03_02(第13讲)第3章离散傅里叶变换频谱分析

离散傅里叶变换的分析与研究

XXXX大学 2012届学士学位论文 离散傅里叶变换的分析与研究 学院、专业物理与电子信息学院 电子信息工程 研究方向数字信号处理 学生姓名XX 学号 XXXXXXXXXXX 指导教师姓名XXX 指导教师职称讲师 2012年4月26日

离散傅里叶变换的分析与研究 XX 淮北师范大学物理与电子信息学院 235000 摘要离散傅里叶变换是连续傅里叶变换在时域和频域上都离散的形式,是对连续时间信号频谱分析的逼近。离散傅里叶变换不仅在理论上有重要意义,而且在各种信号的处理中亦起着核心作用。 本文首先介绍了离散傅里叶变换的定义及性质,然后介绍了离散傅里叶变换的应用,主要包括对线性卷积的计算和对连续信号的谱分析。在理解理论的基础上,在matlab环境下实现了线性卷积和对连续信号频谱分析的仿真。仿真结果表明:当循环卷积长度大于或等于线性卷积长度时,可利用循环卷积计算线性卷积;利用DFT对连续信号进行频谱分析必然是近似的,其近似的结果与信号带宽,采样频率和截取长度都有关。 关键词离散傅里叶变换;线性卷积;谱分析

The Analysis and Research of Discrete Fourier Transform XX School of Physics and Electronic Information, Huai Bei Normal University, Anhui Huaibei, 235000 Abstract The discrete Fourier transform is the form that the continuous Fourier transform are discrete both in the time domain and frequency domain,it is a approach to the analysis of continuous time signal spectrum . The discrete Fourier transform not only has important significance in theory, but also plays a central role in all kinds of signal processing . This paper introduced the definition and properties of the discrete Fourier transform first of all.Then introduced the application of the discrete Fourier transform, which mainly including the calculation of linear convolution and analysis of continuous signal the spectral. On the basement of understanding theory, we realized the linear convolution and analysis of continuous signal spectrum on the Matlab environment . The simulation results show that when the length of the cyclic convolution is equal to or greater than linear convolution,we can use cyclic convolution to calculate linear convolution;It is approximately use continuous DFT spectrum to analyze the frequency domain of continuous time signal, the approximation of the results is related to the signal bandwidth, sampling frequency and intercept length. Keywords The discrete Fourier transform; Linear convolution; Spectrum analysis

快速傅里叶变更fft的Matlab实现 实验报告

一、实验目的 1在理论学习的基础上,通过本实验加深对快速傅立叶变换的理解; 2熟悉并掌握按时间抽取FFT算法的程序; 3了解应用FFT进行信号频谱分析过程中可能出现的问题,例如混淆、泄漏、栅栏效应等,以便在实际中正确应用FFT。 二、实验内容 1仔细分析教材第六章‘时间抽取法FFT ’的算法结构,编制出相应的用FFT 进行信号分析的C语言(或MATLAB 语言)程序; 用MATLAB语言编写的FFT源程序如下: %% 输入数据f、N、T及是否补零 clc; clear; f=input('输入信号频率f:'); N=input('输入采样点数N:'); T=input('输入采样间隔T:'); C=input('信号是否补零(补零输入1,不补零输入0):'); %补零则输入1,不补则输入0 if(C==0) t=0:T:(N-1)*T; x=sin(2*pi*f*t); b=0; e lse b=input('输入补零的个数:'); while(log2(N+b)~=fix(log2(N+b))) b=input('输入错误,请重新输入补零的个数:'); end t=0:T:(N+b-1)*T; x=sin(2*pi*f*t).*(t<=(N-1)*T); end %% fft算法的实现 A=bitrevorder(x); % 将序列按二进制倒序 N=N+b; M=log2(N); % M为蝶形算法的层数 W=exp(-j*2*pi/N); for L=1:1:M %第L层蝶形算法 B=2^L/2; % B为每层蝶形算法进行加减运算的两个数的间隔 K=N/(2^L); % K为每层蝶形算法中独立模块的个数 for k=0:1:K-1 for J=0:1:B-1

傅里叶分析报告教程(完整版)

傅里叶分析之掐死教程(完整版)更新于2014.06.06 Heinrich · 6 个月前 作者:韩昊知乎:Heinrich 微博:@花生油工人知乎专栏:与时间无关的故事 谨以此文献给大连海事大学的吴楠老师,柳晓鸣老师,王新年老师以及张晶泊老师。 转载的同学请保留上面这句话,谢谢。如果还能保留文章来源就更感激不尽了。 我保证这篇文章和你以前看过的所有文章都不同,这是12年还在果壳的时候写的,但是当时没有来得及写完就出国了……于是拖了两年,嗯,我是拖延症患者…… 这篇文章的核心思想就是: 要让读者在不看任何数学公式的情况下理解傅里叶分析。 傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。但不幸的是,傅里叶分析的公式看起来太复杂了,所以很多大一新生

