低压成套开关的温升试验

低压成套开关的温升试验

高低压开关的温升试验

低压成套开关设备的温升试验可以分为电路及装置的试验。温升试验是验证设备在正常使用条件下,通以额定电流,各部分的温升值应符合有关标准的规定。装在装置内部的操作手柄,其温升允许略高些。除非另有规定,对可以接触但正常工作时不需触及的外壳和覆板,允许其温升提高10K。设备按正常使用情况放置,门、镉板、覆板、盖板都应装好。试验方案应选择损耗最大的方案。进行单独电路的温升试验时,电路应通以设计规定的额定工作电流。进行装置的温升试验时,在考虑了额定分散系数后,应选择一个或几个有代表性的并能获得高温升的电路,给这些电路通以各自设计规定的额定工作电流。试验时辅助电路(包括继电器、接触器、脱扣器的线圈)应加上设计规定的额定工作电压。装置中如果包含有熔断器,试验时应装上适合于试验的熔体(由制造厂规定)。熔体的功率损耗、试验中所用的外接导体(导线)尺寸和布置情况应写入试验报告中。

测量部位包括:

(1)母线连接处以及其他元器件与母线的连接处。

(2)抽屉式设备的母线室、功能单元室和电缆室的空间。

(3)可触及的门、手柄和覆板。

以上三种部位均应尽量选产生温升高点进行测量。当温度变化不超过1℃/h时,则可记录其温升值。其值应不超过有关标准的规定值。装置内绝缘没有破坏,元器件在设备内的温度条件下正常工作,则温升试验合格。

高压开关设备介质的温升极限

4.4.2 温升 在温升试验规定的条件下,当周围空气温度不超过40℃时,开关设备和控制设备任何部分的温升不应该超过表3规定的温升极根。 采用说明: 7] 本表中的额定绝缘水平与IEC 60694表2a中的额定绝缘水平不完全一致。 4.4.3表3的说明 作为表3一部分的有关说明如下: 说明1:按其功能,同一部件可以属于表3列出的几种类别。在这种情况下,允许的最高温度和温升值是相关类别中的最低值。

说明2:对真空开关装置,温度和温升的极限值不适用于处在真空中的部件。其余部件不应该超过表3给出的温度和温升值。 说明3:应注意保证周围的绝缘材料不遭到损坏。 说明4:当接合的零件具有不同的镀层或一个零件是裸露的材料制成的,允许的温度和温升应该是: a) 对触头,表3项1中有最低允许值的表面材料的值; b) 对联结,表3项2中有最高允许值的表面材料的值。 说明5:六氟化硫是指纯六氟化硫或六氟化硫与其他无氧气体的混合物。 注: 1由于不存在氧气,把六氟化硫开关设备中各种触头和联接的温度极限加以协调看来是合适的。在六氟化硫环境下,裸铜和裸铜合金零件的允许温度极限可以等于镀银或镀镍零件的值。在镀锡零件的特殊情况下,由于磨擦腐蚀效应,即使在六氟化硫无氧的条件下,提高其允许温度也是不合适的。因此镀锡零件仍取原来的值。 2裸铜和镀银触头在六氟化硫中的温升正在考虑中。 说明6:按照设备有关的技术条件:

a)在关合和开断试验(如果有的话)后; b)在短时耐受电流试验后; c)在机械耐受试验后。 有镀层的触头在接触区应该有连续的镀层,不然触头应该被看作是“裸露”的。 说明7:当使用表3没有给出的材料时,应该研究它们的性能,以便确定最高的允许温升。 说明8:即使和端子连接的是裸导体,这些温度和温升值仍是有效的。 说明9:在油的上层。 说明10:当采用低闪点的油时,应当特别注意油的气化和氧化。 说明11:温度不应该达到使材料弹性受损的数值。 说明12:绝缘材料的分级在GB/T 11021中给出。 说明13:仅以不损害周围的零部件为限。 具体参照GB/T11022-1999

35KV开关柜的实际温升原因及发热解决措施

35KV开关柜的实际温升原因及发热解决措施 摘要:35KV抽屉式开关柜由于具有继电保护动作可靠、运行维护简单方便等优点被广泛应用于发电厂、变电所以及大型企业供配电所内。本文在对35KV 开关柜在实际运行过程中容易发生触头发热温升的危害及原因进行认真分析总结后,结合自己多年的知识学习和变配电运行经验,针对开关柜触头发热故障提出一些安全有效的预防和综合处理措施,充分发挥开关柜的电气性能,提高供电可靠性和电能质量水平。 关键词:35KV开关柜发热故障在线监测 手车式开关柜是35KV变配电所中电能分配调度的重要载体,是保证电网高效经济供电的重要电气设备之一。但同时在实际的运行维护工作中发现,由于开关柜可移动的触头结构,容易出现开关触头接触面不能有效接触、操作弹簧电气性能下降等现象造成开关柜发热故障,大大降低开关柜的综合电气性能[1]。因此,在日常检修运行过程中,结合开关柜运行原理及结构对造成手车式开关柜触头发热的原因进行归纳总结,并有针对性的制定相应的检修维护制度和方案,提高开关柜供配电可靠性水平保障工农业高效经济的生产,具有相当大的工程实际意义。 1、35KV开关柜触头发热危害 35KV手车式开关柜是在总结传统固定式开关柜的优缺点后,通过机械机构优化形成的一种改良供配电开关设备,是电网或电网与用户间电能联接的直接纽带。开关柜触头发热温升现象是个渐变的恶性循环过程,在触头发热安全隐患过程时,很难用普通的检测仪器进行检测,容易造成开关柜带病运行,开关柜内各元件在持续的温升效应影响下,其电气性能急剧降低,逐步由隐患转变成发热温升事故[2]。当手车式开关柜出现触头接触不良、触头松动、操作弹簧动作灵敏度下降以及外部运行环境变恶劣等情况时,就会导致开关柜的触头或对应的联接部件发生严重的温升现象,超过环境温度40℃以上。开关柜内复杂恶化的电磁环境,加上持续的电流热效应就会加快开关元件发热部件的氧化速度,使得开关柜导电能力和绝缘水平急剧下降,导致开关柜绝缘套管发生绝缘击穿、操作弹簧拒动或误动、电流互感器爆炸、开关柜触头烧毁等严重事故。开关柜触头发热量会随开关母线向其它元件传导,在持续的电流冲击下,母线及其它开关设备的电气性能也会下降,给开关柜带来更多的安全隐患,降低了开关柜的供电可靠性,直接影响到工农业高效经济的生产发展。 2、35KV开关柜触头发热原因分析 2.1配电规划设计不合理 在进行开关柜选型设计时,应该充分统计和分析系统的负荷类型和容量大小,从而保证开关柜高效经济的运行。造成配电开关设备触头接触面单位面积电流过大。持续发热温升会导致开关柜触头剧烈发热,出现局部过热烧毁故障。

