关于非双倍测度的极大函数的一点注记

关于非双倍测度的极大函数的一点注记
关于非双倍测度的极大函数的一点注记

(完整word版)特殊角三角函数值表

特殊角三角函数值表: 函数名 在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)有 正弦函数sinθ=y/r余弦函数cosθ=x/r正切函数tanθ=y/x余切函数cotθ=x/y 正弦(sin):角α的对边比斜边余弦(cos):角α的邻边比斜边 正切(tan):角α的对边比邻边余切(cot):角α的邻边比对边 特殊函数人倒数关系: tanα ?cotα=1sinα ?cscα=1cosα ?secα=1特殊函数人商数关系:tanα=sinα/cosαcotα=cosα/sinα 特殊函数人平方关系:sinα2+cosα2=11+tanα2=secα21+cotα=cscα2 以下关系,函数名不变,符号看象限 sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 以下关系,奇变偶不变,符号看象限 sin(90°-α)=cosα cos(90°-α)=sinα tan(90°-α)=cotα cot(90°-α)=tanα sin(90°+α)=cosα cos(90°+α)=sinα tan(90°+α)=-cotαcot(90°+α)=-tanα 特殊三角函数人积化和差的关系: sinα ?cosβ=(1/2)*[sin(α+β)+sin(α-β)] cosα ?sinβ=(1/2)*[sin(α+β)-sin(α-β)] cosα ?cosβ=(1/2)*[cos(α+β)+cos(α-β)] sinα ?sinβ=(1/2)*[cos(α+β)-cos(α-β)] 特殊三角函数 - 和差化积公式 sinα+sinβ=2*[sin(α+β)/2]*[cos(α-β)/2] sinα-sinβ=2*[cos(α+β)/2]*[sin(α-β)/2]

基于未确知测度理论的采空区危险性评价研究

基于未确知测度理论的采空区危险性评价研究 作者:宫凤强;李夕兵;董陇军;刘希灵 作者机构:中南大学,资源与安全工程学院,湖南,长沙,410083;中南大学,深部金属矿产开发与灾害控制湖南省重点实验室,湖南,长沙,410083;中南大学,资源与安全工程学院,湖南,长沙,410083;中南大学,深部金属矿产开发与灾害控制湖南省重点实验室,湖南,长沙,410083;中南大学,资源与安全工程学院,湖南,长 沙,410083;中南大学,深部金属矿产开发与灾害控制湖南省重点实验室,湖南,长沙,410083;中南大学,资源与安全工程学院,湖南,长沙,410083;中南大学,深部金属矿产开发与灾害控制湖南省重点实验室,湖南,长沙,410083 来源:岩石力学与工程学报 ISSN:1000-6915 年:2008 卷:027 期:002 页码:323-330 页数:8 中图分类:TD327 正文语种:chi 关键词:采矿工程;采空区;未确知测度;置信度识别准则;危险性评价 摘要:基于未确知测度理论,建立矿山采空区的危险性等级评价和排序模型.从地质条件和工程状况出发,考虑影响采空区稳定性的14项因素,根据实测数据建立各影响因素的未确知测度函数.该模型针对采空区危险性评价中的诸多不确定性影响因素,根据实际情况,分别对其进行定性、定量分析,并利用熵计算各影响因素的指标权重,依照置信度识别准则进行等级判定,最后得出采空区危险性的评价结果.评价方法能解决采空区危险性评价中诸多因素不确定性问题,还可以按危险

程度进行排序.将该方法应用于广东省大宝山矿15个采空区的危险性评价.研究结果表明,该方法科学合理,意义明确,可以在实际工程中进行推广应用.

