九年级数学-垂径定理—知识讲解-提高

九年级数学-垂径定理—知识讲解-提高
九年级数学-垂径定理—知识讲解-提高

垂径定理—知识讲解(提高)

审稿:

【学习目标】

1.理解圆的对称性;

2.掌握垂径定理及其推论;

3.学会运用垂径定理及其推论解决有关的计算、证明和作图问题.

【要点梳理】

知识点一、垂径定理

1.垂径定理

垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.

2.推论

平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.

要点诠释:

(1)垂径定理是由两个条件推出两个结论,即

(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.

知识点二、垂径定理的拓展

根据圆的对称性及垂径定理还有如下结论:

(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;

(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;

(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.

(4)圆的两条平行弦所夹的弧相等.

要点诠释:

在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)

【典型例题】

类型一、应用垂径定理进行计算与证明

1. 如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=1,ED=3,则⊙O

的半径是.

【答案】5.

【解析】作OM ⊥AB 于M 、ON ⊥CD 于N ,连结OA ,

∵AB=CD ,CE =1,ED =3,

∴OM=EN=1,AM=2,

.

【点评】对于垂径定理的使用,一般多用于解决有关半径、弦长、弦心距之间的运算(配合勾股定理)问

题.

举一反三:

【变式1】如图所示,⊙O 两弦AB 、CD 垂直相交于H ,AH =4,BH =6,CH =3,DH =8,求⊙O 半径.

【答案】如图所示,过点O 分别作OM ⊥AB 于M ,ON ⊥CD 于N ,则四边形MONH 为矩形,连结OB ,

∴ 12

MO HN CN CH CD CH ==-=

- 11()(38)3 2.522

CH DH CH =+-=+-=, 111()(46)5222

BM AB BH AH ==+=+=, ∴ 在Rt △BOM

中,OB == 【高清ID 号: 356965 关联的位置名称(播放点名称):例2-例3】

【变式2】如图,AB 为⊙O 的弦,M 是AB 上一点,若AB =20cm ,MB =8cm ,OM =10cm ,求⊙O 的半径.

【答案】14cm.

【高清ID号:356965 关联的位置名称(播放点名称):例2-例3】

2.已知:⊙O的半径为10cm,弦AB∥CD,AB=12cm,CD=16cm,求AB、CD间的距离.

【思路点拨】

在⊙O中,两平行弦AB、CD间的距离就是它们的公垂线段的长度,若分别作弦AB、CD的弦心距,则可用弦心距的长表示这两条平行弦AB、CD间的距离.

【答案与解析】

(1)如图1,当⊙O的圆心O位于AB、CD之间时,作OM⊥AB于点M,

并延长MO,交CD于N点.分别连结AO、CO.

∵AB∥CD

∴ON⊥CD,即ON为弦CD的弦心距.

∵AB=12cm,CD=16cm,AO=OC=10cm,

=8+6

=14(cm)

图1 图2

(2)如图2所示,当⊙O的圆心O不在两平行弦AB、CD之间(即弦AB、CD在圆心O的同侧)时,

同理可得:MN=OM-ON=8-6=2(cm)

∴⊙O中,平行弦AB、CD间的距离是14cm或2cm.

【点评】解这类问题时,要按平行线与圆心间的位置关系,分类讨论,千万别丢解.

举一反三:

【变式】在⊙O中,直径MN⊥AB,垂足为C,MN=10,AB=8,则MC=_________.

【答案】2或8.

类型二、垂径定理的综合应用

3. 要测量一个钢板上小孔的直径,通常采用间接的测量方法.如果用一个直径为10mm的标准钢珠放在小孔上,测得钢珠顶端与小孔平面的距离h=8mm(如图所示),求此小孔的直径d.

【思路点拨】

此小孔的直径d就是⊙O中的弦AB.根据垂径定理构造直角三角形来解决.【答案与解析】

过O作MN⊥AB,交⊙O于M、N,垂足为C,

1

105mm

2

OA=?=,OC=MC-OM=8-5=3mm.

在Rt△ACO中,AC4mm

=,

∴ AB=2AC=2×4=8mm.

答:此小孔的直径d为8mm.

【点评】应用垂径定理解题,一般转化为有关半径、弦、弦心距之间的关系与勾股定理的运算问题.

4. 不过圆心的直线l交⊙O于C、D两点,AB是⊙O的直径,AE⊥l于E,BF⊥l于F.

(1)在下面三个圆中分别画出满足上述条件的具有不同位置关系的图形;

(2)请你观察(1)中所画图形,写出一个各图都具有的两条线段相等的结论(OA=OB除外)(不再标注其他字母,找结论的过程中所连辅助线不能出现在结论中,不写推理过程);

(3)请你选择(1)中的一个图形,证明(2)所得出的结论.

【答案与解析】

(1)如图所示,

在图①中AB、CD延长线交于⊙O外一点;

在图②中AB、CD交于⊙O内一点;

在图③中AB∥CD.

(2)在三个图形中均有结论:线段EC=DF.

(3)证明:过O作OG⊥l于G.由垂径定理知CG=GD.

