液压缸计算

液压缸计算
液压缸计算

液压缸设计计算说明

系统压力为1p =25 MPa

本系统中有顶弯缸、拉伸缸以及压弯缸。以下为这三种液压缸的设计计算。

一、 顶弯缸

1 基本参数的确定

(1)按推力F 计算缸筒内径D

根据公式 3.5710D -=? ① 其中,推力F=120KN

系统压力1p =25 MPa 带入①式,计算得D= 78.2mm ,圆整为D = 80 mm

(2)活塞杆直径d 的确定

确定活塞杆直径d 时,通常应先满足液压缸速度或速比的要求,然后再校核其结构强度和稳定性。若速比为?,则

d = ② 取?=1.6,带入②式,计算得d =48.9mm ,圆整为d =50mm

8050

D d ?===1.6 (3)最小导向长度H 的确定

对一般的液压缸,最小导向长度H 应满足

202

L D H ≥+ ③ 其中,L 为液压缸行程,L=500mm

带入③式,计算得H=65mm

(4)活塞宽度B 的确定

活塞宽度一般取(0.6~1.0)B D = ④ 得B=48mm~80mm ,取B=60mm

(5)导向套滑动面长度A 的确定

在D <80mm 时,取(0.6~1.0)A D = ⑤ D >80mm 时,取(0.6~1.0)A d = ⑥ 根据⑤式,得A=48mm~80mm ,取A=50mm

(6)隔套长度C 的确定 根据公式2

A B C H +=- ⑦ 代入数据,解得C=10mm

2 结构强度计算与稳定校核

(1)缸筒外径

缸筒内径确定后,有强度条件确定壁厚δ,然后求出缸筒外径D 1

假设此液压缸为厚壁缸筒,则壁厚1]2D δ= ⑧ 液压缸筒材料选用45号钢。其抗拉强度为σb =600MPa 其中许用应力[]b

n σσ=,n 为安全系数,取n=5

将数据带入⑧式,计算得δ=8.76mm

故液压缸筒外径为D 1=D+2δ=97.52mm ,圆整后有

D 1=100mm ,缸筒壁厚δ=10mm

(2)液压缸的稳定性和活塞杆强度验算

按速比要求初步确定活塞杆直径后,还必须满足液压缸的稳定性及其

强度要求。

由液压缸的固定形式,查表得,l/d <10,不需要进行稳定性验算。 l/d <10时,当活塞杆受纯压缩或纯拉伸时有

()

[]2214F d d σσπ=≤- ⑨ 式中,d 1为空心活塞杆内径,对实心杆,d 1=0

[σ]为活塞杆材料的许用应力,[]s n σσ=

,s σ为材料的屈服点,

安全系数n=1.4~2

活塞杆为实心杆,材料选用45号钢,s σ=335MPa ,安全系数取n=2,

将数据带入⑨式,计算得,σ=61.1155MPa ≤[]σ

强度满足要求。

3 液压缸其他结构的设计

(1)液压缸的密封

活塞杆与液压缸之间 活塞杆与液压缸之间为往复运动密封。选用A 型液压缸活塞杆用防尘圈(FA50×58×5 GB/T 10708.3-1989)和活塞杆用高低唇Y 型橡胶密封圈(Y60×50×8 GB/T10708.1-1989) 活塞上的密封 活塞的密封选用活塞用高低唇Y 型橡胶密封圈(Y80×65×12.5 GB/T10708.1-1989)

端盖与缸体之间 液压缸选用法兰连接,端盖与缸体之间选用O 型橡胶密封圈(75×2.65 G GB/T 3452.1-1992)

(2)液压缸的缓冲装置

当活塞杆速度大于0.1m/s 时,需要设置缓冲装置。该顶弯缸最大速度为0.08m/s ,不需要设置和缓冲装置。

二、拉伸缸

1 基本参数的确定

(1)按推力F计算缸筒内径D

将推力F=60KN,系统压力

p=25 MPa带入①式,计算得D=55.3mm

1

圆整为D=63mm

(2)活塞杆直径d的确定

取?=1.8,带入②式,计算得d=42mm,圆整为d=45mm

(3)最小导向长度H的确定

此缸的行程L=250mm,带入③式,计算得H=44mm

(4)活塞宽度B的确定

根据公式④,有B=37.8mm~63mm,取B=40mm

(5)导向套滑动面长度A的确定

因为D=63mm≤80mm,故根据公式⑤,有A=37.8mm~63mm,取A=40mm

(6)隔套长度C的确定

将A、B、H带入公式⑦,计算得C=4mm

2 结构强度计算与稳定校核

(1)缸筒外径

假设此液压缸为厚壁缸筒,液压缸筒材料选用45号钢,抗拉强度为σb=600MPa,安全系数取n=5。将以上数据带入⑧式,计算得δ=6.90mm

故液压缸筒外径为D1=D+2δ=76.8mm,圆整取

D1=80mm,缸筒壁厚δ=8.5mm

(2)液压缸的稳定性和活塞杆强度验算

由液压缸的固定形式,查表得,l/d<10,不需要进行稳定性验算。活塞杆为实心杆,材料选用45号钢,

σ=335MPa,安全系数取n=2,

s

当活塞杆受纯压缩或纯拉伸时,根据公式⑨,代入数据,计算得

σ=37.7256MPa≤[]σ

强度满足要求。

3 液压缸其他结构的设计

(1)液压缸的密封

活塞杆与液压缸之间活塞杆与液压缸之间为往复运动密封。选用A型液压缸活塞杆用防尘圈(FA45×53×5 GB/T 10708.3-1989)和活塞杆用高低唇Y型橡胶密封圈(Y55×45×8 GB/T10708.1-1989)

活塞上的密封活塞的密封选用活塞用高低唇Y型橡胶密封圈(Y63×53×8 GB/T10708.1-1989)

端盖与缸体之间液压缸选用法兰连接,端盖与缸体之间选用O型橡胶密封圈(58×2.65 G GB/T 3452.1-1992)

