感知识别技术概述

感知识别技术概述
感知识别技术概述

指纹识别技术

1、产品构成

对指纹识别技术,目前除了一部分真正的研发人员之外,大部分涉业者或者兴趣者都希望有个清晰的了解。在此,先从指纹识别产品的构成说起,也就是由产品构成再展开对技术构成的分析。

指纹识别产品是由基础构件、中间构件和上层构件组成的,基础构件是指一个完整的指纹识别(不是指纹采集)产品,包括硬件和软件,都必须具备的基础部分。中间构件,简称中间件,是向上支持各类软件系统或者硬件设备,实现指纹注册和认证功能的独立部分。上层构件,是指在基础构件之上,自己实现中间件或者利用中间件建立起来的执行应用的部分,也可以称为应用构件。

指纹产品基础构件包括:指纹传感器(指纹Sensor)、指纹传感器驱动程序(Driver)、指纹传感器底层接口程序(底层SDK),以及指纹算法程序。其中前三个都是作为一个整体对待,笼统的称为指纹SENSOR。指纹基础构件的这四个部分,对于任何一类的指纹识别产品都是不可缺少的,所以称之为基础构件。

指纹产品中间构件,或者叫指纹应用中间件,它专门完成指纹注册和认证功能,所以它一定包含指纹识别算法。它屏蔽了应用层对设备层(基础构件中的SENSOR以及DRIVER)的直接访问。它既可以表现为软件控件(ocx),也可表现为硬件模块,也就是俗称的指纹脱机模块。

指纹产品上层构件,它是用户需求的实现部分,其形态不定,可以是一个完整的指纹应用软件产品,如指纹文件保护系统、计算机登录指纹保护系统。也可是指纹考勤机、指纹保险柜等这类嵌入式硬件产品。

在了解了指纹识别产品的构成要件之后,我们再一层层采用解析的方法来分析每个构件中的技术成份。

2、指纹产品基础构件

2.1、基础构件之指纹SENSOR

从基础构件层来看,其中的指纹SENSOR,是指纹图像自动采集和生成部分,是整个指纹识别产品的数据输入端。绝大多数指纹SENSOR 通过光学扫描、晶体热敏、晶体电容等三种主要传感原理采集指纹图像。衡量一个指纹SENSOR的质量好坏或者使用的技术的高低,从其使用的采集原理上并不能得出结论,而是主要从以下几个方面来衡量。

(1)成像质量。成像质量是衡量指纹SENSOR(指纹传感器)质量的首要标准。成像质量主要表现为对指纹图像的还原能力,以及去噪能力。

(2)手指适应能力。由于不同手指指纹的纹路深浅不同、干湿不同,污渍程度不同。要能够对所有情况进行有效兼容,是指纹SENSOR的适用能力的表现。有时候手指适用能力被归到成像质量中考虑。

(3)采集速度。采集速度表现为从手指放到SENSOR触面后多长时间内完成一次指纹采集的时间,或者单位时间如1S可以采集的次数。速度的快慢直接影响到用户的使用体验。

(4)电气特性。电气特性是从产品化的角度来看,指纹SENSOR 是否真正可用于某种产品。电气特性主要关注三个参数,工作电压,功耗和ESD(防静电能力)。如把指纹SENSOR应用到手机上,必然要考虑手机的现在供电方式能否满足增加了指纹SENOSR后的电压和功耗要求。不过大部分指纹SENOSR的电压都在3.6V以下(含)。(5)硬件接口能力。接口能力也是从产品化的角度来衡量的。接口能力直接影响着指纹SENSOR所获得的指纹图像数据的传送方式,影响着与指纹处理模块之间的通讯方式和通讯速度。比如已具备USB接口能力的指纹SENSOR,可以直接与USB HUB相连。而没有USB接口的,就需要通过USB控制器来实现,给产品化增加一道技术门槛。

(6)SDK能力。SDK能力是指指纹SENSOR的功能,也就是与指纹SENSOR配套使用的程序接口的功能。一般在这些接口中定义了上层应用如何启动或终止硬件SENSOR,以及如何控制指纹SENSOR的函数族。比如发送指纹SENOSR初始化命令、开始或停止捕获指纹图像命令、询问手指是存在、以及判断是否是指纹等。对于滑动式(SWIPE)芯片来讲,还包括指纹重构的命令接口。

(7)附加功能。大部分指纹SENSOR除了具备指纹图像采集能力之外,还能够感知手指的移动方向、手指的点击方式(单击双击),

这被称之为导航能力。作者见过的一款导航能力非凡的指纹SENSOR,可以非常灵活的玩贪吃蛇游戏。另一方面,有的指纹SENSOR,如ATMEL和AUTHENTECH的,可以提供指纹特征值的模板访问接口。这些都是除了基本功能之外,指纹SENSOR厂商附加开发的功能,这部分功能可以使得,在其它条件相当的情况下,起到提升应用特色的作用。

2.2、基础构件之指纹算法

以上是指纹产品基础构件层中的指纹SENSOR部分的技术构成分析。下面介绍另一部分指纹算法。全球指纹算法据称约有100种,不过这三大块基本是少不了的。一是对指纹图像进行预处理;二是提取特征值,并形成特征值模板;三是指纹特征值比对。

2.2.1 指纹算法之指纹图像预处理

指纹图像预处理的目的主要是为特征值提取的有效性准确性作好准备。一般包括如下的过程:

(1)指纹图像增强。指纹图像增强的目的主要是为了减少噪音,增强脊谷对比度,使得图像更加清晰真实,便于后续指纹特征值提取的准确性。指纹图像增强的方法较多,常见的如通过8域法计算方向场与设定合适的过滤阈值。处理时依据每个像素处脊的局部走向,会增强在同一方向脊的走向,并且在同一位置,减弱任何不同于脊的方向。这样使得脊线相对背景更加清晰,特征点走向更加明显。

(2)指纹图图像平滑处理。平滑处理是为了让整个图像取得均匀一致的明暗效果。平滑处理的过程是选取整个图像的象素与其周期灰阶差的均方值作为阈值来处理的。

(3)指纹图像二值化。在原始灰阶图像中,各象素的灰度是不同的,并按一定的梯度分布。在实际处理中只需要象素是不是脊线上的点,而无需知道它的灰度。所以每一个象素对判定脊线来讲,只是一个“是与不是”的二元问题。所以,指纹图像二值化是对每一个象素点按事先定义的阈值进行比较,大于阈值的,使其值等于255(假定),小于阈值的,使其值等于0。图像二值化后,不仅可以大大减少数据储存量,而且使得后面的判别过程少受干扰,大大简化其后的处理。(4)指纹图像细化处理。图像细化就是将脊的宽度降为单个像素的宽度,得到脊线的骨架图像的过程。这个过程进一步减少了图像数据量,清晰化了脊线形态,为之后的特征值提取作好了准备。由于我们所关心的不是纹线的粗细,而是纹线的有无。因此,在不破坏图像连通性的情况下必须去掉多余的信息。因而应先将指纹脊线的宽度采用逐渐剥离的方法,使得脊线成为只有一个象素宽的细线,这将非常有利于下一步的分析。

2.2.2 指纹算法之特征值提取

提取指纹特征值是从细化过的指纹图像中,扫描分析出能够表达某个指纹图像与众不同的特征点的集合。在最初的指纹识别算法中,经历以过图像进行比较的阶段,现在的算法为了安全和确保精准度起见,

