双目视觉的图像立体匹配系统 说明文档

双目视觉的图像立体匹配系统 说明文档
双目视觉的图像立体匹配系统 说明文档

双目视觉的图像立体匹配系统文档

1 引言

计算机视觉技术的发展将光与影的艺术和计算机的逻辑性紧密结合起来,而双目立体视觉技术更将这种结合从平面二次元上升到立体的角度,为我们的生产生活提供了新的技术和工具,例如已经被普遍运用的3D电影技术,研发中的虚拟现实、谷歌视觉眼镜、汽车自动驾驶技术,即将上市的淘宝虚拟实景购物等,不断改变着我们的生活,另外双目立体视觉在军事、医学、工业等领域都有其重要的作用,是机器感知物体几何层级的基础,因此对双目视觉的理论研究成为推动立体视觉乃至计算机视觉技术在各个领域创造更高价值的重要因素。

在双目视觉的研究和运用中,最重要的一个阶段无疑为将平面图像转化为可计算机可识别的立体模型,这里将用到立体匹配技术,目前双目视觉研究领域用到的立体匹配算法及其衍生算法有很多种,算法的效率和匹配精度将直接影响到算法运用的响应时间和准确度[1],当今各种视觉智能设备的发展需要将立体匹配过程直接嵌入到单片机中,这种场景下,算法的效率和匹配精度将直接决定不同运算性能的嵌入式设备的选择和产品推广后的用户体验度,也将直接决定设备成本,因此研究出更加速度快、精度高的立体匹配算法在各领域都具有划时代的重要意义。

2 系统方案设计

2.1 双目视觉的图像立体匹配系统

说起立体视觉系统,要从人的双眼说起,人眼是一个典型的双目视觉系统,每只眼睛是一个摄像机,两只平行的眼睛是两台平行的摄像机,因为两只眼睛的位置不同,看到的图像是有差异的,这个差异就是立体视觉的基础,视觉信号传入大脑,大脑利用其强大的匹配能力,就可以基本确定图像中的物体的立体信息,或者叫做图像的深度信息。随着人们知识和生产生活的发展,需要通过仿真立体视觉的原理,让计算机获取到图像从2D向3D发展,即获取图像的深度信息,以实现一些和空间视觉有关的需求,这就出现了机器立体视觉技术。

图2.1 立体视觉原理示意图

如图2.1是一张立体视觉原理示意图,O1和O2为两台摄像机,物体上的点p12分别对应左右图像上点p1和p2,通过算法找到图像左右图像上对应的点p1、p2,这个过程则是立体匹配。求解p1、p2、p12构成的三角形,我们就能得到点p12的坐标,也就能得到p12的深度[6],如图2.2所示。

图2.2 标准双目视觉系统投影成像示意图

其中,点l O 和点r O 分别是左右两个摄像头的光学中心位置,即两个摄像头成像坐标系的光学原点,f 为左右两个摄像头的焦距,在这里,点A (X,Y,Z )以l O 为坐标中心,左摄像头成像坐标系为坐标系,由相似三角形的性质,有:

Y v Z f X x X Z f Z b b u u l

l l r =-=-=+-,

(2-1)

r

l r l l r l l u u bf

Z u u b v Y u u b u X -=

-=-=,,

(2-2)

因此找到点A 在左右图像上对应的

l a 和r a 则是重中之重,一个好的立体匹

配算法对双目视觉系统起到了决定性作用,我们将在本文接下来的章节对最有代表性的算法做具体介绍。

双目立体视觉之间模拟了人眼视觉构造,因此双目视觉在各个领域都具有广泛的运用,比如机器人导航领域,双目视觉可以被运用在汽车自动驾驶,机器人自动导航;在虚拟现实领域,通过对双目视觉的研究,人们可以虚拟出立体视觉,极大丰富了人类生活;在航空航天领域,双目视觉已经运用在飞行器自动导航和飞行器避障;在工业上,双目视觉被运用在机械自动化制造,工业监测等方面。一个完整的双目立体视觉系统通常包括图像获取、摄像机标定、图像矫正、立体匹配和深度恢复五个方面:

(1)图像获取通过模拟双目的方式,利用平行的两台摄像机对左右眼图像进行获取。

(2)立体标定通过图像特征点获取,建立摄像机的几何成像模型

(3)图像矫正把实际中非共面行对准的两幅图像,校正成共面行对准,因为当两个图像平面是完全共面行对准时,计算立体视差是最简单的[7]

(4)立体匹配通过算法对图像进行立体匹配,建立图像的立体模型。 深度恢复通过匹配结果,恢复图像的立体感。

2.2 双目视觉的图像立体匹配系统框图

在进行图像的立体匹配之前,需要得到可匹配的图像,既使得左右双眼图片在平面上完全行对准,这时计算立体视觉差是最简单的,而这种行对准图像是可以通过图像校正完成的,但由于每对摄像机的参数(位置、畸变等)不同,在校正时需要拿到摄像头的标正值,因此在校正前需要对摄像头进行标定。总的流程图如图3.1所示:

图3.1 系统设计框图

通过采集左右摄像头的图像和标定图像进行反复对比标定,得到图像的标定参数,进而进行图像校正,校正后的图像即可通过立体匹配算法进行深度匹配。

3 设备选型及硬件系统详细设计

3.1 设备选型

本系统选用不同型号的两个摄像头作为双目视觉采集摄像机。

3.2 硬件系统设计

系统所用硬件系统配置如下:

PC:四核i5处理器、4Gb内存、显示卡2GRAM

4 软件设计及测试

4.1 开发环境

编译器:VS2015、MATLAB2015B

视觉库:OpenCV3.0

4.2 概要设计

4.2.1 流程图

4.2.2 主要函数及实现功能

4.3 详细设计

4.3.1图像采集

本论文采用MATLAB对双目图像进行采集,摄像机用到是视觉平行的两台摄像头,如图4.1所示:

图4.1图像采集用的双目摄像头

说明:将摄像头使用USB连接线与电脑相连接,使用matlab在同一时间对图像进行采集,为了摄像头标定参数无变化,整个实验过程中需要保持摄像头位置不变,否则实验会不准确。

4.3.2立体标定

在实际拍摄中,有的摄像头会产生畸变,且采集到的图像极线相交,为了降低后续图像匹配的难度,我们需要得到两个摄像头的焦距、主点坐标、倾斜系数、畸变系数以及它们之间的旋转矢量,现多采用张定友棋盘格标定法对摄像头进行标定,他利用了摄像头拍摄的图像与实物间存在线性关系,表达式如下:

[]?

?????

??????=????

?

?????1013

21Y X t r r r K v u s (4.2)

其中,K 代表摄像机的内参数矩阵,[u v 1]表示实物投影到图像平面上的齐次坐标,[r1 r2 r3]和t 是摄像机的外参数,分别代表以摄像机为中心的坐标系相对世界坐标系的旋转矩阵和平移向量。采用棋盘格能够得到多个角点的位置,解方程组得到摄像机的内外参数[15]。

Opencv3.0和MATLAB 的标定都采用了张定友定标法,因为MATLAB 标定工具箱较OpenCV3.0标定结果更为准确,因此,本文采用MATLAB 对摄像机进行进行标定,本文用14*14,以20mm 为边长的黑白棋盘格进行标定,如图4.3所示:

图4.3 14*14,20mm 为边长的棋盘格标定图像

标定具体步骤如下:

(1)使用左右摄像头采集同一时间下同一标定板图像,采集过程中,应让标定图像处于摄像头视野的中间位置

(2)分别读取摄像头图像对两个摄像头进行单独标定,本文采集了15张标定图完成标定,每个摄像头的标定结果单独储存。

(3)将左右摄像头mat 文件读入MATLAB 的标定工具箱,进行立体标定。标定图像如下图4.4和

4.5

图4.4 左摄像头标定图像集

图4.5 右摄像头标定图像集单摄像头标定结果

表4.1 左摄像头标定结果参数结果

焦距

主点

倾斜系数畸变

像素误差

[937.38 917.06]±[10.68 8.93]

