h (称为步长),节点

)2,1,0(,0

n i ih x x i

???=+=称f

x x

k

i i f f ?

?-+)()(1

x i

处的一阶向前差

分;

称 f

x x i

i i f f ?

?--)()(1

x i

处的一阶向后差分;

称 f

x x i

h i h i f f δ

?-+)1()(22

x i

处的中心差分。一阶差分的差分称为二阶差分,

即 f

f f

i

i

i ???

-?

+2

1

称为

x i

处的二阶向前差分。

一般地,m 阶向前和向后差分可定义如下:

????????=?

????

==?-???-??-+--+-3,2,,111111m m m f f f f f f i m i m i i m i m i

三、牛顿插值法的实现

1、【算法】

步骤1:输入节点(xj,yj),精度ξ,计值点xx,f0→p,1→T,1→i;

步骤2:对k=1,2,……,i依次计算k阶均差

f[xi-k,xi-k+1,…,xi] = (f[xi-k+1,…,xi]- f[xi-k,…,xi])/( xi -xi-k )

步骤3:(1)、若| f[x1,…,xi]- f[x0,…,xi-1]|< ξ,则p为最终结果Ni-1(x),余项Ri-1= f[x0,…,xi](xx-xi-1)T。

(2)、否则(xx-xi-1)*T→T,p+ f[x0,…,xi]*T→p,转步骤4。

步骤4:若i

2、【流程图】

i+1→i

YES

NO

开始 输出ξ,xx ,n 及(x j ,y j ) f 0→g 0,f i →q 0 k= 1,2,……,i

(q k-1-g k-1)(x i -x i-k )→q k

k

|g i-1-q i-1|<ξ

q i (x i -x i-1)T →R 输出p ,r ,i STOP 1 (x i -x i-1)T →T p+q i *T →p

k = 1,2,……,i

YES i+1→ i NO

q k →g k

k

k

q i (xx-x n-1)*T →R 输出P ,R ,n

STOP 2

3、【程序清单】#include"stdio.h"

#define n 4//牛顿插值的次数

void main()

{

float a[n+1][n+2]={0},s=0,t=1,x;

int i,j;

printf("请输入xi及yi的值//要求先输入xi再输入yi然后输入下一组\n");

for(i=0;i

for(j=0;j<2;j++)

scanf("%f",&a[i][j]);

for(j=1;j

for(i=j;i

a[i][j+1]=(a[i][j]-a[i-1][j])/(a[i][0]-a[i-j][0]);

printf("输出xi,yi及各阶均差\n");

for(i=0;i

{

for(j=0;j

printf("%6.5f ",a[i][j]);

printf("\n");

}

printf("输出牛顿插值表达式\n");

printf("N%d(x)=",n);

for(i=0;i

{

printf("%6.5f",a[i][i+1]);

for(j=0;j

printf("(x-%3.2f)",a[j][0]);

if(i==n)

break;

printf("+");

}

printf("\n");

printf("输入插值点x=");

scanf("%f",&x);

for(i=0;i

for(j=0;j

t*=(x-a[j][0]);s+=a[i][i+1]*t;

}printf("N%d(%4.3f)=%6.5f\n",n,x,s);} 4.【程序实现】

参考文献:

Richard L. Burden, J. Douglas Faires, Numerical Analysis

(Seventh Edition), Brooks Pub. Co.,2001.

2. 蔡大用,白峰杉. 高等数值分析. 清华大学出版社,北京,1998.

3. 邓建中,刘之行. 计算方法(第二版).西安交通大学出版社,2001.

4. 韩旭里. 数值分析. 中南大学出版社,2003.

致谢

本文得以顺利完成,非常感谢我的指导教师。从论文的选题直到论文的最终完成,他都给予我尽心尽力的指导。老师严谨的治学态度深深地影响着我,对我今后的学习,工作,生活必将产生影响。借此机会,特向老师表示最诚挚的感谢。

感谢南昌工程学院理学系的所有领导和老师。他们严谨的学风,渊博的知识,诲人不倦的品格一直感染和激励着我不断上进,使我大学四年的时光充实而有意义,“自强不息,格物致知”,在这里我所学到的一切,必将使我受益终生。

在本论文的写作中,我也参照了大量的著作和文章,许多学者的科研成果及写作思路给了我很大的启发,在此向这些学者们表示由衷的感谢,感谢我的家人,同学,朋友对我的大力支持,他们的无私奉献,关爱和支持使我能够继续去追求自己的人生理想和目标。感谢所有关心,帮助和支持我的人。