(2)液压缸的缓冲装置

当活塞杆速度大于0.1m/s时,需要设置缓冲装置。该顶弯缸最大速度为0.045m/s,不需要设置和缓冲装置。

三、压弯缸

1 基本参数的确定

(1)按推力F计算缸筒内径D

将推力F=80KN,系统压力

p=25 MPa带入①式,计算得D=63.8mm

1

圆整为D=63mm

(2)活塞杆直径d的确定

取?=1.6,带入②式,计算得d=38.57mm,圆整为d=40mm

(3)最小导向长度H的确定

此缸的行程L=500mm,带入③式,计算得H=56.5mm

(4)活塞宽度B的确定

根据公式④,有B=37.8mm~63mm,取B=40mm

(5)导向套滑动面长度A的确定

因为D=63mm≤80mm,故根据公式⑤,有A=37.8mm~63mm,取A=40mm

(6)隔套长度C的确定

将A、B、H带入公式⑦,计算得C=16.5mm

2 结构强度计算与稳定校核

(1)缸筒外径

假设此液压缸为厚壁缸筒,液压缸筒材料选用45号钢,抗拉强度为σb=600MPa,安全系数取n=5。将以上数据带入⑧式,计算得δ=6.90mm

故液压缸筒外径为D1=D+2δ=76.8mm,圆整取

D1=80mm,缸筒壁厚δ=8.5mm

(2)液压缸的稳定性和活塞杆强度验算

由液压缸的固定形式,查表得,l/d>10,需要进行稳定性验算。

对液压缸,其稳定条件为

K K

F F n ≤ ⑩ 式中,F 为液压缸的最大推力,F=80KN

F K 为液压缸的临界力 n K 为稳定性安全系数,一般为2~4,取n K =4

将数据带入⑩式,计算得F K ≥320KN 又有柔度为l r μλ=

其中r =,I 为活塞杆端面的最小惯性矩,4

64d I π=。

查表得,μ=0.5

故有λ=25

而45号钢的对应于屈服极限时的柔度值λs=4613352.568s a b σ--===49.07 λ<λs ,故为短粗杆,只需满足cr σ<s σ即可。

cr σ=K F A

==254.65MPa <335MPa 液压缸稳定性满足要求。

活塞杆为实心杆,材料选用45号钢,s σ=335MPa ,安全系数取n=2,

当活塞杆受纯压缩或纯拉伸时,根据公式⑨,代入数据,计算得 σ=63.6620MPa ≤[]σ

强度满足要求。

3 液压缸其他结构的设计

(1)液压缸的密封

活塞杆与液压缸之间 活塞杆与液压缸之间为往复运动密封。选用

A型液压缸活塞杆用防尘圈(FA40×48×5 GB/T 10708.3-1989)和活塞杆用高低唇Y型橡胶密封圈(Y50×40×8 GB/T10708.1-1989)活塞上的密封活塞的密封选用活塞用高低唇Y型橡胶密封圈(Y63×53×8 GB/T10708.1-1989)

端盖与缸体之间液压缸选用法兰连接,端盖与缸体之间选用O型橡胶密封圈(58×2.65 G GB/T 3452.1-1992)

(2)液压缸的缓冲装置

当活塞杆速度大于0.1m/s时,需要设置缓冲装置。该顶弯缸最大速度为0.08m/s,不需要设置和缓冲装置。

液压缸的计算

液压缸的计算 (2)伸缩缸。伸缩缸由两个或多个活塞缸套装而成,前一级活塞缸的活塞杆内孔是后一级活塞缸的缸筒,伸出时可获得很长的工作行程,缩回时可保持很小的结构尺寸,伸缩缸被广泛用于起重运输车辆上。 伸缩缸可以是如图4-10(a)所示的单作用式,也可以是如图4-10(b)所示的双作用式,前者靠外力回程,后者靠液压回程。 图4-10伸缩缸 伸缩缸的外伸动作是逐级进行的。首先是最大直径的缸筒以最低的油液压力开始外伸,当到达行程终点后,稍小直径的缸筒开始外伸,直径最小的末级最后伸出。随着工作级数变大,外伸缸筒直径越来越小,工作油液压力随之升高,工作速度变快。其值为: Fi=p14 (4-30) 2V1=4q/πDi (4-31) 式中的i指i级活塞缸。 Di2 图4-11齿轮缸 (3)齿轮缸。它由两个柱塞缸和一套齿条传动装置组成,如图4-11所示。柱塞的移动经齿轮齿条传动装置变成齿轮的传动,用于实现工作部件的往复摆动或间歇进给运动。 二、液压缸的典型结构和组成 1.液压缸的典型结构举例图4-12所示的是一个较常用的双作用单活塞杆液压缸。它是由缸底20、缸筒10、缸盖兼导向套9、活塞11和活塞杆18组成。缸筒一端与缸底焊接,另一端缸盖(导向套)与缸筒用卡键6、套5和弹簧挡圈4固定,以便拆装检修,两端设有油口A和B。活塞11与活塞杆18利用卡键15、卡键帽16和弹簧挡圈17连在一起。活塞与缸孔的密封采用的是一对Y形聚氨酯密封圈12,由于活塞与缸孔有一定间隙,采用由尼龙1010制成的耐磨环(又叫支承环)13定心导向。杆18和活塞11的内孔由密封圈14密封。较长的导向套9则可保证活塞杆不偏离中心,导向套外径由O形圈7密封,而其内孔则由Y形密封圈8和防尘圈3分别防止油外漏和灰尘带入缸内。缸与杆端销孔与外界连接,销孔内有尼龙衬套抗磨。

液压缸计算

液压缸设计计算说明 系统压力为1p =25 MPa 本系统中有顶弯缸、拉伸缸以及压弯缸。以下为这三种液压缸的设计计算。 一、 顶弯缸 1 基本参数的确定 (1)按推力F 计算缸筒内径D 根据公式 3.5710D -=? ① 其中,推力F=120KN 系统压力1p =25 MPa 带入①式,计算得D= 78.2mm ,圆整为D = 80 mm (2)活塞杆直径d 的确定 确定活塞杆直径d 时,通常应先满足液压缸速度或速比的要求,然后再校核其结构强度和稳定性。若速比为?,则 d = ② 取?=1.6,带入②式,计算得d =48.9mm ,圆整为d =50mm 8050 D d ?===1.6 (3)最小导向长度H 的确定 对一般的液压缸,最小导向长度H 应满足 202 L D H ≥+ ③ 其中,L 为液压缸行程,L=500mm

带入③式,计算得H=65mm (4)活塞宽度B 的确定 活塞宽度一般取(0.6~1.0)B D = ④ 得B=48mm~80mm ,取B=60mm (5)导向套滑动面长度A 的确定 在D <80mm 时,取(0.6~1.0)A D = ⑤ D >80mm 时,取(0.6~1.0)A d = ⑥ 根据⑤式,得A=48mm~80mm ,取A=50mm (6)隔套长度C 的确定 根据公式2 A B C H +=- ⑦ 代入数据,解得C=10mm 2 结构强度计算与稳定校核 (1)缸筒外径 缸筒内径确定后,有强度条件确定壁厚δ,然后求出缸筒外径D 1 假设此液压缸为厚壁缸筒,则壁厚1]2D δ= ⑧ 液压缸筒材料选用45号钢。其抗拉强度为σb =600MPa 其中许用应力[]b n σσ=,n 为安全系数,取n=5 将数据带入⑧式,计算得δ=8.76mm 故液压缸筒外径为D 1=D+2δ=97.52mm ,圆整后有 D 1=100mm ,缸筒壁厚δ=10mm (2)液压缸的稳定性和活塞杆强度验算 按速比要求初步确定活塞杆直径后,还必须满足液压缸的稳定性及其