如何降低低压开关柜运行温升的研究

如何降低低压开关柜运行温升的研究 孙兴民深圳市塔辉电器成套设备有限公司 【摘要】:本文分析了低压开关柜运行中发热的原因、主要发热部位和当前常用抽屉式低压开关柜垂直母线室温升过高的原因。提出了用抽风式母线降低垂直母线室温升的技术方案。该方案不用安装风机,不消耗能源,完全静止无噪音。经在国家重点实验室测试,抽风式母线系统可降低垂直母线室温升19.56 ℃。 【关键词】:低压开关柜发热散热降低温升抽风式垂直母线室 1低压开关柜的发热 1.1低压开关柜的发热源,有以下几种: 1.1.1母线(铜排)、导线等载流导体导通电流后导体电阻发热。 1.1.2接触电阻发热。接触电阻由于导体间接触方式不同,有以下3类情况: a、固定搭接,如铜排之间,铜排、导线与电器端子之间用螺钉固定压接。固定搭接的接触电阻大于等截 面导体的体电阻,所以发热也多。但若搭接良好,则接触电阻较易控制,发热量也是三种接触电阻发热情况中最小的; b、滑动接触,如抽插式(或称插拔式)开关的滑动进出线桩头,抽屉式开关柜中主电路以及辅助电路接 插件,熔断器与熔芯的插拔插槽,各类刀开关的触头接触。滑动接触的接触电阻远大于固定搭接,其发热量大; c、开合接触,如各类断路器和接触器触头。开合接触的接触电阻最大,发热量也最大。 1.1.3 热敏电器元件的发热,有以下2种情况: a、熔断器类元件,其熔芯作为过电流的敏感元件,正常运行中会发热; b、热继电器、各类断路器的热保护器件,正常运行中都会发热。 1.1.4 电磁感应产生的发热: a、涡流发热,由于电磁感应在载流导体内部及周围的钢质结构件内产生涡流,导致发热; b、振动发热,由于电磁感应使载流导体周围的钢质结构件受到应力而产生振动,振动使结构件发热。当 系统三次谐波电流较大时尤其明显。系统三相电路基波电流在载流导体周围产生的磁场相互抵消,发热并不严重。而三次谐波电流在三相电路周围产生的磁场相互叠加,振动加剧。一般三次谐波振动发热与涡流发热相伴产生; c、磁路发热,由于磁路中铁芯的磁滞损耗、涡流损耗而发热。例如分励脱扣、失压脱扣装置的电磁回路, 接触器、继电器的吸引线圈磁路,电容补偿装置内的限流和滤波电抗器的磁路,框架开关内的储能电机的铁芯磁路等。

运行中高压开关柜实际温升分析(正式)

编订:__________________ 单位:__________________ 时间:__________________ 运行中高压开关柜实际温升分析(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-2865-32 运行中高压开关柜实际温升分析(正 式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 〔摘要〕对国产JYN、KYN手车柜和合资厂生产的8BK20开关柜的实际温升数据进行分析后发现,运行中开关柜的温升水平均超过型式试验测得数据。然后,从试验条件、金属膨胀效应、紧固螺栓压力、导体材料电导率等方面进一步分析了温升超标的原因。最后提出建议,应根据实际情况选用和维护开关柜。 〔关键词〕开关柜;温升;型式试验 随着电网的发展和设备技术的提高,10,35 kV系统开关柜在电网中已大量使用。而开关柜的内部过热现象已成为开关柜使用中的常见问题,由于开关柜体的密闭性,在一些负荷较重的地区,存在开关柜的温升超标问题。 开关柜的温升超标,直接影响设备的安全稳定运