∵ AE⊥l于E,BF⊥l于F,

∴ AE∥OG∥BF.

∵ AB为直径,

∴ AO=OB,

∴ EG=GF,

∴ EC=EG-CG=GF-GD=DF.

【点评】在运用垂径定理解题时,常用的辅助线是过圆心作弦的垂线,构造出垂径定理的基本图形.

人教版九年级数学上册垂径定理

初中数学试卷 垂径定理 一.选择题 ★1.如图1,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,那么弦AB 的长是( ) A .4 B .6 C .7 D .8 ★★2.如图2,⊙O 的半径为5,弦AB 的长为8,M 是弦AB 上的一个动点,则线段OM 长的最小值为( ) A .2 B .3 C .4 D .5 ★★3.过⊙O 内一点M 的最长弦为10 cm ,最短弦长为8cm ,则OM 的长为( ) A .9cm B .6cm C .3cm D .cm 41 ★★4.如图3,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持垂直,在测直径时,把O 点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为( ) A .12个单位 B .10个单位 C .1个单位 D .15个单位 ★★5.如图4,O ⊙的直径AB 垂直弦CD 于P ,且P 是半径OB 的中点,6cm CD ,则直径AB 的长是( ) A .23cm B .32cm C .42cm D .43cm ★★6.下列命题中,正确的是( ) A .平分一条直径的弦必垂直于这条直径 B .平分一条弧的直线垂直于这条弧所对的弦 C .弦的垂线必经过这条弦所在圆的圆心 D .在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心 ★★★7.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( ) A .5米 B .8米 C .7米 D .53米

★★★8.⊙O 的半径为5cm ,弦AB//CD ,且AB=8cm,CD=6cm,则AB 与CD 之间的距离为( ) A . 1 cm B . 7cm C . 3 cm 或4 cm D . 1cm 或7cm ★★★9.已知等腰△ABC 的三个顶点都在半径为5的⊙O 上,如果底边BC 的长为8,那么BC 边上的高为( ) A .2 B .8 C .2或8 D .3 二.填空题 ★1.已知AB 是⊙O 的弦,AB =8cm ,OC ⊥AB 与C ,OC=3cm ,则⊙O 的半径为 cm ★2.在直径为10cm 的圆中,弦AB 的长为8cm ,则它的弦心距为 cm ★3.在半径为10的圆中有一条长为16的弦,那么这条弦的弦心距等于 ★★4.已知AB 是⊙O 的弦,AB =8cm ,OC ⊥AB 与C ,OC=3cm ,则⊙O 的半径为 cm ★★5.如图1,⊙O 的直径AB 垂直于弦CD ,垂足为E ,若∠COD=120°,OE =3厘米,则CD = 厘米 O 图 4E D C B A ★★6.半径为6cm 的圆中,垂直平分半径OA 的弦长为 cm. ★★7.过⊙O 内一点M 的最长的弦长为6cm ,最短的弦长为4cm ,则OM 的长等于 cm ★★8.已知AB 是⊙O 的直径,弦CD ⊥AB ,E 为垂足,CD=8,OE=1,则AB=____________ ★★9.如图2,AB 为⊙O 的弦,⊙O 的半径为5,OC ⊥AB 于点D ,交⊙O 于点C , 且CD =l ,则弦AB 的长是 ★★10.某蔬菜基地的圆弧形蔬菜大棚的剖面如图3所示,已知AB =16m ,半径OA =10m ,则中间柱CD 的高度为 m ★★11.如图4,在直角坐标系中,以点P 为圆心的圆弧与轴交于A 、B 两点,已知P(4,2) 和A(2,0),则点B 的坐标是 ★★12.如图5,AB 是⊙O 的直径,OD ⊥AC 于点D ,BC=6cm ,则OD= cm ★★13.如图6,矩形ABCD 与圆心在AB 上的圆O 交于点G 、B 、F 、E ,GB=10,EF=8,那么 B A P O y x

垂径定理—知识讲解(提高).

垂径定理—知识讲解(提高) 【学习目标】 1.理解圆的对称性; 2.掌握垂径定理及其推论; 3.学会运用垂径定理及其推论解决有关的计算、证明和作图问题. 【要点梳理】 知识点一、垂径定理 1.垂径定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. 2.推论 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. 要点诠释: (1)垂径定理是由两个条件推出两个结论,即 (2)这里的直径也可以是半径,也可以是过圆心的直线或线段. 知识点二、垂径定理的拓展 根据圆的对称性及垂径定理还有如下结论: (1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧. (4)圆的两条平行弦所夹的弧相等. 要点诠释: 在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径) 【典型例题】 类型一、应用垂径定理进行计算与证明 1. 如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=1,ED=3,则⊙O 的半径是.