上来就懵圈并从此对它深恶痛绝。老实说,这么有意思的东西居然成了大学里的杀手课程,不得不归咎于编教材的人实在是太严肃了。(您把教材写得好玩一点会死吗?会死吗?)所以我一直想写一个有意思的文章来解释傅里叶分析,有可能的话高中生都能看懂的那种。所以,不管读到这里的您从事何种工作,我保证您都能看懂,并且一定将体会到通过傅里叶分析看到世界另一个样子时的快感。至于对于已经有一定基础的朋友,也希望不要看到会的地方就急忙往后翻,仔细读一定会有新的发现。 ——————————————以上是定场诗—————————————— 下面进入正题: 抱歉,还是要啰嗦一句:其实学习本来就不是易事,我写这篇文章的初衷也是希望大家学习起来更加轻松,充满乐趣。但是千万!千万不要把这篇文章收藏起来,或是存下地址,心里想着:以后有时间再看。这样的例子太多了,也许几年后你都没有再打开这个页面。无论如何,耐下心,读下去。这篇文章要比读课本要轻松、开心得多…… p.s.本文无论是cos还是sin,都统一用“正弦波”(Sine Wave)一词来代表简谐波。 一、什么是频域 从我们出生,我们看到的世界都以时间贯穿,股票的走势、人的身高、汽车的轨迹都会随着时间发生改变。这种以时间作为参照来观察动态世界的方法我们称其为时域分析。而我们也想当然的认为,世间万物都在随着时间不停的改变,并且永远不会静止下来。但如果我告诉你,用另一种方法来观察世界的话,你会发现世界是永恒不变的,你会不会觉得我疯了?我没有疯,这个静止的世界就叫做频域。 先举一个公式上并非很恰当,但意义上再贴切不过的例子: 在你的理解中,一段音乐是什么呢?

傅里叶变换在信号与系统系统中的应用

河北联合大学 本科毕业设计(论文) 题目傅里叶变换在信号与系统中的应用 院系理学院 专业班级07数学一班 学生姓名刘帅 学生学号200710050113 指导教师佟玉霞 2011年5月24日

题目傅里叶变换在信号与系统中的应用 专业数学与应用数学姓名刘帅学号200710050113 主要内容、基本要求、主要参考资料等 主要内容 傅里叶变换是一种重要的变换,且在与通信相关的信号与系统中有着广泛的应用。本文主要研究傅里叶变换的基本原理;其次,掌握其在滤波,调制、解调,抽样等方面中的应用。分析了信号在通信系统中的处理方法,通过傅里叶变换推导出信号调制解调的原理,由此引出对频分复用通信系统的组成原理的介绍。 基本要求 通过傅里叶变换实现一个高通滤波,低通滤波,带通滤波。用傅里叶变换推导出信号调制解调的原理。通过抽样实现连续信号离散化,简化计算。另外利用调制的原理推导出通信系统中的时分复用和频分复用。 参考资料 [1]《信号与系统理论、方法和应用》徐守时著中国科技大学出版社 2006年3月修订二版 [2]《信号与系统》第二版上、下册郑君里、应启珩、杨为理著高等教育出版社 [3]《通信系统》第四版 Simon Haykin 著宋铁成、徐平平、徐智勇等译沈 连丰审校电子工业出版社 [4]《信号与系统—连续与离散》第四版 Rodger E.Ziemer 等著肖志涛等译 腾建辅审校电子工业出版社 [5]《现代通信原理》陶亚雄主编电子工业出版社 [6]《信号与系统》乐正友著清华大学出版社 [7]《信号与线性系统》阎鸿森、王新风、田惠生编西安交通大学出版社 [8]《信号与线性系统》张卫钢主编郑晶、徐琨、徐建民副主编西安电 子科技大学出版社 [9] https://www.360docs.net/doc/d310184760.html,/view/191871.htm//百度百科傅里叶变换 [10]《通信原理》第六版樊昌信曹丽娜编著国防工业出版社 [11]A.V.Oppenheim,A.S.Willsky with S.H.Nawab.Siganals and systems(Second edition).Prentice-Hall,1997.中译:刘树棠。信号与系统。西安交通工业大学出版社 完成期限 指导教师 专业负责人

周期信号的傅里叶级数和频谱分析

实验报告 课程名称信号与线性系统分析 实验名称周期信号的傅里叶级数和频谱分析实验类型验证(验证、综合、设计、创新) 3日实验四、周期信号的傅里叶级数和频谱分析1实验目的 1)学会利用MATLAB分析傅里叶级数展开,并理解傅里叶级数的物理含义; 2)学会利用MATLAB分析周期信号的频谱特性。 2实验原理及实例分析 周期信号可以再函数的区间里展成在完备正交信号空间中的无穷级数。如果完备的正交函数集是三角函数集或指数函数集,那么,周期信号所展开的无穷级数就分别成为“三角型傅里叶级数”或“指数型傅里叶级数”,统称为傅里叶级数。