牛顿插值法的C语言编程

Newton 插值 Newton 插值函数 Newton 插值函数是用差商作为系数,对于01,,,n x x x …这1n +个点,其一般形式为: 00100120101011()[][,]()[,,]()()[,,,]()()() n n n N x f x f x x x x f x x x x x x x f x x x x x x x x x ?=+?+??++???…………对于011,,,n x x x ?…这n 个点, 100100120101012()[][,]()[,,]()()[,,,]()()() n n n N x f x f x x x x f x x x x x x x f x x x x x x x x x ??=+?+??++???…………差商的定义 若已知函数()f x 在点(0,1,2,,)i x i n =???处的函数值()i f x 。则称: 00[]()f x f x =为函数()f x 在点0x 的0阶差商; 100110 [][] [,]f x f x f x x x x ?= ?为函数()f x 关于01,x x 的1阶差商; 120101220 [,][,] [,,]f x x f x x f x x x x x ?= ?为函数()f x 过点012,,x x x 的2阶差商; 依此类推,一般地称 121012101210 [,,,,][,,,,] [,,,,,]k k k k k k k f x x x x f x x x x f x x x x x x x ??????????????= ?为函数()f x 关于01,,,k x x x ???的 k 阶差商。 表1 差商表 i x ()i f x 1阶差商 2阶差商 3阶差商 4阶差商 0x 1x 2x 3x 4x …… 0()f x 1()f x 2()f x 3()f x 4() f x …… 01[,]f x x 12[,]f x x 23[,]f x x 34[,]f x x …… 012[,,]f x x x 123[,,]f x x x 234[,,] f x x x …… 0123[,,,]f x x x x 1234[,,,] f x x x x …… 01234[,,,,]f x x x x x …… 根据Newton 插值函数编写的C 语言编程 根据Newton 插值函数并对照上面的差商表,可编写出Newton 插值法的C 语言程序如下: #include #include #include double NewtonInterpolation(double *x,double *y,int n,double xx,double *pyy) {

牛顿插值法原理及应用

牛顿插值法 插值法是利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。如果这特定函数是多项式,就称它为插值多项式。当插值节点增减时全部插值基函数均要随之变化,这在实际计算中很不方便。为了克服这一缺点,提出了牛顿插值。牛顿插值通过求各阶差商,递推得到的一个公式: f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0 )...(x-xn-1)+Rn(x)。 插值函数 插值函数的概念及相关性质[1] 定义:设连续函数y-f(x) 在区间[a,b]上有定义,已知在n+1个互异的点 x0,x1,…xn上取值分别为y0,y1,…yn (设a≤ x1≤x2……≤xn≤b)。若在函数类中存在以简单函数P(x) ,使得P(xi)=yi,则称P(x) 为f(x)的插值函数. 称x1,x2,…xn 为插值节点,称[a,b]为插值区间。 定理:n次代数插值问题的解存在且唯一。

牛顿插值法C程序 程序框图#include void main() { float x[11],y[11][11],xx,temp,newton; int i,j,n; printf("Newton插值:\n请输入要运算的值:x="); scanf("%f",&xx); printf("请输入插值的次数(n<11):n="); scanf("%d",&n); printf("请输入%d组值:\n",n+1); for(i=0;i

牛顿插值法的分析与应用

牛顿插值法的分析与应用 学生: 班级: 学号: : 指导教师: 成绩:

一.定义 )(x f 关于i x 的零阶差商 )(][i i x f x f = )(x f 关于i x ,j x 的一阶差商 i j i j j i x x x f x f x x f --= ][][],[ 依次类推,)(x f 关于i x ,1+i x ,……,k i x +的k 阶差商 i k i k i i k i i k i i i x x x x f x x f x x x f --= +-+++++] ,,[],,[],,,[111 二. 牛顿插值多项式 设给定的n+1个互异点))(,(k k x f x ,n k ,,1,0 =,j i x x ≠,j i ≠, 称满足条件 )()(k k n x f x N =,n k ,,1,0 = 的n 次多项式 )()](,,,[)](,[][)(10100100---++-+=n n n x x x x x x x f x x x x f x f x N 为Newton 插值多项式,称 ],[,)(],,,[)()()(0 10b a x x x x x x f x N x f x E n j j n n ∈-=-=∏= 为插值余项。 三.算法 步骤1:输入节点(xj ,yj ),精度ξ,计值点xx ,f0→p ,1→T ,1→i ; 步骤2:对k=1,2,……,i 依次计算k 阶均差 f[xi-k,xi-k+1,…,xi] = (f[xi-k+1,…,xi]- f[xi-k,…,xi])/( xi -xi-k ) 步骤3:(1)、若| f[x1,…,xi]- f[x0,…,xi-1]|< ξ,则p 为最终结果Ni-1(x),余项Ri-1= f[x0,…,xi](xx-xi-1)T 。 (2)、否则(xx-xi-1)*T →T ,p+ f[x0,…,xi]*T →p ,转步骤4。 步骤4:若i

