Dynaform软件的板料冲压成形操作指引教学文案

Dynaform软件的板料冲压成形操作指引教学文案
Dynaform软件的板料冲压成形操作指引教学文案

D y n a f o r m软件的板料冲压成形操作指引

Dynaform 软件的板料冲压成形操作指引

1 常用仿真术语定义:

冲压成形:用模具和冲压设备使板材产生塑性变形获得形状、尺寸、性能合乎要求的冲压件的加工方法。多在室温下进行。其效率高,精度高,材料利用率也高,可自动化加工。

冲压成形工序与工艺:

剪切:将板材剪切成条料、块料或具有一定形状的毛坯的加工工序称为剪切。分平剪、斜剪和震动剪。 冲裁:借助模具使板材分离的工艺。分为落料和冲孔。

落料--从板料上冲下所需形状尺寸坯料或零件的工序;

冲孔-- 在工件上冲出所需形状孔的工序。

弯曲:在弯曲力矩作用下,使平板毛坯、型材、管材等产生一定曲率和角度,形成一定形状冲压件的方法。

拉深:冲裁得到的平板毛坯成形成开口空心零件的冲压加工方法。

拉伸参数:

? 拉深系数m :拉深零件的平均直径 d 与拉深前毛坯 D 之比值m, m = d/D ;

? 拉深程度或拉深比:拉深系数 m 的倒数 1/m ;

? 极限拉深系数:毛坯直径 D 确定下,能拉深的零件最小直径 d 与D 之比。

胀形:指将材料不向变形区转移,只在变形区内产生径向和切向拉深变形的冲压成形方法。 翻边:在毛坯的平面或曲面部分的边缘,沿一定曲线翻起竖立直边的成形方法。

板材冲压成形性能评价指标:硬化指数n 、厚度方向系数γ、成形极限图。

成形极限:是指冲压加工过程中所能达到的最大变形程度。

2 Dynaform 仿真分析目的及流程

ETA/DYNAFORM 5.7是由美国工程技术联合公司(ENGINEERING TECHNOLOGY ASSOCIALTES, INC.)开发的一个基于LS-DYNA 的板料成形模拟软件包。作为一款专业的CAE 软件,ETA/DYNAFORM 综合了LS-DYNA 强大的板料成形分析功能以及强大的流线型前后处理功能。它主要应用于板料成形工业中模具的设计和开发,可以帮助模具设计人员显著减少模具开发设计时间和试模周期。基于Dynaform 软件的仿真结果,可以预测板料冲压成形中出现的各种问题,如破裂、起皱、回弹、翘曲、板料流动不均匀等缺陷,分析如何及时发现问题,并提供解决方案。Dynaform 仿真分析分析的步骤和流程如下图: 冲压成形 分离工序

剪切

冲裁 成形工序 弯曲 拉深

数值模拟分析流程总的来说分为前处理、求解计算和后处理三个主要部分。其中,前处理可细分为读入零件几何模型、有限元网格划分、定义成形工具、生成及定义毛坯、定义拉延筋和设置成形参数等几个部分。前处理的好坏直接影响到求解计算,关系到数值模拟结果的精确性。

一、前处理

1.读入零件模型。Dynaform软件可以直接读入由UG、CATIA和Pro/E等软件产生的数学模型。

以某公司的典型钣金件为例进行冲压成形数值模拟分析。首先将零件的数学模型的IGES、VGA等格式文件导入DYNAFORM中,如图2所示。

图2 零件的数学模型

Fig.2 The part’s mathematic model

根据零件的数学模型和实际生产经验,编制的工艺路线为拉深-

2.确定冲压方向

Dynaform默认的冲压方向为-Z方向。

3.创建零件的单元模型

选择菜单“Preprocess/Surface”命令,点击”Generate Middle Surface”按钮,进行零件中性层的抽取。可删除原导入的零件模型,并编辑抽取中性层后的零件,重新命名为零件“Part”,将其ID 序号数值设置为1,保存*.df文件。

4.创建零件

1)分析此零件的几何模型,由于该零件的翻边工序在最后,故在模拟中不考虑翻边这道工序,将其拉

平。选择菜单栏“BSE/Preparation”,点击“Unfold Flange”命令,选择零件的翻边部位,此时翻边部分轮廓呈白色高亮显示,如图3所示。

图3 选择零件翻边部位

2)点击“Accept”按钮,输入弯曲角“Bent Angle=180”,如图4。点击“Delete Original Flanges”按钮,删除零件原有的翻边工艺修正,如图5,点击“DONE”完成。删除翻边后的零件如图6。此时系统会自动创建一个新零件“Unfolded”,选择菜单栏“Part/Add…To Part”命令,点击“Surface(s)”,点击“Part”按钮,选择系统新创建的零件“UNFOLDED”,返回“Add…To Part”,点击“Apply”。至此零件“Part”创建成功,如图7。