【答案】5. 【解析】作OM⊥AB于M、ON⊥CD于N,连结OA, ∵AB=CD,CE=1,ED=3, ∴OM=EN=1,AM=2, ∴ 【点评】对于垂径定理的使用,一般多用于解决有关半径、弦长、弦心距之间的运算(配合勾股定理)问题. 举一反三: 【变式1】如图所示,⊙O两弦AB、CD垂直相交于H,AH=4,BH=6,CH=3,DH=8,求⊙O半径. 【答案】如图所示,过点O分别作OM⊥AB于M,ON⊥CD于N,则四边形MONH为矩形,连结OB, ∴ 1 2 MO HN CN CH CD CH ==-=- 11 ()(38)3 2.5 22 CH DH CH =+-=+-=, 111 ()(46)5 222 BM AB BH AH ==+=+=, ∴在Rt△BOM中,OB== 【高清ID号:356965 关联的位置名称(播放点名称):例2-例3】 【变式2】如图,AB为⊙O的弦,M是AB上一点,若AB=20cm,MB=8cm,OM=10cm,求⊙O的半径.

勾股定理知识点总结

第18章 勾股定理复习 一.知识归纳 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2 ab b a c ?+-=,化简可证. c b a H G F E D C B A 方法二: b a c b a c c a b c a b 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221 422S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+?+梯形,211 2S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证

a b c c b a E D C B A 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用 ①已知直角三角形的任意两边长,求第三边 在ABC ?中,90C ∠=? ,则c ,b = ,a ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5 、利用勾股定理作长为 的线段 作长为 、 、 的线段。 思路点拨:由勾股定理得,直角边为1的等腰直角三角形,斜边长就等于,直角边为 和1的直 角三角形斜边长就是,类似地可作 。 作法:如图所示 (1)作直角边为1(单位长)的等腰直角△ACB ,使AB 为斜边; (2)以AB 为一条直角边,作另一直角边为1的直角。斜边为 ; (3)顺次这样做下去,最后做到直角三角形,这样斜边 、 、 、 的长度就是 、 、 、 。 举一反三 【变式】在数轴上表示的点。 解析:可以把 看作是直角三角形的斜边, , 为了有利于画图让其他两边的长为整数, 而10又是9和1这两个完全平方数的和,得另外两边分别是3和1。

中考数学专题模型—【专题2】垂径定理的模型研究(教师版)

【专题2】垂径定理的性质与运用 【回归概念】 垂径定理:垂径定理是数学几何(圆)中的一个定理,它的通俗的表达是:垂直于弦的直径平分弦且平分这条弦所对的两条弧。数学表达为:如图,直径DC垂直于弦AB,则AE=EB,弧AD等于弧BD(包括优弧与劣弧),半圆CAD=半圆CBD。垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。一条直线,在下列5条中只要具备其中任意两条作为条件,就可以推出其他三条结论。称为知二推三。1.平分弦所对的优弧;2.平分弦所对的劣弧(前两条合起来就是:平分弦所对的两条弧);3.平分弦(不是直径);4.垂直于弦;5.过圆心。 【规律探索】 1.垂径定理及其推论实质是指一条直线满足:⑴过圆心⑵垂直于弦⑶平分弦⑷平分弦所对的优弧⑸平分弦所对的劣弧五个条件中的两个,那么可推出其中三个,注意解题过程中的灵活运用; 2.圆中常作的辅助线是过圆心作弦的垂线; 3.垂径定理常用作计算,在半径r弦a弦心d和弦h中已知两个可求另外两个。方法:垂径定理的巧用主要体现在求点的坐标、解决最值问题、解决实际问题等.解题时,巧用弦的一半、圆的半径和圆心到弦的垂线段三条线段组成的直角三角形,然后借助勾股定理,在这三个量中知道任意两个,可求出第三个. 【典例解析】: ①用垂径定理求点的坐标 【例题1】(2019?山东威海?3分)如图,⊙P与x轴交于点A(﹣5,0),B(1,0),与y轴的正半轴交于点C.若∠ACB=60°,则点C的纵坐标为() A133B.23C.2D.2+2

【思路导引】连接PA ,PB ,PC ,过P 作PD ⊥AB 于D ,PE ⊥BC 于E ,根据圆周角定理得到∠APB =120°,根据等腰三角形的性质得到∠PAB =∠PBA =30°,由垂径定理得到AD =BD =3,解直角三角形得到PD =3,PA =PB =PC =23,根据勾股定理得到CE =2 2 PC PE -=124-=22,于是得到结论. 【解答】解:连接PA ,PB ,PC ,过P 作PD ⊥AB 于D ,PE ⊥BC 于E , ∵∠ACB =60°, ∴∠APB =120°, ∵PA =PB , ∴∠PAB =∠PBA =30°, ∵A (﹣5,0),B (1,0), ∴AB =6, ∴AD =BD =3, ∴PD =3,PA =PB =PC =23, ∵PD ⊥AB ,PE ⊥BC ,∠AOC =90°, ∴四边形PEOD 是矩形, ∴OE =PD =3,PE =OD =2, ∴CE =2 2 PC PE -=124-=22, ∴OC =CE+OE =22+3, ∴点C 的纵坐标为22+3, 故选:B . ②巧用垂径定理解决最值问题(对称思想) 【例题2】如图,AB ,CD 是半径为5的⊙O 的两条弦,AB =8,CD =6,MN 是直径,AB ⊥MN 于点E ,CD ⊥MN 于点F ,P 为直线EF 上的任意一点,求PA +PC 的最小值.