牛顿插值法试验报告

. 牛顿插值法一、实验目的:学会牛顿插值法,并应用算法于实际问题。 x?x)f(二、实验内容:给定函数,已知: 4832401.2)?.?1449138f(2.f.f(20)?1.414214(2.1) 549193.)?1f(2.4516575(f2.3)?1. 三、实验要求:以此作为函数2.15插值多项式在处的值,用牛顿插值法求4 次Newton( 1)2.15?N(2.15)。在MATLAB中用内部函数ezplot绘制出的近似值4次Newton插值多项式的函数图形。 (2)在MATLAB中用内部函数ezplot可直接绘制出以上函数的图形,并与作出的4次Newton插值多项式的图形进行比较。 四、实验过程: 1、编写主函数。打开Editor编辑器,输入Newton插值法主程序语句: function [y,L]=newdscg(X,Y,x) n=length(X); z=x; A=zeros(n,n);A(:,1)=Y';s=0.0; p=1.0; for j=2:n for i=j:n A(i,j)=(A(i,j-1)- A(i-1,j-1))/(X(i)-X(i-j+1)); end end C=A(n,n); for k=(n-1):-1:1 C=conv(C,poly(X(k))); d=length(C);C(d)=C(d)+A(k,k); end y(k)= polyval(C, z); L(k,:)=poly2sym(C); 0 / 3 . %%%%%%%%%%%%%%%%%% t=[2,2.1,2.2,2.3,2.4]; fx=sqrt(t); wucha=fx-Y; 以文件名newdscg.m保存。 2、运行程序。 (1)在MATLAB命令窗口输入: >> X=[2,2.1,2.2,2.3,2.4]; Y =[1.414214,1.449138,1.483240,1.516575,1.549193]; x=2.15;[y,P]=newdscg(X,Y,x) 回车得到:

计算方法实验报告 插值

实验名称:插值计算 1引言 在生产和科研中出现的函数是多种多样的。常常会遇到这样的情况:在某个实际问题中,虽然可以断定所考虑的函数f(x)在区间[a,b]上存在且连续,但却难以找到它的解析表达式,只能通过实验和观测得到在有限个点上的函数值。用这张函数表来直接求出其他点的函数值是非常困难的,在有些情况下,虽然可以写出f(x)的解析表达式,但由于结构十分复杂,使用起来很不方便。面对这些情况,构造函数P(x)作为f(x)的近似,插值法是解决此类问题比较古老却目前常用的方法,不仅直接广泛地应用与生产实际和科学研究中,而且是进一步学习数值计算方法的基础。 设函数y=f(x)在区间[a,b]上连续,且在n+1个不同的点a≤x0,x1……,xn≤b上分别取值y0,y1……,yn. 插值的目的就是要在一个性质优良、便于计算的函数φ中,求一简单函数P(x),使P(xi)=yi(i=0,1…,n)而在其他点x≠xi上,作为f(x)的近似。 通常,称区间[a,b]为插值区间,称点x0,x1,…,xn为插值节点,上式为插值条件,称函数类φ为插值函数类,称P(x)为函数f(x)在节点x0,x1,…,xn处的插值函数,求插值函数P(x)的方法称为插值法。 2实验目的和要求 用matlab定义分段线性插值函数、分段二次插值函数、拉格朗日插值函数,输入所给函 数表,并利用计算机选择在插值计算中所需的节点,计算f(0.15),f(0.31),f(0.47)的近似值。

3算法描述 1.分段线性插值流程图

2.分段二次插值流程图

3.拉格朗日插值流程图

4程序代码及注释 1.分段线性插值

牛顿插值法的应用

牛顿插值法在处理磁化曲线和铁损曲线 中的应用 指导老师:李国霞 院系:物理工程学院 专业:物理电子学 姓名:夏委委 学号:201112131526

一、牛顿插值法简介 在科学研究与其他领域中所遇到的许多实际问题中,经常会出现函数不便于处理或计算的情形。有时候函数关系没有明显的解析表达式,需要根据实验数据或其他方法来确定与自变量的某些值相对应的函数值;有时候函数虽有明显的解析表达式,但是使用很不方便。因此,在实际应用中,往往需要对实际使用的函数建立一个简单的便于处理和计算的近似表达式,即用一个简单的函数表达式来近似替代原来复杂的函数。与用近似数代替准确值一样,这也是计算法中最基本的概念和方法之一。近似代替又称为逼近。用多项式逼近列表函数的问题即为多项式插值问题。根据函数)(x f 已有的数据表格来计算函数)(x f 在一些新的点x 处的函数值,这就是插值法所要解决的问题。因此,所谓的插值法就是在所给定的函数表格中间在插入一些所需要的新的点上的函数值。 插值法的基本思想:首先设法根据表格中已有的函数值来构造一个简单的函数)(x y 作为)(x f 的近似表达式,然后再用)(x y 来计算新的点上的函数值作为 )(x f 的近似值。通常可以选用多项式函数作为近似函数)(x y ,因为多项式具有 各阶的导数,求值比较方便。用代数多项式作为工具研究插值问题,通常称为代数插值。 代数插值法问题的完整提法如下:设函数)(x f y =在区间[]b a ,上是连续的,且已知)(x f 在区间[]b a ,上1+n 个互异点处的函数值,即n i x f y i i ,......1,0),(== 其中,)(j i x x j i ≠≠。寻找一个次数不高于 n 的多项式 0111)(a x a x a x a x P n n n n n +++=-- 使满足条件n i x f x P i i n ,,1,0),()( ==称)(x P n 为)(x f 的插值多项式,),,1,0(n i x i =称为插值结点,[]b a ,称为插值区间。 牛顿(Newton)插值是数值逼近中的一个重要部分,它向前继承了拉格朗日(Lagrange)插值,向后引出了埃尔米特(Hermite)插值,可以看作对多项式插值作了一个简单的统一。牛顿插值公式具有形式简单,便于计算等优点。因此,在插值中得到广泛的应用。牛顿插值公式为)()()(x R x P x f n n +=,其中)(x P n 是牛顿插值多项式,)(x R n 为牛顿插值余项,)(x P n 和)(x R n 的表达式如下式所示:

牛顿插值法C语言程序

#include #include #define N 6 float sub(float a[],float b[],float x,float e); void main(void) { float u[N]={100,121,144,169,196,225}; float v[N]={10,11,12,13,14,15}; float x,y,e,*p1,*p2; printf("Input number x E=:"); scanf("%f%e",&x,&e); p1=u; p2=v; y=sub(p1,p2,x,e); printf("y=%f\n",y); } float sub(float *pp1,float *pp2,float x,float e) { float a[N],b[N],t[N],y,y1,c; int i,k; for(i=0;i

matlab_牛顿插值法_三次样条插值法

(){} 2 1 ()(11),5,10,20: 1252 1()1,(0,1,2,,)()2,(0,1,2,,)() ()2 35,20:1100 (i i i i n n k k k Newton f x x n x f x x i i n f x n x y i n Newton N x S x n x k y f x = -≤≤=+=-+====-+ = 题目:插值多项式和三次样条插值多项式。已知对作、计算函数在点处的值;、求插值数据点 的插值多项式和三次样条插值多项式;、对计算和相应的函数值),()() (1,2,,99)4:()max ()()max ()n k n k n k n k n k n k k k N x S x k E N y N x E S y S x ==-=- 和; 、计算,; 解释你所得到的结果。 算法组织: 本题在算法上需要解决的问题主要是:求出第二问中的Newton 插值多项式 )(x N n 和三次样条插值多项式()n S x 。如此,则第三、四问则迎刃而解。计算两 种插值多项式的算法如下: 一、求Newton 插值多项式)(x N n ,算法组织如下: Newton 插值多项式的表达式如下: )())(()()(110010--???--+???+-+=n n n x x x x x x c x x c c x N 其中每一项的系数c i 的表达式如下: 1102110) ,,,(),,,(),,,(x x x x x f x x x f x x x f c i i i i i -???-???= ???=- 根据i c 以上公式,计算的步骤如下: ?? ??? ?? ?????+??????? ???????????----) ,,,,(1) ,,,(),,,,(),(,),,(2)(,),(),(11101111011010n n n n n n n n x x x x f n x x x f x x x f n x x f x x f x f x f x f 、计算、计算、计算、计算 二、求三次样条插值多项式)(x S n ,算法组织如下:

matlab(迭代法-牛顿插值)Word版

实验报告内容: 一:不动点迭代法解方程 二:牛顿插值法的MATLAB实现 完成日期:2012年6月21日星期四 数学实验报告一 日期:2012-6-21

所以,确定初值为x0=1 二:不断迭代 算法: 第一步:将f(x0)赋值给x1 第二步:确定x1-x0的绝对值大小,若小于给定的误差值,则将x1当做方程的解,否则回到第一步 编写计算机程序: clear f=inline('0.5*sin(x)+0.4'); x0=1; x1=f(x0); k=1; while abs(x1-x0)>=1.0e-6 x0=x1; x1=f(x0); k=k+1; fprintf('k=%.0f,x0=%.9f,x1=%.9f\n',k,x0,x1) end 显示结果如下: k=2,x0=0.820735492,x1=0.765823700 k=3,x0=0.765823700,x1=0.746565483 k=4,x0=0.746565483,x1=0.739560873

k=6,x0=0.736981783,x1=0.736027993 k=7,x0=0.736027993,x1=0.735674699 k=8,x0=0.735674699,x1=0.735543758 k=9,x0=0.735543758,x1=0.735495216 k=10,x0=0.735495216,x1=0.735477220 k=11,x0=0.735477220,x1=0.735470548 k=12,x0=0.735470548,x1=0.735468074 k=13,x0=0.735468074,x1=0.735467157 >>。。。 以下是程序运行截图:

第二章插值法与数值微分

第二章 插值法与数值微分 1. 设y = 在100,121,144x =三处的值是很容易求得的, 试以这三个点建立y = 的 二次插值多项式, 并用此多项式计算,且给出误差估计.用其中的任意两点,构造线性插值函数,用得到的三个线性插值函数, 计算,并分析其结果不同的原因. 解: 已知012012100,121,144;10,11,12x x x y y y ======, 建立二次Lagrange 插值函数可得: ()()()()()()() ()()()() ()() 21211441001441011 100121100144121100121144121100 12 144121144100x x x x L x x x ----= +------+ -- ()211510.7228L ≈=. 误差()() ()()()()2012012,,,,3! f R x x x x x x x x x x ξξξ'''= ---∈,所以 2 0.00065550.001631R << 利用前两个节点建立线性插值函数可得: ()()() ()() 11211001011100121121100x x L x --= + -- ()111510.7143L ≈=. 利用后两个节点建立线性插值可得: ()()() ()() 11441211112121144144121x x L x --= + -- ()111510.7391L ≈=. 利用前后两个节点建立线性插值可得: ()()() ()() 21441001012100144144100x x L x --= + -- ()111510.6818L ≈=. 与,二次插值比线性插值效果好,利用前两个节点的线性插值比其他两个线性插值