液压缸尺寸计算Word版

A、大腿液压缸结构尺寸设计计算 ①、大腿缸的负载组成 1、工作载荷(活塞杆在抬腿过程中始终受压) 2、惯性载荷(由于所选用液压缸尺寸较小,即不计 重量,且执行元件运动速度变化较小,故不考虑惯性载 荷) 3、密封阻力,其中是作用于活塞上的载 荷,且,是外载荷,,其中是 液压缸的机械效率,取 综上可得:外载荷,密封阻力, 总载荷。 ②、初选系统工作压力 1、按载荷选定工作压力,取工作腔压力为 (由于总载荷为61988N大于50000N,故根据手册 选取工作压力为12MPa) 2、选择执行元件液压缸的背压力为(由于回 油路带有调速阀,且回油路的不太复杂,故根据手册 选取被压压力为1MPa) ③、液压缸主要结构尺寸的计算 1、在整个抬腿过程中活塞杆始终受压,故可得下式: 活塞杆受压时:

----------液压缸工作腔压力(Pa) ----------液压缸回油腔压力(Pa) ----------无杆腔活塞有效作用面积,,D为活塞直径(m)----------有杆腔活塞有效作用面积,,d为活塞杆直径(m) 选取d/D=0.7(由于工作压力为12MPa大于5MPa,故根据手册选取d/D=0.7) 综上可得:D=82.8mm,根据手册可查得常用活塞杆直径,可取D=90mm,d=60mm。 校核活塞杆的强度,其中活塞杆的材料为45钢,故。 由于活塞杆在受负载的工作过程中仅收到压力作用,故仅校核其 压缩强度即可。,故满足强度要求。 即d=60mm,则D=90mm。 由此计算得工作压力为: 根据所选取的活塞直径D=90mm,可根据手册选的液压缸的外径为108mm,即可得液压缸壁厚为。 校核液压缸缸壁的强度,其中液压缸的材料为45钢,故

液压缸的设计计算2活塞杆的设计与计算

3.4.2活塞杆的设计与计算 活塞杆是液压缸专递动力的主要零部件,它要承受拉力、压力、弯力和震动冲击等多种作用,必须有足够的强度和刚度。 1、活塞杆直径的计算 根据活塞杆受力状况来确定,一般为受拉力作用时,d=0.3~0.5D 。 受压力作用时: P <5MPa 时,d=0.5~0.55D 5MPa <P <7MPa 时,d=0.6~0.7D P>7MPa 时,d=0.7D 因为P=1.5MPa ,D=0.066858mm ,故d=0.036771mm 根据下表可知活塞杆直径d=40mm 表3-3活塞杆直径系列mm (GB/T 2348-93) 2、活塞杆强度校核 (1)按强度条件校核 由公式 ] [4σπF d ≥ 式中 d---活塞杆的直径; F---活塞杆上的作用力; σ---活塞杆材料许用应力,n b σσ = ,σb 为材料的抗拉强度,n 为安

全系数,一般取4.1≥n 。 由45号钢的许用应力MPa n b 3735 .1560== = σ σ,N F 5000= 得 m d 00413.0≥,而mm d 40=,故活塞杆强度符合要求。 (2)按弯曲稳定性校核 当活塞杆全部伸出后,活塞杆外端到液压缸支撑点之间的距离d l 10>时,应进 行稳定性校核。 按材料力学理论,当一根受压直杆的轴向载荷F 超过临界受压载荷F K 时,即可能失去原有直线状态的平衡,称为失稳,其稳定条件为 n F k k F ≤ 式中 F ---液压缸的最大推力; F K ---液压缸的临界受压载荷; n k ---稳定安全系数,一般取4 2-=n k 。 液压缸临界受压载荷F K 与活塞杆和缸体的材料、长度、刚度以及两端支撑状况有关。F K 的相关计算如下: 由公式 l F EJ n k 2 2 π = 式中 l ---活塞杆的计算长度; n ---端点安装形式系数,两端固定,故4 =n ; E---材料的弹性模量,钢材的Pa E 10 1.211 ?= ; J---活塞杆的横截面转动惯量,实心杆的64 4 d J π = 。

液压缸的计算

3液压缸的设计及计算 3.1液压缸的负载力分析和计算 本课题任务要求设备的主要系统性能参数为: 铝合金板材的横截面积为2400mm 铝合金板材的强度极限为212/kg mm 型材长度1000mm ≤ (1)工作载荷R F 常见的工作载荷为活塞杆上所受的挤压力,弹力,拉力等,在这里我们可得 铝合金板材所受的最大外力为: 4604101201048F A KN σ-=?=???= (3-1) 式中 0σ----强度极限,Pa ; A -----截面面积,2m 。 由上式得液压缸所受工作载荷约为48KN (2)单活塞杆双作用缸液压缸作伸出运动时的一般模型如图3-1所示,其阻力F 或所需提供的液压力可表示为 2L a f p F F F F F F μ=++++ (3-2) 式中 L F -----作用在活塞上的工作阻力,N ; a F -----液压缸起动(或制动)时的惯性力,N ; f F -----运动部件处的摩擦阻力,N ; G F -----运动部件的自重(含活塞和活塞杆自重),N ; F μ-----液压缸活塞及活塞杆处的密封摩擦阻力,N ;通常以液压缸 的机械效率来反映,一般取机械效率 0.95m η=; 2p F -----回油管背压阻力,N 。 在上述诸阻力中,在不同条件下是不同的,因此液压缸的工作阻力往往是变化的。因为此处液压缸只是作拉伸板材变形作用,故其运动速度较小,惯性力和摩擦阻力都较小,得 50F KN ≤ (3-3)

3.2液压缸的液压力计算和工作压力选择 根据表4-3 根据负载选择压力,初选系统压力为8MPa 根据表4-5 液压缸速比与工作压力的关系,得出速比?=1.33 d =(3-4) 式中 d -----活塞杆直径,mm ; D -----液压缸内径,mm 。 根据表4-4 液压缸输出液压力,选择液压缸的内径140D mm =,活塞杆直径70d mm = 2 114 F A p D p F π ==≥ (3-5) 2222()'4 F A p D d p F π == -≥ (3-6) 式中 1F -----作用在活塞上的液压力(推力),N ; 2F -----作用爱活塞杆侧环形面积上的液压力(拉力),N ; p -----进液腔压力(产生推力时液压缸无杆腔进液;产生拉力时有杆 腔进液),Pa ; 1A -----活塞(无杆腔)面积,2m ; 2A -----有杆腔面积(活塞杆侧环形面积),222()4 A D d π =-,2m ; D -----液压缸内径(活塞外径),m ; d -----活塞杆直径,m ; F -----被推动的负载阻力(与1F 反向),N ; 'F -----被拉动的负载阻(与2F 反向),N 。 因为本课题主要是拉力作用,所以用公式(3-5)得:

液压缸计算公式

液压缸计算公式 1、液压缸内径和活塞杆直径的确定 液压缸的材料选为Q235无缝钢管,活塞杆的材料选为Q235 液压缸内径: 4,F4== D,3.14,,p F:负载力 (N) 2A:无杆腔面积 () mm P:供油压力 (MPa) D:缸筒内径 (mm) :缸筒外径 (mm) D1 2、缸筒壁厚计算 π×,??ηδσψμ 1)当δ/D?0.08时 pDmax,,(mm) 02,p 2)当δ/D=0.08~0.3时 pDmax,,(mm) 02.3,-3ppmax 3)当δ/D?0.3时 ,,,,0.4pDpmax,,,,(mm) 0,,2,1.3p,pmax,, ,b,, pn δ:缸筒壁厚(mm) ,:缸筒材料强度要求的最小值(mm) 0 :缸筒内最高工作压力(MPa) pmax :缸筒材料的许用应力(MPa) ,p :缸筒材料的抗拉强度(MPa) ,b :缸筒材料屈服点(MPa) ,s

n:安全系数 3 缸筒壁厚验算 22,(D,D)s1(MPa) PN,0.352D1 D1P,2.3,lg rLsD PN:额定压力 :缸筒发生完全塑性变形的压力(MPa) PrL :缸筒耐压试验压力(MPa) Pr E:缸筒材料弹性模量(MPa) :缸筒材料泊松比 =0.3 , 同时额定压力也应该与完全塑性变形压力有一定的比例范围,以避免 塑性变形的发生,即: ,,(MPa) PN,0.35~0.42PrL 4 缸筒径向变形量 22,,DPDD,1r,,D,,,,(mm) 22,,EDD,1,,变形量?D不应超过密封圈允许范围5 缸筒爆破压力 D1PE,2.3,lg(MPa) bD 6 缸筒底部厚度 Pmax,(mm) ,0.433D12,P :计算厚度处直径(mm) D2 7 缸筒头部法兰厚度 4Fbh,(mm) ,(r,d),aLP F:法兰在缸筒最大内压下所承受轴向力(N) b:连接螺钉孔的中心到法兰内圆的距离(mm) :法兰外圆的半径(mm) ra

液压缸设计与计算

液压缸是液压传动的执行元件,它和主机工作机构有直接的联系,对于不同的机种和机构,液压缸具有不同的用途和工作要求。因此,在设计液压缸之前,必须对整个液压系统进行工况分析,编制负载图,选定系统的工作压力(详见第九章),然后根据使用要求选择结构类型,按负载情况、运动要求、最大行程等确定其主要工作尺寸,进行强度、稳定性和缓冲验算,最后再进行结构设计。 1.液压缸的设计内容和步骤 (1)选择液压缸的类型和各部分结构形式。 (2)确定液压缸的工作参数和结构尺寸。 (3)结构强度、刚度的计算和校核。 (4)导向、密封、防尘、排气和缓冲等装置的设计。 (5)绘制装配图、零件图、编写设计说明书。 下面只着重介绍几项设计工作。 2.计算液压缸的结构尺寸液压缸的结构尺寸主要有三个:缸筒内径D、活塞杆外径d和缸筒长度L。 (1)缸筒内径D。液压缸的缸筒内径D是根据负载的大小来选定工作压力或往返运动速度比,求得液压缸的有效工作面积,从而得到缸筒内径D,再从GB2348—80标准中选取最近的标准值作为所设计的缸筒内径。 根据负载和工作压力的大小确定D: ①以无杆腔作工作腔时 (4-32) ②以有杆腔作工作腔时 (4-33) 式中:pI为缸工作腔的工作压力,可根据机床类型或负载的大小来确定;Fmax 为最大作用负载。 (2)活塞杆外径d。活塞杆外径d通常先从满足速度或速度比的要求来选择,然后再校核其结构强度和稳定性。若速度比为λv,则该处应有一个带根号的式子: (4-34) 也可根据活塞杆受力状况来确定,一般为受拉力作用时,d=0.3~0.5D。 受压力作用时: pI<5MPa时,d=0.5~0.55D 5MPa<pI<7MPa时,d=0.6~0.7D pI>7MPa时,d=0.7D (3)缸筒长度L。缸筒长度L由最大工作行程长度加上各种结构需要来确定,即:L=l+B+A+M+C 式中:l为活塞的最大工作行程;B为活塞宽度,一般为(0.6-1)D;A为活塞杆导

液压油缸设计计算公式

液压油缸的主要设计技术参数 一、液压油缸的主要技术参数: 1.油缸直径;油缸缸径,内径尺寸。 2. 进出口直径及螺纹参数 3.活塞杆直径; 4.油缸压力;油缸工作压力,计算的时候经常是用试验压力,低于16MPa乘以1.5,高于16乘以1.25 5.油缸行程; 6.是否有缓冲;根据工况情况定,活塞杆伸出收缩如果冲击大一般都要缓冲的。 7.油缸的安装方式; 达到要求性能的油缸即为好,频繁出现故障的油缸即为坏。应该说是合格与不合格吧?好和合格还是有区别的。 二、液压油缸结构性能参数包括:1.液压缸的直径;2.活塞杆的直径;3.速度及速比;4.工作压力等。 液压缸产品种类很多,衡量一个油缸的性能好坏主要出厂前做的各项试验指标,油缸的工作性能主要表现在以下几个方面: 1.最低启动压力:是指液压缸在无负载状态下的

最低工作压力,它是反映液压缸零件制造和装配 精度以及密封摩擦力大小的综合指标; 2.最低稳定速度:是指液压缸在满负荷运动时没 有爬行现象的最低运动速度,它没有统一指标, 承担不同工作的液压缸,对最低稳定速度要求也 不相同。 3.内部泄漏:液压缸内部泄漏会降低容积效率, 加剧油液的温升,影响液压缸的定位精度,使液 压缸不能准确地、稳定地停在缸的某一位置,也 因此它是液压缸的主要指标之。 液压油缸常用计算公式 液压油缸常用计算公式 项目公式符号意义 液压油缸面积(cm 2 ) A =πD 2 /4 D :液压缸有效活塞直径(cm) 液压油缸速度(m/min) V = Q / A Q :流量(l / min) 液压油缸需要的流量(l/min) Q=V×A/10=A×S/10t V :速度(m/min) S :液压缸行程(m) t :时间(min) 液压油缸出力(kgf) F = p × A F = (p × A) -(p×A) ( 有背压存在时) p :压力(kgf /cm 2 ) 泵或马达流量(l/min) Q = q × n / 1000 q :泵或马达的几何排量(cc/rev) n :转速(rpm ) 泵或马达转速(rpm) n = Q / q ×1000 Q :流量(l / min) 泵或马达扭矩(N.m) T = q × p / 20π 液压所需功率(kw) P = Q × p / 612 管内流速(m/s) v = Q ×21.22 / d 2 d :管内径(mm) 管内压力降(kgf/cm 2 ) △ P=0.000698×USLQ/d 4 U :油的黏度(cst) S :油的比重