垂径定理知识点及典型例题

垂径定理 一、知识回顾 1、到定点距离等于的点的集合叫做圆,定点叫做,定长叫做;连接圆上任意两点间的线段叫做,经过圆心的弦叫做;圆上任意两点间的部分叫做,它分为、、三种。 2、能够的两个圆叫做等圆;能够互相的弧叫做等弧,他只能出现在中。 3、圆既具有对称性,也具有对称性,它有对称轴。 4、垂直于弦的直径,并且;平分弦(不是直径)的直径,并且。 5、顶点在的角叫做圆心角;在同圆或等圆中,相等的圆心角所对的相等,所对的也相等,也相等;在同圆或等圆中,如果两条弧相等,那么它们所对的、、;在同圆或等圆中,如果两条弦相等,那么它们所对的、、。 6、顶点在,并且相交的角叫做圆周角。在同圆或等圆中,同弧或等弧所对的圆周角,都等于这条弧所对的圆心角的;在同圆或等圆中,如果两个圆周角相等,那么它们所对的弧。 7、半圆(或直径)所对的圆周角是,900的圆周角所对的弦是。 8、如果一个多边形的都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的。圆的内接四边形。 二、典例解析 例1 如图,某市新建的滴水湖是圆形人工湖,为了测量该湖的半径,小明和小亮在湖边选取A、B、C三根木桩,使得A、B之间的距离等于A、C之间的距离,并测得BC=240m,A 到BC的距离为5m。请帮忙求出滴水湖的半径。 D两点,已知C(0,3)、D(0,-7),求圆心E的坐标。

变式2 已知O e 的半径为13cm ,弦AB ∥CD ,AB=10cm ,CD=24cm ,求AB 和CD 之间的距离。 变式3 如图,O e 的直径AB=15cm ,有一条定长为9cm 的动弦CD 在半圆AMB 上滑动(点C 与点A ,点D 与点B 不重合),且CE ⊥CD 交AB 于点E ,DF ⊥CD 于点F 。 (1)求证:AE=BF ;(2)在动弦CD 的滑动过程中,四边形CDFE 的面积是否发生变化?若变化,请说明理由;若不变化,请予以证明并求出这个值。 变式4 如图,某地方有一座圆弧形的拱桥,桥下水面宽度为7.2米,拱顶高出水面2.4米,现有一竹排运送一货箱欲从桥下通过,已知货箱长10米,宽3米,高2米,问货箱能否顺利通过该桥? 例2 如图,BC 是O e 的直径,OA 是O e 的半径,弦BE ∥OA 。求证:弧AC=弧AE 。 H D N M F E C B A

勾股定理知识点总结及练习

第 课时 第十八章 勾股定理 一.基础知识点: 1:勾股定理 直角三角形两直角边a 、b 的平方和等于斜边c 的平方。(即:a 2 +b 2 =c 2) 要点诠释: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边(在A B C ?中,90C ∠=?,则 2 2 c a b = +,22 b c a = -,22 a c b = -) (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2:勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,22 14()2 ab b a c ?+-=,化简可证. 方法二: 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为2 2 1422 S ab c ab c =? +=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += 方法三:1()()2 S a b a b = +?+梯形,2 112S 22 2 ADE ABE S S ab c ??=+=? + 梯形,化简得证 3:勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数); 2 2 21,22,221n n n n n ++++(n 为正整数)2 2 2 2 ,2,m n mn m n -+(,m n >m ,n 为正整数) 规律方法指导 1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。 2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。 c b a H G F E D C B A a b c c b a E D C B A c b a H G F E D C B A b a c b a c c a b c a b

勾股定理知识点总结

第十七章勾股定理知识点总结 一.基础知识点: 1:勾股定理 直角三角形两直角边a、b的平方和等于斜边c的平方。(即:a2+b2=c2) 要点诠释: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边(在ABC ?中,90 ∠=?,则c, C b,a=) (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2:勾股定理的逆定理 如果三角形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三角形是直角三角形。 要点诠释: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意:(1)首先确定最大边,不妨设最长边长为:c; (2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以∠C为直角的直角三角形 (若c2>a2+b2,则△ABC是以∠C为钝角的钝角三角形;若c2

区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理; 联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。 4:互逆命题的概念 如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。 规律方法指导 1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。 2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。 3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。 4. 勾股定理的逆定理:如果三角形的三条边长a ,b ,c 有下列关系:a 2+b 2=c 2,?那么这个三角形是直角三角形;该逆定理给出判定一个三角形是否是直角三角形的判定方法. 5.?应用勾股定理的逆定理判定一个三角形是不是直角三角形的过程主要是进行代数运算,通过学习加深对“数形结合”的理解. 我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理) 5:勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2 ab b a c ?+-=,化简可证. c b a H G F E D C B A

垂径定理练习题及答案

垂径定理 一.选择题 ★1.如图1,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,那么弦AB 的长是( ) A .4 B .6 C .7 D .8 答案:D ★★2.如图,⊙O 的半径为5,弦AB 的长为8,M 是弦AB 上的一个动点,则线段OM 长的最小值为( ) A .2 B .3 C .4 D .5 答案:B ★★3.过⊙O 内一点M 的最长弦为10 cm ,最短弦长为8cm ,则OM 的长为( ) A .9cm B .6cm C .3cm D .cm 41 答案:C ★★4.如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持垂直,在测直径时,把O 点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为( ) A .12个单位 B .10个单位 C .1个单位 D .15个单位 答案:B ★★5.如图,O ⊙的直径AB 垂直弦CD 于P ,且P 是半径OB 的中点,6cm CD ,则直径AB 的长是( ) A . B . C . D .