牛顿插值法的分析与应用

牛顿插值法的分析与应用 学生姓名: 班级: 学号: 电话: 指导教师: 成绩:

一.定义 )(x f 关于i x 的零阶差商 )(][i i x f x f = )(x f 关于i x ,j x 的一阶差商 i j i j j i x x x f x f x x f --= ][][],[ 依次类推,)(x f 关于i x ,1+i x ,……,k i x +的k 阶差商 i k i k i i k i i k i i i x x x x f x x f x x x f --= +-+++++] ,,[],,[],,,[111 二. 牛顿插值多项式 设给定的n+1个互异点))(,(k k x f x ,n k ,,1,0 =,j i x x ≠,j i ≠, 称满足条件 )()(k k n x f x N =,n k ,,1,0 = 的n 次多项式 )()](,,,[)](,[][)(10100100---++-+=n n n x x x x x x x f x x x x f x f x N 为Newton 插值多项式,称 ],[,)(],,,[)()()(0 10b a x x x x x x f x N x f x E n j j n n ∈-=-=∏= 为插值余项。 三.算法 步骤1:输入节点(xj ,yj ),精度ξ,计值点xx ,f0→p ,1→T ,1→i ; 步骤2:对k=1,2,……,i 依次计算k 阶均差 f[xi-k,xi-k+1,…,xi] = (f[xi-k+1,…,xi]- f[xi-k,…,xi])/( xi -xi-k ) 步骤3:(1)、若| f[x1,…,xi]- f[x0,…,xi-1]|< ξ,则p 为最终结果Ni-1(x),余项Ri-1= f[x0,…,xi](xx-xi-1)T 。 (2)、否则(xx-xi-1)*T →T ,p+ f[x0,…,xi]*T →p ,转步骤4。 步骤4:若i

MATLAB 牛顿插值法例题与程序

题目一:多项式插值 某气象观测站在8:00(AM)开始每隔10分钟对天气作如下观测,用三次多项式插值函数(Newton)逼近如下曲线,插值节点数据如上表,并求出9点30分该地区的温度(x=10)。 二、数学原理 假设有n+1个不同的节点及函数在节点上的值(x 0,y 0),……(x n ,y n ),插值多项式有如下形式: )() )(()()()(n 10n 102010n x -x )(x -x x -x x P x x x x x x -??-+??+-++=αααα (1) 其中系数i α(i=0,1,2……n)为特定系数,可由插值样条i i n y x P =) ((i=0,1,2……n)确定。 根据均差的定义,把x 瞧成[a,b]上的一点,可得 f(x)= f(0x )+f[10x x ,](0x -x ) f[x, 0x ]= f[10x x ,]+f[x,10x x ,] (1x -x ) …… f[x, 0x ,…x 1-n ]= f[x, 0x ,…x n ]+ f[x, 0x ,…x n ](x-x n ) 综合以上式子,把后一式代入前一式,可得到: f(x)= f[0x ]+f[10x x ,](0x -x )+ f[210x x x ,,](0x -x )(1x -x )+ …+ f[x, 0x ,…x n ](0x -x )…(x-x 1-n )+ f[x, 0x ,…x n ,x ]) (x 1n +ω= N n (x)+) (x n R 其中 N n (x)= f[0x ]+f[10x x ,](0x -x )+ f[210x x x ,,](0x -x )(1x -x )+ …+ f[x, 0x ,…x n ](0x -x )…(x-x 1-n ) (2)

MA AB 牛顿插值法例题与程序

题目一:多项式插值 某气象观测站在8:00(AM )开始每隔10分钟对天气作如下观测,用三次多项式插值函数(Newton )逼近如下曲线,插值节点数据如上表,并求出9点30分该地区的温度(x=10)。 二、数学原理 假设有n+1个不同的节点及函数在节点上的值(x 0,y 0),……(x n ,y n ),插值多项式有如下形式: )() )(()()()(n 10n 102010n x -x )(x -x x -x x P x x x x x x -??-+??+-++=αααα(1) 其中系数i α(i=0,1,2……n )为特定系数,可由插值样条i i n y x P =) ((i=0,1,2……n )确定。 根据均差的定义,把x 看成[a,b]上的一点,可得 f(x)=f (0x )+f[10x x ,](0x -x ) f[x,0x ]=f[10x x ,]+f[x,10x x ,](1x -x ) …… f[x,0x ,…x 1-n ]=f[x,0x ,…x n ]+f[x,0x ,…x n ](x-x n ) 综合以上式子,把后一式代入前一式,可得到: f(x)=f[0x ]+f[10x x ,](0x -x )+f[210x x x ,,](0x -x )(1x -x )+ …+f[x,0x ,…x n ](0x -x )…(x-x 1-n )+f[x,0x ,…x n ,x ])(x 1n +ω=N n (x )+) (x n R 其中 N n (x )=f[0x ]+f[10x x ,](0x -x )+f[210x x x ,,](0x -x )(1x -x )+ …+f[x,0x ,…x n ](0x -x )…(x-x 1-n )(2) )(x n R =f(x)-N n (x )=f[x,0x ,…x n ,x ]) (x 1n +ω(3) ) (x 1n +ω=(0x -x )…(x-x n ) Newton 插值的系数i α(i=0,1,2……n )可以用差商表示。一般有 f k =α[k 10x x x ??,](k=0,1,2,……,n )(4)