采用图像上的特征点来进行比较,所以才有特征值提取的说法。(1)首先来认识一下指纹的特征。

–指纹特征=总体特征+局部特征

?总体特征:

–纹形:环形、弓形、螺旋形(有的算法分的更细,如左旋右旋)–模式区:包含了纹形特征的区域

–核心点:位于指纹纹路的渐进中心

–三角点:位于从核心点开始的第一个分叉点或者断点、或者两条纹路会聚处、孤立点、折转处,或者指向这些奇异点。

–纹数:指模式区内指纹纹路的数量(脊密度)

–局部特征:指纹上的细节点的特征。

?特征点:类型、方向、曲率、位置

?特征点类型

–A:终结点(Ending),一条纹路在此终结

–B:分叉点(Bifurcation),一条纹路在此分开成为两条或更多的纹路

–C:分歧点(Ridge Divergence),两条平行的纹路在此分开

–D:孤立点(Dot or Island),一条特别短的纹路,以至于成为一点

–E:环点(Enclosure),一条纹路分开成为两条之后,立即有合并成为一条

–F:短纹(Short Ridge),一端较短但不至于成为一点的纹路

(2)指纹特征点的表示。认识到指纹包含以上特征点之后,如何对指纹的特征点进行描述?就像通过描述一个的特点不同于另一个人时,我们一般会采用储如“男性”“身高170”“偏白”等词汇一样,描述指纹的特征点也有一系列的维度。如特征点类型、位置坐标、方向、曲率等。甚至可以增加组合特征描述。指纹处理是一个几何域的问题,所以对这些特征点的描述无外乎与几何参数有关。

(3)指纹特征点提取。对指纹的特征信息(总体和局部的)进行选择、编码,形成二进制数据的过程。指纹特征点的提取方法是算法中的核心。一般采用8邻域法对二值化、细化后的指纹图像抽取特征点,这种方法将脊线上的点用“1”表示,背景用“0”表示,将待测点(x,y)的八邻域点(如下图所示)进行循环比较,若“0”,“1”变化有六次,则此待测点为分叉点,若变化两次,则为端点。通过这个过程可以记录下来一个指纹的所有特征点。通常一个指纹的特征点在100~150之间,在形成指纹特征值模板(也就是特征值的有序集合)时,尽量多的提取特征点对于提高准确性是有很大帮助的。

2.2.3 指纹算法之特征值比对

指纹特征值比对过程是把当前取得的指纹特征值集合与事先

存储的指纹特征值模板进行匹配的过程。匹配是一个模式识别的过程,判定的标准不是等与不等,而是相似的程度。这个程度判定依赖

于某个阈值,以及与判定时比较的特征点的个数有关。阈值取的合理,特征点取的越多,误判的机率就越小。理论一般认为只要7个特征点不同就可以区别开两枚指纹。实际在程序实现中,多采用14个或以上的特征点作匹配。匹配的方法很多,包括基于特征点的匹配、脊模式的匹配、以及线对(两个特征点的连线)匹配方法。匹配的过程还要处理如手指旋转、压力导致的伸缩及平移等情况。一般算法的误识率(FAR)为0.001%时,其拒认率(FRR)为0.75 - 5%。

在指纹识别算法这一部分补充说明一下指纹识别和验证的区别。

识别与验证并不是指纹识别算法领域的问题,而是指纹识别系统的问题。指纹识别就是指1:N模式下匹配指纹特征值。它是从多个指纹模板中识别出一个特定指纹的过程。其结果是,有或者没有。有时会给出是谁的信息。

指纹验证是指在1:1模式下匹配指纹特征值。它是拿待比对的指纹特征模板与事先存在的另一个指纹特征模板进行一次匹配的

过程。其结果是,是不是。在一个系统中即可以采用1:1模式也可以采用1:N模式,这是取决于应用系统的特点和要求。

从优缺方面比较,1:1模式要比1:N快些,准确性高些,但方便性会差些。

3、指纹产品中间件

指纹中间件技术,与一般中间件技术相似。对于指纹软件中间

件来讲,主要是提供一系列从应用角度看已经封装好的接口,一般不会开放指纹特征值模板及下一级的接口。这些接口的能力表现为数据库连接和拆线类接口、用户注册接口、用户验证接口、用户手指信息、用户信息访问接口、用户管理(增删改)接口,以及常用的系统管理接口等。这些接口一般以OCX组件形式提供,适用于以C/S、B/S、N-Tier等多种应用模式。

硬件中间件,一般是指指纹脱机模块。它主要是一个嵌入式指纹识别系统,对外提供两方面的能力。一是向下能够接入一定类型数量的指纹SENSOR;二是向上给应用能够提供指纹注册、验证、识别、指纹存储等功能。硬件中间件的形态一直在发展和变化中,从板卡形态向芯片形态演变。市场上已经出现指纹识别IC,能够完成所有指纹注册验证的功能。这对于开发嵌入式指纹识别设备,将无疑是一大福音。

4、指纹产品上层构件

指纹产品上层构件,即应用层,目前市场上所见完整的指纹产品形态多种多样,在此不再累述。只是想说,在应用层,由于行业的不同、需求的多样性,依然是有很多可以成就的东西。

总结

从以上分析总结来看,基础构件中的指纹SENSOR和指纹算法

是关键中的关键。如果没有掌握这个关键,通过正常的商品交易得到这些,并以此为基础构造出指纹中间件产品、或者开发出不同行业的不同类型的指纹应用产品(或系统),也会有非常不错的前景,这也是创新――集成创新。

以上内容如有描述不正确之处,敬请指出,作者将及时更正,以免贻误他人。

下表罗列了指纹识别产品的种类,以及正在提供这些产品的厂商。目前已经有10多种以上的设备领域开始应用指纹识别技术。

智能制造技术

人机一体化智能系统 车辆15-2班刘博洋智能制造,源于人工智能的研究。一般认 为智能是知识和智力的总和,前者是智能的基 础,后者是指获取和运用知识求解的能力。智 能制造应当包含智能制造技术和智能制造系 统,智能制造系统不仅能够在实践中不断地充 实知识库,而且还具有自学习功能,还有搜集与理解环境信息和自身的信息,并进行分析判断和规划自身行为的能力。 一、智能制造的制造原理 从智能制造系统的本质特征出发,在分布式制造网络环境中,根据分布式集成的基本思想,应用分布式人工智能中多Agent系统的理论与方法,实现制造单元的柔性智能化与基于网络的制造系统柔性智能化集成。根据分布系统的同构特征,在智能制造系统的一种局域实现形式基础上,实际也反映了基于Internet 的全球制造网络环境下智能制造系统的实现模式。 二、智能制造系统 智能制造系统是一种由智能机器和人类专家共同组成的人机一体化系统,它突出了在制造诸环节中,以一种高度柔性与集成的方式,借助计算机模拟的人类专家的智能活动,进行分析、判断、推理、构思和决策,取代或延伸制造环境中人的部分脑力劳动,同时,收集、存储、完善、共享、继承和发展人类专家的制造智能。由于这种制造模式,突出了知识在制造活动中的价值地位,而知识经济又是继工业经济后的主体经济形式,所以智能制造就成为影响未来经济发展过程