温升试验

什么是温升测试仪?温升测试仪工作原理、条件 温升测试仪,可用于考核电器附件在接上负载电流时其表面发 热情况,电极温升是否符合标准的要求,能有效检测插销和插座的 插套是否偏薄,插头和插座是否配合良好 在变压器所有型式试验和例行试验项目中以温升试验最为特殊。现在各大厂家一般都采用短路法,人工现场操作。温升试验具有以 下特点:第一,时间较长,大型变压器的试验需要十几个小时甚至 更长时间,即使中小型的试验过程也需要八、九个小时;第二,试验 过程单调枯燥,不仅需要监视加在被试变压器上的总损耗,调节试 验电源保证所加的总损耗,还要长时间地反复测量温度值。由此可见,温升试验常常长时间在夜间进行,夜间人容易疲劳,再加上试 验过程本身的单调,往往容易影响测量准确度,甚至操作错误。为此,实现试验过程的控制自动化就十分必要。 该温升试验自动控制系统引入微计算机技术,既能自动测量记 录相关温度,做出判断,又能测量试验中的相关电量做到实时监测 加在被试变压器上的总损耗等重要参数,并能在偏离预定值时自动 调整试验电源。 1 试验原理及过程简述 1.1温升试验原理 按JB/T501–91《电力变压器试验导则》进行变压器温升试验 有以下几种方法:直接负载法;相互负载法;循环电流法;零序电流法;短路法。 短路法试验是利用变压器短路产生损耗,来进行温升试验的。 目前,一般都用短路法。短路法试验变压器的温升是所有变压器温 升试验中需要电源容量最小,试验电压最低的试验方法,是大型油 浸式变压器温升试验最常用的方法。 1.2试验过程 采用短路法进行温升试验。首先确定试验电源容量和试验电流,连接好试验线路,然后开始试验。试验中监测加在被试变压器上的 损耗和电流,与设定值进行比较,若超过允许误差范围,调整试验 电源;并在间隔预定时间后(一般间隔15~30min)测试一次试验部 位温度,并记录、对测量结果做出判断。一直到检测的顶层油温升 的变化率小于1K/h,并继续维持3h,就认为油顶层温升已经稳定。 取最后一个小时中的平均值为油顶层温升。 之后,开始试验的第二阶段:绕组温升试验(测量热态电阻, 冷态电阻在温升试验前已经测定)。

运行中高压开关柜实际温升分析

仅供参考[整理] 安全管理文书 运行中高压开关柜实际温升分析 日期:__________________ 单位:__________________ 第1 页共6 页

运行中高压开关柜实际温升分析 〔摘要〕对国产JYN、KYN手车柜和合资厂生产的8BK20开关柜的实际温升数据进行分析后发现,运行中开关柜的温升水平均超过型式试验测得数据。然后,从试验条件、金属膨胀效应、紧固螺栓压力、导体材料电导率等方面进一步分析了温升超标的原因。最后提出建议,应根据实际情况选用和维护开关柜。 〔关键词〕开关柜;温升;型式试验 随着电网的发展和设备技术的提高,10,35kV系统开关柜在电网中已大量使用。而开关柜的内部过热现象已成为开关柜使用中的常见问题,由于开关柜体的密闭性,在一些负荷较重的地区,存在开关柜的温升超标问题。 开关柜的温升超标,直接影响设备的安全稳定运行,而且,过热问题是一个不断发展的过程,如果不加以控制,过热程度会不断加剧,并对绝缘件的性能及设备寿命产生很大的影响。 目前,对电力系统内部使用的开关柜,严格遵守设备采购程序及技术政策,确保入网的开关柜都通过型式试验,尤其对温升的要求比较严格。运行中,负荷通常都不会达到开关柜的设计满容量,开关柜的温升问题应该不会很突出,但是实际情况并不尽然。 1开关柜实际温升数据分析 1.1国产JYN手车柜 表1为某变电站2台同型号、同参数的10kV主变开关柜的实测温升与负荷关系的统计。开关柜为福建某开关厂生产,JYN1-10型。测试温度为开关柜箱体的外表温度。 数据显示,随着负荷的增加,开关柜的温升迅速加快。当负荷接近 第 2 页共 6 页

温升测试规范

1.0测试目的 本作业指导书描述了园林工具、电动工具产品在发热试验中的工作程序,用以确定产品各部件的温升是否符合标准规定的允许值。 2.0适用范围: 适用于符合标准要求的所有园林工具及电动工具产品。 3.0 名词术语: 热平衡 --- 每隔前面已用的测试时间的10%的时间(但不少于5分钟)连续三次读数, 其变化少于1℃时样机所达到的热稳定状态. 4.0 参考文献 : EN/UL/CSA/GLOBE要求 5.0 职责: 实验室所有技术员及工程师 6.0 测试设备: 6.1 变频电源 6.2 交直流电参数测量仪 6.3 热电偶线(K型或J型) 6.4 UL胶水和催化剂 6.5 数据采集仪(安捷伦) 6.6 电机温升测试仪 7.0 测试程序: 7.1 温升测试前的条件。 7.1.1 使用的所有设备都必须以一年为周期进行调校. 载有最后调校日期和调校周期的调校 粘纸必须粘固在每一台仪器上. 7.1.2 检查样机的完整性,零部件,配件,附件应齐全。