matlab 牛顿插值法 三次样条插值法

(){} 21 ()(11),5,10,20: 1252 1()1,(0,1,2,,)()2,(0,1,2,,)() ()2 35,20:1100 (i i i i n n k k k Newton f x x n x f x x i i n f x n x y i n Newton N x S x n x k y f x =-≤≤=+=-+====-+ = 题目:插值多项式和三次样条插值多项式。 已知对作、计算函数在点处的值;、求插值数据点 的插值多项式和三次样条插值多项式;、对计算和相应的函数值),()() (1,2,,99)4:()max ()()max ()n k n k n k n k n k n k k k N x S x k E N y N x E S y S x ==-=- 和; 、计算,; 解释你所得到的结果。 算法组织: 本题在算法上需要解决的问题主要是:求出第二问中的Newton 插值多项式 )(x N n 和三次样条插值多项式()n S x 。如此,则第三、四问则迎刃而解。计算两种插值多项式的算法如下: 一、求Newton 插值多项式)(x N n ,算法组织如下: Newton 插值多项式的表达式如下: )())(()()(110010--???--+???+-+=n n n x x x x x x c x x c c x N 其中每一项的系数c i 的表达式如下: 1102110) ,,,(),,,(),,,(x x x x x f x x x f x x x f c i i i i i -???-???= ???=- 根据i c 以上公式,计算的步骤如下: ?? ??? ?? ?????+??????? ???????????----) ,,,,(1) ,,,(),,,,(),(,),,(2)(,),(),(11101111011010n n n n n n n n x x x x f n x x x f x x x f n x x f x x f x f x f x f 、计算、计算、计算、计算 二、求三次样条插值多项式)(x S n ,算法组织如下:

拉格朗日插值法与牛顿插值法的比较

拉格朗日插值法与牛顿插值法的比较 [摘 要]在生产和科研中出现的函数是多样的。对于一些函数很难找出其解析表达式。即使在某些情况下,可以写出函数的解析表达式,但由于解析表达式的结构相当复杂,使用起来很不方便。插值法即是解决此类问题的一种古老的、然而却是目前常用的方法,它不仅直接广泛地应用于生产实际和科学研究中,而且也是进一步学习数值计算方法的基础。拉格朗日插值法和牛顿插值法则是二种常用的简便的插值法。本文即是讨论拉格朗日插值法和牛顿插值法的理论及二者的比较。 [关键词] 拉格朗日插值 牛顿插值 插值多项式 比较 一、 背景 在工程和科学研究中出现的函数是多种多样的。常常会遇到这样的情况:在某个实际问题中,虽然可以断定所考虑的函数)(x f 在区间],[b a 上存在且连续,但却难以找到它的解析表达式,只能通过实验和观测得到在有限个点上的函数值(即一张函数表)。显然,要利用这张函数表来分析函数)(x f 的性态,甚至直接求出其他一些点上的函数值可能是非常困难的。面对这些情况,总希望根据所得函数表(或结构复杂的解析表达式),构造某个简单函数)(x P 作为)(x f 的近似。这样就有了插值法,插值法是解决此类问题目前常用的方法。 如设函数)(x f y =在区间],[b a 上连续,且在1+n 个不同的点b x x x a n ≤≤,,,10 上分别取值n y y y ,,,10 。 插值的目的就是要在一个性质优良、便于计算的函数类Φ中,求一简单函数)(x P ,使 ),,1,0()(n i y x P i i == 而在其他点i x x ≠上,作为)(x f 的近似。 通常,称区间],[b a 为插值区间,称点n x x x ,,,10 为插值节点,称式i i y x P =)(为插值条件,称函数类Φ为插值函数类,称)(x P 为函数)(x f 在节点n x x x ,,,10 处的插值函数。求插值函数)(x P 的方法称为插值法。 插值函数类Φ的取法不同,所求得的插值函数)(x P 逼近)(x f 的效果就不同。它的选择取决于使用上的需要,常用的有代数多项式、三角多项式和有理函数等。当选用代数多项式作为插值函数时,相应的插值问题就称为多项式插值。本文讨论的拉格朗日插值法与牛顿插值法就是这类插值问题。 在多项式插值中,最常见、最基本的问题是:求一次数不超过n 的代数多项式 n n x a x a a x P +++= 10)(