图4 输入零件的翻边角度图5 删除原翻边

图6 删除翻边后的零件图图7 创建的零件图

3)创建零件网格

将右下角的当前零件改为“Part”,选择菜单“Preprocess/Element”命令,选择“Surface Mesh/Part Mesh”按钮,最大网格尺寸设置为8,其它尺寸为缺省值。点击“Select Surfaces”按钮,选择“Displayed Surf.”,此时零件“Part”呈白色高亮显示,点击“OK”和“Apply”按钮,并点击“Yes”加以确认,退出对话框。零件网格如图8所示。

注意:在网格划分时一定要将右下角当前的零件设为和网格划分的零件一致,否则划分的网格不是当前的零件。右下角的“Surfaces”可不选,此时零件的几何模型会隐藏,只显示网格。

图8 零件的网格模型

5.创建Blank

1)创建毛坯轮廓

打开零件Part,用工具栏的“Surface Mesh/Part Mesh”对零件进行网格划分。选择菜单栏

“BSE/Preparation”命令,选择“Blank Size Estimate”按钮,设置“Material”选项下的“NULL”按钮,点击“Material Library”,选择材料“Europe/DX54D”,输入板料厚度“Thickness=1.2”,点击“Apply”按钮,进行毛坯展开计算,如图9。

(a) (b) (c)

图9 毛坯的展开计算

生成的毛坯轮廓如图10。系统会自动创建OUTLINE零件。在“Parts/Edit Part”下修改零件名称“OUTLINE”为“Blank”,点击“Modify”按钮,点击“OK”,如图11所示。(注意右下角当前零件不能为“OUTLINE”,应改为其它零件名,不能对当前零件名进行修改和编辑)。

图10 展开后的毛坯轮廓图11 编辑毛坯零件名

2)考虑毛坯余量,扩展毛坯轮廓

选择菜单“Preprocess/Line/Point”,点击“Offset”进行偏移,选择边界轮廓,输入偏移距离为90mm,扩展后的边界线及其网格模型如图12所示。

图12 扩展后的毛坯轮廓

3)划分毛坯网格

将右下角的当前零件设为“Blank”,对毛坯进行网格划分。在工具栏选择“Blank generator”命令,选择“Boundary line”,此时鼠标变成“+”符号,点击毛坯轮廓线选择,此时轮廓线会呈白色高亮显示,点击“OK”。输入毛坯网格尺寸“Mesh Size/Element Size=8”,点击“OK”完成,如图13。点击“Yes”确认网格大小。毛坯划分网格后的模型如图14所示。

图13 毛坯网格尺寸图14 毛坯的网格模型

6.创建Punch

1)选择菜单“Parts/Create”,输入“Name=Punch”,编辑颜色,点击“OK”。如图15所示。在屏幕右下方会自动出现“Current Part=PUNCH”。

图15 创建Punch零件

2)创建零件网格

将“Part”零件的单元网格显示,选择“Parts/Add…To Part”,点击“Elements”按钮,选择“Displayed”,此时当前的零件网格会呈白色高亮状态,点击“OK”确认。将所选网格加入到“To Part:PUNCH”,点击“…”选择刚创建的“PUNCh”,确认后关闭对话框,如图16所示。此时“Part”零件的单元网格被添加到“Punch”零件中。如图2-16所示。此时“Part”零件只剩下Surfaces。

图16 Punch的网格模型

3)PUNCH网格模型的法线方向检查

点击菜单栏“Preprocess/Model Check/Repair”命令,点击“Auto Plate Normal”按钮进行法线方向检查。选择其中任一单元,观察法线方向,点击“YES”或“NO”按钮。注意,法线方向的设置总是由工具指向与坯料的接触面,如图17。

图17 Punch的法线方向检查

4)网格边界检查

点击菜单栏“Preprocess/Model Check/Repair”命令,点击“Boundary Display”按钮进行边界检查。通常只允许除边缘轮廓边界呈白色高亮显示外,其余部位均保持不变。如图18。如果其余部分的网格有白色高亮显示,则说明在白色高亮处的单元网格有缺陷,须进行修补或重新网格划分。修补可

点击“Gap Repair”按钮。完成边界检查后,若网格边界无缺陷,可点击工具栏中的“Clear Highlight”,清除边缘轮廓高亮显示部位。

图18 网格模型的边界检查

7. 创建凹模DIE

1)偏置得到DIE的单元网格

选择菜单“Parts/Create”,输入零件名称“Name”为凹模“DIE”,则右下角的当前零件自动变为“DIE”。打开零件“Punch”,选择菜单“Preprocess/Element”下的“Offset”命令,关闭“In