基于未确知测度理论的采空区危险性评价研究

第27卷 第2期 岩石力学与工程学报 V ol.27 No.2 2008年2月 Chinese Journal of Rock Mechanics and Engineering Feb .,2008 收稿日期:2007–06–27;修回日期:2007–09–14 基金项目:国家自然科学基金重大项目(50490274);高校博士点基金项目(20060533011);中南大学研究生学位论文创新选题资助项目(1343–77238) 作者简介:宫凤强(1979–),男,2003年毕业于中南大学土木工程专业,现为博士研究生,主要从事矿山、岩土工程灾害预测、稳定性及可靠性分析 基于未确知测度理论的采空区危险性评价研究 宫凤强1, 2,李夕兵1, 2,董陇军1, 2,刘希灵1 ,2 (1. 中南大学 资源与安全工程学院,湖南 长沙 410083;2. 中南大学 深部金属矿产开发与灾害控制湖南省重点实验室,湖南 长沙 410083) 摘要:基于未确知测度理论,建立矿山采空区的危险性等级评价和排序模型。从地质条件和工程状况出发,考虑影响采空区稳定性的14项因素,根据实测数据建立各影响因素的未确知测度函数。该模型针对采空区危险性评价中的诸多不确定性影响因素,根据实际情况,分别对其进行定性、定量分析,并利用熵计算各影响因素的指标权重,依照置信度识别准则进行等级判定,最后得出采空区危险性的评价结果。评价方法能解决采空区危险性评价中诸多因素不确定性问题,还可以按危险程度进行排序。将该方法应用于广东省大宝山矿15个采空区的危险性评价。研究结果表明,该方法科学合理,意义明确,可以在实际工程中进行推广应用。 关键词:采矿工程;采空区;未确知测度;置信度识别准则;危险性评价 中图分类号:TD 327 文献标识码:A 文章编号:1000–6915(2008)02–323–08 UNDERGROUND GOAF RISK EVALUATION BASED ON UNCERTAINTY MEASUREMENT THEORY GONG Fengqiang 1,2,LI Xibing 1,2,DONG Longjun 1,2,LIU Xiling 1, 2 (1. School of Resources and Safety Engineering ,Central South University ,Changsha ,Hunan 410083,China ; 2. Hunan Key Laboratory of Resources Exploration and Hazard Control for Deep Metal Mines ,Central South University , Changsha ,Hunan 410083,China ) Abstract :Based on the uncertainty measurement theory ,a risk-evaluating and order-arranging model of mining underground goaf was established. Considering the geologic condition and engineering status of underground goaf ,14 factors that influence the stability of underground goaf were taken into account ;and uncertainty measurement function was obtained based on the in-situ data. The uncertainty problems in risk evaluation were solved by qualitative analysis and quantitative analysis respectively. Entropy theory was used to calculate the index weight of factors ;and credible degree recognition criteria were established according to the theory uncertainty measurement. The results of risk evaluation can be obtained with the credible degree criteria. This method can also arrange the order of risk degree. Furthermore ,this model was employed to evaluate 15 risk underground goafs in Dabaoshan mine. Compared with the results of fuzzy synthetic evaluation method ,the results show that uncertainty measurement method is reasonable and can be applied to the actual engineering. Key words :mining engineering ;underground goaf ;uncertainty measurement ;credible degree recognition criterion ;risk evaluation 1 引 言 人类对矿产资源的获取大多是通过地下开采方 式获得的,在开采过程中应用房柱法、全面法及留矿法等空场类方法采矿,通常会形成大量的地下采空区[1 ,2] 。特别是自20世纪80年代以来,我国矿

基于未确知测度理论的高校校园网安全风险分析

基于未确知测度理论的高校校园网安全风险分析摘要:定期对校园网的安全性进行风险评估是保证高校校园网安全、稳定运行的有效手段,本文分析了影响高校校园网安全的风险因素,建立了高校校园网安全风险评价指标体系,并结合实例给出了应用未确知综合测度理论进行高校校园网安全风险评估的方法,证明了应用该理论进行高校校园网风险分析的有效性。 abstract: security risk assessment on the campus network is an effective mean to ensure the safety and stable operation of college campus network. the paper analyzes the risk factors that affect the security of college campus network, and establishes the index system of the security risk of college campus network. provided the method to evaluate the college campus network security risk by using the uncertainty measurement theory, and proved the effectiveness of the application of the theory to assess the risk of the college campus network. 关键词:高校校园网;安全风险;评价指标;未确知测度理论key words: college campus network;security risk;evaluation index;uncertainty measurement theory 中图分类号:c935 文献标识码:a 文章编号:1006-4311(2013)03-0166-02 0 引言

函数的极值和最值(讲解)

函数的极值和最值 【考纲要求】 1.掌握函数极值的定义。 2.了解函数的极值点的必要条件和充分条件. 3.会用导数求不超过三次的多项式函数的极大值和极小值 4.会求给定闭区间上函数的最值。 【知识网络】 【考点梳理】 要点一、函数的极值 函数的极值的定义 一般地,设函数)(x f 在点0x x =及其附近有定义, (1)若对于0x 附近的所有点,都有)()(0x f x f <,则)(0x f 是函数)(x f 的一个极大值,记作 )(0x f y =极大值; (2)若对0x 附近的所有点,都有)()(0x f x f >,则)(0x f 是函数)(x f 的一个极小值,记作 )(0x f y =极小值. 极大值与极小值统称极值. 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值. 要点诠释: 求函数极值的的基本步骤: ①确定函数的定义域; ②求导数)(x f '; ③求方程0)(='x f 的根; ④检查'()f x 在方程根左右的值的符号,如果左正右负,则f(x)在这个根处取得极大值;如果左负右正,则f(x)在这个根处取得极小值.(最好通过列表法) 要点二、函数的最值 1.函数的最大值与最小值定理 若函数()y f x =在闭区间],[b a 上连续,则)(x f 在],[b a 上必有最大值和最小值;在开区间),(b a 内连 函数的极值和最值 函数在闭区间上的最大值和最小值 函数的极值 函数极值的定义 函数极值点条件 求函数极值