的制造业的重要生产模式。智能制造系统是智能技术集成应用的环境,也是智能制造模式展现的载体。 一般而言,制造系统在概念上认为是一个复杂的相互关联的子系统的整体集成,从制造系统的功能角度,可将智能制造系统细分为设计、计划、生产和系统活动四个子系统。在设计子系统中,智能制定突出了产品的概念设计过程中消费需求的影响;功能设计关注了产品可制造性、可装配性和可维护及保障性。另外,模拟测试也广泛应用智能技术。在计划子系统中,数据库构造将从简单信息型发展到知识密集型。在排序和制造资源计划管理中,模糊推理等多类的专家系统将集成应用;智能制造的生产系统将是自治或半自治系统。在监测生产过程、生产状态获取和故障诊断、检验装配中,将广泛应用智能技术;从系统活动角度,神经网络技术在系统控制中已开始应用,同时应用分布技术和多元代理技术、全能技术,并采用开放式系统结构,使系统活动并行,解决系统集成。 由此可见,IMS理念建立在自组织、分布自治和社会生态学机理上,目的是通过设备柔性和计算机人工智能控制,自动地完成设计、加工、控制管理过程,旨在解决适应高度变化环境的制造的有效性。 三、智能制造系统的综合特征 (1)自律能力 即搜集与理解环境信息和自身的信息,并进行分析判断和规划自身行为的能力。具有自律能力的设备称为“智能机器”,“智能机器”在一定程度上表现出独立性、自主性和个性,甚至相互间还能协调运作与竞争。强有力的知识库和基于知识的模型是自律能力的基础。 (2)人机一体化

图像识别技术的研究现状论文

图像识别技术研究现状综述 简介: 图像识别是指图形刺激作用于感觉器官,人们辨认出它是经验过的某一图形的过程,也叫图像再认。在图像识别中,既要有当时进入感官的信息,也要有记忆中存储的信息。只有通过存储的信息与当前的信息进行比较的加工过程,才能实现对图像的再认。图像识别技术是以图像的主要特征为基础的,在图像识别过程中,知觉机制必须排除输入的多余信息,抽出关键的信息。在人类图像识别系统中,对复杂图像的识别往往要通过不同层次的信息加工才能实现。对于熟悉的图形,由于掌握了它的主要特征,就会把它当作一个单元来识别,而不再注意它的细节了。这种由孤立的单元材料组成的整体单位叫做组块,每一个组块是同时被感知的。图像在人类的感知中扮演着非常重要的角色,人类随时随处都要接触图像。随着数字图像技术的发展和实际应用的需要,出现了另一类问题,就是不要求其结果输出是一幅完整的图像,而是将经过图像处理后的图像,再经过分割和描述提取有效的特征,进而加以判决分类,这就是近20年来发展起来的一门新兴技术科学一图像识别。它以研究某些对象或过程的分类与描述为主要内容,以研制能够自动处理某些信息的机器视觉系统,代替传统的人工完成分类和辨识的任务为目的。 图像识别的发展大致经历了三个阶段:文字识别、图像处理和识别及物体识别:文字识别的研究是从1950年开始的,一般是识别字母、数字和符号,并从印刷文字识别到手写文字识别,应用非常广泛,并且已经研制了许多专用设备。图像处理和识别的研究,是从1965年开始的。过去人们主要是对照相技术、光学技术的研究,而现在则是利用计算技术、通过计算机来完成。计算机图像处理不但可以消除图像的失真、噪声,同时还可以进行图像的增强与复原,然后进行图像的判读、解析与识别,如航空照片的解析、遥感图像的处理与识别等,其用途之广,不胜枚举。物体识别也就是对三维世界的认识,它是和机器人研究有着密切关系的一个领域,在图像处理上没有特殊的难点,但必须知道距离信息,并且必须将环境模型化。在自动化技术已从体力劳动向部分智力劳动自动化发展的今天,尽管机器人的研究非常盛行,还只限于视觉能够观察到的场景。进入80年代,随着计算机和信息科学的发展,计算机视觉、人工智能的研究已成为新的动向 图像识别与图像处理的关系: 在研究图像时,首先要对获得的图像信息进行预处理(前处理)以滤去干扰、噪声,作几何、彩色校正等,以提供一个满足要求的图像。图像处理包括图像编码,图像增强、图像压缩、图像复原、图像分割等。对于图像处理来说,输入是图像,输出(即经过处理后的结果)也是图像。图像处理主要用来解决两个问题:一是判断图像中有无需要的信息;二是确定这些信息是什么。图像识别是指对上述处理后的图像进行分类,确定类别名称,它可以在分割的基础上选择需要提取的特征,并对某些参数进行测量,再提取这些特征,然后根据测量结果做出分类。为了更好地识别图像,还要对整个图像做结构上的分析,对图像进行描述,以便对图像的主要信息做一个好的解释,并通过许多对象相互间的结构关系对图像加深理解,以便更好帮助和识别。故图像识别是在上述分割后的每个部分中,找出它的形状及纹理特征,以便对图像进行分类,并对整个图像做结构上的分析。因而对图像识别环节来说,输入是图像(经过上述处理后的图像),输出是类别和图像的结构分析,而结构分析的结果则

智能感知人体识别

智能感知人体识别 摘要:先对在线视频信息处理降维,判断视频中是否有目标出现,进行视频信 息的存储或背景更新;然后对视频图像当前帧和背景帧差分检测和当前帧Canny 边缘检测,得到视频目标初始差分边缘模板目标检测、随目标在变化更新模板通过形状和色彩差异确认新目标的出现,进而识别分类。减少处理冗余信息的时间,提高视频目标检测识别效率。 关键词:信息处理降维;差分检测;Canny边缘检测;识别效率 0引言 目前生物识别技术已广泛用于政府、军队、银行、社会福利保障、电子商务、安全防务等领域。例如,一位储户走进了银行,他既没带银行卡,也没有回忆密码就径直提款,当他在提款机上提款时,一台摄像机对该用户的眼睛扫描,然后迅速而准确地完成了用户身份鉴定,办理完业务。这是美国德克萨斯州联合银行的一个营业部中发生的一个真实的镜头。而该营业部所使用的正是现代生物识别技术中的“虹膜识别系统”。此外,美国“9.11”事件后,反恐怖活动已成为各国政府的共识,加强机场的安全防务十分重要。美国维萨格公司的脸像识别技术在美国的两家机场大显神通,它能在拥挤的人群中挑出某一张面孔,判断他是不是通缉犯。 随着技术的进一步成熟和社会认同度的提高,人脸识别技术将应用在更多的领域。 1、企业、住宅安全和管理。如人脸识别门禁考勤系统,人脸识别防盗门等。 2、电子护照及身份证。这或许是未来规模最大的应用,国际民航组织(ICAO)已确定,从2010年起,其118个成员国家和地区,必须使用机读护照,人脸识别技术是首推识别模式,该规定已经成为国际标准。中国的电子护照计划公安部一所正在加紧规划和实施。 3、公安、司法和刑侦。如利用人脸识别系统和网络,在全国范围内搜捕逃犯。 4、自助服务。如银行的自动提款机,如果用户卡片和密码被盗,就会被他人冒取现金。如果同时应用人脸识别就会避免这种情况的发生。 5、信息安全。如计算机登录、电子政务和电子商务。在电子商务中交易全部在网上完成,电子政务中的很多审批流程也都搬到了网上。而当前,交易或者审批的授权都是靠密码来实现,如果密码被盗,就无法保证安全。但是使用生物特征,就可以做到当事人在网上的数字身份和真实身份统一,从而大大增加电子商务和电子政务系统的可靠性。 计算机技术的广泛应用和数字图像技术的发展,数字视频检测和监控系统已经被应用于交通监控、银行系统和流水线产品检测等很多方面。传统的检测和监控是由人在主控室来操纵各路摄像机,或者是摄像机连续不断地工作,将拍摄到的图像视频信号存储起来供以后分析使用。这样就出现以下问题