7.1.3准备具有代表性的样机在温度23℃±2℃,湿度50﹪RH—90﹪RH之内的环境温度下放 置10H,至样机表面温度达到与室温平衡进行测试。 7.2 温升测试前的准备。 7.2.1 根据标准中对被测产品测试点位置的要求,把热电偶牢固粘接在被测产品各测量点部 位的表面(除非标准另有规定选用其它热电偶外),并应确保连接至数据采集仪的热电偶设置与仪器操作规范的要求一致。 a、热电偶线:J型或K型长度约1mm—2mm,探头为碰焊,材料为铁–铜镍合金(J 型),铬-硅,镍合金(K型) b、胶水,崔化剂(质量需保证,需有证可或能满足要求) c、对于工具类的产品通常需要布点的位置有: 电机绕组,炭刷,轴承(需要钻孔),电机外壳,开关,内部导线,把握手柄,电 阻,电容,PCB,IC,外壳(出风口处)等。 d、焊点:把探头紧贴在被测位置的比较恰当的点,打上一点胶水(胶水不宜过多, 能粘住即可) e、热电偶走线: 尽可能把机器内部的电线整齐,用高温胶带捆住,走边槽或电线槽 f、热电偶出线: 不得从进出风口或其它不安全处引出(尽可能走槽,没槽从外壳边挖一小孔出线) g、连接数据采集仪,检测各热电偶的状态是否正常,再检查环境温度是否稳定,等到 环境温度稳定后才可以开始进行温升试验。 7.2.2 如果用电阻法测试被测产品定、转子线圈温度(温升)时,用导线连接被测产品定子 线圈,作为数据采集仪的引线。转子一般是测试换向器的对角项位或侧角相位使作锥子在转子的对角相位的底部位置凿两个小眼,以便测量。 a、感应电机直接定子绕组线圈引线。 b、永磁电机直接测试转子。 c、串激电机定、转子绕组皆测。 d、定子引线,定子引线在装配好的机器中不得触及到带电或发热部件。引线不得从进 出风口或其它不安全处引出(尽可能走线槽)。引线不可太长(只要能引出机壳方便 测量即可)。 e、转子测试采用对角相位或侧角相位。顶角相位测试中必须断开碳刷,侧角相位测试 至少隔3片。(在换向器片数较少的情况下允许隔2片进行测试)

GB14048.4交流接触器温升试验

交流接触器温升试验浅析 电器在工作时,由于电流通过导体和线圈而产生电阻损耗,而这些损耗几乎全部转变为热能。这些热能将影响电器工作的可靠性和使用寿命。 电器产品中的金属材料在温度高达一定数值以后,其机械强度会显著降低。另外电器的触头材料,除考虑机械强度外还要考虑它的氧化问题。一般金属材料的氧化物(银除外)都是电阻率很高的半导体,如铜触头氧化后的接触电阻将增大几十至几百倍,而且氧化的速度与触头的温度有关,当触头温度高于70~80℃时,氧化便会开始剧烈起来。还有电器产品绝缘材料的绝缘强度随温度的升高也会逐渐降低,当绝缘材料的温度超过极限温度时,材料急剧老化。温度越高则老化越快,寿命也就越短。 由于电器产品的材料在温度超过一定数值后其上述性能要变坏,因此为保证电器工作的可靠性和使用寿命,根据材料的机械和绝缘等性能的条件,对电器发热部件的温升允许极限值有明确的规定。温升试验就是测量电器的一些部件在规定的工作条件下的温升值。因此温升试验是试验中一个重要的安全检验项目。本文将根据GB14048.4-2010的规定,讨论交流接触器温升试验的要求和方法,以及测量过程中的有关影响因素。 交流接触器工作时的热源包括主回路和电磁系统两部分,主回路发热包括电流流过回路导体时的损耗、动静触头接触电阻的损耗以及连接导线和接线端的损耗;电磁系统发热包括线圈和分磁环的损耗以及铁磁体的损耗。因此根据标准规定交流接触器的温升试验主要涉及以下几个方面:接线端子的温升,易接近部件的温升,线圈和电磁铁绕组的温升。 一、交流接触器的温升试验要求 在GB14048.4-2010中,对交流接触器的发热部件规定了温升允许极限值。根据规定的试验方法进行试验,所测得的电器各部件温升应不超过以下有关规定值。 1、接线端子的温升 接线端子是用来与外部电路进行连接的电器部件,对于交流接触器来说主要包括主电路的接线端子和辅助电路的接线端子。两种接线端子的温升不应超过GB14048.1-2006表2的

运行中高压开关柜实际温升分析通用版

解决方案编号:YTO-FS-PD567 运行中高压开关柜实际温升分析通用 版 The Problems, Defects, Requirements, Etc. That Have Been Reflected Or Can Be Expected, And A Solution Proposed T o Solve The Overall Problem Can Ensure The Rapid And Effective Implementation. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

运行中高压开关柜实际温升分析通 用版 使用提示:本解决方案文件可用于已经体现出的,或者可以预期的问题、不足、缺陷、需求等等,所提出的一个解决整体问题的方案(建议书、计划表),同时能够确保加以快速有效的执行。文件下载后可定制修改,请根据实际需要进行调整和使用。 〔摘要〕对国产JYN、KYN手车柜和合资厂生产的8BK20开关柜的实际温升数据进行分析后发现,运行中开关柜的温升水平均超过型式试验测得数据。然后,从试验条件、金属膨胀效应、紧固螺栓压力、导体材料电导率等方面进一步分析了温升超标的原因。最后提出建议,应根据实际情况选用和维护开关柜。 〔关键词〕开关柜;温升;型式试验 随着电网的发展和设备技术的提高,10,35 kV系统开关柜在电网中已大量使用。而开关柜的内部过热现象已成为开关柜使用中的常见问题,由于开关柜体的密闭性,在一些负荷较重的地区,存在开关柜的温升超标问题。 开关柜的温升超标,直接影响设备的安全稳定运行,而且,过热问题是一个不断发展的过程,如果不加以控制,过热程度会不断加剧,并对绝缘件的性能及设备寿命产生很大的影响。 目前,对电力系统内部使用的开关柜,严格遵守设备