[409.05 279.03]±[11.63 14.39]

[0.00]±[0.00]

[-0.18643 1.69505 0.01121 0.02210

0.00000]±[0.06598 0.59557 0.00555

0.00447 0.00000]

[0.15528 0.19454]

表4.2 右摄像头标定结果

参数结果

焦距

主点

倾斜系数畸变

像素误差[927.22 907.05]±[11.02 8.93]

[337.29 280.35]±[13.06 15.06]

[0.00]±[0.00]

[-0.01803 -0.43391 0.00965 0.01415 0.00000]±[0.05957 0.36702 0.00597 0.00484 0.00000]

[0.42602 0.53865]

如图4.6和4.7分布表示标定时棋盘标定板和两个摄像机的位置关系:

图4.6棋盘标定板与左摄像机位置关系

图4.7棋盘标定板与右摄像机位置关系

立体标定结果

读取左右摄像机的标定参数,进行立体标定后,其结果如表4.3所示:

表4.3 立体摄像头标定结果

摄像头参数结果

左摄像头焦距

主点

倾斜系数

畸变[919.29 901.54]±[6.88 6.35]

[402.30 258.05]±[11.24 10.12]

[0.00]±[0.00]

[-0.01803 -0.43391 0.00965 0.01415 0.00000]±[0.05957 0.36702 0.00597 0.00484 0.00000]

右摄像头焦距

主点

倾斜系数

畸变[919.29 901.54]±[6.88 6.35]

[402.30 258.05]±[11.24 10.12]

[0.00]±[0.00]

[-0.23197 2.36790 -0.00265 0.01769 0.00000]±[0.06621 0.79331 0.00399 0.00376 0.00000]

双目摄像头旋转矢量

转化矢量[0.04887 0.01864 0.01890]±[0.01496 0.01610 0.00116]

[101.42 4.24 -11.01]±[0.65 0.77 5.33]

双摄像机与棋盘标定板的位置关系如图4.8所示:

图4.8双摄像机与棋盘标定板的位置关系

4.3.3校正

为了在立体匹配时,左右摄像机图像的平面是行对准的,需要对图像进行校正,而图像校正,使用OpenCV3.0图像库里的bouguet算法比较适合,采用bouguet算法比利用摄像机标定参数,对图像进行校正[16],其过程如图4.9所示:

图4.9图像校正过程

实现过程如下:分别读取立体标正后的标定参数,之后使用OpenCV3.0自带的库进行消除畸变和图像校正

矫正的结果分别对比4.10和4.11可知,如图4.10和4.11分别为左摄像机和右摄像机校正前后的图像对比:

图4.10左右摄像机校正前

图4.11左右摄像机校正后

4.3.4立体匹配

经过校正后的图像左右平面为行对准的,之后即可使用不同的立体匹配算法对左右图像进行立体匹配,为了之后做算法的效率和匹配精度的性能分析,本文在算法运行的同时,通过打印时间戳的方法获取其运行时长。并通过操作系统监控其对内存、cpu的占用情况。

基于图像分割的置信传播立体匹配算法匹配

图4.12算法流程图

㈠局部匹配求初始视差图

由于优化方式不同,立体匹配通常可以分为局部匹配和全局匹配算法

[17]

。本文首先采用

局部匹配算法求得初始视差图。要判断两个像素点的相似度,仅凭单个像素显然是不够的。当两个像素块反映同一个场景时,这两个像素块的像素值就会比较相似。最常见的图像块是边长为奇数的正方形,关键点位置就是正方形的中心,可通过比较两个块内像素的匹配代价函数,来衡量两个正方形图像块的相似度。经典的局部匹配代价函数有绝对误差和算法SAD 、误差平方和算法SSD 和归一化积相关算法NCC 。

[]

[]

∑∑∑∑∑∑-==?-==-?-===

22

,,,,)(),(11)(),(11))

(,()(),(11),(T E t s T t N S M S E t s S t N s M T E t s T S E t s S t N s M j i R j i j i j i j

i

(3.2)

其中,

)(,j i S E 、)(T E 分别表示(i,j)处子图、模板的平均灰度值。 算法SAD 和SSD 实现较简单,运行时间短,但容易受到光线等影响,影响匹配精度,因此本文采用NCC 算法求初始视差图。

得到初始视差值后,为剔除匹配不正确的点,本文采用一致性校验法校验视差图,即先以左摄像头采集图片作为目标图片,右摄像头采集图片作为待匹配图,在右图求得与左图像素点匹配的点后,再以右摄像头图片作为目标图片,在左图求得与右图像素点匹配的点,若两次匹配后找到的点一致,则视为正确的匹配点,若不一致,则一定至少有一次匹配是错误的,则剔除该点得到的视差值。

(二)利用meanshift分割图片的分割结果拟合各像素块

经过meanshift分割图片后视各图片模块在同一平面,根据各区域内校验后仍为正确的视觉点,计算出各区域内的视觉方程,并组成视觉模板集。

(三)通过置信传播算法,进行全局最优分配

第二步中获取的视觉平面模板只是根据各个区域内部视差分布而获得的,并没有考虑区域间的相互作用,存在较大误差,之后需要使用置信传播算法对其进行全局匹配,将每个视觉模板作为一个节点,利用全局的置信传播进行不断的迭代推算,直到最终收敛。

利用surf算子的特征提取立体匹配算法匹配

立体图像对

输出视差图

图4.13算法流程图

(一)直方图均衡化

普通摄像头拍摄的照片常常会出现这样的情况,在某些强度值出现的频率比其他强度值高,呈现出来的照片会是灰蒙蒙的。通常情况下,一张图片各像素的强度值都均衡分布,才

会被认为是一张质量高的图片。在这种情况下,便需要用直方图均衡化使图片的直方图居于平稳。

但是直方图均衡化也有它的缺点,就是容易模糊掉有的像素点,而在图像本真像素非常重要的双目视觉立体匹配中,我们无法确定直方图均衡化对匹配的影响是否会利大于弊。于是本文用OpenCV3.0中提供的equalizeHist函数进行直方图均衡化处理,比较均衡化前后对立体匹配的影响。

(a)直方图均衡化前立体匹配结果

(b)直方图均衡化后立体匹配结果

图4.14直方图均衡化前后立体匹配结果的比较

分别对A、B、C三组不同立体图像对进行试验,所得结果如下,其中,A(1)、B(1)、C (1)分别为直方图均衡化前的匹配结果,A(2)、B(2)、C(2)为对应的立体图像对直方图均衡化后的匹配结果。

表4.5 直方图均衡化前后立体匹配结果比较

实验图片总特征点数正确匹配数正确率

A (1) A (2)

B (1) B (2)

C (1) C (2)

16 51 9 12 22 46

10 45 8 11 15 36

62.5% 88.24% 88.89% 91.67% 68.18% 78.26%

由表4.5可得,直方图均衡化后surf 算子特征点匹配数增多,正确率提高。

(二)匹配特征点后优化,排除匹配错误的点,得到离散的视差图,通过双线性插值得到最终视差图。

特征点优化利用的是RANSAC 算法,该算法利用少量数据集,对特定的数学实体进行估算,利用不少于8个匹配对来估算基础矩阵,剩下的匹配对均以这个基础矩阵为标准来衡量,不满足时则舍弃。因此当8个匹配对自身正确率不高时,留下的支撑对也会越来越少,因此找到正确的8个匹配对很重要。本文利用OpenCV3.0的findFundamentalMat ()函数找到正确的基础矩阵。运行效果如下图所示:

(a )RANSAC 优化前匹配结果

(b )RANSAC 极线优化后匹配结果

图4.15 RANSAC 优化前后对比

去掉匹配错误的点后,就可以求特征点的视差了,由于之前已经完成校正,

因此两张图

的极线是平行的,可直接通过特征点横坐标相减得到视差值,此时的视差值还是离散的,需根据实物的数学形态等进行插值,即可得到最终的视差图。

4.4 结构化实现

4.4.1 代码

4.4.2 测试

本次设计一共进行了四组实验,前三组利用middlebury[16]网站得到的标图分别用两种算法进行匹配,第四组实验使用双目摄像头采集图片,经过相同的标定、校正过程,最后两种不同的算法实现匹配,

四组对照试验组的匹配结果如下。

1、基于图像分割的置信传播立体匹配算法匹配结果

第一组:

左视图右视图匹配图

图4.16第一组试验结果图

第二组:

左视图右视图匹配图

图4.17第二组试验结果图第三组:

左视图右视图匹配图

图4.18第三组试验结果图

第四组:

左视图右视图匹配图

图4.19第四组试验结果图

2、SURF算子的特征提取立体匹配算法匹配结果

第一组:

左视图右视图匹配图

图4.20第一组试验结果图第二组:

左视图右视图匹配图

图4.21第二组试验结果图第三组:

左视图右视图匹配图

图4.22第三组试验结果图

第四组:

左视图右视图匹配图

图4.23第三组试验结果图

5 总结

近些年来,计算机视觉技术飞速发展,被广泛运用在工业、医学、军事、生活领域,双目视觉是计算机视觉技术的一个重要分支,在计算机视觉的研究领域慢慢从2D向3D转换的同时,双目视觉的理论研究成为新技术的产生提供理论基础,作为双目视觉最基本的一环:立体匹配技术,研究其实现方式既匹配效率和匹配精度等问题对促进双目视觉在研究领域和工业领域的发展将具有重大的意义。

本文主要介绍了双目视觉的图像立体匹配系统的实现过程。本文在搭建双目视觉视觉采集系统之后,基于MATLAB和VS平台,结合OPENCV视觉库,使用双摄像头对双目图像进行标定、校正,然后分别使用基于图像分割和置信传播的立体匹配算法、基于SURF算子的特征提取匹配算法的立体匹配算法对图像进行立体匹配。

双目视觉成像原理

双目视觉成像原理 1.引言 双目立体视觉(BinocularStereo Vision)是机器视觉的一种重要形式,它是基于视差原理并利用成像设备从不同的位置获取被测物体的两幅图像,通过计算图像对应点间的位置偏差,来获取物体三维几何信息的方法。融合两只眼睛获得的图像并观察它们之间的差别,使我们可以获得明显的深度感,建立特征间的对应关系,将同一空间物理点在不同图像中的映像点对应起来,这个差别,我们称作视差(Disparity)图。 双目立体视觉测量方法具有效率高、精度合适、系统结构简单、成本低等优点,非常适合于制造现场的在线、非接触产品检测和质量控制。对运动物体(包括动物和人体形体)测量中,由于图像获取是在瞬间完成的,因此立体视觉方法是一种更有效的测量方法。双目立体视觉系统是计算机视觉的关键技术之一,获取空间三维场景的距离信息也是计算机视觉研究中最基础的内容。 2.双目立体视觉系统 立体视觉系统由左右两部摄像机组成。如图一所示,图中分别以下标L和r标注左、右摄像机的相应参数。世界空间中一点A(X,Y,Z)在左右摄像机的成像面CL和CR上的像点分别为al(ul,vl)和ar(ur,vr)。这两个像点是世界空间中同一个对象点A的像,称为“共轭点”。知道了这两个共轭像点,分别作它们与各自相机的光心Ol和Or的连线,即投影线alOl和arOr,它们的交点即为世界空间中的对象点A(X,Y,Z)。这就是立体视觉的基本原理。 图1:立体视觉系统 3.双目立体视觉相关基本理论说明 3.1双目立体视觉原理 双目立体视觉三维测量是基于视差原理,图2所示为简单的平视双目立体成像原理图,两摄像机的投影中心的连线的距离,即基线距为b。摄像机坐标系的原点在摄像机镜头的光心处,坐标系如图2所示。事实上摄像机的成像平面在镜头的光心后,图2中将左右成像平面绘制在镜头的光心前f处,这个虚拟的图像平面坐标系O1uv的u轴和v轴与和摄像机坐标系的x轴和y轴方向一致,这样可以简化计算过程。左右图像坐标系的原

基于HALCON的双目立体视觉系统实现

图1双目立体成像原理图图3一般双目立体视觉系统原理图 由此可计算出空间中某点P在左摄像机坐标系中的坐标为: 因此,只要能够找到空间中某点在左右两个摄像机像面上的相应点,并且通过摄像机标定获得摄像机的内外参数,就可以确定这个点的三维坐标。 1.2双目立体视觉的系统结构以及精度分析 由上述双目视觉系统的基本原理可知,为了获得三维空间中某点的三维坐标,需要在左右两个摄像机像面上都存在该点的相应点。立体视觉系统的一般结构为交叉摆放的两个摄像机从不同角度观测同一被测物体。图3为原理图。这样通过求得两个图像中相应点的图像坐标,便可以由双目立体视觉测量原理求取三维空间坐标。事实上,获取两幅图像也可以由一个摄像机实现,如一个摄像机通过给定方式的运动,在不同位置观测同一个静止的物体,或者通过光学成像方式将两幅图像投影到一个摄像机,都可以满足要求。 各种双目视觉系统结构各有优缺点,这些结构适用于不同的应用场合。对要求大测量范围和较高测量精度的场合,采用基于双摄像机的双目立体视觉系统比较合适;对测量范围要求比较小,对视觉系统体积和质量要求严格,需要高速度实时测量对象,基于光学成像的单摄像机双目立体视觉系统便成为最佳选择。 基于双摄像机的双目立体视觉系统必须安装在一个稳定的平台上,在进行双目视觉系统标定以及应用该系统进行测量时,要确保摄像机的内参(比如焦距)和两个摄像机相对位置关系不能够发生变化,如果任何一项发生变化,则需要重新对双目立体视觉系统进行标定。 视觉系统的安装方法影响测量结果的精度。测量的精度可由下式得出: 上式中⊿z表示测量得出的被测点与立体视觉系统之间距离的精度,z指被测点与立体视觉系统的绝对距离,f指摄像机的焦距,b表示双目立体视觉系统的基线距,⊿d表示被测点视差精度。 为了得到更高的精度,应该使摄像机的焦距以及基线长度增大,同时应该使被测物体尽可能的靠近立体视觉系统。另外这个精度和视差的精度有直接的关系。在HALCON中一般情况下视差结果可以精确到1/5~1/10个像素,如果一个像素代表7.4μm那么视差的精度可以达到1μm。图4表示深度测量的精度和各个参数之间的关系(假设视差精度为1μm)。 如果b和z之间的比值过大,立体图像对之间的交迭区域将非常小,这样就不能够得到足够的物体表面信息。b/z可以取的最大值取决于物体的表面特征。一般情况下,如果物体高度变化不明显,b/z可以取的大一些;如果物体表面高度变化明显,则b/z的值要小一些。无论在任何情况下,要确保立体图像对之间的交迭区域足够大并且两个摄像机应该大约对齐,也就是说每个摄像机绕光轴旋转的角度不能太大。