2.1周期信号的傅里叶级数 (基本原理请参阅教材第四章的4.1节和4.2节。) 例1:周期方波信号)(t f 如图1所示,试求出该信号的傅里叶级数,利用MATLAB 编程实现其各次谐波的叠加,并验证Gibbs 现象。 图1 周期方波信号)(t f 的波形图 解:从理论分析可知,周期方波信号)(t f 的傅里叶级数展开式为 )9sin 9 17sin 715sin 513sin 31(sin 4)(00000 +++++=t t t t t t f ωωωωωπ 其中,ππω220== T 。则可分别求出1、3、5、9、19、39、79、159项傅里叶级数求和的结果,其MATLAB 程序如下,产生的图形如图2所示。 close all;clear all; clc t = -2:0.0001:2; omega = 2 * pi; y = square(2 * pi * t,50); n_max = [1 3 5 9 19 39 79 159]; N = length(n_max); for k = 1:N fk = zeros(1,length(t)); for n = 1:2:n_max(k) bn = 4 / (pi * n); fk = fk + bn * sin(n * omega * t); end figure;plot(t,y,t,fk,'Linewidth',2); xlabel('t(sec)');ylabel('部分和的波形'); f(t) t(sec)

matlab-离散信号傅里叶变换

1.请用MATLAB编写程序,实现任意两个有限长度序列的卷积和。要求用图 形显示两个序列及卷积结果。 解:y(n)=∑x(i)h(n-i) 假设x(n)={1,2,3,4,5}; h(n)={3,6,7,2,1,6}; y(n)=x(n)*h(n) 验证:y[n]=[1,12,28,46,65,72,58,32,29,30] 【程序】 N=5 M=6 L=N+M-1 x=[1,2,3,4,5] h=[3,6,7,2,1,6] y=conv(x,h) nx=0:N-1 nh=0:M-1 ny=0:L-1 subplot(131);stem(nx,x,'*b');xlabel('n');ylabel('x(n)');grid on subplot(132);stem(nh,h,'*b');xlabel('n');ylabel('h(h)');grid on subplot(133);stem(ny,y,'*r');xlabel('n');ylabel('y(h)');grid on 【运行结果】

2.已知两个序列x[n]=cos(n*pi/2), y[n]=e j*pi*n/4x[n],请编写程序绘制 X(e jw)和Y(e jw)和幅度和相角,说明它们的频移关系。 –提示:用abs函数求幅度,用angle求相角。 【程序】 n=0:15; x=cos(n*pi/2); y=exp(j*pi*n/4).*x; X=fft(x); Y=fft(y); magX=abs(X); angX=angle(X); magY=abs(Y); angY=angle(Y); subplot(221);stem(n,magX,'*r');xlabel('频率');ylabel('幅度');grid on; subplot(222);stem(n,angX,'*b');xlabel('频率');ylabel('相位');grid on; subplot(223);stem(n,magY,'*r');xlabel('频率');ylabel('幅度');grid on; subplot(224);stem(n,angY,'*b');xlabel('频率');ylabel('相位');grid on;

MATLAB实验傅里叶分析

MATLAB实验傅里叶分析

实验七 傅里叶变换 一、实验目的 傅里叶变换是通信系统、图像处理、数字信号处理以及物理学等领域内的一种重要的数学分析工具。通过傅里叶变换技术可以将时域上的波形分 布变换为频域上的分布,从而获得信号的频谱特性。MATLAB 提供了专门的函数fft 、ifft 、fft2(即2维快速傅里叶变换)、ifft2以及fftshift 用于实现对信号的傅里叶变换。本次实验的目的就是练习使用fft 、ifft 以及fftshift 函数,对一些简单的信号处理问题能够获取其频谱特性(包括幅频和相频特性)。 二、实验预备知识 1. 离散傅里叶变换(DFT)以及快速傅里叶变换(FFT)简介 设x (t )是给定的时域上的一个波形,则其傅里叶变换为 2()() (1)j ft X f x t e dt π∞--∞=? 显然X ( f )代表频域上的一种分布(波形),一般来说X ( f )是复数。而傅里叶逆变换定义为: 2()() (2)j ft x t X f e df π∞-∞ =?

因此傅里叶变换将时域上的波形变换为频域上的波形,反之,傅里叶逆变换则将频域上的波形变换为时域上的波形。 由于傅里叶变换的广泛应用,人们自然希望能够使用计算机实现傅里叶变换,这就需要对傅里叶变换(即(1)式)做离散化处理,使 之符合电脑计算的特征。另外,当 把傅里叶变换应用于实验数据的分 析和处理时,由于处理的对象具有 离散性,因此也需要对傅里叶变换 进行离散化处理。而要想将傅里叶 变换离散化,首先要对时域上的波 形x (t )进行离散化处理。采用一个 时域上的采样脉冲序列: δ (t -nT ), n = 0, 1, 2, …, N -1; 可以实现上述目的,如图所示。其中N 为采样点数,T 为采样周期;f s = 1/T 是采样频率。注意采样时,采样频率f s 必须大于两倍的信号频率(实际是截止频率),才能避免混迭效应。 接下来对离散后的时域波形()()()(x t x t t n T x n T δ= -=的傅里叶变换()X f 进行离散处理。与上述做法类 似,采用频域上的δ脉冲序列: x (t δ x (t )δ t t t