续的函数)(x f 不一定有最大值与最小值.如1 ()(0)f x x x = >. 要点诠释: ①函数的最值点必在函数的极值点或者区间的端点处取得。 ②函数的极值可以有多个,但最值只有一个。 2.通过导数求函数最值的的基本步骤: 若函数()y f x =在闭区间],[b a 有定义,在开区间(,)a b 内有导数,则求函数()y f x =在],[b a 上的最大值和最小值的步骤如下: (1)求函数)(x f 在),(b a 内的导数)(x f '; (2)求方程0)(='x f 在),(b a 内的根; (3)求在),(b a 内使0)(='x f 的所有点的函数值和)(x f 在闭区间端点处的函数值)(a f ,)(b f ; (4)比较上面所求的值,其中最大者为函数()y f x =在闭区间],[b a 上的最大值,最小者为函数 ()y f x =在闭区间],[b a 上的最小值. 【典型例题】 类型一:利用导数解决函数的极值等问题 例1.已知函数.,33)(23R m x x mx x f ∈-+=若函数1)(-=x x f 在处取得极值,试求m 的值,并求 )(x f 在点))1(,1(f M 处的切线方程; 【解析】2'()363,.f x mx x m R =+-∈ 因为1)(-=x x f 在处取得极值 所以'(1)3630f m -=--= 所以3m =。 又(1)3,'(1)12f f == 所以)(x f 在点))1(,1(f M 处的切线方程312(1)y x -=- 即1290x y --=. 举一反三: 【变式1】设a 为实数,函数()22,x f x e x a x =-+∈R . (1)求()f x 的单调区间与极值;

特殊角的三角函数值及计算

特殊角及计算 归纳结果 0° 30° 45° 60° 90° si nA cosA ta nA c otA 当锐角越来越大时, 的正弦值越来___________,的余弦值越来___________。 当锐角α越来越大时, α的正切值越来___________,α的余切值越来___________。 1:求下列各式的值. (1)cos 2 60°+sin 2 60°. (2)cos 45sin 45? ? -t an45°. 2:(1)如图(1),在Rt △ABC 中,∠C=90,6,B C3,求∠A 的度数. (2)如图(2),已知圆锥的高AO 等于圆锥的底面半径OB 3,求a. 一、应用新知: 1。(1)(si n60°-tan30°)cos45°= 。(2)若0sin 23=-α,则锐角α= . 2。在△AB C中,∠A=75°,2c osB=2,则ta nC= 。

3。求下列各式的值. (1)o 45cos 230sin 2-? (2)ta n30°-si n 60°·sin30° (3)c os45°+3t an30°+c os30°+2sin 60°—2tan4 5° (4)?+?+? +?- ?45sin 30cos 30tan 1 30sin 145cos 222 4。求适合下列条件的锐角. (1)2 1 cos =α??(2)33tan =α (3)2 2 2sin = α? (4)33)16cos(6=- α (5) (6) 6。如图,在△ABC 中,已知BC =1+ ,∠B=60°,∠C=45°,求AB 的长。 7.在△ABC 中,∠A 、∠B 为锐角,且有 ,则△ABC 的 形状是________________. |tanB-3|+(2sinA-3)2=002sin 2=-α01tan 3=-α 3

特殊角的三角函数值及计算

特殊角及计算 归纳结果 0° 30° 45° 60° 90° sinA cosA tanA cotA 当锐角越来越大时, 的正弦值越来___________,的余弦值越来___________. 当锐角α越来越大时, α的正切值越来___________,α的余切值越来___________. 1:求下列各式的值. (1)cos 2 60°+sin 2 60°. (2)cos 45sin 45? ? -tan45°. 2:(1)如图(1),在Rt △ABC 中,∠C=90,6,3A 的度数. (2)如图(2),已知圆锥的高AO 等于圆锥的底面半径OB 3a . 一、应用新知: 1.(1)(sin60°-tan30°)cos45°= .(2)若0sin 23=-α,则锐角α= . 2.在△ABC 中,∠A=75°,2cosB=2,则tanC= . 3.求下列各式的值.