关于人脸识别技术的发展研究

人脸识别技术优势 863计划、国家科技支撑计划、自然科学基金都拨出专款资助人脸识别的相关研究。国家“十一五”科技发展规划中也将人脸识别技术的研究与发展列入其中[4],明确指出:“要在生物特征识别技术领域缩小与世界先进水平的差距,开展生物特征识别应用技术研究,人脸识别具有高安全性、低误报率的出入口控制新产品。”在这种环境下,国内一些科研院所和院校在人脸识别技术方面取得了很大进展。如中科院自动化所,清华大学,中科院计算所自主开发的人脸识别技术已经达到了国际先进的水平。人脸识别作为一种新兴的生物特征识别技术(Biometrics),与虹膜识别、指纹扫描、掌形扫描等技术相比,人脸识别技术在应用方面具有独到的优势: 1.人脸识别使用方便,用户接受度高。人脸识别技术使用通用的摄像机作为识别信息获取装置,以非接触的方式在识别对象未察觉的情况下完成识别过程。 2.直观性突出。人脸识别技术所使用的依据是人的面部图像,而人脸无疑是肉眼能够判别的最直观的信息源,方便人工确认、审计,“以貌取人”符合人的认知规律。 3.识别精确度高,速度快。与其它生物识别技术相比,人脸识别技术的识别精度处于较高的水平,误识率、拒认率较低。 4.不易仿冒。在安全性要求高的应用场合,人脸识别技术要求识别对象必须亲临识别现场,他人难以仿冒。人脸识别技术所独具的活性判别能力保证了他人无法以非活性的照片、木偶、蜡像来欺骗识别系统。这是指纹等生物特征识别技术所很难做到的。举例来说,用合法用户的断指即可仿冒合法用户的身份而使识别系统无从觉察。 5.使用通用性设备。人脸识别技术所使用的设备为一般的PC、摄像机等常规设备,由于目前计算机、闭路电视监控系统等已经得到了广泛的应用,因此对于多数用户而言使用人脸识别技术无需添置大量专用设备,从而既保护了用户的原有投资又扩展了用户已有设备的功能,满足了用户安全防范的需求。 6.基础资料易于获得。人脸识别技术所采用的依据是人脸照片或实时摄取的人脸图像,因而无疑是最容易获得的。 7.成本较低,易于推广使用。由于人脸识别技术所使用的是常规通用设备,价格均在一般用户可接受的范围之内,与其它生物识别技术相比,人脸识别产品具有很高的性能价格比。 概括地说,人脸识别技术是一种高精度、易于使用、稳定性高、难仿冒、性价比高的生物特征识别技术,具有极其广阔的市场应用前景。 我将人脸识别的一些应用列举出来,希望抛转引玉,大家不断完善,开拓更多的应用领域。 1)监控布控

图像识别技术发展状况及前景

医学图像配准技术 罗述谦综述 首都医科大学生物医学工程系(100054) 吕维雪审 浙江大学生物医学工程研究所(310027) 摘要医学图像配准是医学图像分析的基本课题,具有重要理论研究和临床应用价 值。本文较全面地介绍了医学图像配准的概念、分类、配准原理、主要的配准技术及评 估方法。 关键词医学图像配准多模 1 医学图像配准的概念 在做医学图像分析时,经常要将同一患者的几幅图像放在一起分析,从而得到该患者的多方面的综合信息,提高医学诊断和治疗的水平。对几幅不同的图像作定量分析,首先要解决这几幅图像的严格对齐问题,这就是我们所说的图像的配准。 医学图像配准是指对于一幅医学图像寻求一种(或一系列)空间变换,使它与另一幅医学图像上的对应点达到空间上的一致。这种一致是指人体上的同一解剖点在两张匹配图像上有相的空间位置。配准的结果应使两幅图像上所有的解剖点,或至少是所有具有诊断意义的点及手术感兴趣的点都达到匹配。 医学图像配准技术是90年代才发展起来的医学图像处理的一个重要分支。涉及“配准”的技术名词除registration外,mapping、matching、co-registration、integration、align-ment和fusion 等说法也经常使用。从多数文章的内容看,mapping偏重于空间映射;fu-sion指图像融合,即不仅包括配准,而且包括数据集成后的图像显示。虽然在成像过程之前也可以采取一些措施减小由身体移动等因素引起的空间位置误差,提高配准精度(称作数据获取前的配准preacquisition),但医学图像配准技术主要讨论的是数据获取后的(post-acquisition)配准,也称作回顾式配准(retrospective registration)。当前,国际上关于医学图像配准的研究集中在断层扫描图像( tomographic images,例如CT、MRI、SPECT、PET等)及时序图像(time seriesimages,例如fMRI及4D心动图像)的配准问题。 2 医学图像基本变换 对于在不同时间或/和不同条件下获取的两幅图像I1(x1,y1,z1)和I2(x2,y2,z2)配准,就是寻找一个映射关系P:(x1,y1,z1) (x2,y2,z2),使I1的每一个点在I2上都有唯一的点与之相对应。并且这两点应对应同一解剖位置。映射关系P表现为一组连续的空间变换。常用的空间几何变换有刚体变换(Rigid body transformation)、仿射变换(Affine transformation)、投影变换(Projec-tive transformation)和非线性变换(Nonlin-ear transformation)。 (1)刚体变换: 所谓刚体,是指物体内部任意两点间的距离保持不变。例如,可将人脑看作是一个刚体。 处理人脑图像,对不同方向成像的图像配准常使用刚体变换。刚体变换可以分解为旋转和平移:P(x)=Ax+b(1) x=(x,y,z)是像素的空间位置;A是3×3的旋转矩阵,b是3×1的平移向量。

物联网感知层感知控制信息识别技术(1)

物联网感知层感知控制信息识别技术 文/郭松在物联网的“感知层”需要解决的问题是如何利用现有物品的传感设备组成的系统,以最少的资金投入将物品的感知和控制信息识别出来。 通过物联网综合安全系统的应用例,可以更加直观地理解物联网的感知层信息识别。 在公共安全系统中有包括视频监控系统、防盗报警系统、门禁控制系统等的安防系统,消防火灾报警系统、电梯安全报警对讲系统等。这三个安全系统分属安防、消防、电梯三个行业,每种系统都有物联网的应用方案,有些已经开始应用。 而物联网的应用不是单独一种物品或系统的物联网应用,它是可以实现多种类物品或系统能够相互信息交换。物联网综合安全系统就是将用户现有的安防系统、消防系统、电梯安全系统等多种安全系统集成一起,实现感知、控制、管理一体化。 在物联网综合安全系统的“感知层”,视频监控系统的物品或传感设备有摄像机、硬盘录像机、视频矩阵,防盗报警的传感设备是报警探测器,门禁系统的读卡器,消防系统的火灾报警探测器,电梯安全系统的电梯数据采集器、5方报警对讲设备等。这些传感设备有开关量信号传输方式、有RS485总线传输方式、消防24V总线传输方式、DTMF双音多频传输方式等,而每种厂家的传感控制设备传输协议又是不同的。要将这些传感控制设备的感知和控制信息进行统一识别是物联网综合安全系统“感知层”要解决的关键问题。 物联网的应用需要政府支持,但物联网的运营是要通过给用户提供增值的服务,为使用者节省费用、增加收益,来获取收益的。 介绍一种物联网综合安全系统应用方案,在用户现有安全系统基础上,在不影响原有系统的正常使用,只需添加加很少费用的软硬件设备,用一个本地电脑将安防系统、消防系统、电梯安全系统等传感控制器的感知和控制信息的统一识别、统一控制,实现物联网“感知层”的建设。 对物联网的深入理解将助于开阔思路,开发和利用创新技术来实现物联网的应用。本人将介绍物联网“感知层”、“网络层”、“应用层”的几项专利技术,希望有助于物联网的建设和发展。 物联网应用技术一:《设备数据比对转换系统》,发明专利申请号201120207496.1 如何解决物联网“感知层”物品感知信息和控制信息的识别?尤其是对已经使用中的传