离散傅里叶变换和快速傅里叶变换

实验报告 课程名称: 信号分析与处理 指导老师: 成绩:__________________ 实验名称:离散傅里叶变换和快速傅里叶变换 实验类型: 基础实验 同组学生姓名: 第二次实验 离散傅里叶变换和快速傅里叶变换 一、实验目的 1.1掌握离散傅里叶变换(DFT )的原理和实现; 1.2掌握快速傅里叶变换(FFT )的原理和实现,掌握用FFT 对连续信号和离散信号进行谱分析的方法。 1.3 会用Matlab 软件进行以上练习。 二、实验原理 2.1关于DFT 的相关知识 序列x (n )的离散事件傅里叶变换(DTFT )表示为 n j n j e n x e X Ω-∞ -∞ =Ω ∑= )()(, 如果x (n )为因果有限长序列,n =0,1,...,N-1,则x (n )的DTFT 表示为 n j N n j e n x e X Ω--=Ω ∑=1 )()(, x (n )的离散傅里叶变换(DFT )表达式为 )1,...,1,0()()(21 -==--=∑N k e n x k X nk N j N n π, 序列的N 点DFT 是序列DTFT 在频率区间[0,2π]上的N 点灯间隔采样,采样间隔为2π/N 。通过DFT ,可以完成由一组有限个信号采样值x (n )直接计算得到一组有限个频谱采样值X (k )。X (k )的幅度谱为 )()()(22k X k X k X I R += ,其中下标R 和I 分别表示取实部、虚部的运算。X (k )的相位谱为 ) () (arctan )(k X k X k R I =?。 离散傅里叶反变换(IDFT )定义为 )1,...,1,0()(1)(21 -==∑-=N n e k X N n x nk N j N n π 。 2.2关于FFT 的相关知识 快速傅里叶变换(FFT )是DFT 的快速算法,并不是一个新的映射。FFT 利用了n N j e π2-函数的周期性 和对称性以及一些特殊值来减少DFT 的运算量,可使DFT 的运算量下降几个数量级,从而使数字信号处 装 订 线

信号与系统matlab实验傅里叶分析及应用报告答案

实验二傅里叶分析及应用 姓名学号班级 一、实验目的 (一)掌握使用Matlab进行周期信号傅里叶级数展开和频谱分析 1、学会使用Matlab分析傅里叶级数展开,深入理解傅里叶级数的物理含义 2、学会使用Matlab分析周期信号的频谱特性 (二)掌握使用Matlab求解信号的傅里叶变换并分析傅里叶变换的性质 1、学会运用Matlab求连续时间信号的傅里叶变换 2、学会运用Matlab求连续时间信号的频谱图 3、学会运用Matlab分析连续时间信号的傅里叶变换的性质 (三)掌握使用Matlab完成信号抽样并验证抽样定理 1、学会运用MATLAB完成信号抽样以及对抽样信号的频谱进行分析 2、学会运用MATLAB改变抽样时间间隔,观察抽样后信号的频谱变化 3、学会运用MATLAB对抽样后的信号进行重建 二、实验条件 需要一台PC机和一定的matlab编程能力 三、实验内容 2、分别利用Matlab符号运算求解法和数值计算法求下图所示信号的FT,并画出其频谱图(包括幅度谱和相位谱)[注:图中时间单位为:毫秒(ms)]。

符号运算法: Ft= sym('t*(Heaviside(t+2)-Heaviside(t+1))+Heaviside(t+1)-Heaviside(t-1)+(-t)*(Heavi side(t-1)-Heaviside(t-2))'); Fw = fourier(Ft); ezplot(abs(Fw)),grid on; phase = atan(imag(Fw)/real(Fw)); ezplot(phase);grid on; title('|F|'); title('phase'); 3、试用Matlab 命令求ω ωωj 54 -j 310)F(j ++= 的傅里叶反变换,并绘出其时域信号图。

离散信号的傅里叶变换(MATLAB实验)