Original Part”复选框,使得新生成单元放置在当前零件中,关闭“Delete Original Element”复选框,保留原始零件中的单元。“Copy Number”为1,板料厚度“Thickness”的设定值为1.32(即为1.1t,其中t为板料厚度)。显示“Select Element”对话框,点击“Displayed”,则所有被选单元呈白色高亮显示,点击“OK”返回,则复制后的单元自动生成到“DIE”中。关闭零件“Punch”显示。新建的DIE的网格模型如图19所示。

图19 偏置得到的DIE的网格模型

8. 创建BINDER

1) 设置Die为工具

选择菜单栏“DFE/Preparation”的“Define”命令下,将“Tool/Tool Name”下添加“DIE”为工具。选择“DFE/Binder”,在“Create”命令下选择“Binder Type”为“Flat Binder”,并输入“Binder Size”的尺寸,点击“Apply”,如图20所示。此时右下角自动创建新零件“C_BINDER”,关闭零件“DIE”的显示,生成的压边圈轮廓表面如图21所示。

图20 创建BINDER过程图

图21 压边圈的轮廓表面

2) 划分网格

在工具栏“Surface Mesh”下选择“Tool Mesh”,输入最大网格尺寸为20mm,选择压边圈的轮廓表面,点击“Apply”和“YES”,关闭右下角的Surfaces显示,则得到如图22的压边圈网格模型。

图22 C_BINDER的网格模型

3)调整BINDER与DIE的位置

打开零件“DIE”与“C_BINDER”的显示,在工具栏选择视图“X-Z VIEW”视图。选择菜单“Utilities/Distance between nodes/points”,选择Die上任一节点和压边圈的任一节点,测量两节

点之间在Z方向上的距离,如图23所示,DZ=47.034mm。选择菜单“Preprocess/Element”下的“Transform”选项,在“Translate”下框选“Move”,在“Direction”下框选“Z Axis”,输入“Distance”的值为DX的值,即-47.034mm,使凹模向Z的负方向下移47.034mm。选择Die的所有单元,点击“OK”和“Apply”,退出对话框。调整后DIE与BINDER的位置如图24所示。

图23 DIE与C_BINDER在Z向的距离

图24 调整位置后的DIE与C_BINDER

3)切除DIE与C_BINDER重合区域,得到实际的压边圈轮廓

选择菜单“DFE/Modification”,点击“Binder Trim”,选择“Boundary”下的“Outer”,点击“Select”,选择剪切线,如图25所示。点击“Apply”和“Yes”,得到如图26所示的压边圈Binder和DIE。

图25 去除DIE与C_BINDER重合区域的剪切线

图26 剪切后的DIE与C_BINDER

4)偏置C_BINDER单元,创建实际BINDER

为创建DIE的工艺补充面,可将剪切后C_BINDER的轮廓作为DIE的工艺补充面。此时须将C_BINDER单元偏置重新创建BINDER单元。关闭零件“DIE”显示,在菜单栏“Parts/Create”输入新零件名称为“BINDER”,则右下角会自动显示当前零件名为“BINDER”。选择菜单栏“Preprocess/Offset Elements”,输入“Thickness”值为1.1t,即1.32mm,选择C_BINDER当前Displayed单元,点击“Apply”,退出对话框,则偏置后的C_BINDER单元自动添加到零件BINDER中,实际压边圈BINDER的网格模型如图27所示。关闭BINDER显示。

图27 实际压边圈的网格模型

5)打开零件“DIE”的显示,选择菜单栏“Parts/Add…To Part”,将C_BINDER单元添加到零件“DIE”中,点击“Apply”,关闭对话框。则创建工艺补充面后的DIE的网格模型如图28所示。

图28 创建工艺补充面后DIE的网格模型

9. 网格模型检查

1)将零件设为当前零件,选择菜单栏“Preprocess/Model Check/Repair”命令,点击“Auto Plate Normal”按钮,选择零件的任意网格,观察其法线方向,点击“YES”或“NO”按钮,直至确定网格法线方向。注意,法线方向的设置总是由工具指向与坯料的接触方向。对于毛坯BLANK而言,无须对其法线方向进行检查。

2)网格模型的边界检查通常只允许零件的外轮廓边界呈白色高亮,其余部位均保持不变。如果其余部分的网格有白色高亮显示,则说明在白色高亮处的单元网格有缺陷,须对有缺陷的网格进行相应的修补“Gap Repair”或重新进行单元网格划分。完成边界检查后,若网格边界无缺陷,可点击工具栏中的“Clear Highlight”,将白色高亮部分清楚。

10.参数设置

1) 定义工具与毛坯

(1)工具的定义选择菜单栏“Tools/Define Tools”命令,在“Tool Name”的下拉菜单中分别选择工具名Die,点击“Add”按钮,选择零件Die,点击“OK”。不关闭该对话框,继续定义Punch和Binder,点击“OK”关闭对话框。如图29所示。