BumbleBee2 双目视觉系统技术说明

本文所包含的内容: 讲述了bumblebee 立体视觉的原理 讲述了bumblebee Demo 程序中各项参数的含义及如何调整 讲述了为什么在深度图像和重构的3D 图像中有无效的像素 本文的阅读方法: 红色字体是关键的地方 立体视觉 本文将试着去阐述立体视觉技术。阅读完本文后你将对数据如何在系统中流动和其间所有可调整的参数有一个更深入的了解。这将使你可以量身定做自己的系统来完成特殊的任务。 立体视觉的基本原理 立体视觉的任务是完成空间的测量,这种测量是基于空间上存在偏移的相机所采集到的图像的。立体视觉的处理过程可分为如下三步: 建立从不同观测角度所获得的同一场景图像特征的相关。 计算每幅图像中相同特征的相对位移 根据相机的几何结构,决定特征相对于相机的3D 位置 考虑如下两幅图片。这两幅图片取自一对存在水平偏移的Triclops 相机模型。我们可以在两幅图片中分别定义两个点A 和B 。点left A 对应于点right A ,同样的,点left B 对应于点right B 。 使用一把尺子,如果你测量一个点到图像边缘的水平距离,你会发现左图的这个距离比右图中对应点到图像边缘的水平距离要大。例如,左图中边缘到电话听筒的距离要大于右图中边缘到电话听筒的距离。我们就可以根据这个距离(也被叫做视差)来确定电话听筒到相机模型的距离。 我们把左图和右图中相同特征在各自坐标系中的值的差定义为视差。你会发现在两幅图中,图像上端到所匹配的特征的距离完全相同,这是因为相机是水平排列的,因此只有水平的位移。

于是特征A 的视差被定义成D(A) = x(A left ) – x(A right ),B 的则为D(B) = x(B left ) – x(B right ),其中x(A left )是A left 点的x 轴坐标。 如果你去计算D(A) 和D(B),你会发现 D(A)

基于双目立体视觉三维重建系统的制作流程

本技术公开了一种基于双目立体视觉三维重建系统,涉及三维重建系统技术领域;机箱的底部四角处均固定安装有行走轮,机箱的内部分别固定安装有蓄电池与处理计算机,机箱的上端分别固定安装有显示器与安装架,安装架上通过轴承座固定安装有主轴,主轴的下端固定安装有安装齿轮,安装齿轮与驱动齿轮相啮合,驱动齿轮固定安装有驱动电机的轴上,驱动电机通过螺栓安装在安装架上,主轴的上端固定安装有连接轴,连接轴为横向设置,连接轴的两端固定安装有双摄像头,连接轴的中上端固定安装有照明灯;本技术能够实现快速控制,稳定性高,且控制准确,操作简便,能够节省时间;使用方便,结构简单,且效率高,能够在检测时进行补光。 技术要求

1.一种基于双目立体视觉三维重建系统,其特征在于:包括机箱、行走轮、蓄电池、处理计算机、显示器、安装架、驱动齿轮、驱动电机、安装齿轮、主轴、连接轴、双摄像头、照明灯;机箱的底部四角处均固定安装有行走轮,机箱的内部分别固定安装有蓄电池与处理计算机,机箱的上端分别固定安装有显示器与安装架,安装架上通过轴承座固定安装有主轴,主轴的下端固定安装有安装齿轮,安装齿轮与驱动齿轮相啮合,驱动齿轮固定安装有驱动电机的轴上,驱动电机通过螺栓安装在安装架上,主轴的上端固定安装有连接轴,连接轴为横向设置,连接轴的两端固定安装有双摄像头,连接轴的中上端固定安装有照明灯,蓄电池通过导线与处理计算机、显示器的电源端电连接,双摄像头通过导线与处理计算机的输入端电连接,处理计算机的输出端分别与驱动电机、照明灯电连接,显示器与处理计算机的输入、输出端电连接。 2.根据权利要求1所述的一种基于双目立体视觉三维重建系统,其特征在于:所述显示器为触摸式显示屏。 3.根据权利要求1所述的一种基于双目立体视觉三维重建系统,其特征在于:所述行走轮为减震式万向行走轮。 4.根据权利要求1所述的一种基于双目立体视觉三维重建系统,其特征在于:所述驱动电机为低速电机。 5.根据权利要求1所述的一种基于双目立体视觉三维重建系统,其特征在于:所述照明灯为LED灯。 技术说明书 一种基于双目立体视觉三维重建系统 技术领域 本技术属于三维重建系统技术领域,具体涉及一种基于双目立体视觉三维重建系统。 背景技术

双目视觉成像原理讲解学习

双目视觉成像原理

双目视觉成像原理 1.引言 双目立体视觉(Binocular Stereo Vision)是机器视觉的一种重要形式,它是基于视差原理并利用成像设备从不同的位置获取被测物体的两幅图像,通过计算图像对应点间的位置偏差,来获取物体三维几何信息的方法。融合两只眼睛获得的图像并观察它们之间的差别,使我们可以获得明显的深度感,建立特征间的对应关系,将同一空间物理点在不同图像中的映像点对应起来,这个差别,我们称作视差(Disparity)图。 双目立体视觉测量方法具有效率高、精度合适、系统结构简单、成本低等优点,非常适合于制造现场的在线、非接触产品检测和质量控制。对运动物体(包括动物和人体形体)测量中,由于图像获取是在瞬间完成的,因此立体视觉方法是一种更有效的测量方法。双目立体视觉系统是计算机视觉的关键技术之一,获取空间三维场景的距离信息也是计算机视觉研究中最基础的内容。2.双目立体视觉系统 立体视觉系统由左右两部摄像机组成。如图一所示,图中分别以下标L和r标注左、右摄像机的相应参数。世界空间中一点A(X,Y,Z)在左右摄像机的成像面C L和C R上的像点分别为al(ul,vl)和ar(ur,vr)。这两个像点是世界空间中同一个对象点A的像,称为“共轭点”。知道了这两个共轭像点,分别作它们与各自相机的光心Ol和Or的连线,即投影线alOl和arOr,它们的交点即为世界空间中的对象点A(X,Y,Z)。这就是立体视觉的基本原理。

图1:立体视觉系统 3.双目立体视觉相关基本理论说明 3.1 双目立体视觉原理 双目立体视觉三维测量是基于视差原理,图2所示为简单的平视双目 立体成像原理图,两摄像机的投影中心的连线的距离,即基线距为b 。摄像机坐标系的原点在摄像机镜头的光心处,坐标系如图2所示。事实上摄像机的成像平面在镜头的光心后,图2中将左右成像平面绘制在镜头的光心前f 处,这个虚拟的图像平面坐标系O1uv 的u 轴和v 轴与和摄像机坐标系的x 轴和y 轴方向一致,这样可以简化计算过程。左右图像坐标系的原点在摄像机光轴与平面的交点O1和O2。空间中某点P 在左图像和右图像中相应的坐标分别为P1(u1,v1)和P2(u2,v2)。假定两摄像机的图像在同一个平面上,则点P 图像坐标的Y 坐标相同,即v1=v2。由三角几何关系得到: c c 1z x f u = c c 2z )b -x (f u = v 1 c c 21z y f v v ==

双目视觉原理

Bumblebee 双目测量基本原理 一.双目视觉原理: 双目立体视觉三维测量是基于视差原理。 图 双目立体成像原理 其中基线距B=两摄像机的投影中心连线的距离;相机焦距为f 。 设两摄像机在同一时刻观看空间物体的同一特征点(,,)c c c P x y z ,分别在“左眼”和“右眼”上获取了点P 的图像,它们的图像坐标分别为(,)left left left p X Y =,(,)right right right p X Y =。 现两摄像机的图像在同一个平面上,则特征点P 的图像坐标Y 坐标相同,即 left right Y Y Y ==,则由三角几何关系得到: () c left c c rig h t c c c x X f z x B X f z y Y f z ?=???-=???=? ? (1-1) 则视差为:left right D isparity X X =-。由此可计算出特征点P 在相机坐标系下的三维坐标为: left c c c B X x D isp a rity B Y y D isp a rity B f z D isp a rity ? =???= ?? ?= ?? (1-2) 因此,左相机像面上的任意一点只要能在右相机像面上找到对应的匹配点,就可以确定出该点的三维坐标。这种方法是完全的点对点运算,像面上所有点只要存在相应的匹配点,