离散信号的变换(MATLAB 实验) 一、实验目的 掌握用Z 变换判断离散系统的稳定与否的方法,掌握离散傅立叶变换及其基本性质和特点,了解快速傅立叶变换。 二、实验内容 1、已经系统函数为 5147.13418.217.098.2250 5)(2342-++--+=z z z z z z Z H (1) 画出零极点分布图,判断系统是否稳定; (2)检查系统是否稳定; (3) 如果系统稳定,求出系统对于u(n)的稳态输出和稳定时间b=[0,0,1,5,-50];a=[2,-2.98,0.17,2.3418,-1.5147]; subplot(2,1,1);zplane(b,a);title('零极点分布图'); z=roots(a); magz=abs(z) magz = 0.9000 0.9220 0.9220 0.9900 n=[0:1000]; x=stepseq(0,0,1000); s=filter(b,a,x); subplot(2,1,2);stem(n,s);title('稳态输出'); (1)因为极点都在单位园内,所以系统是稳定的。 (2)因为根的幅值(magz )都小于1,所以这个系统是稳定的。 (3)稳定时间为570。 2、综合运用上述命令,完成下列任务。 (1) 已知)(n x 是一个6点序列: ???≤≤=其它,050,1)(n n x

计算该序列的离散时间傅立叶变换,并绘出它们的幅度和相位。 要求:离散时间傅立叶变换在[-2π,2π]之间的两个周期内取401个等分频率上进行数值求值。 n=0:5;x=ones(1,6); k=-200:200;w=(pi/100)*k; X=x*(exp(-j*pi/100)).^(n'*k); magX=abs(X);angX=angle(X); subplot(2,1,1);plot(w/pi,magX);grid;title('幅度'); subplot(2,1,2);plot(w/pi,angX);grid;title('相位'); (2) 已知下列序列: a. ,1000),52.0cos()48.0cos()(≤≤+=n n n n x ππ; b .)4sin()(πn n x =是一个N =32的有限序列; 试绘制)(n x 及它的离散傅立叶变换 )(k X 的图像。 a . n=[0:1:100];x=cos(0.48*pi*n)+cos(0.52*pi*n); subplot(2,1,1);plot(n,x);title('x(n)的图像'); X=dft(x,101); magX=abs(X); subplot(2,1,2);plot(n,magX);title('丨X(k)丨的图像');

离散傅里叶变换应用举例

x=[1,1,1,1];w=[0:1:500]*2*pi/500; [H]=freqz(x,1,w); magH=abs(H);phaH=angle(H); subplot(2,1,1);plot(w/pi,magH);grid;xlabel('');ylabel('|X|'); title('DTFT的幅度') subplot(2,1,2);plot(w/pi,phaH/pi*180);grid; xlabel('以pi为单位的频率');label('度'); title('DTFT的相角')

N=4;w1=2*pi/N;k=0:N-1; X=fft(x,N); magX=abs(X);phaX=angle(X)*180/pi; subplot(2,1,1);plot(w*N/(2*pi),magH,'--');axis([-0.1,4.1,0,5]);hold on; stem(k,magX);ylabel('|X(k)|');title('DFT的幅度:N=4');text(4.3,-1,'k'); hold off; subplot(2,1,2);plot(w*N/(2*pi),phaH*180/pi,'--');axis([-0.1,4.1,-200,200]); hold on; stem(k,phaX);ylabel('度');title('DFT的相角:N=4');text(4.3,-200,'k')

n=(0:1:9);x=cos(0.48*pi*n)+cos(0.52*pi*n); w=[0:1:500]*2*pi/500; X=x*exp(-1i*n'*w); magx=abs(X); x1=fft(x);magx1=abs(x1(1:1:10)); k1=0:1:9;w1=2*pi/10*k1; subplot(3,1,1);stem(n,x);title('signalx(n),0<=n<=9'); axis([0,10,-2.5,2.5]);line([0,10],[0,0]); subplot(3,1,2);plot(w/pi,magx);title('DTFT幅度');xlabel('w');axis([0,1,0,10]); subplot(3,1,3);stem(w1/pi,magx1);title('DFT幅度'); xlabel('频率(单位:pi)');axis([0,1,0,10]) 实验总结:补零运算提供了一个较密的频谱和较好的图示形式,但因为在信号中只是附加了零,而没有增加任何新的信息,因此不能提供高分辨率的频谱。

MATLAB实验二傅里叶分析及应用

实验二傅里叶分析及应用 、实验目的 (一)掌握使用Matlab 进行周期信号傅里叶级数展开和频谱分析 1、学会使用Matlab 分析傅里叶级数展开,深入理解傅里叶级数的物理含义 2、学会使用Matlab 分析周期信号的频谱特性 二)掌握使用Matlab 求解信号的傅里叶变换并分析傅里叶变换的性质 1、学会运用Matlab 求连续时间信号的傅里叶变换 2、学会运用Matlab 求连续时间信号的频谱图 3、学会运用Matlab 分析连续时间信号的傅里叶变换的性质 三)掌握使用Matlab 完成信号抽样并验证抽样定理 1、学会运用MATLAB 完成信号抽样以及对抽样信号的频谱进行分析 2、学会运用MATLAB 改变抽样时间间隔,观察抽样后信号的频谱变化 3、学会运用MATLAB 对抽样后的信号进行重建 、实验条件 Win7系统,MATLAB R2015a 三、实验内容 1、分别利用Matlab 符号运算求解法和数值计算法求下图所示信号的FT,并画出其频谱图(包括幅度谱和相位谱)[注:图中时间单位为:毫秒(ms)]。