液压缸设计计算

第一部分 总体计算 1、 压力 油液作用在单位面积上的压强 A F P = Pa 式中: F ——作用在活塞上的载荷,N A ——活塞的有效工作面积,2 m 从上式可知,压力值的建立是载荷的存在而产生的。在同一个活塞的有效工作面积上,载荷越大,克服载荷所需要的压力就越大。换句话说,如果活塞的有效工作面积一定,油液压力越大,活塞产生的作用力就越大。 额定压力(公称压力) PN,是指液压缸能用以长期工作的压力。 最高允许压力 P max ,也是动态实验压力,是液压缸在瞬间所能承受的极限压力。通常规定为:P P 5.1max ≤ MPa 。 耐压实验压力P r ,是检验液压缸质量时需承受的实验压力,即在此压力下不出现变形、裂缝或破裂。通常规定为:PN P r 5.1≤ MPa 。 液压缸压力等级见表1。 2、 流量 单位时间内油液通过缸筒有效截面的体积: t V Q = L/min 由于310?=At V ν L 则 32104 ?= =νπ νD A Q L/min 对于单活塞杆液压缸: 当活塞杆伸出时 32104 ?= νπ D Q 当活塞杆缩回时 32210)(4 ?-=νπ d D Q 式中: V ——液压缸活塞一次行程中所消耗的油液体积,L ;

t ——液压缸活塞一次行程所需的时间,min ; D ——液压缸缸径,m ; d ——活塞杆直径,m ; ν——活塞运动速度,m/min 。 3、速比 液压缸活塞往复运动时的速度之比: 2 2 2 12d D D v v -==? 式中: 1v ——活塞杆的伸出速度,m/min ; 2v ——活塞杆的缩回速度,m/min ; D ——液压缸缸径,m ; d ——活塞杆直径,m 。 计算速比主要是为了确定活塞杆的直径和是否设置缓冲装置。速比不宜过大或过小,以免产生过大的背压或造成因活塞杆太细导致稳定性不好。 4、液压缸的理论推力和拉力 活塞杆伸出时的理推力: 626 11104 10?= ?=p D p A F π N 活塞杆缩回时的理论拉力: 6226 2210)(4 10?-= ?=p d D p F F π N 式中: 1A ——活塞无杆腔有效面积,2 m ; 2A ——活塞有杆腔有效面积,2m ; P ——工作压力,MPa ; D ——液压缸缸径,m ; d ——活塞杆直径,m 。 5、液压缸的最大允许行程 活塞行程S ,在初步确定时,主要是按实际工作需要的长度来考虑的,但这一工作行程并不一定是油缸的稳定性所允许的行程。为了计算行程,应首先计算出活塞的最大允许计算长度。因为活塞杆一般为细长杆,由欧拉公式推导出: k k F EI L 2π= mm 式中:

液压油缸的计算

第四章液压油缸 本章讨论四个问题: 1.液压缸的类型和工作原理;液压缸的密封; 2.液压缸设计计算; 3.通过本章的学习,要求掌握液压缸设计中应考虑的结构问题; 4.结构类型的选择和参数计算。 §4-1 液压油缸的类型和工作原理 一、液压缸的分类 1.活塞式:双伸出杆,单伸出杆。 2.柱塞式: 3.摆动油缸:摆动油缸,齿条油缸。 常用的油缸有三种:双作用单伸杆活塞式油缸,伸缩式套筒油缸,单叶片摆动油缸。 二、工作原理 通过高压液体对活塞有效面积的作用,把液压能转化成机械能对外载作工。 1.单伸杆活塞式油缸 (1)结构与符号 它油活塞、活塞杆、缸体、缸盖、缸底、密封、防尘圈等组成。

(2)工作过程(根据图讲解) (3)基本参数 速度v : 式中:Q —进入油缸的流量(l/min );A —活塞的有效面积(cm 2)。 牵引力F : 式中:F —牵引力(N );p —油缸中液压力(Mpa );A —有效作用面积(cm 2)。 (3)油缸的差动连接 运动特点: 结果说明:如果活塞杆的面积f 是等于1/2活塞面积的话,则活塞右行 和左行的速度相等。 () () () () 1 22222 21min 40min 404 10min 10v v m d D Q v m D Q D Q v m A Q v >?××=×=×=×= πππ() F F N A p F ×=××=97.0102 工() f Q d Q v D v d D Q D v d v D D Q D v d D Q D Q Q v ×=××=×= ×××?×+××=××?+ =×+= 104040404040 402 12 1 2221212221 22 2 1 1πππππ π() 2224 10d D Q v ?××=π

液压传动系统设计与计算

液压传动系统设计与计算 第九章液压传动系统设计与计算 液压系统设计的步骤大致如下: 1.明确设计要求,进行工况分析。 2.初定液压系统的主要参数。 3.拟定液压系统原理图。 4.计算和选择液压元件。 5.估算液压系统性能。 6.绘制工作图和编写技术文件。 根据液压系统的具体内容,上述设计步骤可能会有所不同,下面对各步骤的具体内容进行介绍。第一节明确设计要求进行工况分析 在设计液压系统时,首先应明确以下问题,并将其作为设计依据。 1.主机的用途、工艺过程、总体布局以及对液压传动装置的位置和空间尺寸的要求。 2.主机对液压系统的性能要求,如自动化程度、调速范围、运动平稳性、换向定位精度以及对系统的效率、温升等的要求。 3.液压系统的工作环境,如温度、湿度、振动冲击以及是否有腐蚀性和易燃物质存在等情况。 位移循环图图9-1 在上述工作的基础上,应对主机进行工况分析,工况分析包括运动分析和动力分析,对复杂的系统还需编制负载和动作循环图,由此了解液压缸或液压马达的负载和速度随时间变化的规律,以下对工况分析的内容作具体介绍。 一、运动分析 主机的执行元件按工艺要求的运动情况,可以用位移循环图(L—t),速度循环图(v—t),或速度与位移循环图表示,由此对运动规律进行分析。 1.位移循环图L—t 图9-1为液压机的液压缸位移循环图,纵坐标L表示活塞位移,横坐标t表示从活塞启动到返回原位的时间,曲线斜率表示活塞移动速度。该图清楚地表明液压机的工作循环分别由快速下行、减速下行、压制、保压、泄压慢回和快速回程六个阶段组成。 2.速度循环图v—t(或v—L) 工程中液压缸的运动特点可归纳为三种类型。图9-2为三种类型液压缸的v—t图,第中实线所示,液压缸开始作匀加速运动,然后匀速运动,9-2一种如图

液压缸尺寸计算

液压缸尺寸计算 The following text is amended on 12 November 2020.