浅析人工智能中的图像识别技术

浅析人工智能中的图像识别技术 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 图像识别技术是信息时代的一门重要的技术,其产生目的是为了让计算机代替人类去处理大量的物理信息。随着计算机技术的发展,人类对图像识别技术的认识越来越深刻。图像识别技术的过程分为信息的获取、预处理、特征抽取和选择、分类器设计和分类决策。文章简单分析了图像识别技术的引入、其技术原理以及模式识别等,之后介绍了神经网络的图像识别技术和非线性降维的图像识别技术及图像识别技术的应用。从中可以总结出图像处理技术的应用广泛,人类的生活将无法离开图像识别技术,研究图像识别技术具有重大意义。 1 图像识别技术的引入 图像识别是人工智能科技的一个重要领域。图像识别的发展经历了三个阶段:文字识别、数字图像处理与识别、物体识别。图像识别,顾名思义,就是对图像做出各种处理、分析,最终识别我们所要研究的

目标。今天所指的图像识别并不仅仅是用人类的肉眼,而是借助计算机技术进行识别。虽然人类的识别能力很强大,但是对于高速发展的社会,人类自身识别能力已经满足不了我们的需求,于是就产生了基于计算机的图像识别技术。这就像人类研究生物细胞,完全靠肉眼观察细胞是不现实的,这样自然就产生了显微镜等用于精确观测的仪器。通常一个领域有固有技术无法解决的需求时,就会产生相应的新技术。图像识别技术也是如此,此技术的产生就是为了让计算机代替人类去处理大量的物理信息,解决人类无法识别或者识别率特别低的信息。 图像识别技术原理 其实,图像识别技术背后的原理并不是很难,只是其要处理的信息比较繁琐。计算机的任何处理技术都不是凭空产生的,它都是学者们从生活实践中得到启发而利用程序将其模拟实现的。计算机的图像识别技术和人类的图像识别在原理上并没有本质的区别,只是机器缺少人类在感觉与视觉差上的影响罢了。人类的图像识别也不单单是凭借整个图像存储在脑海中的记忆来识别的,我们识别图像都是依靠图像所具有

智能制造背景下的感知系统

智能制造背景下的感知系统 目录 摘要 (2) 智能感知技术 (2) 感知技术的必要性和紧迫性 (2) 基于人体分析 (3) 基于行为分析 (3) 基于车辆分析 (4) 基于图像分析 (4) 智能感知技术在不同领域的应

用 (5) 我国发展感知信息技术具备有利条件 (6) 我国在发展感知技术方面的不足与改进方法 (7) 世界各国对于智能制造的发展动向 (7) 结束语 (9) 参考文献 (10)

摘要:当前,以移动互联网、物联网、云计算、大数据、人工智能等为代表的信息技术加速创新、融合和普及应用,一个万物互联智能化时代正在到来。感知信息技术以传感器为核心,结合射频、功率、微处理器、微能源等技术,是未来实现万物互联的基础性、决定性核心技术之一。尤其是,感知信息技术不同于传统的计算和通信技术,无需遵循投资巨大、风险极高、已接近物理极限的传统半导体的“摩尔定律”,而是在成熟半导体工艺上的多元微技术融合创新,即“More than Moore”/“超越摩尔”。 关键词:智能感知技术互联网

智能感知技术 首先,我们要知道的是什么是智能感知技术。所谓的智能感知技术就是重点研究基于生物特征、以自然语言和动态图像的理解为基础的“以人为中心”的智能信息处理和控制技术,中文信息处理;研究生物特征识别、智能交通等相关领域的系统技术。 当前,以移动互联网、物联网、云计算、大数据、人工智能等为代表的信息技术加速创新、融合和普及应用,一个万物互联智能化时代正在到来。感知信息技术以传感器为核心,结合射频、功率、微处理器、微能源等技术,是未来实现万物互联的基础性、决定性核心技术之一。尤其是,感知信息技术不同于传统的计算和通信技术,无需遵循投资巨大、风险极高、已接近物理极限的传统半导体的“摩尔定律”,而是在成熟半导体工 艺上的多元微技术融合创新,即“More than Moore”/“超越摩尔”。 PC时期Wintel联盟垄断了整整20年,移动互联网时期ARM+安卓又 形成了新一轮垄断。在如今的感知时代,“超越摩尔”是我国一个打破垄 断束缚的难得历史机遇,如果加大在此领域的扶持力度,充分发挥已有的半导体产业基础和市场优势,有很大可能在未来智能时代实现赶超发展,抢占产业竞争制高点。 感知技术的必要性和紧迫性 其次,我们要重视感知技术的必要性和紧迫性。信息技术从计算时代、通讯时代发展到今天的感知时代经历了三个浪潮:PC的普及产生了互联网,

《物联网感知识别技术》

南京邮电大学2015/2016学年第二学期 《物联网感知识别技术》 专业班级学号姓名 得分1、一维条形码通常由哪几部分构成? 左侧空白区、起始符、数据符、校验符、终止符、右侧空白区 2、EAN-13商品条形码文字字符为693234010515X,计算该条形码的校验符; 10的倍数-(偶数和*3+奇数和) 3、Code39条形码的条形码字符分别为、,请使用二进制表示这两个条空; 01100 0010、11000 1000 4、EAN分配给ISBN系统专用的前置码为978备用码为979国际物品编 码协会分配给ISSN系统的前置码为977。 5、根据下表,将UPC-A条形码001200000657C转换为UPC-E条形码。0126570c

6、主动式电子标签、被动式电子标签、半主动电子标签的区别? 7、读写器工作方式分为读写器先发言、标签先发言? 读写器管理协议分为读写层、消息层、传输层? 8、简述RFID系统的两种耦合方式? 电感耦合。变压器模型,通过空间高频交变磁场实现耦合,依据的是电磁感应定律 电磁反向散射耦合:雷达原理模型,发射出去的电磁波,碰到目标后反射,同时携带回目标信息,依据的是电磁波的空间传播规律。 9、数字通信系统理论框图? 10、反向不归零编码、曼切斯特编码、密勒编码原理,分别采用反向不归零编码、曼切斯 特编码、密勒码对二进制序列10100100进行编码; 11、利用ASK、FSK、PSK对信号进行调制; 12、写出高频中最常用的协议标准