就可以参与上述运算,从而获取其对应的三维坐标。 二.立体视觉测量过程 1.图像获取 (1) 单台相机移动获取 (2) 双台相机获取:可有不同位置关系(一直线上、一平面上、立体分布) 2.相机标定:确定空间坐标系中物体点同它在图像平面上像点之间的对应关系。 (1)内部参数:相机内部几何、光学参数 (2)外部参数:相机坐标系与世界坐标系的转换 3.图像预处理和特征提取 预处理:主要包括图像对比度的增强、随机噪声的去除、滤波和图像的增强、伪彩色处理等; 特征提取:常用的匹配特征主要有点状特征、线状特征和区域特征等 4.立体匹配:根据对所选特征的计算,建立特征之间的对应关系,将同一个空间物理点在不同图像中的映像点对应起来。 立体匹配有三个基本的步骤组成:1)从立体图像对中的一幅图像如左图上选择与实际物理结构相应的图像特征;2)在另一幅图像如右图中确定出同一物理结构的对应图像特征;3)确定这两个特征之间的相对位置,得到视差。其中的步骤2是实现匹配的关键。 5.深度确定 通过立体匹配得到视差图像之后,便可以确定深度图像,并恢复场景3-D信息。 三.Triclops库中的数据流程 Triclops库中的数据流程如下图所示。系统首先从相机模型中获得raw格式的图像,最终将其处理成深度图像。在系统中有两个主要的处理模块。第一个处理模块是一个应用了低通滤波、图像校正和边缘检测的预处理模块。第二个处理模块用来做立体匹配、结果确认和亚像素插值。最后的处理结果就是一幅深度图像。 1.预处理(Pre-processing)

一种快速双目立体匹配方法

邮局订阅号:82-946120元/年技术创新 软件时空 《PLC 技术应用200例》 您的论文得到两院院士关注 一种快速双目立体匹配方法 A Fast Stereo Matching Method for Binocular Images (苏州大学) 梅金燕龚声蓉赵勋杰 MEI Jin-yan GONG Sheng-rong ZHAO Xun-jie 摘要:在双目立体视觉中立体匹配是关键技术之一。为了提高匹配速度,提出一种新的立体匹配方法。首先根据极线约束条件限定同名点搜索区域,然后在极线约束区域使用活动轮廓分割出物体区域,进一步缩小匹配点搜索范围。在匹配算法方面,使用了邻域差值模板匹配方法。实验证明,提出的方法能够显著地提高匹配速度,并有较好的匹配精度。关键词:立体匹配;极线约束;活动轮廓;领域差值模板中图分类号:TP391文献标识码:A Abstract:Stereo matching is crucial for the distance measurement with binocular stereo system.Since the two cameras are hardly to be strictly parallel,matching based on epipolar constraint can not be applied directly.Analysing the system ’s module,a new mach -ing method was proposed in this paper.Firstly,the correct loaction area was selected based on the epipolar constraint.Secondly,the background was excluded out of the former area by active counter model.Finaly,the corresponding point is matched via feature tem -plate which is formed of neighborhood difference.The experimental results show that the proposed algorithm can improve stereo matching speed and it is more effective in the situation of detecting more than one point on the surface of the same object.Key words:Stereo matching;Epipolar constraint;Active counter;Neighborhood difference template 文章编号:1008-0570(2012)10-0415-03 引言 双目立体视觉是计算机视觉的一个重要分支,它是一种由两幅图像获取物体三维几何信息的方法。它利用两个摄像机对同一景物从不同的视角成像,然后根据视差和投影模型来获取景物的三维信息。双目立体视觉由于直接模拟了人类双眼视觉的生理构造,因此,在许多领域有着广阔的应用前景,如微操作系统的位姿检测与控制、机器人导航与航测、三维测量学及虚拟现实等。 在双目立体视觉中,通过立体匹配方法寻找空间同一物点在左、右两幅图像上对应的投影点(同名点)进而获得视差。立体匹配方法大体可以分为基于区域灰度和基于特征两类匹配方法。基于区域灰度的匹配方法简单,容易实现,但对于左图像中的每一像点,都要与右图像中所有点进行相 关运算,计算量大,实时性差,且对光照因素比较敏感。通过极线约束,可以沿物点对应极线搜索同名点,将二维搜索限制到一维搜索,提高匹配的速度。但是,在两图极线不平行时这种匹配方法不适合。针对这种情况,文献对整个图像平面投影进行校正,使两个图像重投影后极线平行,对校正后的图像进行相关匹配。然而,平面投影校正忽略了极线的方向性,在极点距离图像较近时图像失真严重,方法比较复杂。文献提出了基于极线局部校正的匹配算法,使基于灰度的匹配方法可以得到有效的应用,然而,该方法匹配时间较长,效率较低。文献在分析双目成像形成极线约束的基础上,从行和列两个方向上缩小第二幅图像待 匹配特征点坐标的搜索范围,提高了匹配速度,但是搜索范围通常包括前景和后景,匹配正确与否易受后景影响。 针对上述问题,本文提出了一种快速立体匹配方法。首先根据极线约束限定同名点搜索区域,然后通过检测物体轮廓去除背景区域,进一步约束搜索区域。最后,采用邻域差值模板进行匹配,将特征匹配和区域匹配两种方法结合起来,减小光照因素的影响。 1极线约束原理 在如图1所示的双目立体视觉系统中,假设三维空间点P 是两个摄像机均可见的空间场景物上的一点,点P 在光心点为 C L 和C R 相机像面I L 、I R 上的投影分别为P L 、P R ,由光心、 像点和空间点形成的平面称为极平面。两光心连线与像平面的交点分别为E L 、E R 。极平面与左像面I L 的交线P L E L 图1双目立体视觉中的极线几何关系 称为点P R 在图像I L 中的极线,交线P R E R 也有同样的定义。无论与P L 对应的P 点距离远近,它在右图上的投影点总是在P L 的极线P R E R 上。对于任意P L ,只需要在它的极线上寻找对应点 P R ;反之亦然。 这是双目视觉的一个重要特点,称之为极线约束。通过极线约束,我们可以由一个投影点知道其对应的极线,但不知道它对应点的具体位置,即极限约束是点与直线的对应,而不是点与点的对应。尽管如此,极限约束给出了对应点重要的约束条件,它将对应点匹配从整幅图像寻找限定在一条直线上需找对应点。因此,极大地减小了搜索地范围,对点的匹配具有 梅金燕:硕士研究生 基金项目:基金申请人:龚声蓉;项目名称:基于二型模糊概率图模型的多摄像头目标检测研究;基金颁发部门:国家自然科学基金委员会(61170124) 415--

双目视觉的图像立体匹配系统-说明文档

双目视觉的图像立体匹配系统文档 1 引言 计算机视觉技术的发展将光与影的艺术和计算机的逻辑性紧密结合起来,而双目立体视觉技术更将这种结合从平面二次元上升到立体的角度,为我们的生产生活提供了新的技术和工具,例如已经被普遍运用的3D电影技术,研发中的虚拟现实、谷歌视觉眼镜、汽车自动驾驶技术,即将上市的淘宝虚拟实景购物等,不断改变着我们的生活,另外双目立体视觉在军事、医学、工业等领域都有其重要的作用,是机器感知物体几何层级的基础,因此对双目视觉的理论研究成为推动立体视觉乃至计算机视觉技术在各个领域创造更高价值的重要因素。 在双目视觉的研究和运用中,最重要的一个阶段无疑为将平面图像转化为可计算机可识别的立体模型,这里将用到立体匹配技术,目前双目视觉研究领域用到的立体匹配算法及其衍生算法有很多种,算法的效率和匹配精度将直接影响到算法运用的响应时间和准确度[1],当今各种视觉智能设备的发展需要将立体匹配过程直接嵌入到单片机中,这种场景下,算法的效率和匹配精度将直接决定不同运算性能的嵌入式设备的选择和产品推广后的用户体验度,也将直接决定设备成本,因此研究出更加速度快、精度高的立体匹配算法在各领域都具有划时代的重要意义。 2 系统方案设计 2.1 双目视觉的图像立体匹配系统 说起立体视觉系统,要从人的双眼说起,人眼是一个典型的双目视觉系统,每只眼睛是一个摄像机,两只平行的眼睛是两台平行的摄像机,因为两只眼睛的位置不同,看到的图像是有差异的,这个差异就是立体视觉的基础,视觉信号传入大脑,大脑利用其强大的匹配能力,就可以基本确定图像中的物体的立体信息,或者叫做图像的深度信息。随着人们知识和生产生活的发展,需要通过仿真立体视觉的原理,让计算机获取到图像从2D向3D发展,即获取图像的深度信息,以实现一些和空间视觉有关的需求,这就出现了机器立体视觉技术。