答案:D ★★6.下列命题中,正确的是() A.平分一条直径的弦必垂直于这条直径 B.平分一条弧的直线垂直于这条弧所对的弦 C.弦的垂线必经过这条弦所在圆的圆心 D.在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心 答案:D ★★★7.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( ) A.5米 B.8米 C.7米 D.53米 答案:B ★★★8.⊙O的半径为5cm,弦AB//CD,且AB=8cm,CD=6cm,则AB与CD之间的距离为( ) A. 1 cm B. 7cm C. 3 cm或4 cm D. 1cm 或7cm 答案:D ★★★9.已知等腰△ABC的三个顶点都在半径为5的⊙O上,如果底边BC的长为8,那么BC边上的高为( ) A.2 B.8 C.2或8 D.3 答案:C 二.填空题 ★1.已知AB是⊙O的弦,AB=8cm,OC⊥AB与C,OC=3cm,则⊙O的半径为 cm 答案:5 cm ★2.在直径为10cm的圆中,弦AB的长为8cm,则它的弦心距为 cm 答案:3 cm ★3.在半径为10的圆中有一条长为16的弦,那么这条弦的弦心距等于 答案:6 ★★4.已知AB是⊙O的弦,AB=8cm,OC⊥AB与C,OC=3cm,则⊙O的半径为 cm 答案:5 cm ★★5.如图,⊙O的直径AB垂直于弦CD,垂足为E,若∠COD=120°,OE=3厘米,则CD =厘米

九年级数学垂径定理

初三数学垂径定理、圆心角、弧、弦、弦心距间的关系知识精讲 一. 本周教学内容: 垂径定理、圆心角、弧、弦、弦心距间的关系 [学习目标] 1. 理解由圆的轴对称性推出垂径定理,概括理解垂径定理及推论为“知二推三”。(1)过圆心,(2)垂直于弦,(3)平分弦,(4)平分劣弧,(5)平分优弧。已知其中两项,可推出其余三项。注意:当知(1)(3)推(2)(4)(5)时,即“平分弦的直径不能推出垂直于弦,平分两弧。”而应强调附加“平分弦(非直径)的直径,垂直于弦且平分弦所对的两弧”。 2. 深入理解垂径定理及推论,为五点共线,即圆心O,垂足M,弦中点M,劣弧中点D,优弧中点C,五点共线。(M点是两点重合的一点,代表两层意义) C O A B M D 3. 应用以上定理主要是解直角三角形△AOM,在Rt△AOM中,AO为圆半径,OM为弦AB的弦心距,AM为弦AB的一半,三者把解直角形的知识,借用过来解决了圆中半径、弦、弦心距等问题。无该Rt△AOM时,注意巧添弦心距,或半径,构建直角三角形。 4. 弓形的高:弧的中点到弦的距离,明确由定义知只要是弓形的高,就具备了前述的(4)(2)或(5)(2)可推(1)(3)(5)或(1)(3)(4),实际可用垂径定理及推论解决弓形高的有关问题。 5. 圆心角、弧、弦、弦心距四者关系定理,理解为:(1)圆心角相等,(2)所对弧相等,(3)所对弦相等,(4)所对弦的弦心距相等。四项“知一推三”,一项相等,其余三项皆相等。源于圆的旋转不变性。即:圆绕其圆心旋转任意角度,所得图形与原图象完全重合。 ()()()() 1234 ??? O B' M' A' B M A 6. 应用关系定理及推论,证角等,线段等,弧等,等等,注意构造圆心角或弦心距作为辅助线。 7. 圆心角的度数与弧的度数等,而不是角等于弧。

圆的垂径定理及推论知识点与练习(最新整理)