13、ISO/IEC 14443协议由几部分组成,各部分的主要内容是什么? 14、ISO/IEC 14443 TYPE A 协议中PCD激活PICC的过程。 15、EPC码的主要特点有哪些? 1、无接触读取 2、远距离读取 3、动态读取 4、多数量、品种读取 5、标签无源 6、海量存储量等优势 16、EPC标签可以分为几类?简述每一类标签的特点。 EPC标签是电子产品代码的信息载体,主要由天线和芯片组成。EPC标签中存储的惟一信息是96 位或者64位产品电子代码。为了降低成本,EPC标签通常是被动式射频标签。根据其功能级别 的不同,EPC标签可分为5类,目前所开展的EPC测试使用的是Class l Gen 2标签。 (1)Class OEPC标签。满足物流,供应链管理中,比如超市的结账付款、超市货架扫描、集装 箱货物识别、货物运输通道以及仓库管理等基本应用功能的标签。Class OEPC标签的主要功能 包括:必须包含EPC代码、24位自毁代码以及CRC代码;可以被读写器读取;可以被重叠读取;可以自毁;存储器不可以由读写器进行写入。 (2)Classl EPC标签。又称身份标签,它是一种无源的、后向散射式标签,除了具备ClassOEPC标签的所有特征外,还具有一个电子产品代码标识符和一个标签标识符,Class1EPC 标签具有自毁功能,能够使得标签永久失效,此外,还有可选的密码保护访问控制和可选的用户 内存等特性。 (3)Class 2 EPC标签。也是一种无源的、后向散射式标签,它除了具备Class 1 EPC标签的 所有特征外,还包括扩展的TID(Tag Identifier,标签标识符)、扩展的用户内存、选择性识 读功能。Class 2 EPC标签在访问控制中加入了身份认证机制,并将定义其他附加功能。 (4)Class 3 EPC标签。是一种半有源的、后向散射式标签,它除了具备Class 2 EPC标签的 所有特征外,还具有完整的电源系统和综合的传感电路,其中,片上电源用来为标签芯片提供部 分逻辑功能。 (5)Class 4 EPC标签。是一种有源的、主动式标签,它除了具备Class 3 EPC标签的所有特 征外,还具有标签到标签的通信功能、主动式通信功能和特别组网功能。

图像识别与人工智能研究所发展规划报告

图像所学科建设与发展规划 根据学校建设世界知名高水平大学的发展目标,特制定图像所相应的学科建设与发展规划,以推动本学科的跨越式发展。 一、学科建设总体目标 (一)学科基础 图像识别与人工智能研究所(简称图像所)将继续以跻身于我国的国防科技的发展为切入点,从事发展巡航导弹中制导、末制导关键技术,承担相关预先研究和攻关科研任务为学科建设的主攻方向。 (1)目前本学科点共有五个研究方向: “计算机视觉与应用”、 “成像自动目标识别与精确制导技术”、 “多谱成像与遥感图像处理”、 “人工智能与思维科学” “面向模式识别的专用处理机与IC芯片设计”。 (2)本学科点现有科研人员26人,其中教授(含博士生导师)7人,副教授7人。科研教学梯队层次高,年龄、专业结构合理。现有教学科研用房4000 平方米。实验设备固定资产5000余万元,已初步形成先进、配套的教学、科研、开发环境和雄厚的技术储备。 (3)学科特点 模式识别与智能系统是信息科学技术领域中发展最迅速的前沿领域之一。

来自不同成像传感器的不同谱段的图像信号能全面揭示客观世界的各种特性,智能控制是人工智能与自动控制相结合的现代控制理论和技术,图像模式处理、识别与智能控制的结合构成了智能信息系统和智能自动化系统发展的基础,不仅科学意义深远而且有十分广阔的应用前景。本学科点的主要特色是紧密结合航天、航空和信息技术领域的国家目标,进行应用基础和应用技术的研究和开发,重点研究多谱段图像模式信息的获取、表示、处理、分析与智能系统领域的基础理论与关键技术,同时培养和造就本领域高层次、高质量的科技人才。本学科点具有特色和优势的研究方向是: ·计算机视觉与应用 在基于信息融合的信号处理、基于视觉、力觉和超声波接近觉的多传感器机器人系统和飞行器三维航迹规划技术方面具有特色,承担了国家重大型号XY-20末制导航迹规划攻关项目并进入型号研制。 ·成像自动目标识别与精确制导技术 开展面向复杂背景和随机环境下成像自动目标检测、识别、跟踪的新理论、新方法、新算法和新系统的研究,其特色是瞄准有关国家安全的国家目标,紧密结合航天航空高技术发展,在基于图象和图象序列的自动目标识别,景象匹配定位等精确制导领域开展应用基础和高技术的研究,并将一系列高水平成果应用于国防高技术武器系统中。 ·多谱成像与遥感图像处理 研究微波辐射特性及成像技术、激光雷达成像信号处理和遥感图像处理与

数字图像处理技术的研究现状与发展方向

数字图像处理技术的研究现状与发展方向 孔大力崔洋 (山东水利职业学院,山东日照276826) 摘要:随着计算机技术的不断发展,数字图像处理技术的应用领域越来越广泛。本文主要对数字图像处理技术的方法、优点、数字图像处理的传统领域及热门领域及其未来的发展等进行相关的讨论。 关键词:数字图像处理;特征提取;分割;检索 引言 图像是指物体的描述信息,数字图像是一个物体的数字表示,图像处理则是对图像信息进行加工以满足人的视觉心理和应用需求的行为。数字图像处理是指利用计算机或其他数字设备对图像信息进行各种加工和处理,它是一门新兴的应用学科,其发展速度异常迅速,应用领域极为广泛。 数字图像处理的早期应用是对宇宙飞船发回的图像所进行的各种处理。到了70年代,图像处理技术的应用迅速从宇航领域扩展到生物医学、信息科学、资源环境科学、天文学、物理学、工业、农业、国防、教育、艺术等各个领域与行业,对经济、军事、文化及人们的日常生活产生重大的影响。 数字图像处理技术发展速度快、应用范围广的主要原因有两个。最初由于数字图像处理的数据量非常庞大,而计算机运行处理速度相对较慢,这就限制了数字图像处理的发展。现在计算机的计算能力迅速提高,运行速度大大提高,价格迅速下降,图像处理设备从中、小型计算机迅速过渡到个人计算机,为图像处理在各个领域的应用准备了条件。第二个原因是由于视觉是人类感知外部世界最重要的手段。据统计,在人类获取的信息中,视觉信息占60%,而图像正是人类获取信息的主要途径,因此,和视觉紧密相关的数字图像处理技术的潜在应用范围自然十分广阔。 1数字图像处理的目的 一般而言,对图像进行加工和分析主要有以下三方面的目的[1]: (1)提高图像的视感质量,以达到赏心悦目的目的。如去除图像中的噪声,改变图像中的亮度和颜色,增强图像中的某些成分与抑制某些成分,对图像进行几何变换等,从而改善图像的质量,以达到或真实的、或清晰的、或色彩丰富的、或意想不到的艺术效果。 (2)提取图像中所包含的某些特征或特殊信息,以便于计算机进行分析,例如,常用做模式识别和计算机视觉的预处理等。这些特征包含很多方面,如频域特性、灰度/颜色特性、边界/区域特性、纹理特性、形状/拓扑特性以及关系结构等。 (3)对图像数据进行变换、编码和压缩,以便于图像的存储和传输。 2数字图像处理的方法 数字图像处理按处理方法分,主要有以下三类,即图像到图像的处理、图像到数据的处理和数据到图像的处理[2]。 (1)图像到图像。图像到图像的处理,其输入和输出均为图像。这种处理技术主要有图像增强、图像复原和图像编码。 首先,各类图像系统中图像的传送和转换中,总要造成图像的某些降质。第一类解决方法不考虑图像降质的原因,只将图像中感兴趣的特征有选择地突出,衰减次要信息,提高图像的可读性,增强图像中某些特征,使处理后的图像更适合人眼观察和机器分析。这类方法就是图像增强。例如,对图像的灰度值进行修正,可以增强图像的对比度;对图像进行平滑,可以抑制混入图像的噪声;利用锐化技