双目视觉传感器系统

双目视觉传感器系统 视觉检测广泛地应用于工件的完整性、表面平整度的测量:微电子器件(IC芯片、PC板、BGA)等的自动检测;软质、易脆零部件的检测;各种模具三维形状的检测;机器人的视觉导引等。最具有吸引力的是由视觉传感器阵列组成的大型物体(如白车身)空间三维尺寸多传感器视觉检测系统。 双目视觉传感器由两台性能相同的面阵CCD摄像机组成,基于立体视差的原理,可完成视场内的所有特征点的三维测量,尤其是其它类型的视觉传感器所不能完成的测量任务,如圆孔的中心、三棱顶点位置的测量等。因此,双目视觉传感器是多传感器视觉检测系统的主要传感器之一。要实现双目视觉传感器直接测量大型物体关键点的三维测量,就必须知道传感器的内部参数(摄像机的参数)、结构参数(两摄像机间的位置关系)及传感器坐标系与检测系统的整体坐标系的关系(即全局标定)。因此,在实际测量之前,先要对摄像机进行参数标定。一般方法是,传感器被提供给整个系统使用前,就离线完成传感器的内部参数及结构参数的标定,采用一标准二维精密靶标及一维精密导轨,通过移动导轨来确定坐标系的一个坐标,通过摄像机的像面坐标及三个世界坐标的对应关系求得这些参数。 这种方法的缺点是:标定过程中,需要精确调整靶标与导轨的垂直关系,而且需多次准确移动导轨;同时标定过程的环境与实际测量的情形有差异;传感器在安装的过程中,易引起部分参数的变化,需多次的拆卸;摄像机还需进行全局标定。由此可知标定的劳动强度大,精度难以保证。本文提出了一种现场双目传感器的标定方法,只需先确定摄像机的部分不易变化的参数,其它参数在摄像机安装到整个系统后进行标定。该方法大大地减少了上述因素的影响,能得到满意的标定精度。 双目视觉测量探头由2个CCD摄像机和1个半导体激光器组成,如下图所示。

双目立体视觉

双目立体视觉 双目立体视觉的研究一直是机器视觉中的热点和难点。使用双目立体视觉系统可以确定任意物体的三维轮廓,并且可以得到轮廓上任意点的三维坐标。因此双目立体视觉系统可以应用在多个领域。现说明介绍如何基于HALCON实现双目立体视觉系统,以及立体视觉的基本理论、方法和相关技术,为搭建双目立体视觉系统和提高算法效率。 双目立体视觉是机器视觉的一种重要形式,它是基于视差原理并由多幅图像获取物体三维几何信息的方法。双目立体视觉系统一般由双摄像机从不同角度同时获得被测物的两幅数字图像,或由单摄像机在不同时刻从不同角度获得被测物的两幅数字图像,并基于视差原理恢复出物体的三维几何信息,重建物体三维轮廓及位置。双目立体视觉系统在机器视觉领域有着广泛的应用前景。 HALCON是在世界范围内广泛使用的机器视觉软件。它拥有满足您各类机器视觉应用需求的完善的开发库。HALCON也包含Blob分析、形态学、模式识别、测量、三维摄像机定标、双目立体视觉等杰出的高级算法。HALCON支持Linux和Windows,并且可以通过C、C++、C#、Visual Basic和Delphi 语言访问。另外HALCON与硬件无关,支持大多数图像采集卡及带有DirectShow和IEEE 1394驱动的采集设备,用户可以利用其开放式结构快速开发图像处理和机器视觉应用软件。 一.双目立体视觉相关基本理论说明 1.1 双目立体视觉原理 双目立体视觉三维测量是基于视差原理,图1所示为简单的平视双目立体成像原理图,两摄像机的投影中心的连线的距离,即基线距为b。摄像机坐标系的原点在摄像机镜头的光心处,坐标系如图1所示。事实上摄像机的成像平面在镜头的光心后,图1中将左右成像平面绘制在镜头的光心前f处,这个虚拟的图像平面坐标系O1uv的u轴和v轴与和摄像机坐标系的x轴和y轴方向一致,这样可以简化计算过程。左右图像坐标系的原点在摄像机光轴与平面的交点O1和O2。空间中某点P在左图像和右图像中相应的坐标分别为P1(u1,v1)和P2(u2,v2)。假定两摄像机的图像在同一个平面上,则点P图像坐标的Y坐标相同,即v1=v2。由三角几何关系得到: 上式中(xc,yc,zc)为点P在左摄像机坐标系中的坐标,b为基线距,f为两个摄像机的焦距,(u1,v1)和(u2,v2)分别为点P在左图像和右图像中的坐标。 视差定义为某一点在两幅图像中相应点的位置差: 图1 双目立体成像原理图图3 一般双目立体视觉系统原理图

双目视觉成像原理

双目视觉成像原理 1、引言 双目立体视觉(Binocular Stereo Vision)就是机器视觉得一种重要形式,它就是基于视差原理并利用成像设备从不同得位置获取被测物体得两幅图像,通过计算图像对应点间得位置偏差,来获取物体三维几何信息得方法。融合两只眼睛获得得图像并观察它们之间得差别,使我们可以获得明显得深度感,建立特征间得对应关系,将同一空间物理点在不同图像中得映像点对应起来,这个差别,我们称作视差(Disparity)图。 双目立体视觉测量方法具有效率高、精度合适、系统结构简单、成本低等优点,非常适合于制造现场得在线、非接触产品检测与质量控制。对运动物体(包括动物与人体形体)测量中,由于图像获取就是在瞬间完成得,因此立体视觉方法就是一种更有效得测量方法。双目立体视觉系统就是计算机视觉得关键技术之一,获取空间三维场景得距离信息也就是计算机视觉研究中最基础得内容。 2、双目立体视觉系统 立体视觉系统由左右两部摄像机组成。如图一所示,图中分别以下标L与r标注左、右摄像机得相应参数。世界空间中一点A(X,Y,Z)在左右摄像机得成像面C L与C R上得像点分别为al(ul,vl)与ar(ur,vr)。这两个像点就是世界空间中同一个对象点A得像,称为“共轭点”。知道了这两个共轭像点,分别作它们与各自相机得光心Ol与Or得连线,即投影线alOl与arOr,它们得交点即为世界空间中得对象点A(X,Y,Z)。这就就是立体视觉得基本原理。 图1:立体视觉系统 3、双目立体视觉相关基本理论说明 3.1 双目立体视觉原理 双目立体视觉三维测量就是基于视差原理,图2所示为简单得平视双目立体成像原理图,两摄像机得投影中心得连线得距离,即基线距为b。摄像机坐标系得原点在摄像机镜头得光心处,坐标系如图2所示。事实上摄像机得成像平面在镜头得光心后,图2中将左右成像平面绘制在镜头得光心前f处,这个虚拟得图像平面坐标系O1uv得u轴与v轴与与摄像机坐标系得x轴与y轴方向一致,这样可以简化计算过程。左右图像坐标系得