圆的垂径定理及其推论知识点与练习 (1)垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两段弧。若直径AB ⊥弦CD 于点E ,则CE=DE , ⌒ AC=⌒ AD ;⌒ BC=⌒ BD (2)推论:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。 若CE=DE ,AB 是直径,则⌒ AC=⌒ AD ;⌒ BC=⌒ BD ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧。若AB ⊥CD ,CE=DE ,则CD 是直径,⌒ AC=⌒ AD ;⌒ BC=⌒ BD ③平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。若⌒ AC=⌒ AD ,AB 是直径,则AB ⊥CD ,CE=DE ,⌒ BC=⌒ BD ④圆的两条平行弦所夹的弧相等。若CD ∥FG ,CD 、FG 为弦,则⌒ FC=⌒ GD 特别提示:①垂径定理及其推论可概括为: 过圆心 垂直于弦 直径 平分弦 知二推三 平分弦所对的优弧 平分弦所对的劣弧 ②垂径定理可改写为:如果一条直线垂直于一条弦,并且过圆心,那么这条直线平分弦并且平分弦所对的两条弧.其中有四个条件:直线垂于于弦,直线平分弦,直线过圆心,直线平分弦所对的弧.它的三个推论可看作“如果四个条件中有两个成立,那么另外两个也成立”. (3)垂径定理及推论的应用: 它是证明圆内线段相等、角相等、垂直关系及利用勾股定理计算有关线段的长度提供了依据,也为圆中的计算、证明和作图提供了依据、思路和方法。 ①垂径定理中的垂径可以是直径、半径或过圆心的直线、线段,其本质是“过圆心”; ②在圆的有关计算中常用圆心到弦垂线段、弦的一半、半径构造出垂径定理的条件和直角三角形,从而应用勾股定理解决问题; 例:如图,在⊙O 中,弦AB 所对的劣弧为圆的, 31圆的半径为2cm ,求AB 的长。解:如图,连接OB ,过点O 作OD ⊥AB 交AB 于点C ,由题 意得,∵⌒ AB= ×360o=120o3 1∴∠AOB=120o,∴∠AOC=60o,在Rt △AOC 中,∵∠AOC=60o,OA=2,∴OC = OA=1,∴AB=2AC=2=22 122OC AO 3故AB 的长为23练习 一、选择题 1、如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,下列结论不一定成立的是( ) A 、CM=DM B 、∠ACB=∠ADB C 、AD=2B D D 、∠BCD=∠BDC G A A

勾股定理全章知识点归纳总结

全国中考信息资源门户网站 https://www.360docs.net/doc/d27526423.html, 勾股定理全章知识点归纳总结 一.基础知识点: 1:勾股定理 直角三角形两直角边a 、b 的平方和等于斜边c 的平方。(即:a 2+b 2=c 2) 要点诠释: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边(在A B C ?中,90C ∠=? ,则22 c a b = +, 2 2 b c a = -,22 a c b = -) (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2:勾股定理的逆定理 如果三角形的三边长:a 、b 、c ,则有关系a 2+b 2=c 2,那么这个三角形是直角三角形。 要点诠释: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意: (1)首先确定最大边,不妨设最长边长为:c ; (2)验证c 2与a 2+b 2是否具有相等关系,若c 2=a 2+b 2,则△ABC 是以∠C 为直角的直角三角形 (若c 2>a 2+b 2,则△ABC 是以∠C 为钝角的钝角三角形;若c 2

全国中考信息资源门户网站 https://www.360docs.net/doc/d27526423.html, 3:勾股定理与勾股定理逆定理的区别与联系 区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理; 联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。 4:互逆命题的概念 如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。 规律方法指导 1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。 2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。 3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。 4. 勾股定理的逆定理:如果三角形的三条边长a ,b ,c 有下列关系:a 2+b 2=c 2,?那么这个三角形是直角三角形;该逆定理给出判定一个三角形是否是直角三角形的判定方法. 5.?应用勾股定理的逆定理判定一个三角形是不是直角三角形的过程主要是进行代数运算,通过学习加深对“数形结合”的理解. 我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理) 5:勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ? +=正方形正方形ABCD ,22 14()2 ab b a c ? +-=,化简可证. c b a H G F E D C B A

初中数学垂径定理中考题精选

初中数学垂径定理练习 一.选择题(共13小题) 1.(2015?大庆模拟)如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为() A.cm B.9 cm C.cm D.cm 2.(2015?东河区一模)如图,⊙O过点B、C,圆心O在等腰直角三角形的ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为() A.6B.13 C.D.2 3.(2015?上城区一模)一张圆心角为45°的扇形纸板和一张圆形纸板分别剪成两个大小相同的长方形,若长方形长和宽的比值为2:1,则扇形纸板和圆形纸板的半径之比为() A.2:1 B.:1 C.2:1 D.:1 4.(2014?乌鲁木齐)如图,半径为3的⊙O内有一点A,OA=,点P在⊙O上,当∠OPA 最大时,PA的长等于() A.B.C.3D.2 5.(2014?安溪县校级二模)如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是()

A.点P B.点Q C.点R D.点M 6.(2014?简阳市模拟)如图,⊙O的半径为5,若OP=3,则经过点P的弦长可能是() A.3B.6C.9D.12 7.(2014?宝安区二模)如图,将半径为6的⊙O沿AB折叠,与AB垂直的半径OC交于点D且CD=2OD,则折痕AB的长为() A.B.C.6D. 8.(2014?河北区三模)如图,以(3,0)为圆心作⊙A,⊙A与y轴交于点B(0,2),与x轴交于C、D,P为⊙A上不同于C、D的任意一点,连接PC、PD,过A点分别作AE⊥PC 于E,AF⊥PD于F.设点P的横坐标为x,AE2+AF2=y.当P点在⊙A上顺时针从点C运到点D的过程中,下列图象中能表示y与x的函数关系的图象是()

人教版九年级数学讲义垂径定理(含解析)(2020年最新)