Code: ft = sym( ' (t+2)*(heaviside(t+2)-heavisi de(t+1))+(heaviside(t+1)-heav iside(t- 1))+(2-t)*(heaviside( t-1)-heaviside(t- 2))' ); fw = simplify(fourier(ft)); subplot(2, 1, 1); ezplot(abs(fw)); grid on; title( 'amp spectrum' ); phi = atan(imag(fw) / real(fw)); subplot(2, 1, 2); ezplot(phi); grid on ; title( 'phase spectrum' ); 符号运算法 Code: dt = 0.01; t = -2: dt: 2; ft (t+2).*(uCT(t+2)- uCT(t+1))+(u CT(t+1)-uCT(t- 1))+(2-t).*(uCT (t-1)- uCT(t-2)); N = 2000; k = -N: N; w = pi * k / (N*dt); fw = dt*ft*exp(-i*t'*w); fw = abs(fw); plot(w, fw), grid on; axis([-2*pi 2*pi -1 3.5]); 数值运算法

离散时间信号的傅里叶变换和离散傅里叶变换

离散时间信号的傅里叶变换和离散傅里叶变换 摘要 本文主要介绍了离散时间信号的离散时间傅里叶变换及离散傅里叶变换,说明其在频域的具体表示和分析,并通过定义的方法和矩阵形式的表示来给出其具体的计算方法。同时还介绍了与离散时间傅里叶变换(DTFT )和离散傅里叶变换(DFT )相关的线性卷积与圆周卷积,并讲述它们之间的联系,从而给出了用圆周卷积计算线性卷积的方法,即用离散傅里叶变换实现线性卷积。 1. 离散时间傅里叶变换 1.1离散时间傅里叶变换及其逆变换 离散时间傅里叶变换为离散时间序列x[n]的傅里叶变换,是以复指数序列{n j e ω-}的序列来表示的(可对应于三角函数序列),相当于傅里叶级数的展开,为离散时间信号和线性时不变系统提供了一种频域表示,其中ω是实频率变量。时间序列x[n]的离散时间傅里叶变换)(ωj e X 定义如下: ∑∞ -∞ =-= n n j j e n x e X ωω ][)( (1.1) 通常)(ωj e X 是实变量ω的复数函数同时也是周期为π2的周期函数,并且)(ωj e X 的幅度函数和实部是ω的偶函数,而其相位函数和虚部是ω的奇函数。这是由于: ) ()()(tan ) ()()() (sin )()()(cos )()(2 22 ωωωωωωωωωωθωθωθj re j im j im j re j j j im j j re e X e X e X e X e X e X e X e X e X = +=== (1.2) 由于式(1.1)中的傅里叶系数x[n]可以用下面给出的傅里叶积分从)(ωj e X 中算出: ωπ ωπ πω d e e X n x n j j )(21 ][?- = (1.3)

傅里叶变换及应用

傅里叶变换在MATLZB里的应用 摘要:在现代数学中,傅里叶变换是一种非常重要的变换,且在数字信号处理中有着广泛的应用。本文首先介绍了傅里叶变换的基本概念、性质及发展情况;其次,详细介绍了分离变数法及积分变换法在解数学物理方程中的应用。傅立叶变换将原来难以处理的时域信号转换成了易于分析的频域信号,再利用傅立叶反变换将这些频域信号转换成时域信号。应用MATLAB实现信号的谱分析和对信号消噪。 关键词:傅里叶变换;MA TLAB软件;信号消噪 Abstract: In modern mathematics,Fourier transform is a transform is very important ,And has been widely used in digital signal processing.This paper first introduces the basic concepts, properties and development situation of Fourier transform ;Secondly, introduces in detail the method of separation of variables and integral transform method in solving equations in Mathematical Physics.Fourier transformation makes the original time domain signal whose analysis is difficult easy, by transforming it into frequency domain signal that can be transformed into time domain signal by inverse transformation of Fourier. Using Mat lab realizes signal spectral analysis and signal denoising. Key word: Fourier transformation, software of mat lab ,signal denoising 1、傅里叶变换的提出及发展 在自然科学和工程技术中为了把较复杂的运算转化为较简单的运算,人们常常采用所谓变换的方法来达到目的"例如在初等数学中,数量的乘积和商可以通过对数变换化为较简单的加法和减法运算。在工程数学里积分变换能够将分析运算(如微分,积分)转化为代数运算,正是积分变换这一特性,使得它在微分方程和其它方程的求解中成为重要方法之一。 1804年,法国科学家J-.B.-J.傅里叶由于当时工业上处理金属的需要,开始从事热流动的研究"他在题为<<热的解析理论>>一文中,发展了热流动方程,并且指出如何求解"在求解过程中,他提出了任意周期函数都可以用三角级数来表示的想法。他的这种