计算方法-实验一牛顿插值法

计算方法课程设计报告实验一牛顿K次插值多项式 姓名:黄仁化 学号:031010151551017 班级:计算机科学与技术2004班 日期:二○○六年六月十日

一、实验目的: 1、掌握牛顿插值法的基本思路和步骤。 2、 培养编程与上机调试能力。 二、牛顿插值法基本思路与计算步骤: 给定插值点序列())(,i i x f x ,,,1,0,n i 。构造牛顿插值多项式)(u N n 。输入要计算的函数点,x 并计算)(x N n 的值,利用牛顿插值公式,当增加一个节点时,只需在后面多计算一项,而前面的计算仍有用;另一方面)(x N n 的各项系数恰好又是各阶均差,而各阶均差可用均差公式来计算。 牛顿插值法计算步骤: 1. 输入n 值及( ))(,i i x f x ,,,1,0,n i ;要计算的函数点x 。 2. 对给定的,x 由 00010101201101()()(),()(),,() ()(),,n n n N x f x x x f x x x x x x f x x x x x x x x x f x x x L L L 计算 ()n N x 的值。 3.输出()n N x 。 三:程序流程图:

四:程序清单: function[c, d]=newpoly(x, y) %牛顿插值的MA TLAB实现 %这里x为n个节点的横坐标所组成的向量,y为纵坐标所组成的向量。 %c为所求的牛顿插值多项式的系数构成的向量。 n=length(x);%取x的个数。 d=zeros(n, n); d(: , 1)=y'; f or j=2 : n for k=j : n d(k, j)=(d(k, j-1) - d(k-1, j-1)) / (x(k)-x(k-j+1)); end

第二章插值法习题及解答

一、填空题: 1. 满足()a a f x x =,()b b f x x =,()c c f x x =的拉格朗日插值余项为 。 答:()() ()()()3! a b c f R x x x x x x x ξ'''= --- 2.已知函数()f x 的函数值()()()()()0,2,3,5,6f f f f f ,以及均差如下 ()()()()() 00,0,2 4,0,2,35,0,2,3,51,0,2,3,5,60 f f f f f ===== 那么由这些数据构造的牛顿插值多项式的最高次幂的系数是 答: 1 二、选择题 1. 通过点()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( ) A .()00l x =0,()110l x = B . ()00l x =0,()111l x = C .()00l x =1,()110l x = D . ()00l x =1,()111l x = 答:D 2.. 已知等距节点的插值型求积公式 ()()35 2 k k k f x dx A f x =≈∑?,那么3 k k A ==∑( ) A .1 B. 2 C. 3 D. 4 答:C 3.过点(x 0,y 0), (x 1,y 1),…,(x 5,y 5)的插值多项式P(x)是( )次的多项式。 (A). 6 (B).5 (C).4 (D).3. 答:B 三、证明题 1. 设 f (x) = (x-1) (x-2) .证明对任意的x 有: f [1, 2, x)]= 1 证明:f [1, 2] = [f (1) – f (2)]/ (1 – 2) = [0 – 0]/ (-1) = 0, 对任意的x 有 F[2, x] = [f (2) – f (x)]/ (2 – x) = [0 – (x-1) (x-2)]/ (2 – x) = (x-1), 所以 f [1, 2, x] = [f (1, 2) - f (2, x)]/ (1 – x) = [0 - (x-1)]/ (1 – x) = 1 2.设 在 上具有二阶连续导数,且 ,求证:

正文牛顿插值法

牛顿插值法 摘要:值法利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。如果这特定函数是多项式,就称它为插值多项式。利用插值基函数很容易得到拉格朗日插值多项式,公式结构紧凑,在理论分析中甚为方便,但当插值节点增减时全部插值基函数均要随之变化,整个公式也将发生变化,这在实际计算中是很不方便的,为了克服这一缺点,提出了牛顿插值。 牛顿插值通过求各阶差商,递推得到的一个公式:f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x 0)...(x-xn-1)+Rn(x) 关键词:牛顿插值法流程图程序实现

一、插值法的由来 在许多实际问题及科学研究中,因素之间往往存在着函数关系,然而,这种关系经常很难有明显的解析表达,通常只是由观察与测试得到一些离散数值。有时,即使给出了解析表达式,却由于表达式过于复杂,不仅使用不便,而且不易于进行计算与理论分析。解决这类问题的方法有两种:一种是插值法,另一种是拟合法。插值法是一种古老的数学方法,它来自生产实践,早在一千多年前,我国科学家在研究历法上就应用了线性插值与二次插值,但它的基本理论却是在微积分产生之后才逐渐完善的,其应用也日益增多,特别是在计算机软件中,许多库函数,如等的计算实际上归结于它的逼近函数的计算。逼近函数一般为只含有算术运算的简单函数,如多项式、有理分式(即多项式的商)。在工程实际问题当中,我们也经常会碰到诸如此类的函数值计算问题。被计算的函数有时不容易直接计算,如表达式过于复杂或者只能通过某种手段获取该函数在某些点处的函数值信息或者导数值信息等。因此,我们希望能用一个“简单函数”逼近被计算函数,然后用该简单函数的函数值近似替代被计算函数的函数值。这种方法就叫插值逼近或者插值法。 逐次线性插值法优点是能够最有效地计算任何给定点的函数值,而不需要写出各步用到的插值多项式的表达式。但如果解决某个问题时需要插值多项式的表达式,那么,它的这个优点就成了它的缺点了。能不能根据插值条件构造一个插值多项式,它既有具体的表达式,又很容易用它计算任何点的函数值呢?牛顿插值法能作到这一点。