第11讲垂径定理 知识定位 讲解用时:3分钟 A、适用范围:人教版初三,基础一般 B、知识点概述:本讲义主要用于人教版初三新课,本节课我们主要学习垂径定 理及其相关推论,着重理解垂径定理及其相关推论在实际问题以及几何图形中的 应用,掌握关于垂径定理部分题型的常见辅助线的做法,能够结合勾股定理进行熟练计算。本节课的难点是垂径定理及其推论在几何图形中的应用,涉及的知识点较多,考查的内容较广,具有一定的综合性。希望同学们认真学习,为后面圆 的其他内容理解奠定良好基础。 知识梳理 讲解用时:15分钟 垂径定理及其推论 (1)垂径定理 如果圆的一条直径垂直于一条弦,那么这条直径平分这条弦,并且平 分这条弦所对的弧。 (2)相关推论 ①如果圆的直径平分弦(这条弦不是直径),那么这条直径垂直于这 条弦,并且平分这条弦所对的弧; ①如果圆的直径平分弧,那么这条直径就垂直平分这条弧所对的弦; ①如果一条直线是弦的垂直平分线,那么这条直线经过圆心,并且平 分这条弦所对的弧;

①如果一条直线平分弦和弦所对的一条弧,那么这条直线经过圆心, 并且垂直于这条弦; ①如果一条直线垂直于弦,并且平分弦所对的一条弧,那么这条直线 经过圆心,并且平分这条弦。 总结:在圆中,对于某一条直线“经过圆心”、“垂直于弦”、“平分弦”、“平分弦所对的弧”这四组关系中,如果有两组关系成立,那么其余两组关 系也成立。

课堂精讲精练 【例题1】 下列判断中,正确的是()。 A.平分一条弦所对的弧的直线必垂直于这条弦 B.不与直径垂直的弦不能被该直径平分 C.互相平分的两条弦必定是圆的两条直径 D.同圆中,相等的弦所对的弧也相等 【答案】C 【解析】本题考查了垂径定理及圆心角、弧、弦、弦心距之间关系的定理 同时平分一条弦所对优弧、劣弧的直线必垂直于这条弦,故A错误; 任意两条直径互相平分,故B错误; 同圆中,相等的弦所对的优弧、劣弧分别相等,故D错误。 讲解用时:3分钟 解题思路:根据垂径定理及圆心角、弧、弦、弦心距之间关系的定理逐项排除。 教学建议:基本概念题,逐项排除。 难度:3 适应场景:当堂例题例题来源:无年份:2018 【练习1】 下列说法正确的个数是()。 ①垂直于弦的直线平分弦;①平分弦的直线垂直于弦;①圆的对称轴是直径;①圆的对称轴有无数条;①在同圆或等圆中,如果两条弦相等,那么这两条弦所对 的优弧和劣弧分别相等。 A.1个B.2个C.3个D.4个 【答案】B 【解析】本题主要考查了垂径定理以及圆的基本性质, ①垂直于弦的直径平分弦;故错误; ①平分弦(不是直径)的直径垂直于弦;故错误;

八年级下册勾股定理知识点归纳

八年级下册勾股定理知识点和典型例习题 一、基础知识点: 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形通过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD , ,化简可证. 方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形 的面积与小正方形面积的和为221 422 S ab c ab c =?+=+ 大正方形面积为 2 22() 2S a b a a b b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+?+梯形,211 2S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ?中,90C ∠ =?,则c =,b ,a =②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实 际问题 5.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;否则,就不是直角三角形。 ②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25,8,15,17等 ③用含字母的代数式表示n 组勾股数: c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

2013年中考数学试题分类汇编:圆的垂径定理

2013中考全国100份试卷分类汇编 圆的垂径定理 1、(2013年潍坊市)如图,⊙O 的直径AB=12,CD 是⊙O 的弦,CD ⊥AB ,垂足为P ,且BP :AP=1:5,则CD 的长为( ). A.24 B.28 C.52 D.54 答案:D . 考点:垂径定理与勾股定理. 点评:连接圆的半径,构造直角三角形,再利用勾股定理与垂径定理解决. 2、(2013年黄石)如右图,在Rt ABC 中,90ACB ∠=,3AC =,4BC =,以点C 为 圆心,CA 为半径的圆与AB 交于点D ,则AD 的长为 A. 95 B. 245 C. 185 D. 52 答案:C 解析:由勾股定理得AB =5,则sinA =4 5,作CE ⊥AD 于E ,则AE =DE ,在Rt △AEC 中,sinA =CE AC ,即453 CE =,所以, CE =125,AE =95,所以,AD =185 3、(2013河南省)如图,CD 是 O 的直径,弦AB CD ⊥于点G ,直线EF 与O 相切与 点D ,则下列结论中不一定正确的是【】 (A )AG BG = (B )AB ∥EF (C )AD ∥BC (D )ABC ADC ∠=∠ 【解析】由垂径定理可知:(A )一定正确。由题可知:EF CD ⊥,又因为AB CD ⊥,所以AB ∥EF ,即(B )一定正确。因为 ABC ADC ∠∠和所对的弧是劣弧AC ,根据同弧所对的圆周角相等 可知(D )一定正确。 【答案】C 4、(2013?泸州)已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB=8cm ,则AC 的长为( ) C A B