隔离开关12-1250-25技术条件

设计文件名称技术条件XXXX有限公司 产品型号、名称HGW9-12/1250 户外交流高压隔离开关第1页共5页 1. 主题内容与适用范围 本技术条件规定了HGW9-12/1250 户外交流高压隔离开关的使用条件、技术参数、试验方法与检测规则,标志、包装、运输和储存等方面的要求。 本技术条件适用于HGW9-12/1250 户外交流高压隔离开关,该隔离开关适用于额定频率为50Hz,额定电压为12kV的交流电路中,作有电压无负载时断开与闭合电路之用,也可作为该系列派生产品的基本单元。 2. 引用标准 GB1985-2004交流高压隔离开关和接地开关》; GB/T11022-1999《高压开关设备和控制设备标准的共用技术要求》; DL/T593《高压开关设备和控制设备标准的共用技术条件》 DL486-2000《交流高压隔离开关和接地开关订货技术条件》。 3. 使用环境条件 a. 周围空气温度:上限+50℃,下限-50℃; b. 海拔:设备安装场所的最大海拔高度2000m; c. 风速不大于34m/s; d. 地震:地震烈度不超过9度; e. 覆冰厚度不大于10mm; f. 安装场所无严重灰尘、污垢、易燃物质、爆炸危险、化学腐蚀及剧烈震动; g. 安装基础应水平 h.本隔离开关爬电比:不小于GB/T5582规定的III级(按用户要求)

设计文件名称技术条件XXXX有限公司 产品型号、名称HGW9-12/1250 户外交流高压隔离开关第2页共5页技术参数 4.1 隔离开关与所配接地开关的技术参数见表1 序 号 名称单位数据 1 额定电压kV 12 2 额定绝缘 水平1min工频耐受电压kV 42/48 雷电冲击耐受电压(峰 值) 75/85 3 额定频率Hz 50 4 额定电流 A 630 1250 1600 2000 3150 5 额定短时耐受电流kA 25 31.5 40 6 额定峰值耐受电流63 80 100 7 额定短路持续时间 隔离开关s 4 接地开关s 4 8 额定端子机械负荷 水平纵向负荷N 500 水平横向负荷N 250 垂直力N 300 9 隔离开关开合母线转换电流 1)转换电压V100 2)转换电流 A 1000 1600 3)开合次数次100 10 接地开关感应电流开合能力 1)电磁感应电流(电流/电压)A/KV 100/4* 2)静电感应电流(电流/电压)A/KV 2/6* 3)开合次数次10 11 爬电比距mm/kV ≥25、≥31 12 机械寿命次3000 13 隔离开关主回路电阻μΩ80 80 80 14 单级隔离 开关重量不接地kg 150 170 190 单接地170 190 210 双接地190 210 230

开关柜典型故障分析

高压开关柜典型故障分析 电力系统广泛使用10kV(含6kV)—35kV开关柜,担负着发电厂用电、变电站和用户供电的任务,且用量大,分布广。由于1OkV-35kV开关柜的设计、制造、安装和运行维护等方面均存在不同程度的问题,因而开关柜事故率比较高,危及人身、电网和设备安全,影响供电可靠性。 一、下面列举几种类型的开关柜事故(故障)案例: (一)开关柜防爆性能不足或防误性能不完善,危及人身安全; 由于开关柜防爆性能不足或防误性能不完善,近几年省内外发生多起人身伤害事件,以下列举四起事故: 1. 2006年2月 24日,某 220kV变电站 10kV高压开关柜(GGX2型)由于馈线故障,开关发生拒动,运行人员在处理开关拒动过程中,当拉开开关,确认开关位置指示处于分闸位置后,操作拉开隔离刀闸时,发生弧光短路,造成 2人重伤 1人轻伤。事故后现场检查发现:该开关操作机构 A、B相拐臂与绝缘拉杆连接处松脱,造成 A、B相主触头未分开,在操作拉开隔离刀闸时发生弧光短路。由于906柜压力释放通道设计不合理,下柜前门强度不足,弧光短路时被电弧气浪冲开,造成现场人员被电弧灼伤。开关柜的上述问题是人员被电弧灼伤的直接原因。

2. 7月 1日,某单位发生一起因变电运行人员擅自打开10 千伏开关柜柜门,误碰带电部位造成的人身触电死亡事故。设备缺陷是事故发生的又一间接原因。由于 6522A相刀闸动触头绝缘护套老化,松动后偏移,刀闸断开时护套卡入动触头与刀闸接地侧的静触头之间,造成刀闸合闸时卡涩合不上。且该 GG-1A型高压开关柜系 60年代设计的老旧产品,96年生产,97年投运;原安装有机械程序防误锁,于 2002年改造为微机防误装置,由于此型号的高压开关柜原设计不完善,不能实现线路有电强制闭锁。 3. 2009年9月30日,某220kV变电站发生一起10kV开关柜内部三相短路,电弧产生高温高压气浪冲开柜门,造成2名在开关柜外进行现场检查的运行值班员被电弧灼伤,其中1人于10月1 日死亡。 4. 2010年8月19日,8月19日,某单位在更换某220kV变电站10kV I段母线PT过程中,工作班成员触碰到带电的母线避雷器上部接线桩头,造成2人死亡、1人严重烧伤。 初步分析,事故主要原因为厂家设备一次接线错误。 根据国家电网公司典设和设备订货技术协议书,10千伏母线电压互感器和避雷器均装设在10千伏母线设备间隔中,上述设备的一次接线应接在母线设备间隔小车之后(见附图1)。而开关柜厂家在实际接线中,仅将10千伏母线电压互感器接在母线设备间隔小车之后,将10千伏避雷器直接连接在10千伏母线上,导致拉开10千伏母线电压互感器9511小车后,10千伏避雷器仍然带电(见附图2)。