牛顿插值法算法

牛顿插值法(算法) Newton Interpolation 牛顿插值算法是根据n + 1个点x 0, x 1 , (x) n (x < x 1 < (x) n )与函数値f(x ), f(x 1 ) , ... , f(x n )求出n次多 項式p(x)。再通过次多項式p(x)求出任意的点x所对应的f(x)的算法。 1.求n阶差分商f[x 0, x 1 , (x) n ]。使用递归调用。 #define N 20 typedef struct TagXYVALUE { double x; double y; } XYVALUE; XYVALUE val[N+1]; //階差分商(Divided Differences) double f(int n0, int ni) { if (n0 == ni) return val[n0].y; if (n0 + 1== ni) return (val[ni].y - val[n0].y) / (val[ni].x - val[n0].x); else return (f(n0+1, ni) - f(n0, ni-1)) / (val[ni].x - val[n0].x); }

2.牛顿插值算法的主程序,求p(x )的程序。 n double NewtonInterpolation(double x) { double t = 1.0; double ft; double p = val[0].y; //P(0) = f[0] for(int i = 1; i <= N; i++) { t = t * (x - val[i-1].x); ft = f(0, i) * t; p = p + ft; } return p; } 3.测试。用正弦波的20个采样点,还原出正弦波曲线。计算速度很慢,需要改进程序。void CNewtonInterpolationTestView::OnDraw(CDC* pDC) { for (int i = 0; i <= N; i ++) { val[i].x = i * 15 * atan(1.0) / 45.0 * 2; val[i].y = sin(val[i].x); pDC->Rectangle((int)(val[i].x*20)- 2, 150-(int)(val[i].y*50)- 2, (int)(val[i].x*20)+2, 150-(int)(val[i].y*50)+2); } for (int j = 0; j <= N*15; j += 5) { double x = j * atan(1.0) / 45.0 * 2; double y = NewtonInterpolation(x); pDC->SetPixel((int)(x*20)-2, 150-(int)(y*50)-2, 0x000000ff); } }

计算方法简明教程插值法习题解析

第二章 插值法 1.当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式。 解: 0120121200102021101201220211,1,2, ()0,()3,()4;()()1 ()(1)(2)()()2()()1 ()(1)(2) ()()6 ()()1 ()(1)(1) ()()3 x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------= =-+-- 则二次拉格朗日插值多项式为 2 20 ()()k k k L x y l x ==∑ 0223()4() 14 (1)(2)(1)(1)23 537623 l x l x x x x x x x =-+=---+ -+= +- 2.给出()ln f x x =的数值表 用线性插值及二次插值计算的近似值。 解:由表格知, 01234012340.4,0.5,0.6,0.7,0.8;()0.916291,()0.693147()0.510826,()0.356675()0.223144 x x x x x f x f x f x f x f x ======-=-=-=-=- 若采用线性插值法计算ln 0.54即(0.54)f , 则0.50.540.6<<

2 112 1 221 11122()10(0.6)()10(0.5)()()()()() x x l x x x x x x l x x x x L x f x l x f x l x -==----= =---=+ 6.9314 7(0.6) 5.10826( x x =--- 1(0.54)0.62021860.620219L ∴=-≈- 若采用二次插值法计算ln 0.54时, 1200102021101201220212001122()() ()50(0.5)(0.6) ()() ()() ()100(0.4)(0.6) ()()()() ()50(0.4)(0.5) ()() ()()()()()()() x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x L x f x l x f x l x f x l x --==------==-------= =----=++ 500.916291(0.5)(0.6)69.3147(0.4)(0.6)0.51082650(0.4)(0.5 x x x x x x =-?--+---?--2(0.54)0.61531984 0. 615320L ∴=-≈- 3.给全cos ,090x x ≤≤ 的函数表,步长1(1/60),h '== 若函数表具有5位有效数字,研究用线性插值求cos x 近似值时的总误差界。 解:求解cos x 近似值时,误差可以分为两个部分,一方面,x 是近似值,具有5位有效数字,在此后的计算过程中产生一定的误差传播;另一方面,利用插值法求函数cos x 的近似值时,采用的线性插值法插值余项不为0,也会有一定的误差。因此,总误差界的计算应综合以上两方面的因素。 当090x ≤≤ 时, 令()cos f x x = 取0110,( )606018010800 x h ππ===?= 令0,0,1,...,5400i x x ih i =+= 则5400902 x π = = 当[]1,k k x x x -∈时,线性插值多项式为

相关文档
最新文档