(1)o 45cos 230sin 2-? (2)tan30°-sin60°·sin30° (3)cos45°+3tan30°+cos30°+2sin60°-2tan45° (4)?+?+? +?- ?45sin 30cos 30tan 1 30sin 145cos 222 4.求适合下列条件的锐角. (1)2 1cos =α (2)3 3tan = α (3)2 22sin = α (4)33)16cos(6=- α (5) (6) 6.如图,在△ABC 中,已知BC=1+ ,∠B=60°,∠C=45°,求AB 的长. 7.在△ABC 中,∠A 、∠B 为锐角,且有 ,则△ABC 的 形状是________________. 8. 在△ABC 中,∠C=90°,sinA= ,则cosB=_______,tanB=_______ 9.已知α为锐角,且sin α=5 3 ,则sin(90°-α)=_ 二、选择题. |tanB-3|+(2sinA-3)2=002sin 2=-α0 1tan 3=-α3

人教版九年级下册数学学案:28.1特殊角的三角函数值及计算

特殊角的三角函数值及计算 【学习目标】: 1、会求出30°、45°、60°角的三角函数值。并能简单运算。 2、在学习中渗透普遍存在的相互联系、相互转化观点,逐步培养学生观察、分析、比较、概括的思维能力。 3、感受推理的合理性,养成科学的学习态度。 学习重点:推导并熟记特殊角30°、45°、60°角的正弦、余弦、正切值。 学习难点:会用特殊角的三角函数值进行计算。 预习 一.学法指导: 1、旧知链接:如图在 Rt △ABC 中,∠C=90°。(1)a 、b 、c 三者之间的关系是 ,∠A+∠B= 。 (2)sinA= c a ,cosA= tanA= ; sinB= , cosB= , tanB= 。 (3)若A=30°,则c a = __ 。 (4)sinA 和cosB 有什么关系?____________________; 2、新知预习 : ① 独立阅读课本90-91页本节内容, 对重点内容做好圈点勾画。 ②结合课本的基础知识和例题,完成相关练习。 二:预习检测: (1)sin60°--tan45°=__________ (2)cos60°+tan60°=__________ 探究 探究一:推导特殊角的三角函数 值 [问题] 1、观察一副三角尺,其中有几个锐角?它们分别等于多少度? 请 用逻辑推理的办法证明在直角三角形中,如果一个锐角 等于30°,那么它所对的直角边等于斜边的一半。 [问题] 2、sin30°等于多少呢?你是怎样得到的?与同伴交流. [问题] 3、cos30°等于多少?tan30°呢? cot30°呢? [问题] 4、我们求出了30°角的三个三角函数值,还有两个特殊角——45°、60°,它们的三角函数值分别是多少?你是如何得到的?请完成下表: ★学法指导:: (1)图形记忆(2)列表记忆(3)规律记忆 观察上表,我们是否发现,对于同名三角函数,当 角度发生变化时,函数值有什么变化? 例1:求下列各式的值. (1)sin30°+cos45° (2)sin 260°+cos 260°-tan45° (3) -tan45° 拓展1: 探究二:利用特殊角的三角函数值求角。 例2:(1)如图(1),在Rt △ABC 中,∠C=90,AB=6,BC=3, 求∠A 的度数. (2)如图(2),已知圆锥的高AO 等于圆锥的底面半径OB 的3倍,求α. 拓展2:已知锐角A ,且sinA 是方程 的根,试求锐角A 的度数。 ★ 学法指导:由三角函数值求角,主要是根据特殊角的 三角函数值求角,需要记忆30°、45°、60°角的四个三角函数值。 补充练习: 1、若cos α=sin300,α为锐角,则tan α=_________。 2、已知∠A 是锐角,若2cos (A+100)=3,则∠A=______。 3、点M (tan600,-cos600)关于x 轴的对称点N’的坐标是( ) A 、(-3,21) B 、(3,21) C 、(3,-21) D 、(-3,-2 1 ) 4、计算: (1)1 30sin 560cos 30 0- (2)0 045cos 360sin 2+ (3)??-?30cos 30sin 260sin cos 45sin 45? ? 30° 45° 60° sin α cos α tan α cot α ┌ ┌ 300 600 450 450 4 24)60sin 45(2c 2)1(0 0+-os 100)41(45cos 2118)2(-+---)(π03)31(242=++-x x

函数的极大值与极小值

专项训练:导数的极大值与极小值 一、单选题 1.已知函数f(x)=x ln x-a e x(e为自然对数的底数)有两个极值点,则实数a的取值范围是( ) A.B.(0,e) C.D.(-∞,e) 2.函数y=xe x的最小值是( ) A.-1B.-e C.-D.不存在 3.当函数y=x·2x取极小值时,x=( ) A.B.- C.-ln 2D.ln 2 4.已知函数,则() A.有个零点B.在上为减函数 C.的图象关于点对称D.有个极值点 5.设a∈R,若函数y=e ax+3x,x∈R有大于零的极值点,则( ) A.a>-3B.a<-3 C.a>-D.a<- 6.当函数y=x·2x取极小值时,x=( ) A.B.- C.-ln 2D.ln 2 7.已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是( ) A.?x0∈R,f(x0)=0 B.函数y=f(x)的图像是中心对称图形 C.若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减 D.若x0是f(x)的极值点,则f′(x0)=0 8.若函数,当时,函数的单调减区间和极小值分别为()