【免费下载】matlab实现傅里叶变换

一、傅立叶变化的原理; (1)原理 正交级数的展开是其理论基础!将一个在时域收敛的函数展开成一系列不同频率谐波的叠加,从而达到解决周期函数问题的目的。在此基础上进行推广,从而可以对一个非周期函数进行时频变换。 从分析的角度看,他是用简单的函数去逼近(或代替)复杂函数,从几何的角度看,它是以一族正交函数为基向量,将函数空间进行正交分解,相应的系数即为坐标。从变幻的角度的看,他建立了周期函数与序列之间的对应关系;而从物理意义上看,他将信号分解为一些列的简谐波的复合,从而建立了频谱理论。 当然Fourier积分建立在傅氏积分基础上,一个函数除了要满足狄氏条件外, 一般来说还要在积分域上绝对可积,才有古典意义下的傅氏变换。引入衰减因子e^(-st),从而有了Laplace变换。(好像走远了)。 (2)计算方法 连续傅里叶变换将平方可积的函数f(t)表示成复指数函数的积分或级数形式。 这是将频率域的函数F(ω)表示为时间域的函数f(t)的积分形式。 为 连续傅里叶变换的逆变换 (inverse Fourier transform) 即将时间域的函数f(t)表示为频率域的函数F(ω)的积分。 一般可称函数f(t)为原函数,而称函数F(ω)为傅里叶变换的像函数,原函数和像函数构成一个傅里叶变换对(transform pair)。 二、傅立叶变换的应用; DFT在诸多多领域中有着重要应用,下面仅是颉取的几个例子。需要指出 的是,所有DFT的实际应用都依赖于计算离散傅里叶变换及其逆变换的快速算

法,即快速傅里叶变换(快速傅里叶变换(即FFT )是计算离散傅里叶变换及其逆变换的快速算法。)。(1)、频谱分析DFT 是连续傅里叶变换的近似。因此可以对连续信号x(t)均匀采样并截断以得到有限长的离散序列,对这一序列作离散傅里叶变换,可以分析连续信号x(t)频谱的性质。前面还提到DFT 应用于频谱分析需要注意的两个问题:即采样可能导致信号混叠和截断信号引起的频谱泄漏。可以通过选择适当的采样频率(见奈奎斯特频率)消减混叠。选择适当的序列长度并加窗可以抑制频谱泄漏。(2)、数据压缩由于人类感官的分辨能力存在极限,因此很多有损压缩算法利用这一点将语音、音频、图像、视频等信号的高频部分除去。高频信号对应于信号的细节,滤除高频信号可以在人类感官可以接受的范围内获得很高的压缩比。这一去除高频分量的处理就是通过离散傅里叶变换完成的。将时域或空域的信号转换到频域,仅储存或传输较低频率上的系数,在解压缩端采用逆变换即可重建信号。(3)、OFDM OFDM (正交频分复用)在宽带无线通信中有重要的应用。这种技术将带宽为N 个等间隔的子载波,可以证明这些子载波相互正交。尤其重要的是,OFDM 调制可以由IDFT 实现,而解调可以由DFT 实现。OFDM 还利用DFT 的移位性质,在每个帧头部加上循环前缀(Cyclic Prefix ),使得只要信道延时小于循环前缀的长度,就能消除信道延时对传输的影响。三、傅里叶变换的本质; 傅里叶变换的公式为dt e t f F t j ?+∞∞--=ωω)()(可以把傅里叶变换也成另外一种形式: t j e t f F ωπ ω),(21)(=可以看出,傅里叶变换的本质是内积,三角函数是完备的正交函数集,不同频率的三 角函数的之间的内积为0,只有频率相等的三角函数做内积时,才不为0。)(2,21)(2121Ω-Ω==?Ω-ΩΩΩπδdt e e e t j t j t j

离散信号变换的matlab实现

实验四 离散信号的频域分析 一、 实验目的 1. 掌握序列的傅里叶变换、离散傅里叶级数、离散傅里叶变换、快速傅里叶变换的Matlab 实现; 2. 学习用FFT 对连续信号和离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便在实际中正确应用FFT 。 二、 实验内容及步骤 1. 计算序列的DTFT 和DFT ,观察栅栏效应 设)()(4n R n x =,要求用MATLAB 实现: (1)计算)(n x 的傅里叶变换)(ωj e X ,并绘出其幅度谱; (2)分别计算)(n x 的4点DFT 和8点DFT ,绘出其幅度谱。并说明它们和)(ωj e X 的关系。 (提示:DFT 变换可用MA TLAB 提供的函数fft 实现,也可以自己用C 语言或matlab 编写) 2.计算序列的FFT ,观察频谱泄漏 已知周期为16的信号)1612cos()1610cos()(n n n x π π +=。 (1) 截取一个周期长度M=16点,计算其16点FFT ,并绘出其幅度谱; (2) 截取序列长度M=10点,计算其16点FFT ,绘出其幅度谱,并与(1)的结果进行比 较,观察频谱泄漏现象,说明产生频谱泄漏的原因。 三、 实验报告要求 1. 结合实验中所得给定典型序列幅频特性曲线,与理论结果比较,并分析说明误差产生的原因以及用FFT 作谱分析时有关参数的选择方法。 2. 总结实验所得主要结论。 1. 计算序列的DTFT 和DFT ,观察栅栏效应 设)()(4n R n x =,要求用MATLAB 实现: (1)计算)(n x 的傅里叶变换)(ωj e X ,并绘出其幅度谱; (2)分别计算)(n x 的4点DFT 和8点DFT ,绘出其幅度谱。并说明它们和)(ωj e X 的关系。 (1)代码: n=0:3; M=10;

傅里叶变换的应用.