A、大腿液压缸结构尺寸设计计算 ①、大腿缸的负载组成 1、工作载荷F F=59036N(活塞杆在抬腿过程中始终受压) 2、惯性载荷F F=0(由于所选用液压缸尺寸较小,即不计 重量,且执行元件运动速度变化较小,故不考虑惯性载荷) 3、密封阻力F F=(1?F F)F,其中F是作用于活塞上的载 荷,且F=F F ,F F是外载荷,F F=F F+F F,其中F F是 F F 液压缸的机械效率,取F F=0.95 综上可得:外载荷F F=59036N,密封阻力F F=2952N,总 载荷F=61988N。 ②、初选系统工作压力 1、按载荷选定工作压力,取工作腔压力为F=12MPa1(由于 总载荷为61988N大于50000N,故根据手册选取工作压力 为12MPa) 2、选择执行元件液压缸的背压力为F2=1MPa(由于回油路 带有调速阀,且回油路的不太复杂,故根据手册选取被压 压力为1MPa) ③、液压缸主要结构尺寸的计算 1、在整个抬腿过程中活塞杆始终受压,故可得下式: 活塞杆受压时: F=F1F1?F2F2 F1----------液压缸工作腔压力(Pa)

F 2----------液压缸回油腔压力(Pa ) F 1----------无杆腔活塞有效作用面积,F 1= πD 24,D 为活塞直径(m ) F 2----------有杆腔活塞有效作用面积,F 2= π4(D 2?d 2),d 为活塞杆直径 (m ) 选取d/D=(由于工作压力为12MPa 大于5MPa ,故根据手册选取d/D=) 综上可得:D=,根据手册可查得常用活塞杆直径,可取D=90mm , d=60mm 。 校核活塞杆的强度,其中活塞杆的材料为45钢,故[σ]=100MPa。 由于活塞杆在受负载的工作过程中仅收到压力作用,故仅校核其压缩 强度即可。σ= F 14πd 2=21.9MPa<[σ]=100MPa,故满足强度要求。 即d=60mm ,则D=90mm 。 由此计算得工作压力为: F 1=10.3MPa 根据所选取的活塞直径D=90mm ,可根据手册选的液压缸的外径为 108mm ,即可得液压缸壁厚为δ =9mm。 校核液压缸缸壁的强度,其中液压缸的材料为45钢,故[σ]= 100MPa。 由于该缸处于低压系统,故先按薄壁筒计算,σ=F F F 2δ,其中工作压 力P =F =12MPa ≤16MPa 1,可取F F =1.5F 1,则σ=90MPa<[σ]= 100MPa,故满足强度要求。 又由于D /δ=10,故可将该缸筒视为厚壁,则δ的校核应按下面公式 进行。

油缸压力计算公式(20200521123939)

油缸压力计算公式 油缸工作时候的压力是由负载决定的,物理学力的压力等于力除以作用面积(即P=F/S) 如果要计算油缸的输出力,可按一下公式计算: 设活塞(也就是缸筒)的半径为R (单位mm) 活塞杆的半径为r (单位mm) 工作时的压力位P (单位MPa) 则 油缸的推力F推=3.14*R*R*P (单位N) 油缸的拉力F拉=3.14*(R*R-r*r)*P (单位N) 100吨油缸,系统压力16Mpa,请帮我计算下选用的油缸活塞的直径是多少?怎么计算的? 理论值为:282mm 16Mpa=160kgf/cm2 100T=100000kg 100000/160=625cm2 缸径D={(4*625/3.1415926)开平方} 液压油缸行程所需时间计算公式 当活塞杆伸出时,时间为(15×3.14×缸径的平方×油缸行程)÷流量 当活塞杆缩回时,时间为[15×3.14×(缸径的平方-杆径的平方)×油缸行程]÷流量 缸径单位为m 杆径单位为m 行程单位为m 流量单位为L/min 套筒式液压油缸的行程是怎么计算的,以及其工作原理 形成计算很简单: 油缸总长,减去两端盖占用长度,减去活塞长度,即为有效形成,一般两端还会设置缓冲防撞机构或回路。 工作原理: 1、端盖进油式:油缸的两端盖接有管路一端通油活塞及活塞杆向令一个方向运行;结构紧凑适合小型油缸 2、活塞杆内通油式:活塞杆为中空,内通油,活塞与活塞杆链接部位有通油孔,通油后活塞及活塞杆想另 一方向运行;适合大型油缸。 3、缸体直入式:大吨位单作用油缸,一端无端盖(端盖与缸体焊接一体),直接对腔体供油,向令一方向 做功,另一端端盖进油回程或弹簧等储能元件回程。 大致如此几种 我有一台液压油缸柱塞直径40毫米缸体外径150毫米高度400毫米请专业人士告诉我它的吨位最好能告诉我计算公式谢谢 油泵压力10MPA 一台液压机械的压力(吨位)是与柱塞直径和供油压力有关。 其工作压力(吨位)的计算: 柱塞的受力面积×供油压力=工作压力(吨位) 柱塞的受力面积单位:mm2 供油压力单位:N/mm2 工作压力(吨位)单位:N 折算:1N=0.101972Kgf 1000Kgf=1Tf(吨力) 油缸15到25吨的力要多大的钢径 油缸的吨位和缸径的大小还有系统提供的压力有关。 例如油缸内径是100mm,

液压缸计算公式

1、液压缸内径和活塞杆直径的确定 液压缸的材料选为Q235无缝钢管,活塞杆的材料选为Q235 液压缸内径: p F D π4= =??14.34= F :负载力 (N ) A :无杆腔面积 (2m m ) P :供油压力 (MPa) D :缸筒内径 (mm) 1D :缸筒外径 (mm) 2、缸筒壁厚计算 π×/≤≥ηδσψμ 1)当δ/D ≤0.08时 p D p σδ2max 0> (mm ) 2)当δ/D=0.08~0.3时 max max 03-3.2p D p p σδ≥ (mm ) 3)当δ/D ≥0.3时 ??? ? ?? -+≥max max 03.14.02p p D p p σσδ(mm ) n b p σσ= δ:缸筒壁厚(mm ) 0δ:缸筒材料强度要求的最小值(mm )

max p :缸筒内最高工作压力(MPa ) p σ:缸筒材料的许用应力(MPa ) b σ:缸筒材料的抗拉强度(MPa ) s σ:缸筒材料屈服点(MPa ) n :安全系数 3 缸筒壁厚验算 2 1221s ) (35 .0D D D PN -≤σ(MPa) D D P s rL 1 lg 3.2σ≤ PN :额定压力 rL P :缸筒发生完全塑性变形的压力(MPa) r P :缸筒耐压试验压力(MPa) E :缸筒材料弹性模量(MPa) ν:缸筒材料泊松比 =0.3 同时额定压力也应该与完全塑性变形压力有一定的比例范围,以避免塑性变形的发生,即: ()rL P PN 42.0~35.0≤(MPa) 4 缸筒径向变形量 ??? ? ??+-+=?ν221221D D D D E DP D r (mm ) 变形量△D 不应超过密封圈允许范围 5 缸筒爆破压力 D D P E b 1 lg 3.2σ=(MPa)