A.,B.,C.,D., 9.若函数在上有最小值,则实数的取值范围是()A.B.C.D. 10.已知在上递减的函数,且对任意的,总有,则实数的取值范围为() A.B.C.D. 11.若函数,当时,函数的单调减区间和极小值分别为() A.B.C.D. 12.若函数在上恰有两个极值点,则的取值范围为() A.B.C.D. 13.已知是常数,函数的导函数的图像如图所示,则函数的图像可能是() A.B.C. D. 14.已知,函数,若在上是单调减函数,则的取值范围是( ) A.B.C.D. 15.设,则函数 A.仅有一个极小值B.仅有一个极大值 C.有无数个极值D.没有极值 16.若函数在内有且仅有一个极值点,则实数的取值范围是()

特殊角的三角函数值及计算

特殊角及计算 0° 30° 45° 60° 90° sinA cosA tanA cotA 当锐角α越来越大时, α的正弦值越来___________,α的余弦值越来___________. 当锐角α越来越大时, α的正切值越来___________,α的余切值越来___________. 1:求下列各式的值. (1)cos 260°+sin 260°. (2)cos 45sin 45? ? -tan45°. 2:(1)如图(1),在Rt △ABC 中,∠C=90,6,3,求∠A 的度数. (2)如图(2),已知圆锥的高AO 等于圆锥的底面半径OB 3倍,求a . 一、应用新知: 1.(1)(sin60°-tan30°)cos45°= .(2)若0sin 23=-α,则锐角α= . 2.在△ABC 中,∠A=75°,2cosB=2,则tanC= .

3.求下列各式的值. (1)o 45cos 230sin 2-? (2)tan30°-sin60°·sin30° (3)cos45°+3tan30°+cos30°+2sin60°-2tan45° (4)?+?+? +?-?45sin 30cos 30tan 1 30sin 145cos 222 4.求适合下列条件的锐角. (1)2 1cos =α (2)3 3tan = α (3)2 22sin = α (4)33)16cos(6=-οα (5) (6) 6.如图,在△ABC 中,已知BC=1+ ,∠B=60°,∠C=45°,求AB 的长. 7.在△ABC 中,∠A 、∠B 为锐角,且有 ,则△ABC 的 |tanB-3|+(2sinA-3)2 =002sin 2=-α0 1tan 3=-α3

特殊角的三角函数值——典型例题

作业: 归纳结果 0° 30° 45° 60° 90° sinA cosA tanA cotA 当锐角α越来越大时, α的正弦值越来___________,α的余弦值越来___________. 当锐角α越来越大时, α的正切值越来___________,α的余切值越来___________. 1:求下列各式的值. (1)cos 260°+sin 260°. (2)cos 45sin 45? ? -tan45°. 2:(1)如图(1),在Rt △ABC 中,∠C=90,AB=6,BC=3,求∠A 的度数. (2)如图(2),已知圆锥的高AO 等于圆锥的底面半径OB 的3倍,求a . 一、应用新知: 1.(1)(sin60°-tan30°)cos45°= .(2)若0sin 23=-α,则锐角α= . 2.在△ABC 中,∠A=75°,2cosB=2,则tanC= . 3.求下列各式的值. (1)o 45cos 230sin 2-? (2)tan30°-sin60°·sin30°

(3)cos45°+3tan30°+cos30°+2sin60°-2tan45° (4)?+?+? +?- ?45sin 30cos 30tan 1 30sin 145cos 222 4.求适合下列条件的锐角α . (1)2 1cos =α (2)3 3tan = α (3)222sin = α (4)33)16cos(6=- α (5) (6) 6.如图,在△ABC 中,已知BC=1+ ,∠B=60°,∠C=45°,求AB 的长. 7.在△ABC 中,∠A 、∠B 为锐角,且有 ,则△ABC 的 形状是________________. 8. 在△ABC 中,∠C=90°,sinA= ,则cosB=_______,tanB=_______ 9.已知α为锐角,且sin α=5 3 ,则sin(90°-α)=_ 二、选择题. 1.已知:Rt △ABC 中,∠C=90°,cosA=3 5 ,AB=15,则AC 的长是( ). A .3 B .6 C .9 D .12 2.计算2sin30°-2cos60°+tan45°的结果是( ). A .2 B .3 C .2 D .1 3.已知∠A 为锐角,且cosA ≤1 2 ,那么( ) A .0°<∠A ≤60° B .60°≤∠A<90° C .0°<∠A ≤30° D .30°≤∠A<90° 4.在△ABC 中,∠A 、∠B 都是锐角,且sinA=12 ,cosB= 3 2 ,则△ABC 的形状是( ) |tanB-3|+(2sinA-3)2=002sin 2=-α0 1tan 3=-α3