双目立体视觉技术简介

双目立体视觉技术简介 1. 什么是视觉 视觉是一个古老的研究课题,同时又是人类观察世界、认知世界的重要功能和手段。人类从外界获得的信息约有75%来自视觉系统,用机器模拟人类的视觉功能是人们多年的梦想。视觉神经生理学,视觉心里学,特别是计算机技术、数字图像处理、计算机图形学、人工智能等学科的发展,为利用计算机实现模拟人类的视觉成为可能。在现代工业自动化生产过程中,计算机视觉正成为一种提高生产效率和检验产品质量的关键技术之一,如机器零件的自动检测、智能机器人控制、生产线的自动监控等;在国防和航天等领域,计算机视觉也具有较重要的意义,如运动目标的自动跟踪与识别、自主车导航及空间机器人的视觉控制等。人类视觉过程可以看作是一个从感觉到知觉的复杂过程,从狭义上来说视觉的最终目的是要对场景作出对观察者有意义的解释和描述;从广义上说,是根据周围的环境和观察者的意愿,在解释和描述的基础上做出行为规划或行为决策。计算机视觉研究的目的使计算机具有通过二维图像信息来认知三维环境信息的能力,这种能力不仅使机器能感知三维环境中物体的几何信息(如形状、位置、姿态运动等),而且能进一步对它们进行描述、存储、识别与理解,计算机视觉己经发展起一套独立的计算理论与算法。 2. 什么是计算机双目立体视觉 双目立体视觉(Binocular Stereo Vision)是机器视觉的一种重要形式,它是基于视差原理并利用成像设备从不同的位置获取被测物体的两幅图像,通过计算图像对应点间的位置偏差,来获取物体三维几何信息的方法。融合两只眼睛获得的图像并观察它们之间的差别,使我们可以获得明显的深度感,建立特征间的对应关系,将同一空间物理点在不同图像中的映像点对应起来,这个差别,我们称作视差(Disparity)图像,如图一。 图一、视差(Disparity)图像 双目立体视觉测量方法具有效率高、精度合适、系统结构简单、成本低等优点,非常适合于制造现场的在线、非接触产品检测和质量控制。对运动物体(包括动物和人体形体)测量中,由于图像获取是在瞬间完成的,因此立体视觉方法是一种更有效的测量方法。 双目立体视觉系统是计算机视觉的关键技术之一,获取空间三维场景的距离信息也是计算机视觉研究中最基础的内容。 双目立体视觉的开创性工作始于上世纪的60年代中期。美国MIT的Roberts通过从数字图像中提取立方体、楔形体和棱柱体等简单规则多面体的三维结构,并对物体的形状和空间关系

基于HALCON的双目立体视觉系统实现

基于HALCON的双目立体视觉系统实现 段德山(大恒图像公司) 摘要双目立体视觉的研究一直是机器视觉中的热点和难点。使用双目立体视觉系统可以确定任意物体的三维轮廓,并且可以得到轮廓上任意点的三维坐标。因此双目立体视觉系统可以应用在多个领域。本文将主要介绍如何基于HALCON实现双目立体视觉系统,以及立体视觉的基本理论、方法和相关技术,为搭建双目立体视觉系统和提高算法效率提供了参考。 关键词双目视觉三维重建立体匹配摄像机标定视差 双目立体视觉是机器视觉的一种重要形式,它是基于视差原理并由多幅图像获取物体三维几何信息的方法。双目立体视觉系统一般由双摄像机从不同角度同时获得被测物的两幅数字图像,或由单摄像机在不同时刻从不同角度获得被测物的两幅数字图像,并基于视差原理恢复出物体的三维几何信息,重建物体三维轮廓及位置。双目立体视觉系统在机器视觉领域有着广泛的应用前景。 HALCON是在世界范围内广泛使用的机器视觉软件。它拥有满足您各类机器视觉应用需求的完善的开发库。HALCON也包含Blob分析、形态学、模式识别、测量、三维摄像机定标、双目立体视觉等杰出的高级算法。HALCON支持Linux和Windows,并且可以通过C、C++、C#、Visual Basic和Delphi语言访问。另外HALCON与硬件无关,支持大多数图像采集卡及带有DirectShow和IEEE 1394驱动的采集设备,用户可以利用其开放式结构快速开发图像处理和机器视觉应用软件。 一.双目立体视觉相关基本理论介绍

1.1 双目立体视觉原理 双目立体视觉三维测量是基于视差原理,图1所示为简单的平视双目立体成像原理图,两摄像机的投影中心的连线的距离,即基线距为b。摄像机坐标系的原点在摄像机镜头的光心处,坐标系如图1所示。事实上摄像机的成像平面在镜头的光心后,图1中将左右成像平面绘制在镜头的光心前f处,这个虚拟的图像平面坐标系O1uv的u轴和v轴与和摄像机坐标系的x轴和y轴方向一致,这样可以简化计算过程。左右图像坐标系的原点在摄像机光轴与平面的交点O1和O2。空间中某点P在左图像和右图像中相应的坐标分别为P1(u1,v1)和P2(u2,v2)。假定两摄像机的图像在同一个平面上,则点P图像坐标的Y坐标相同,即v1=v2。由三角几何关系得到: 上式中(xc,yc,zc)为点P在左摄像机坐标系中的坐标,b为基线距,f为两个摄像机的焦距,(u1,v1)和(u2,v2)分别为点P在左图像和右图像中的坐标。 视差定义为某一点在两幅图像中相应点的位置差:

双目立体视觉

计算机双目立体视觉 双目立体视觉技术是仿照人类利用双目线索感知深度信息的方法,实现对三维信息的感知。为解决智能机器人抓取物体、视觉导航、目标跟踪等奠定基础。 双目立体视觉(Binocular Stereo Vision )是机器视觉的一种重要形式,它是基于视差原理并利用成像设备从不同的位置获取被测物体的两幅图像,通过计算图像对应点之间的位置偏差,来获取物体三维几何信息的方法。融合两只眼睛获取的图像并观察它们之间的差别,使我们可以获得明显的深度感,建立特征间的对应关系,将同一空间物理点在不同图像中的映像点对应起来,这个差别,我们称作为视差(Disparity )图像。 双目立体视觉系统 立体视觉系统由左右两部摄像机组成,如图,世界空间中的一点A(X,Y ,Z)在左右摄像机的成 像面1C 和r C 上的像点分别为)(111,v u a 和) (r r r v u a ,。这两个像点是世界空间中同一个对象点A 的像,称为“共轭点”。知道了这两个共轭像点,分别作它们与各自相机的光心1O 和r O 的连线,即投影线11O a 和r r O a ,它们的交点即为世界空间中的对象点A 。这就是立体视觉的基本原理。 双目立体视觉智能视频分析技术 恢复场景的3D 信息是立体视觉研究中最基本的目标,为实现这一目标,一个完整的立体视觉系统通常包含六个模块:图像获取、摄像机标定、特征提取、立体匹配、三维恢复和视频