液压缸的计算

(2)伸缩缸。伸缩缸由两个或多个活塞缸套装而成,前一级活塞缸的活塞杆内孔是后一级活塞缸的缸筒,伸出时可获得很长的工作行程,缩回时可保持很小的结构尺寸,伸缩缸被广泛用于起重运输车辆上。 伸缩缸可以是如图4-10(a)所示的单作用式,也可以是如图4-10(b)所示的双作用式,前者靠外力回程,后者靠液压回程。 图4-10伸缩缸 伸缩缸的外伸动作是逐级进行的。首先是最大直径的缸筒以最低的油液压力开始外伸,当到达行程终点后,稍小直径的缸筒开始外伸,直径最小的末级最后伸出。随着工作级数变大,外伸缸筒直径越来越小,工作油液压力随之升高,工作速度变快。其值为: F i=p1 2 4i D (4-30) V1=4q/πD i2 (4-31) 式中的i指i级活塞缸。 图4-11齿轮缸 (3)齿轮缸。它由两个柱塞缸和一套齿条传动装置组成,如图4-11所示。柱塞的移动经齿轮齿条传动装置变成齿轮的传动,用于实现工作部件的往复摆动或间歇进给运动。 二、液压缸的典型结构和组成 1.液压缸的典型结构举例图4-12所示的是一个较常用的双作用单活塞杆液压缸。它是由缸底20、缸筒10、缸盖兼导向套9、活塞11和活塞杆18组成。缸筒一端与缸底焊接,另一端缸盖(导向套)与缸筒用卡键6、套5和弹簧挡圈4固定,以便拆装检修,两端设有油口A和B。活塞11与活塞杆18利用卡键15、卡键帽16和弹簧挡圈17连在一起。活塞与缸孔的密封采用的是一对Y形聚氨酯密封圈12,由于活塞与缸孔有一定间隙,采用由尼龙1010制成的耐磨环(又叫支承环)13定心导向。杆18和活塞11的内孔由密封圈14密封。较长的导向套9则可保证活塞杆不偏离中心,导向套外径由O形圈7密封,而其内孔则由Y形密封圈8和防尘圈3分别防止油外漏和灰尘带入缸内。缸与杆端销孔与外界连接,销孔内有尼龙衬套抗磨。

液压缸尺寸计算

①、大腿缸的负载组成 1、工作载荷(活塞杆在抬腿过程中始终受压) 2、惯性载荷(由于所选用液压缸尺寸较小,即不计 重量,且执行元件运动速度变化较小,故不考虑惯性载 荷) 3、密封阻力,其中是作用于活塞上的 载荷,且,是外载荷,,其中是 液压缸的机械效率,取 综上可得:外载荷,密封阻力, 总载荷。 ②、初选系统工作压力 1、按载荷选定工作压力,取工作腔压力为 (由于总载荷为61988N大于50000N,故根据手册选 取工作压力为12MPa) 2、选择执行元件液压缸的背压力为(由于回 油路带有调速阀,且回油路的不太复杂,故根据手册 选取被压压力为1MPa) ③、液压缸主要结构尺寸的计算 1、在整个抬腿过程中活塞杆始终受压,故可得下式: 活塞杆受压时: ----------液压缸工作腔压力(Pa)

----------液压缸回油腔压力(Pa) ----------无杆腔活塞有效作用面积,,D为活塞直径(m)----------有杆腔活塞有效作用面积,,d为活塞杆直径(m) 选取d/D=(由于工作压力为12MPa大于5MPa,故根据手册选取d/D=) 综上可得:D=,根据手册可查得常用活塞杆直径,可取D=90mm,d=60mm。 校核活塞杆的强度,其中活塞杆的材料为45钢,故。 由于活塞杆在受负载的工作过程中仅收到压力作用,故仅校核其压缩强度即可。,故满足强度要求。 即d=60mm,则D=90mm。 由此计算得工作压力为: 根据所选取的活塞直径D=90mm,可根据手册选的液压缸的外径为108mm,即可得液压缸壁厚为。 校核液压缸缸壁的强度,其中液压缸的材料为45钢,故。 由于该缸处于低压系统,故先按薄壁筒计算,,其中工作压力,可取,则

油缸设计计算公式

液压油缸的主要技术参数 一、液压油缸的主要技术参数: 1.油缸直径;油缸缸径,内径尺寸。 2.进出口直径及螺纹参数 3.活塞杆直径; 4.油缸压力;油缸工作压力,计算的时候经常是用试验压力,低于16MPa乘以1.5,高于16乘以1.25 5.油缸行程; 6.是否有缓冲;根据工况情况定,活塞杆伸出收缩如果冲击大一般都要缓冲的。 7.油缸的安装方式; 达到要求性能的油缸即为好,频繁出现故障的油缸即为坏。应该说是合格与不合格吧?好和合格还是有区别的。 二、液压油缸结构性能参数包括:1.液压缸的直径;2.活塞杆的直径;3.速度及速比; 4.工作压力等。 液压缸产品种类很多,衡量一个油缸的性能好坏主要出厂前做的各项试验指标,油缸的工作性能主要表现在以下几个方面: 1.最低启动压力:是指液压缸在无负载状态下的最低工作压力,它是反映液压缸零件制造和装配精度以及密封摩擦力大小的综合指标; 2.最低稳定速度:是指液压缸在满负荷运动时没有爬行现象的最低运动速度,它没有统一指标,承担不同工作的液压缸,对最低稳定速度要求也不相同。 3.内部泄漏:液压缸内部泄漏会降低容积效率,加剧油液的温升,影响液压缸的定位

精度,使液压缸不能准确地、稳定地停在缸的某一位置,也因此它是液压缸的主要指标之。 液压油缸常用计算公式 液压油缸常用计算公式 项目公式符号意义 液压油缸面积(cm 2 ) A =πD 2 /4 D :液压缸有效活塞直径(cm) 液压油缸速度(m/min) V = Q / A Q :流量(l / min) 液压油缸需要的流量 (l/min) Q=V×A/10=A×S/10t V :速度(m/min) S :液压缸行程(m) t :时间(min) 液压油缸出力(kgf) F = p × A F = (p × A) -(p×A) ( 有背压存在时) p :压力(kgf /cm 2 ) 泵或马达流量(l/min) Q = q × n / 1000 q :泵或马达的几何排量(cc/rev) n :转速(rpm ) 泵或马达转速(rpm) n = Q / q ×1000 Q :流量(l / min) 泵或马达扭矩(N.m) T = q × p / 20π 液压所需功率(kw) P = Q × p / 612 管内流速(m/s) v = Q ×21.22 / d 2 d :管内径(mm) 管内压力降(kgf/cm 2 ) △P=0.000698×USLQ/d 4 U :油的黏度(cst)