运行中高压开关柜实际温升分析示范文本

运行中高压开关柜实际温升分析示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

运行中高压开关柜实际温升分析示范文 本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 〔摘要〕对国产JYN、KYN手车柜和合资厂生产的 8BK20开关柜的实际温升数据进行分析后发现,运行中开 关柜的温升水平均超过型式试验测得数据。然后,从试验 条件、金属膨胀效应、紧固螺栓压力、导体材料电导率等 方面进一步分析了温升超标的原因。最后提出建议,应根 据实际情况选用和维护开关柜。 〔关键词〕开关柜;温升;型式试验 随着电网的发展和设备技术的提高,10,35 kV系统 开关柜在电网中已大量使用。而开关柜的内部过热现象已 成为开关柜使用中的常见问题,由于开关柜体的密闭性, 在一些负荷较重的地区,存在开关柜的温升超标问题。

开关柜的温升超标,直接影响设备的安全稳定运行,而且,过热问题是一个不断发展的过程,如果不加以控制,过热程度会不断加剧,并对绝缘件的性能及设备寿命产生很大的影响。 目前,对电力系统内部使用的开关柜,严格遵守设备采购程序及技术政策,确保入网的开关柜都通过型式试验,尤其对温升的要求比较严格。运行中,负荷通常都不会达到开关柜的设计满容量,开关柜的温升问题应该不会很突出,但是实际情况并不尽然。 1 开关柜实际温升数据分析 1.1 国产JYN手车柜 表1为某变电站2台同型号、同参数的10 kV主变开关柜的实测温升与负荷关系的统计。开关柜为福建某开关

浅谈高压开关设备触头温升影响因素

Advances in Energy and Power Engineering 电力与能源进展, 2016, 4(6), 222-228 Published Online December 2016 in Hans. https://www.360docs.net/doc/d23940155.html,/journal/aepe https://www.360docs.net/doc/d23940155.html,/10.12677/aepe.2016.46028 文章引用: 周文文, 徐卫东, 曾锦河, 刁庆宪, 龙捷峰. 浅谈高压开关设备触头温升影响因素[J]. 电力与能源进展, Discussion on the Influencing Factors of the Temperature Rise of the Contact of High Voltage Switchgear Wenwen Zhou 1, Weidong Xu 1, Jinhe Zeng 2, Qingxian Diao 2, Jiefeng Long 2 1School of Automation, Guangdong University of Technology, Guangzhou Guangdong 2 Guangdong Ziguang Electric Co., Ltd., Dongguan Guangdong Received: Nov. 17th , 2016; accepted: Dec. 12th , 2016; published: Dec. 15th , 2016 Copyright ? 2016 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.360docs.net/doc/d23940155.html,/licenses/by/4.0/ Abstract High voltage switchgear is an important equipment for stable operation of electric power system. Reliable operation of equipment becomes the main task of power equipment operation and main-tenance department. For a long time, heat failure has been a prominent problem in the operation and management of power equipment. Based on the understanding of the requirements of tem-perature rise of high voltage switchgear and the analysis of the influence factors of temperature rise, the influence of contact resistance, current-carrying capacity and contact pressure on the temperature rise and safe operation of the equipment is analyzed in this paper. And providing the relevant calculation methods and solutions. The relationship between the arc current and other influencing factors and the temperature rise is also discussed. Keywords High Voltage Switchgear, Contact Temperature Rise, Contact Resistance, Current Carrying Capacity, Contact Pressure 浅谈高压开关设备触头温升影响因素 周文文1,徐卫东1,曾锦河2,刁庆宪2,龙捷峰2 1广东工业大学自动化学院,广东 广州 2 广东紫光电气有限公司,广东 东莞 Open Access