智能制造概述

智能制造概述 摘要:介绍了智能制造提出的背景、主要研究内容和目标, 人工智能与I M T、I M S的关系, I M S 和C I M S, 智能制造的物质基础及理论基础, 智能制造系统 的特征及框架结构, 并简要介绍了智能加工中心IMC, 智能制造技木的发展趋势,以及智能制造系统研究成果及存在问题。 关键词:智能制造,IMS, IMC, IMT。 Abstract:Intelligent Manufacturing introduced the background, main contents and objectives, Artificial Intelligence and IMT, IMS relations, IMS and CIMS, intelligent manufacturing and the material basis of the theoretical basis of the characteristics of intelligent manufacturing system and the framework structure, and gave a briefing on intelligence Machining Center IMC, intelligent manufacturing technology development trend of wood, as well as the Intelligent Manufacturing Systems research results and problematic. Key words: Intelligent Manufacturing, IMS, IMC, IMT。 一. 智能制造提出的背景 制造业是国民经济的基础工业部门, 是决定国家发展水平的最基本因素之一。从机械制造业发展的历程来看, 经历了由手工制作、泰勒化制造、高度 自动化、柔性自动化和集成化制造、并行规划设计制造等阶段。就制造自动化 而言, 大体上每十年上一个台阶: 50~60年代是单机数控, 70 年代以后则是CNC 机床及由它们组成的自动化岛, 80 年代出现了世界性的柔性自动化热潮。 与此同时, 出现了计算机集成制造, 但与实用化相距甚远。随着计算机的问世与 发展, 机械制造大体沿两条路线发展: 一是传统制造技术的发展, 二是借助计算 机和自动化科学的制造技术与系统的发展。80年代以来, 传统制造技术得到了 不同程度的发展,但存在着很多问题。先进的计算机技术和制造技术向产品、工 艺和系统的设计人员和管理人员提出了新的挑战, 传统的设计和管理方法不能 有效地解决现代制造系统中所出现的问题, 这就促使我们借助现代的工具和方法, 利用各学科最新研究成果, 通过集成传统制造技术、计算机技术与科学以及 人工智能等技术, 发展一种新型的制造技术与系统, 这便是智能制造技术( In

图像识别匹配技术原理

第1章绪论 1.1研究背景及意义 数字图像,又称数码图像或数位图像,是二维图像用有限数字数值像素的表示。通常,像素在计算机中保存为二维整数数组的光栅图像,这些值经常用压缩格式进行传输和储存。数字图像可以由许多不同的输入设备和技术生成,例如数码相机、扫描仪、坐标测量机等,也可以从任意的非图像数据合成得到,例如数学函数或者三维几何模型,三维几何模型是计算机图形学的一个主要分支。数字图像处理领域就是研究它们的变换算法。 数字图像处理(Digital Image Processing)是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。数字图像处理的产生和迅速发展主要受三个因素的影响:一是计算机的发展;二是数学的发展(特别是离散数学理论的创立和完善);三是广泛的农牧业、林业、环境、军事、工业和医学等方面的应用需求的增长。 图像配准(Image registration)就是将不同时间、不同传感器(成像设备)或不同条件下(天候、照度、摄像位置和角度等)获取的两幅或多幅图像进行匹配、叠加的过程,它已经被广泛地应用于遥感数据分析、计算机视觉、图像处理等领域。 图像配准的方法迄今为止,在国内外的图像处理研究领域,已经报道了相当多的图像配准研究工作,产生了不少图像配准方法。总的来说,各种方法都是面向一定范围的应用领域,也具有各自的特点。比如计算机视觉中的景物匹配和飞行器定位系统中的地图匹配,依据其完成的主要功能而被称为目标检测与定位,根据其所采用的算法称之为图像相关等等。 基于灰度信息的图像配准方法一般不需要对图像进行复杂的预先处理,而是利用图像本身具有灰度的一些统计信息来度量图像的相似程度。主要特点是实现简单,但应用范围较窄,不能直接用于校正图像的非线性形变,在最优变换的搜索过程中往往需要巨大的运算量。经过几十年的发展,人们提出了许多基于灰度信息的图像配准方法,大致可以分为三类:互相关法(也称模板匹配法)、序贯相似度检测匹配法、交互信息法。 目前主要图像配准方法有基于互信息的配准方法,基于相关性的配准方法和基于梯度的配准方法。其中基于梯度的方法基本很少单独使用,而作为一个辅助

人脸检测和识别技术的文献综述

人脸识别技术综述 摘要:在阅读关于人脸检测识别技术方面文献后,本文主要讨论了人脸识别技术的基本介绍、研究历史,人脸检测和人脸识别的主要研究方法,人脸识别技术的应用前景,并且总结了人脸识别技术的优越性和当下研究存在的困难。 关键词:人脸识别;人脸检测;几何特征方法;模板匹配方法;神经网络方法;统计方法;模板匹配;基于外观方法; 随着社会的发展,信息化程度的不断提高,人们对身份鉴别的准确性和实用性提出了更高的要求,传统的身份识别方式已经不能满足这些要求。人脸识别技术(FRT)是当今模式识别和人工智能领域的一个重要研究方向.虽然人脸识别的研究已有很长的历史,各种人脸识别的技术也很多,但由于人脸属于复杂模式而且容易受表情、肤色和衣着的影响,目前还没有一种人脸识别技术是公认快速有效的[1]基于生物特征的身份认证技术是一项新兴的安全技术,也是本世纪最有发展潜力的技术之一[2]。 1. 人脸识别技术基本介绍 人脸识别技术是基于人的脸部特征,一个完整的人脸识别过程一般包括人脸检测和人脸识别两大部分,人脸检测是指计算机在包含有人脸的图像中检测出人脸,并给出人脸所在区域的位置和大小等信息的过程[3],人脸识别就是将待识别的人脸与已知人脸进行比较,得

出相似程度的相关信息。 计算机人脸识别技术也就是利用计算机分析人脸图象, 进而从中出有效的识别信息, 用来“辨认”身份的一门技术.人脸自动识别系统包括三个主要技术环节[4]。首先是图像预处理,由于实际成像系统多少存在不完善的地方以及外界光照条件等因素的影响,在一定程度上增加了图像的噪声,使图像变得模糊、对比度低、区域灰度不平衡等。为了提高图像的质量,保证提取特征的有有效性,进而提高识别系统的识别率,在提取特征之前,有必要对图像进行预处理操作;人脸的检测和定位,即从输入图像中找出人脸及人脸所在的位置,并将人脸从背景中分割出来,对库中所有的人脸图像大小和各器官的位置归一化;最后是对归一化的人脸图像应用人脸识别技术进行特征提取与识别。 2. 人脸识别技术的研究历史 国内关于人脸自动识别的研究始于二十世纪80年代,由于人脸识别系统和视频解码的大量运用,人脸检测的研究才得到了新的发展利用运动、颜色和综合信息等更具有鲁棒性的方法被提出来变形模板,弹性曲线等在特征提取方面的许多进展使得人脸特征的定位变得更为准确。 人脸识别的研究大致可分为四个阶段。第一个阶段以Bertillon,Allen和Parke为代表,主要研究人脸识别所需要的面部特征;第二个阶段是人机交互识别阶段;第三个阶段是真正的机器自动识别阶段;第四个阶段是鲁棒的人脸识别技术的研究阶段。目前,国外多所