函数的极大值和极小值

4.3.2 函数的极大值和极小值 教学目标: 1.理解极大值、极小值的概念; 2.能够运用判别极大值、极小值的方法来求函数的极值; 3.掌握求可导函数的极值的步骤; 教学重点:极大、极小值的概念和判别方法,以及求可导函数的极值的步骤. 教学难点:对极大、极小值概念的理解及求可导函数的极值的步骤. 教学过程: 一.创设情景 观察图3.3-8,我们发现,t a =时,高台跳水运动员距水面高度最大.那么,函数()h t 在此点的导数是多少呢?此点附近的图像有什么特点?相应地,导数的符号有什么变化规律? 放大t a =附近函数()h t 的图像,如图3.3-9.可以看出()h a ';在t a =,当t a <时,函数()h t 单调递增,()0h t '>;当t a >时,函数()h t 单调递减,()0h t '<;这就说明,在t a =附近,函数值先增(t a <,()0h t '>)后减(t a >,()0h t '<).这样,当t 在a 的附近从小到大经过a 时,()h t '先正后负,且()h t '连续变化,于是有()0h a '=. 对于一般的函数()y f x =,是否也有这样的性质呢? 附:对极大、极小值概念的理解,可以结合图象进行说明.并且要说明函数的极值是就函数在某一点附近的小区间而言的. 从图象观察得出,判别极大、极小值的方法.判断极值点的关键是这点两侧的导数异号 二.新课讲授 1.问题:图 3.3-1(1),它表示跳水运动中高度h 随时间t 变化的函数 2() 4.9 6.510 h t t t =-++的图像,图3.3-1(2)表示高台跳水运动员的速度v 随时间t 变化的函数'()()9.8 6.5v t h t t ==-+的图像. 运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别? 通过观察图像,我们可以发现: (1) 运动员从起点到最高点,离水面的高度h 随时间t 的增加而增加,即()h t 是 增函数.相应地,' ()()0v t h t =>. (2) 从最高点到入水,运动员离水面的高度h 随时间t 的增加而减少,即()h t 是 减函数.相应地,'()()0v t h t =<. 2.函数的单调性与导数的关系 观察下面函数的图像,探讨函数的单调性与其导数正负的关系. 如图 3.3-3,导数'0()f x 表示函数()f x 在点00(,)x y 处的切线的斜率.在0x x =处,

函数的极大值、极小值

【学习目标】 1.理解极大值、极小值的概念. 2.能够运用判别极大值、极小值的方法来求函数的极值. 3.掌握求可导函数的极值的步骤 【重点与难点】 极大、极小值的概念和判别方法,以及求可导函数的极值的步骤 【学法提示】 讲练结合 【课前预习】 用导数法求下列函数的单调区间. (1) 2()2f x x x =-- (2)311433 y x x = -+ 1.极大值: 2.极小值: 3.极大值与极小值统称为极值 取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值。请注意以下几点: (ⅰ)极值是一个局部概念由定义,并不意味着它在函数的整个的定义域内最大或最小 (ⅱ)函数的极值不是唯一的即函数在某区间上或定义域内极大值或极小值可以不止一个 (ⅲ)极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值,如下图所示,1x 是极大值点,4x 是极小值点,而)(4x f >)(1x f (ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点 4. 判别f (x 0)是极大、极小值的方法: 若0x 满足 0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,)(0x f 是极值,并且如果)(x f '在0x 两侧满足“左正右负”,则0x 是)(x f 的极大值点,)(0x f 是极大值;如果)(x f '在0x 两侧满足“左负右正”,则0x 是)(x f 的极小值点,)(0x f 是极小值 5. 求可导函数f (x )的极值的步骤: (1)确定函数的定义区间,求导数/()f x (2)求方程/()f x =0的根 (3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列表.检查/()f x 在方程根左右的值的符号,若左正右负,那么f (x )在这个根处取得极大值;若左负右

三角函数特殊角值表

三角函数特殊值 1、图示法:借助于下面三个图形来记忆,即使有所遗忘也可根据图形重新推出: sin30°=cos60°= 21 sin45°=cos45°=2 2 tan30°=cot60°=3 3 tan 45°=cot45°=1 2 30? 1 2 3 1 45? 1 2 1 2 60? 3

说明:正弦值随角度变化,即0? 30? 45? 60? 90?变化;值从0 2 3 1变化,其余类似记忆. 3、规律记忆法:观察表中的数值特征,可总结为下列记忆规律: ① 有界性:(锐角三角函数值都是正值)即当0°<α<90°时, 则0<sin α<1; 0<cos α<1 ; tan α>0 ; cot α>0。 ②增减性:(锐角的正弦、正切值随角度的增大而增大;余弦、余切值随角度的增大而减小),即当0<A <B <90°时,则sin A <sin B ;tan A <tan B ; cos A >cos B ;cot A >cot B ;特别地:若0°<α<45°,则sin A <cos A ;tan A <cot A 若45°<A <90°,则sin A >cos A ;tan A >cot A . 4、口决记忆法:观察表中的数值特征 正弦、余弦值可表示为 2m 形式,正切、余切值可表示为3 m 形式,有关m 的值可归纳成顺口溜:一、二、三;三、二、一;三九二十七. 巧记特殊角的三角函数值 初学三角函数,记忆特殊角三角函数值易错易混。若在理解掌握的基础上,经过变形,使其呈现某种规律,再配以歌诀,则可浅显易记,触目成诵。 仔细观察表1,你会发现重要的规律。