傅立叶变换在图像处理中有非常非常的作用。因为不仅傅立叶分析涉及图像处理的很多方面,傅立叶的改进算法, 比如离散余弦变换,gabor与小波在图像处理中也有重要的分量。 印象中,傅立叶变换在图像处理以下几个话题都有重要作用: 1.图像增强与图像去噪 绝大部分噪音都是图像的高频分量,通过低通滤波器来滤除高频——噪声; 边缘也是图像的高频分量,可以通过添加高频分量来增强原始图像的边缘; 2.图像分割之边缘检测 提取图像高频分量 3.图像特征提取: 形状特征:傅里叶描述子 纹理特征:直接通过傅里叶系数来计算纹理特征 其他特征:将提取的特征值进行傅里叶变换来使特征具有平移、伸缩、旋转不变性 4.图像压缩 可以直接通过傅里叶系数来压缩数据;常用的离散余弦变换是傅立叶变换的实变换; 傅立叶变换 傅里叶变换是将时域信号分解为不同频率的正弦信号或余弦函数叠加之和。连续情况下要求原始信号在一个周期内满足绝对可积条件。离散情况下,傅里叶变换一定存在。冈萨雷斯版<图像处理>里面的解释非常形象:一个恰当的比喻是将傅里叶变换比作一个玻璃棱镜。棱镜是可以将光分解为不同颜色的物理仪器,每个成分的颜色由波长(或频率)来决定。傅里叶变换可以看作是数学上的棱镜,将函数基于频率分解为不同的成分。当我们考虑光时,讨论它的光谱或频率谱。同样,傅立叶变换使我们能通过频率成分来分析一个函数。 傅立叶变换有很多优良的性质。比如线性,对称性(可以用在计算信号的傅里叶变换里面); 时移性:函数在时域中的时移,对应于其在频率域中附加产生的相移,而幅度频谱则保持不变; 频移性:函数在时域中乘以e^jwt,可以使整个频谱搬移w。这个也叫调制定理,通讯里面信号的频分复用需要用到这个特性(将不同的信号调制到不同的频段上同时传输); 卷积定理:时域卷积等于频域乘积;时域乘积等于频域卷积(附加一个系数)。(图像处理里面这个是个重点) 信号在频率域的表现 在频域中,频率越大说明原始信号变化速度越快;频率越小说明原始信号越平缓。当频率为0时,表示直流信号,没有变化。因此,频率的大小反应了信号的变化

实验三 周期信号的傅里叶级数分析及MATLAB实现

实验三周期信号的傅里叶级数分析及MATLAB实现 一、实验目的: 1.利用MATLAB实现周期信号的分解与合成,并图示仿真结果; 2.用MATLAB实现周期信号的频谱,画图观察和分析周期信号的频谱; 3.通过MATLAB对周期信号频谱的仿真,进一步加深对周期信号频谱理论知识的理解。 二、实验内容 9.1(a):程序: display('Please input the value of m(傅里叶级数展开项数)'); m=input('m='); t=-3*pi:0.01:3*pi; n=round(length(t)/4); f=cos(t).*(heaviside(t+2.5*pi)-heaviside(t+1.5*pi)+heaviside(t+0.5*pi)-heaviside(t-0.5 *pi)+heaviside(t-1.5*pi)-heaviside(t-2.5*pi)); y=zeros(m+1,max(size(t))); y(m+1,:)=f'; figure(1); plot(t/pi,y(m+1,:)); grid; axis([-3 3 -1 1.5]); title('半波余弦'); xlabel('单位:pi','Fontsize',8); x=zeros(size(t)); kk='1'; syms tx n T=2*pi; fx=sym('cos(tx)'); Nn=30; An=zeros(m+1,1); Bn=zeros(m+1,1); a0=2*int(fx,tx,-T/4,T/4)/T an=2*int(fx*cos(2*pi*(n+eps/2)*tx/T),tx,-T/4,T/4)/T bn=2*int(fx*sin(2*pi*(n+eps/2)*tx/T),tx,-T/4,T/4)/T An(1)=double(vpa(a0,Nn)); An(2)=0.5; for k=2:m An(k+1)=double(vpa(subs(an,n,k),Nn)); Bn(k+1)=double(vpa(subs(bn,n,k),Nn));

相关文档
最新文档