液压常用计算公式

液压常用计算公式 1、齿轮泵流量(min /L ): 1000 Vn q o = ,1000 o Vn q η= 说明:V 为泵排量 (r ml /);n 为转速(min /r );o q 为理论流量(min /L );q 为实际流量(min /L ) 2、齿轮泵输入功率(kW ): 60000 2Tn P i π= 说明:T 为扭矩(m N .);n 为转速(min /r ) 3、齿轮泵输出功率(kW ): 612 60 ' q p pq P o = = 说明:p 为输出压力(a MP );' p 为输出压力(2 /cm kgf );q 为实际流量 (min /L ) 4、齿轮泵容积效率(%): 100V ?= o q q η 说明:q 为实际流量(min /L );o q 为理论流量(min /L ) 5、齿轮泵机械效率(%): 10021000?= Tn pq m πη 说明:p 为输出压力(a MP ); q 为实际流量(min /L );T 为扭矩(m N .); n 为转速(min /r ) 6、齿轮泵总效率(%):

m ηηη?=V 说明:V η为齿轮泵容积效率(%);m η为齿轮泵机械效率(%) 7、齿轮马达扭矩(m N .): π 2q P T t ??= ,m t T T η?= 说明:P ?为马达的输入压力与输出压力差 (a MP ); q 为马达排量(r ml /);t T 为马达的理论扭矩(m N .);T 为马达的实际输出扭矩(m N .);m η为马达的机械效率(%) 8、齿轮马达的转速(min /r ): V q Q n η?= 说明:Q 为马达的输入流量(min /ml ); q 为马达排量(r ml /); V η为 马达的容积效率(%) 9、齿轮马达的输出功率(kW ): 3 10 602?= nT P π 说明:n 为马达的实际转速(min /r ); T 为马达的实际输出扭矩(m N .) 10、液压缸面积(2 cm ): 4 2 D A π= 说明:D 为液压缸有效活塞直径(cm ) 11、液压缸速度(min m ): A Q V 10= 说明:Q 为流量(min L );A 为液压缸面积(2 cm ) 12、液压缸需要的流量(min L ):

液压缸的设计计算

液压缸的设计计算? 作为液压系统的执行元件,液压缸将液压能转化为机械能去驱动主机的工作机构做功。由于液压缸使用场合与条件的千差万别,除了从现有标准产品系列选型外,往往需要根据具体使用场合自行进行设计。 设计内容 液压缸的设计是整个液压系统设计中的一部分,它通常是在对整个系统进行工况分析所后进行的。其设计内容为确定各组成部分(缸筒和缸盖、活塞和活塞杆、密封装置、排气装置等)的 结构形式、尺寸、材料及相关技术要求等,并全部通过所绘制的液压缸装配图和非标准零件工作图反映这些内容。 液压缸的类型及安装方式选择 液压缸的输入是液体的流量和压力,输出的是力和直线速速,液压缸的结构简单,工作可靠性好,被广泛地应用于工业生产各个部门。为了满足各种不同类型机械的各种要求,液压缸具有多种不同的类型。液压缸可广泛的分为通用型结构和专用型结构。而通用型结构液压缸有三种典型结构形式: (1)拉杆型液压缸 前、后端盖与缸筒用四根(方形端盖)或六根(圆形端盖)拉杆来连接,前、后端盖为正方形、长方形或圆形。缸筒可选用钢管厂提供的高精度冷拔管,按行程长度所相应的尺寸切割形成,一般内表面不需加工(或只需作精加工)即能达到使用要求。前、后端盖和活塞等主要零件均为通用件。因此,拉杆型液压缸结构简单、拆装简便、零件通用化程度较高、制造成本较低、适于批量生产。但是,受到行程长度、缸筒内径和额定压力的限制。如果行程长度过长时,拉杆长度就相应偏长,组装时容易偏歪引起缸筒端部泄漏;如缸筒内径过大和额定压力偏高时,因拉杆材料强度的要求,选取大直径拉杆,但径向尺寸不允许拉杆直径过大。 (2)焊接型液压缸 缸筒与后端盖为焊接连接,缸筒与前端盖连接有内螺纹、内卡环、外螺纹、外卡环、法兰、钢丝挡圈等多种形式。 焊接型液压缸的特点是外形尺寸较小,能承受一定的冲击负载和严酷的外界条件。但由于受到前端盖与缸筒用螺纹、卡环或钢丝挡圈等连接强度的制约缸筒内径不能太大和额定压力不能太高。 焊接型液压缸通常额定压力Mpa P n 25≤、缸筒内径mm D 320≤,在活塞杆和缸筒的加工条件许可下,允许最大行程m S 1510-≤。 (3)法兰型液压缸

液压油缸压力计算公式 液压油缸设计计算公式

液压油缸压力计算公式液压油缸设计计算公式液压油缸的主要设计技术参数 一、液压油缸的主要技术参数: 1.油缸直径;油缸缸径,内径尺寸。 2. 进出口直径及螺纹参数 3.活塞杆直径; 4.油缸压力;油缸工作压力,计算的时候经常是用试验压力,低于16MPa乘以 1.5,高于16乘以1.25 5.油缸行程; 6.是否有缓冲;根据工况情况定,活塞杆伸出收缩如果冲击大一般都要缓冲 的。 7.油缸的安装方式; 达到要求性能的油缸即为好,频繁出现故障的油缸即为坏。应该说是合格与不 合格吧,好和合格还是有区别的。 二、液压油缸结构性能参数包括:1.液压缸 的直径;2.活塞杆的直径;3.速度及速比;4.工作压力等。 液压缸产品种类很多,衡量一个油缸的性能好坏主要出厂前做的各项试验指 标,油缸的工作性能主要表现在以下几个方面: 1 1.最低启动压力:是指液压缸在无负载状态下的 最低工作压力,它是反映液压缸零件制造和装配精度以及密封摩擦力大小的综 合指标; 2.最低稳定速度:是指液压缸在满负荷运动时没有爬行现象的最低运动速度,它没有统一指标,承担不同工作的液压缸,对最低稳定速度要求也不相同。 3.内部泄漏:液压缸内部泄漏会降低容积效率,加剧油液的温升,影响液压缸 的定位精度,使液压缸不能准确地、稳定地停在缸的某一位置,也因此它是液压缸 的主要指标之。 液压油缸常用计算公式

液压油缸常用计算公式 项目公式 液压油缸面积(cm 2 ) A =πD 2 /4 液压油缸速度 (m/min) V = Q / A 液压油缸需要的流量 (l/min) 液压油缸出力 (kgf) 泵或马达流量 (l/min) Q=V×A/10=A×S/10t F = p × A F = (p × A) , (p×A) ( 有背压存在时) Q = q × n / 1000 符号意义 D :液压缸有效活塞直径 (cm) Q :流量 (l / min) 2 V :速度 (m/min) S :液压缸行程 (m) t :时间 (min) p :压力 (kgf /cm 2 ) q :泵或马达的几何排量 (cc/rev) n :转速( rpm ) 泵或马达转速 (rpm) Q :流量 (l / min) n = Q / q ×1000 泵或马达扭矩(N.m) T = q × p / 20π 液压所需功率(kw) P = Q × p / 612 管内流速 (m/s) d :管内径 (mm) v = Q ×21.22 / d 2 ? U :油的黏度 (cst) 管内压力降 (kgf/cm 2 ) P=0.000698×USLQ/d 4 S :油的比重 非标液压、机电、试验、工控设备开发研制。 液压缸无杆腔面积A=3.14*40*40/10000000 (平方 米)=0.005024(平方米) 泵的理论流量Q=排量*转速=32*1430/1000000 (立方米/ 分)=0.04576(立方米/分)

相关文档
最新文档