九年级数学上垂径定理练习题

B F E O D C A 垂径定理综合训练习题 一、垂径定理在证明上的应用 1、如图,AB 、CD 都是⊙O 的弦,且AB ∥CD ,求证: 弧AC = 弧BD 。 2.如图,CD 为⊙O 的弦,在CD 上截取CE=DF ,连结OE 、OF ,并且它们的延长⊙O 于点A 、 B 。 (1)试判断△OEF 的形状,并说明理由;(2)求证:? AC =? BD 。 3、如图,在⊙O 中,AB 为⊙O 的弦,C 、D 是直线AB 上两点,且AC =BD 求证:△OCD 为等腰三角形。 4、如图,F 是以O 为圆心,BC 为直径的半圆上任意一点,A 是 的中点, AD ⊥BC 于D ,求证:AD=2 1 BF. 二、垂径定理在计算上的应用(一)求半径,弦长,弦心距 1、 在直径为52cm 的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深 度为16cm ,那么油面宽度AB 是________cm. A B C D O A B C D O O A E F

变式 2.在直径为52cm 的圆柱形油槽内装入一些油后,,如果油面宽度是48cm ,那么油的最大深度为________cm 2:如图为一圆弧形拱桥,半径OA = 10m ,拱高为4m ,求拱桥跨度AB 的长。 3、如图,已知在⊙O 中,弦CD AB =,且CD AB ⊥,垂足为H ,AB OE ⊥于E ,CD OF ⊥于F . (1)求证:四边形OEHF 是正方形. (2)若3=CH ,9=DH ,求圆心O 到弦AB 和CD 的距离. 4、如图所示,在Rt △ABC 中,∠C =900,AC =3,BC =4,以点C 为圆心,CA 为半径的圆与AB 、BC 分别交于点D 、E ,求AB 和AD 的长。 (二)、度数问题 1、已知:在⊙O 中,弦cm 12=AB ,O 点到AB 的距离等于AB 的一半,求:AOB ∠的度数和圆的半径。. A C B D O C A D E

勾股定理知识点+对应类型

第二章勾股定理、平方根专题 第一节勾股定理 一、勾股定理: 1、勾股定理定义:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么 a2+b2=c2. 即直角三角形两直角边的平方和等于斜边的平方 A B C a b c 弦 股 勾 勾:直角三角形较短的直角边 股:直角三角形较长的直角边 弦:斜边 勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a2+b2=c2,那么这个 三角形是直角三角形。 2. 勾股数:满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么 ka,kb,kc同样也是勾股数组。) *附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,13 3. 判断直角三角形:如果三角形的三边长a、b、c满足a2+b2=c2 ,那么这个三角形是直角 三角形。(经典直角三角形:勾三、股四、弦五) 其他方法:(1)有一个角为90°的三角形是直角三角形。 (2)有两个角互余的三角形是直角三角形。 用它判断三角形是否为直角三角形的一般步骤是: (1)确定最大边(不妨设为c);

(2)若c 2=a 2+b 2,则△ABC 是以∠C 为直角的三角形; 若a 2+b 2<c 2,则此三角形为钝角三角形(其中c 为最大边); 若a 2+b 2>c 2,则此三角形为锐角三角形(其中c 为最大边) 4.注意:(1)直角三角形斜边上的中线等于斜边的一半 (2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的 一半。 (3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角 等于30°。 5. 勾股定理的作用: (1)已知直角三角形的两边求第三边。 (2)已知直角三角形的一边,求另两边的关系。 (3)用于证明线段平方关系的问题。 (4)利用勾股定理,作出长为n 的线段 二、平方根:(11——19的平方) 1、平方根定义:如果一个数的平方等于a ,那么这个数就叫做a 的平方根。(也称为二次方 根),也就是说如果x 2 =a ,那么x 就叫做a 的平方根。 2、平方根的性质: ①一个正数有两个平方根,它们互为相反数; 一个正数a 的正的平方根,记作“a ”,又叫做算术平方根,它负的平方根,记作“—a ”,这两个平方根合起来记作“±a ”。( a 叫被开方数, “”是二次根号,这里“”, 亦可写成“2 ”) ②0只有一个平方根,就是0本身。算术平方根是0。 ③负数没有平方根。 3、 开平方:求一个数的平方根的运算叫做开平方,开平方和平方运算互为逆运算。 4、(1) 平方根是它本身的数是零。 (2)算术平方根是它本身的数是0和1。 (3) () ()()().0,0,0222 <-=≥=≥=a a a a a a a a a (4)一个数的两个平方根之和为0 三、立方根:(1——9的立方) 1、立方根的定义:如果一个数的立方等于a ,那么这个数就叫做a 的立方根。(也称为二次 方根),也就是说如果x 3 =a ,那么x 就叫做a 的立方根。记作“3a ”。 2、立方根的性质: ①任何数都有立方根,并且只有一个立方根,正数的立方根是正数,负数的立方根是负数,0的立方根是0. ②互为相反数的数的立方根也互为相反数,即3a -=3a - ③a a a ==3333)(

相关文档
最新文档