分析(运动检测、运动跟踪、规则判断、报警处理)。 图像获取(Image Acquisition ) 数字图像的获取是立体视觉的信息来源。常用的立体视觉图像一般为双目图像,有的采用夺目图像。图像的获取方式有很多种,主要有具体运用的场合和目的决定。立体图像的获取不仅要满足应用要求,而且考虑视点差异、光照条件、摄像机的性能和场景特点等方面的影像。 摄像机标定(Camera Calibration ) 图像上每一点的亮度反映了空间物体表面某点反射光的强度,而该点在图像上的位置则与空 间物体表面相应点的几何位置有关。这些位置的相互关系由摄像机成像几何模型来决定。该几何模型的参数称为摄像机参数,这些参数必须由实验与计算来确定,实验与计算的过程称为摄像机定标。 立体视觉系统摄像机标定是指对三维场景中对象点在左右摄像机图像平面上的坐标位置)(111,v u a 和) (r r r v u a ,与其世界空间坐标A (X, Y , Z )之间的映射关系的确立,是实现立体视觉三维模型重构中基本且关键的一步。 特征提取(Feature Acquisition ) 特征提取的目的是获取匹配得以进行的图像特征,图像特征的性质与图像匹配的方法选择有着密切的联系。目前,还没有建立起一种普遍适用的获取图像特征的理论,因此导致了立体视觉研究领域中匹配特征的多样化。像素相位匹配是近二十年才发展起来的一类匹配算法。相位作为匹配基元,本身反映着信号的结构信息,对图像的高频噪声有很好的一直作用,适于并行处理,能获得亚像素级精度的致密视差。但存在相位奇点和相位卷绕的问题,需加入自适应滤波器解决。或者是像素的集合,也可以是它们的抽象表达,如图像的结构、图像的目标和关系结构等。常用的匹配特征主要有点状特征、线装特征和区特征等几种情形。 一般而言,尺度较大的图像特征蕴含较多的图片信息,且特征本身的数目较少,匹配效率高;但特征提取和描述过程存在较大的困难,定位精度也较差。而对于尺度较小的图像特征来说,对其进行表达和描述相对简单,定位的精度高;但由于特征本身数码较多,所包含的图像信息少,在匹配时需要采用较为严格的约束条件和匹配策略,一尽可能的减少匹配歧义和提高匹配效率。总的来说,好的匹配特征应该具有要可区分性、不变性、唯一性以及有效解决匹配歧义的能力。 图像匹配(Image Matching ) 在立体视觉中,图像匹配是指将三维空间中一点A (X, Y , Z )在左右摄像机的成像面1C 和r C 上的像点)(111,v u a 和) (r r r v u a ,对应起来。图像匹配是立体视觉中最重要也是最困难的问题,一直是立体视觉研究的焦点。当空间三维场景经过透视投影(Perspective Projection )变换为二维图像时,同一场景在不同视点的摄像机图像平面上成像会发生不同程度的扭曲和变形,而且场景中的光照条件、被测对象的几何形状和表面特性、噪声干扰和畸变、摄像机特性等诸多因素的影响都被集中体现在单一的图像灰度值中。显然,要包含了如此之多不利因素的图像进行精准的匹配是很不容易的。

基于双目立体视觉的动态体积测量系统.

基于双目立体视觉的动态体积测量系统 王畅1,赵彩霞2,韩毅1 1. 长安大学汽车学院,陕西西安(710064) 2. 长安大学电控学院,陕西西安(710064) E-mail :wangchang0905@https://www.360docs.net/doc/d314353777.html, 摘要:以双目立体视觉为基础,设计了一种动态体积测量系统。系统主要应用于粉末状药物的流散性分析。系统中采用三台数字式CCD 摄像机对被测物进行图像采集,利用Visual C++.net以及OpenGL 对测量过程中所得到图像进行三维重构,还原物体的三维形状,同时得到在每个测量时刻药堆的体积, 实现了对药堆的连续非接触式测量。 关键词:双目立体视觉;非接触式测量;三维重构 中图分类号:TP29 文献标识码:A 1. 引言 药品生产过程中,药物的流散性直接影响到药品自动压装的生产工艺。本文设计了一种用于动态测量粉末状药物体积的非接触式测量系统,通过药堆体积随时间增长的关系曲线来判断药物的流散性能。系统模拟药品的填装过程,采用一个玻璃漏斗,下面安装一个透明量杯。药品从漏斗下落时,安装在量杯周围的摄像机对量杯底部的药堆进行实时图像采集,通过图像处理及三维重构得到采集过程被测对象的形状和体积。 2. 系统构成

系统的主要测量对象是粉末状药物或者其他粉末状物质,在药物下落过程中,药堆的体积不断增长。系统中的三台数字摄像机从三个不同角度对药堆进行图像采集,对采集到的图像进行三维重构后得到特定时刻序列上的三维形状及体积。图1是系统的组成图。 图1:系统组成图 2.1计算机 系统中采用两台计算机分工协作,一台用于控制系统的工作,另外一台用于图像处理及

三维重构。三维重构对计算机的性能有很高的要求,特别是对CPU 的运算速度和内存大小有很高要求。对三幅图像进行三维重构时运算量非常大,普通计算机运算起来耗时长,以Pentium 4,2.6G 的CPU ,512MB 内存进行运算时需要5分钟左右,同时容易造成死机。为了提高处理速度以及稳定性, 图像处理计算机采用了Intel Corel Q6600四核处理器,主频为 2.4G ,内存大小为4G 。用该计算机对一帧图像进行重构只需5秒左右。 2.2摄像机系统 与普遍应用的图像采集系统不同,本系统中没有采用图像采集卡采集图像。系统中所选用的摄像机是数字式的,三台数字式摄像机输出数字图像,经千兆以太网交换机与计算机的千兆网卡相连。系统中采用德国BASLER scA1000-30gm数字式黑白摄像机。该摄像机采用3/1〞SONY CCD芯片,分辨率为1034×779,采集频率为30帧每秒。摄像机内置了千兆以太网输出端口,使用六类网线进行数据传输时,传输速率能够达到320MB/s,在采集速度为30帧每秒的情况下能够很好的满足系统要求。摄像机镜头采用computar M1214-MP 2/3〞镜头,焦距为12mm ,手动调节光圈。 系统中的三台摄像机在空间以120°对称安装,摄像机俯拍角度为18.4°,镜头离地高度为175mm 。图2是单个摄像机的安装示意图。 图2:摄像机安装示意图

双目视觉测量系统的参数选择和误差分析(精)

双目视觉测量系统结构参数设计及误差分析 摘要:通过对双目视觉测量系统的研究,建立了双目视觉测量系统的误差模型,并分析了系统结构参数对测量结果的影响。在理论上对系统结构参数(两光轴夹角、基线距离等参数与测量精度之间的关系进行了系统、详尽的分析,得出了测量系统的位置误差对距离方向上的精度影响较大;光轴夹角的变化对测量误差影响不大,而距离方向的误差随着基线距离的增加而减小的结沦。本文建立的误差模型对具体的双目视觉测量系统的设计具有指导作用。 关键词:光学测量;双目视觉;误差分析;结构参数。 0 引言 近来,由于传统的测量方法低速低效,不能满足发展迅速的先进工艺制造的需求。因此,高效、智能、高精度的视觉测量方法的研究越来越受到关注。根据国内外研究,视觉测量技术将会在未来军用民用领域得到广泛应用。但是,目前视觉测量技术仍不能避免一些干扰因素,诸如视线噪声、相机性能、透镜畸变、特征提取和计算机视觉结构的影响,测量精度难以满足工业要求。因此,如何提高测量精度是工业视觉测量方法面临的最大问题。 由于图像一点的三维坐标不能反应一个相机拍摄图片的所有信息,而两个相机拍摄一点图片不能用三角函数的方法进行三维计算。因此,常常在视觉系统中加入镜面或结构光来实现双目视觉的功能。双目视觉系统具有柔性结构,易于安装并且价格低廉,被广泛应用。但是,当视觉系统选择不同的结构参数,测量精度会受到很大影响。目前,大多数视觉结构根据仿真实验确定,很少有理论依据。而且大多数视觉系统强调物体识别而不是测量精度。为了提高测量精度和扩展应用范围,对于结构参数的综合分析十分必要。 本文确立了双目测量系统结构参数的数学模型,通过分析结构参数和测量点的特征关系,明确结构参数的误差分布曲线。根据matlab的仿真结果,确定了在误差最小的范围内的最有价值的结构参数分布。 1 双目视觉系统的数学模型 1.1双目视觉系统的三维结构模型 双目视觉系统的结构参数主要包括扩:两个相机的光轴与基线形成的夹角 (α1, α2,基线是两台照相机物镜光学中心的连线(用B表示);两台照相机的焦点(f1 ,f 2和物距。这些参数中一个变化就会引起其他几个参数的变化。

相关文档
最新文档