图像识别技术综述,计算机智能前沿课程的论文

图像识别技术综述杨列 20821152 摘要 本文对图像识别的基本方法,并展望了图像识别技术所面临的问题及发展方向。 1. 前言 图像识别所研究的问题,是如何用计算机代替为人自动去处理大量的物理信息,解决人类生理器官所不能识别的问题,从而从部分上代替人的脑力劳动。图像的含义也比较广泛,最早是指图片,后来把如声波的波形图也归为图像。具体来说,图像可以是各种图画,字符,声波信号,透视胶片,空间物体。综合来说,又可以分为直观视觉图像(图案,文字)和间接转换图像(声音,心率等)两类。 由于图像识别涉及许多学科,图像本身含义也相当广泛性和丰富性,本文只从由光学采集器获得二维灰度图像的识别的几个重要方面做一些综述。t. 2. 图像识别方法 2.1图像识别的基本方法及特点 图像识别的方法很多,可概括为三种:统计(或决策理论)法,结构(或句法)方法和神经网络法。[1] 对于一幅实际图像来说,目标和背景常常不是线性可分的,统计法是一种分类误差最小的方法。它以数学上的决策理论为基础,根据这种理论建立统计学识别模型。其基本模型是对研究的图像进行大量的统计分析,找出规律性认识,提出反映图像本质特点的特征进行识别。如Bayes模型和马尔科夫(MRF)模型。但是统计方法基本严格的数学模型,而忽略了图像中被识别对象的空间相互关系,即结构关系,所以当被识别物体的结构特征为主要特征时,用统计方法便会很难识别。 句法识别是对统计识别方法的补充,统计方法用数值来描述图像的特征,句法方法则是用符号来描述图像特征的。它模仿了语言学中句法的层次结构,采用分层描述方法,把复杂图像分解为单层或多层的简单子图像,主要突出识别对象的结构信息。模式识别是从统计方法发展起来的,而句法方法更扩大了模式识别的能力,使其不仅限于对象物的分类,而且用于景物的分析与物体结构的识别。 神经网络方法是指用神经网络的算法对图像进行识别的方法,神经网络系统是由大量简单的处理单元(神经元)广泛地互相连接而形成的复杂网络系统,它反映了人脑功能的许多基本特性,是人脑神经网络系统的简化,抽象和模拟。句法方法侧重于模拟人的逻辑思维,而神经网络侧重于模拟和实现人的认知过程中的感知觉过程,形象思维,分布式记忆和自学自组织的过程,与符号处理是一种互补的关系。但神经网络具有大规模并行,分布式存储和处理,自组织,自适应和自学习的能力,特别适用于处理需要同时考虑许多因素和条件的不精确和模糊的信息处理问题。 2.2 其它图像识别方法 模糊集(Fuzzy Set)识别方法。在模式识别,自动控制等方面有广泛应用。在图像识别中,有些问题极其复杂,很难用一些确定的标准作出判断。人脑的识别精度不高,却能够用一些不够精确,也即模糊的概念准确地辨识复杂事物的特征,怎样用不太精确的方式来描述复杂的系统,怎样建立合理的数学模型来研究模糊现象,并能快速准确地进行识别,就是模糊识别法研究的目的。 标记松弛法(Relaxation Labeling) [2]是另一种采用符号来描述图像特征的识别方法,在这种方法中,处理对象一般称为目标,而描述目标的符号则称为标记,标记松弛法先对目标给定一组不确切的标记,通过迭代运算[3]逐次更新标记,最后求得这组目标的较为确切的标记集,算法的整个过程与人对某一事物的猜测推理过程相类似。由于以迭代方式进行,所以易于实现,但所缺点是计算量太大[4],只有采用并行处理的方法,标记松弛法才能充分发挥它的作用。 此外,还有实用性很强的识别方法,就是模板匹配(Template Matching)法,模板匹配法是按

智能家居综述

智能家居综述 1 概述 工业化、信息化社会的发展,对家居生活的影响带来了日常生活的革命性变化,从而诞生了智能家居的概念。80年代末期,由于通信与信息技术的发展,出现了对住宅中各种通信、家电、安保设备通过总线技术进行监视、控制与管理的商用系统,这在美国称为Smart Home,也就是现在智能家居的原型。最初的智能家居主要源自智能建筑行业,主要包括楼宇自动化系统、通信自动化系统和办公自动化系统,通过结构化综合布线系统把上述三个系统有机结合起来。随着数字化和网络化技术的发展,智能建筑技术逐渐向家庭发展,在家庭中应用最多的3C 产品之间的界限日益模糊,融合协同的趋势日益明显。各终端厂商以此为切入点,纷纷启动了家庭网络和终端互联技术研究,并提出多种智能家居的应用方案。 2 智能家居的发展现状 自从1984 年世界上的第一幢智能建筑在美国康涅狄格州出现以后,智能家居在国外得以快速发展,美国、加拿大、欧洲、澳大利亚和东南亚等经济比较发达的国家和地区先后提出了各种智能家居方案。到目前为止,智能家居系统已经开始应用在新加坡、韩国和中国的多个社区家庭,许多国内外的知名企业也开始研究与智能家庭相关的设备和技术。 智能家居从结构角度的变化经历了三次较大的变革,从最初的雏形式的智能家居系统,采用了同轴电缆组建网络,只是简单的实现开关物理量的控制的功能;后来变革到相对成熟、多功能、高效的基于总线模式的视频音频通信的模式;再到以中心处理器为核心,融合所有家居系统,实现真正的集中智能化控制;到现如今主流方向的基于物联网技术,模块化选择服务功能的智能家居系统。一共经历了四代的发展,其相关技术也日趋成熟。 而从智能家居系统相关的协议标准来分,目前市场上被认可的主流系统主要有以下几种:X-10系统,它是美国的主流应用系统,是利用电力线来作为构建网络的平台,用来保证数据的相互传递。同时,它采用集中总控制的模式来实现网络各终端的功能,这就使得该系统的操控相对简单、便利。而此系统的最大优点在于无需重新布线,它是利用电力载波技术,使用发射器将信号发出,再通过接收器接收信号处理后执行相应的操作。这就使得系统在安装工程上不需要为此单独钻孔开槽安装,大大节约了相应的费用和工期。但由于此系统的价格偏于昂贵,且相应的技术还有待提高,如抗干扰性差,通信速度低,所以在国内的推广并不是很成功;EIB系统,这是德国开发的系统,它的设计思路和美国的X-10系统恰好相反,系统各部分数据的交换都是采用总线连接的方式,使用前需要安装好相应的总线系统,并且也是采用中央控制的方式。此系统的最大特点是稳定性及安全性比较高,功能也很强大。但它缺点同样明显,预埋总线的方式不但增加了安装的复杂度和工期,同样此系统的成本也不低;HBS系统,由日本开发研制的

相关文档
最新文档