(完整版)特殊角的三角函数值的巧记

特殊角的三角函数值的巧记 特殊角的三角函数值在计算,求值,解直角三角形和今后的学习中,常常会用到,所以一定要熟记.要在理解的基础上,采用巧妙的方法加强记忆.这里关键的问题还是要明白和掌握这些三角函数值是怎样求出的,既便遗忘了,自己也能推算出来,切莫死记硬背. 那么怎样才能更好地记熟它们呢?下面介绍几种方法,供同学们借鉴。 1、“三角板”记法 根据含有特殊角的直角三角形的知识,利用你手里的一套三角板,就可以帮助你记住30°、45°、60°角的三角函数值.我们不妨称这种方法为“三角板”记法. 首先,如图所标明的那样,先把手中一套三角板的构造特点弄明白,记清它们的边角是什么关系. 对左边第一块三角板,要抓住在直角三角形中,30°角的对边是斜边的一半的特点,再应用勾股定理.可以知道在这个直角三角形中30°角的对边、邻边、斜边的比是3掌握了这个比例关系,就可以依定义求出30°、60°角的任意一个锐角三角函数值,如:0013sin 30,cos302== 求60°角的三角函数值,还应抓住60°角是30°角的余角这一特点. 在右边那块三角板中,应注意在直角三角形中,若有一锐角为45°,则此三角形是等腰直角三角形,且两直角边与斜边的比是1∶12,那么,就不难记住:002sin 45cos 452 ==,00tan 45cot 451==。这种方法形象、直观、简单、易记,同时巩固了三角函数的定义. 二、列表法:

说明:正弦值随角度变化,即0? →30?→45? →60? →90?变化;值从 0→2 1→22→23→1变化,其余类似记忆. 三、口诀记忆法 口诀是:“一、二、三,三、二、一,三、九、二十七,弦是二,切是三,分子根号不能删.”前三句中的1,2,3;3,2,1;3,9,27,分别是30°,45°,60°角的正弦、余弦、正切值中分子根号内的值.弦是二、切是三是指正弦、余弦的分母为2,正切的分母为3.最后一句,讲的是各函数值中分子都加上根号, 不能丢掉.如tan60°==tan45°=13=.这种方法有趣、简单、易记. 四、规律记忆法:观察表中的数值特征,可总结为下列记忆规律: ①有界性:(锐角三角函数值都是正值)即当0°<α<90°时, 则0<sin α<1; 0<cos α<1 ; tan α>0 ; cot α>0。 ②增减性:(锐角的正弦、正切值随角度的增大而增大;余弦、余切值随角度的增大而减小),即当0<A <B <90°时,则sinA <sinB ;tanA <tanB ;cosA >cosB ;cotA >cotB ;特别地:若0°<α<45°,则sinA <cosA ;tanA <cotA ;若45°<A <90°,则sinA >cosA ;tanA >cotA . 例1.tan30°的值等于( )

《3.3.2 函数的极大值和极小值》教案

《3.3.2 函数的极大值和极小值》教案 教学目标: 1.理解极大值、极小值的概念; 2.能够运用判别极大值、极小值的方法来求函数的极值; 3.掌握求可导函数的极值的步骤; 教学重点: 极大、极小值的概念和判别方法,以及求可导函数的极值的步骤. 教学难点: 对极大、极小值概念的理解及求可导函数的极值的步骤. 教学过程: 一.创设情景 观察图3.3-8,我们发现,t a =时,高台跳水运动员距水面高度最大.那么,函数()h t 在此点的导数是多少呢?此点附近的图像有什么特点?相应地,导数的符号有什么变化规律? 放大t a =附近函数()h t 的图像,如图3.3-9.可以看出()h a ';在t a =,当t a <时,函数()h t 单调递增,()0h t '>;当t a >时,函数()h t 单调递减,()0h t '<;这就说明,在t a =附近,函数值先增(t a <,()0h t '>)后减(t a >,()0h t '<).这样,当t 在a 的附近从小到大经过a 时,()h t '先正后负,且()h t '连续变化,于是有()0h a '=. 对于一般的函数()y f x =,是否也有这样的性质呢? 附:对极大、极小值概念的理解,可以结合图象进行说明.并且要说明函数的极值是就函数在某一点附近的小区间而言的. 从图象观察得出,判别极大、极小值的方法.判断极值点的关键是这点两侧的导数异号 二.新课讲授 1.问题:图 3.3-1(1),它表示跳水运动中高度h 随时间t 变化的函数2() 4.9 6.510h t t t =-++的图像,图3.3-1(2)表示高台跳水运动员的速度v 随时间t 变化的函数' ()()9.8 6.5v t h t t ==-+的图像.