变频器的温升及其试验方法

2012年12月(中)工业技术科技创新与应用 变频器的温升及其试验方法探讨 徐文广 (天津亿鑫通科技股份有限公司,天津300000) 1引言 在传统工业生产中,变频器主要用于对电动机进行控制,而随着科学技术的不断进步,变频器的应用范围越来越广泛,例如可以将变频器应用于逆变电源中。对用户而言,想要保证变频器能够稳定运行,在选用时需对变频器有一个全面的认识。型式试验是判定变频器产品标准的一个重要环节,而温升试验作为型式试验中的一项重要检测步骤,其试验中的温升值是衡量变频器整体性能的一个重要因素。温升数值过大说明变频器很容易在负载过大、电流过强、周围温度过高的情况下被烧毁。相反,温升数值过低则说明变频器在设计时为增加散热而增大了体积,这便造成了成本过高的问题。随着变频器温度的升高,其出现故障的频率也随之增大,成指数上升,其使用寿命随之降低,成指数下降,因此,应严格控制变频器的使用温度,在其散热方面狠下功夫。 2变频器的基本原理及发热部位 常规情况下,变频器一般采用AC-DC-AC的变换方式,如图1所示,为常规变频器的主电路原理图,其中包含了AC-DC的整流模块、能耗模块以及DC-AC的逆变模块。其基本原理是将频率和电压均为固定值的三相电压转换为频率和电压可变的三相交流电。 图1常规变频器主电路原理图 整流模块和逆变模块是变频器中的主要发热部位。由于在整流过程中,通过三相桥式整流电路的电压频率为固定值,所以只能在降低整流电路压降方面控制温升,但这种方法对温升影响不大。逆变模块主要用于转变功率,并且作为输出器件,其发热量较多,对温升影响很大。 目前,绝大部分变频器将绝缘栅双极型晶体管(即IGBT)作为其逆变模块的主要器件。双极型晶体管和金氧半场效晶体管(MOSFET)共同构成了IGBT,由于IGBT工作时,流通电流较大,极间开关频率也较高,这就导致了其功耗很大。若不能有效控制其发热量,将极易损坏IGBT内部结构。在变频器工作时,除了IGBT容易产生发热外,诸如其他器件连接处、特定材料的导线、电阻电感等也会产生热量,因此,应该按国家规定标准控制其温升极限值。 3变频器的温升试验 3.1等效法温升试验 如图2所示为等效法温升试验原理图,利用电阻和电感作为其模拟负载,由于这种方法在调节负载方面不够灵敏,且功耗很大,所以已经很少被采用。 图2等效法温升试验原理图 3.2模拟法温升试验 目前主流的温升试验方法是模拟法,如图3所示为模拟法试验原理图,其基本原理是将电动机与变频器相连,作为其负载,然后将电动机与直流发电机通过连接轴相连,达到驱动发电机的目的。这样,直流发电机产生的电能便能被逆变装置回馈给电网。如想改变变频器的负载大小,仅需对发电机的励磁进行调节便可,试验过程操作简单,而且功耗很低,逆变器对电网无谐波干扰。这种方法非常实用于通用V/F变频器中高转速试验,其逆变效果在直流电压较高时非常明显。在进行模拟法试验时,应注意:作为变频器的负载,电动机的额定容量应与之匹配,发电机和电动机需同轴连接,且容量大抵相当。 图3模拟法温升试验原理图 3.3试验仪器的选择 (1)电压、电流表。应用频谱分析仪所选电压表、电流表进行校核。(2)远红外测试仪。可用其对变频器外表部分进行温度测量,用其显示读数减去当时环境温度即可得到温升值。(3)热电偶或热敏电阻。将其与测试部位相粘连,通过测量其两端热电势或电阻值,然后再与所对应的温升分度表对照,即可检测变频器内部温升。 3.4测量方法 在进行变频器温升试验时,应保证所处环境为室温,注意保证周围环境的通风和散热,在变频器周围半米高、一米远的距离均匀放置若干个温度计,在进行测量时,保证变频器输入电压为额定电压,流经电流为额定电流,测量用电流表应调至0.5级以上,并且其指针应超过2/3量程。这时,方可对变频器的诸如整流模块、IGBT、电路导线等主要部件进行温升测试。对温度进行测量的时间周期一般需达到4个小时以上,记录温升值的频率应保证每隔半个小时一次,当对比温度变化率不足1℃/h时,即可停止试验,说明温升已趋于稳定。 3.5试验判定 表1所示为生产厂商所提供的标准极限温升,将试验结果与之对比,验证其是否符合要求。 表1主要部件极限温升 4结论 事实证明凡经试验验证符合标准要求,并通过长时间考核的变 频器投运以后,都会有很高的可靠性。所以了解变频器的发热原因, 并对其进行温升考核是提高变频器使用寿命的重要前提。 参考文献 [1]冯秋,曹国刚.浅谈IGBT在变频器保护中的应用[J].北京:电力 电子技术应用,,2010,(10);187-188. [2]葛云燕,李新平.低压变频器温升理论研究[J].中国电力企业化 管理,2007,(3);66-67. [3]李宝英,魏长宏.基于变频器的温升试验探讨[J].动力与电气工程, 2011,(03);167-168. 摘要:在日常生活和生产中,已经越来越多的应用到了变频器,其可靠性在很大程度上受散热问题影响。本文首先分析了变频 器的基本原理及发热部位,然后重点阐述了变频器的温升试验方法。 关键词:变频器;温升;试验方法 ;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;; ;;;;;;; ;;;;;; ;;;;;;; ;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 110 --

高压开关柜的故障分析

高压开关柜的故障分析 摘要:其实高压开关柜在购买之前都是经过相关的验收检查的,但是投入运行先天性就存在质量问题的设备是不可避免的,另外,机器的老化,也导致高压开关柜安全使用状体不能永久保持。对此,用户除了要在管理制度方面加大力度,还可加强对高压开关柜的检测工作。从而对于高压开关柜存在的故障能够保证及时检测到,那么就能够避免高压开关柜的不安全运行。本文主要对高压开关设备的重要性、高压开关柜常见故障以及高压开关柜的故障检测进行分析。 关键词:高压;开关柜;故障 1.高压开关设备的重要性 一般情况下,我们所说的开关就是指高压断路器,在高压开关设备中,它的性能最广,对于电力系统中的关合、控制、保护、测量和调节,高压短路器都能够实现,其还担负着保证电力系统安全的重要任务。电力系统在正常运行时,对断路器和隔离开关来进行倒闸操作主要根据调度运行方式等指令来实现,从而达到电力系统安全和经济运行的目的。 2.高压开关柜常见故障 2.1开断与关合故障 产生开断与关和故障的原因主要是断路器本体。对于真空断路器而言,主要表现为真空度降低、陶瓷管破裂、灭弧室、切电容器组重燃;而对于少油断路器而言,主要表现为开断能力不足、喷油短路、关合时爆炸、灭弧室烧损等。