三角函数特殊角值表

1、图示法:借助于下面三个图形来记忆,即使有所遗忘也可根据图形重新推出: sin30°=cos60°=2 1 ,sin45°=cos45°=22,tan30°=cot60°=33,tan45°=cot45°=1 正弦函数sinθ=y/r 余弦函数cosθ=x/r 正切函数tanθ=y/x 余切函数cotθ=x/y 正割函数secθ=r/x 余割函数cscθ=r/y 2、列表法: 说明:正弦值随角度变化,即0?30?45?60?90?变化;值从0 21222 3 1变化,其余类似记忆. 3、规律记忆法:观察表中的数值特征,可总结为下列记忆规律: ① 有界性:(锐角三角函数值都是正值)即当0°<α<90°时, 则0<sin α<1;0<cos α<1;tan α>0;cot α>0。 ②增减性:(锐角的正弦、正切值随角度的增大而增大;余弦、余切值随角度的增大而减小),即当0<A <B <90°时,则sin A <sin B ;tan A <tan B ;cos A >cos B ;cot A >cot B ;特别地:若0°< α<45°,则sin A <cos A ;tan A <cot A 若45°<A <90°,则sin A >cos A ;tan A >cot A . 4、口决记忆法:观察表中的数值特征 正弦、余弦值可表示为 2m 形式,正切、余切值可表示为3 m 形式,有关m 的值可归纳成顺口溜:一、二、三;三、二、一;三九二十七. 函数名正弦余弦正切余切正割余割 符号sincostancotseccsc 正弦函数sin (A )=a/c 余弦函数cos (A )=b/c 正切函数tan (A )=a/b 余切函数cot (A )=b/a 其中a 为对边,b 为邻边,c 为斜边 三角函数对照表 30? 1 2 1 45? 1 1 2 60?

数学特殊角的锐角三角函数教学设计word版

第3课时特殊角的锐角三角函数 1.掌握30°、45°、60°角的三角函数值,能够用它们进行计算. 2.能够根据30°、45°、60°角的三角函数值,说出相应锐角的大小. 阅读教材P65-67页,自习“探究”、“例3”与“例4”. 自学反馈学生独立完成后集体订正 ①sin30°= ,cos30°= ,tan30°= ,sin45°= ,cos45°= ,tan45°= ,sin60°= ,cos60°= ,tan60°= . ②sinα的值随着角α的增大而,cosα的值随着角α的增大而,tanα的值随着角α的增大而. 这些常用的锐角三角函数值之间也是有规律的,互余的两个锐角的正弦值的平方和为1,互余的两个锐角的余弦值的平方和为1,它们的正切值的积为1. 活动1 小组讨论 例1求下列各式的值: ①cos230°+sin230°;② 45 45 cos sin ? ? -tan60°. 解:①cos230°+sin230°=( 3 2 )2+( 1 2 )2=1. ② 45 45 cos sin ? ? -tan60°= 2 2 ÷ 2 2 -3=1-3. sin230°表示(sin30°)2,即sin30°2sin30°,这类计算只需将三角函数值代入即可. 活动2 跟踪训练(学生独立完成后展示学习成果) 1.计算:①|3-12|+( 6 22 + )0+cos230°-4sin60°;

②2(2cos45°-sin60°)+24 4 ; ③(sin30°)-1-2 0100+|-43|-tan60°. 2.直线y=kx-4与y轴相交所成的锐角的正切值为1 2 ,则k的值为. 第1题的计算,注意理清运算顺利;第2题可构造直角三角形再运用锐角三角函数的知识解决,注意两种情况. 活动1 小组讨论 例2 如图,在高为2 m,斜坡面与地平面夹角为α的楼梯表面铺地毯,楼梯宽2 m,共需地毯的面积为(43+4)m2,则α为多少度? 解:由题意可得,BC+AC=434 2 =23+2, ∴AC=23. 在Rt△ABC中,∵tana=BC AC = 2 23 = 3 3 , ∴∠α=30°. 答:α为30度. 此题应该先理解BC+AC的长就是地毯的长度,所以先根据已知地毯的面积和宽求出地毯长,再求出AC的长,然后根据tanA的值得知α的度数. 活动2 跟踪训练(小组内讨论完成并展示小组学习成果) 1.已知α为锐角,则m=sinα+cosα的值( ) A.m>1 B.m=1 C.m<1 D.m≥1 运用三角形的两边之和大于第三边,可得出分子大于分母,其商必大于1.

相关文档
最新文档