2.2拒动、误动故障 产生拒动、误动故障的原因主要有:(1)电气控制和铺助回路。其主要表现就是端子松动、二次接线接触不良、接线错误、辅助开关切换不灵、因机构卡涩或转换开关不良而导致分合闸线圈烧损等故障;(2)操动机构及传动系统的机械故障。其主要表现就是部件变形、损坏或者移位,机构卡涩,分合闸铁芯松动,脱口失灵等故障。拒动、误动故障是高压开关柜最主要的故障。 2.3绝缘故障 对作用在绝缘上的各种电压、绝缘强度、各种限压措施三者之间的关系进行正确处理,这就是绝缘水平的主要任务。最终使产品既安全又经济且获得最佳的经济效益,这就是绝缘水平的最终目的。其故障主要表现在内绝缘对地闪络击穿,外绝缘对地闪络击穿,相间绝缘闪络击穿等等。 3.高压开关柜的故障检测 3.1机械故障的检测、使用 很多统计资料表明,开关柜机械故障发生的比例最高。这是因为与机械操作相关联的元件非常多,包括合、分闸回路串联有很多环节。而且开关的操作是没有规律的,有时候很长时间也不操作一次,有时候却要连续动作。另外,还受一年四季环境变化的影响。所以机械故障特别是拒动故障是发生概率最高的。要保证开关设备的操作机构性的可靠性,需经过考验验证。其次,开关柜内所有部件,特别是动作的部件包括各处的紧固螺钉、弹簧和拉杆,强度要足够,结构要可靠,要经得住

(开关柜试验)KYN61-40.5高压开关柜的技术说明

1、概述 1.1本技术描述中的所有的技术内容,技术参数,采用的标准及所选用的设备和材料符合招标书的要求。 1.2本技术描述根据本公司多年的制造经验和本公司的先进技术作出。 2、基本依据 2.1所有设备的制造、测试和安装均采用中国国家标准,同时满足相应的IEC标准,主要标准号如下: GB11022 《高压开关设备通用技术条件》 GB3906 《3~35KV交流金属封闭开关设备》 IEC298 《额定电压1KV以上52KV及以下的交流金属封闭开关设备和控制设备》 IEC694 《高压开关设备和控制设备标准的共用条款》 IEC60056 《高压交流断路器》 GB1985-89 《交流高压隔离开关和接地开关》 IEC60529 《外壳防护等级国际防护等级代码》 GB763-90 《交流高压电器在长期工作时的发热》 B311.1-1997 《高压输电设备的绝缘配合》 GB/T16927-1997《高压试验技术》 DL/T1620-1997 《交流电气装置的过电压保护和绝缘配合》 GB1408-89 《固体绝缘材料工频电气强度的试验方法》 GB2706-89 《交流高压电器动热稳定试验方法》 GB3309-89 《高压开关设备常温下的机械试验方法》 GB/7534-87 《局部放电测量》 DL/T404-1997 《户内交流高压开关柜订货技术条件》 《电力设备交接和预防性试验规程》2000版 3、高压开关柜技术参数 3.1环境条件 3.1.1周围环境温度 上限+40℃

下限-10℃ 3.1.2海拔不超过1000m 3.1.3环境温度: 月平均相对湿度不大于90% 日平均相对湿度不大于95% 3.1.4地震烈度及加速度不大于8度 3.1.5适用于Ⅲ级污秽场所 4、系统参数 4.1系统标称电压:35KV 4.3额定频率:50HZ 4.4系统接地方式:不接地 5、技术参数 5.1断路器技术参数 5.1.1开关柜采用ZN85-40.5断路器,断路器配宝光陶瓷真空灭弧室。 5.1.2 ZN85-40.5断路器技术参数:

电机温升测试

电机温升试验 电机中绝缘材料的寿命与运行温度有密切的关系,为保证电机安全、合理的使用,需要监视与测量电机绕组、铁心等其他部分的温度。按国家标准规定,不通绝缘等级的电机绕组有不同的允许温升,如下表所示 若超过规定值,如对B级绝缘的电机,温升每增加10度,电机的寿命将降低一半。因此电机的温升试验,准确的测取个部件的温度,对改进电机的设计和制造工艺,提高电机的质量是非常重要的对电机绕组和其他各部分的温度测量,目前虽已采用不少先进技术,仍可归纳为电阻法、温度计法、埋置检温计法三种基本方法。 一、电阻法 在一定的温度范围内,电机绕组的电阻值将随着温度的上升而相应的增加,而且其阻值与温度之间存在着一定的函数关系。根据这一原理,可以通过测定电机绕组的电阻来确定其温度,故称电阻测量法。 当绕组温度在-50~150度范围时,其温升有下式确定

Δθ=(R f-R0)(k+θ0)/R0+θ0-θf 式中R0、θ0分别为绕组的实际冷态电阻和环境温度;R f、θf分别为绕组热态式电阻和环境温度;k为常数,对铜绕组为235,对铝绕组225 如果不能采用带电测量装置,可采用较先进的快捷、准确、数字显示的各种毫欧表或微欧计等直流电阻测量仪。其基本工作原理是采用高准确度、高稳定度的恒流电源所产生的直流电流通到被测电阻上,则电阻两端的电压降将严格的按照电阻值变化 二、温度计法 对电机中不能采用电阻法测量的部位,如定子铁心,轴承及冷却介质等,可采用温度计法来测量。 温度计法是用温度计贴附在可接触的表面来测量温度,所测得的温度是被测点的表面温度。为了减小误差,从被测点到温度计的热传导尽可能的良好,将温度计球面部分用绝热材料覆盖,以免周围冷却介质的影响。温度计除包括水银、酒精等膨胀式温度计外,也包括半导体温度计及非埋置的热电耦或电阻温度计。在电机中存在交变磁场的部分,不可采用水银温度计,因为交变磁场在水银中产生涡流会发热,以致影响测量的准确性。 三、埋置检温计法 埋置检温计法是讲电阻检温计、热电耦或半导体热敏元件埋植于电机内部不能触及的部位,如定子绕组的槽部和铁心内等,经连接导线引到电机外的二次仪表,从而测定温度值。在测量时应控制测量

相关文档
最新文档