图29 工具的定义

(2)毛坯Blank的定义选择菜单栏“Tools/Define Blank”命令,点击“Add”按钮选择“Blank”,点击“OK”。在“Material”选项下点击“None”按钮,在“Material Library”选择

“Europe/DX54D”的材料,“Type”为36,点击“OK”。在“Property”选项下点击“None”按钮,默认“Name”为“PQS1”,输入“UNIFORM THICKNESS”值为板料的厚度为1.2,其余采用默认值,点击“OK”返回。参数设置如图30所示。

图30 毛坯的参数设置

2) 工模具零件自动定位

选择菜单栏“Tools/Position Tools/Auto Position”命令,在“Master Tools(fixed)”选择“Blank”,在“Slave Tools”下选择PUNCH、DIE和BINDER,输入“Contact Gap”的值为板料厚度的1/2,即0.6mm,点击“Apply”。定位后毛坯与工具的位置如图31所示。

图31 工模具零件自动定位

3) 测量PUNCH与DIE之间的最小距离,计算PUNCH拉深深度

选择菜单栏“Tools/Position Tools/Min. Distance”命令,在“Select Mater Tools”选择“Punch”,在“Select Slave Tools”选择“DIE”,在“Direction”下选择Z方向,测得

“Distance”为41.919mm。由于零件模型采用中性层建模,实际的冲头冲程需考虑板料厚度。因此实际的拉深深度=测得的距离-板料厚度t,即41.919-1.2=40.719mm。

图32 测量PUNCH与DIE的最小距离

4) 定义PUNCH冲程与BINDER压边力大小

(1) PUNCH运动参数设置在菜单栏“Tools/Define Tools”下选择“Tool Name”为“Punch”,点击“Define Load Curve”按钮,出现“Tool Load Curve”对话框,选择默认的“Curve Type”为“Motion”,点击“Auto”按钮,出现“Motion Curve”对话框,选择“Velocity”,输入“Velocity”的值为5000(mm/s),实际冲头速度要小,主要是为了提高计算速度。输入“Strok Dist.”的值为40.719,即PUNCH拉深深度,点击“OK”返回。如图33所示。

图33 PUNCH运动参数设置

(2)设置BINDER压边力大小

初始压边力可采用公式:F=Q·A来计算。其中Q为A为压边圈与毛坯实际接触的面积,

关闭其它零件的显示,只显示压边圈BINDER。在菜单栏“Utilities/Area of Selected Elements”命令下选择BINDER所有单元网格,点击“OK”,则在下方的命令栏中出现BINDER的面积大小为

411471.00(mm2),约为0.412m2。查找工艺手册,Q一般为2~2.5MPa,试选Q=2.4MPa,则初始压边力F=0.412*2.4*106=988800N,约为1000000N。参数设置如图34所示。

图34 Binder压边圈面积计算

在菜单栏“Tools/Define Tools”下选择“Tool Name”为“Binder”,点击“Define Load Curve”按钮,出现“Tool Load Curve”对话框,选择“Curve Type”为“Force”,点击“Auto”按钮,出现“Force/Time Curve”对话框,输入“Force”的值为1000000(N),如图35所示。压边力曲线如图36。点击“OK”返回。

图35 BINDER压边力设置对话框

图36 BINDER压边力载荷曲线

5)选择拉深类型

选择菜单栏“Tools/Analysis Setup”命令,在“Draw Type”的下拉菜单下选择双动“Double action”,输入“Contact Gap”值为t/2,即0.6mm,如图37所示。点击“OK”返回。

图37 拉深类型的设置

6)工模具运动规律的动画模拟演示

在菜单栏选择“Tools/Animate”命令,点击“Play”按钮,可以观看工具运动的动画模拟演示。通过观察动画,可以判断工模具设置是否正确合理。如图38所示。

图38 “Animate”对话框

二、求解计算

在提交计算前,先保存好已经设置的文件。再在菜单栏中选择“Analysis/LS-DYNA”命令。在“Analysis Type”的下拉菜单下选择“Full Run Dyna”,求解器开始在后台进行计算。选择“Specify Memory”,将“Memory(Mb)”的值改为1000Mb。其余默认值不变。选择点击“Control Parameters”按钮,在“TIMESTEP(DT2MS)”中将“-1.200000E-006”改为“-1.200000E-007”,以减小计算过程中的质量增量,提高计算的精确度。点击“OK”返回。如图39所示。再次点击“OK”开始进行计算。

图39 求解参数的设置

三、后处理

计算后的结果文件为*.d3plot。点击菜单栏“PostProcess”命令,进入DYNAFORM后处理程序。在菜单中选择“File/Open”菜单项,选择*.d3plot文件。可观察成形零件的成形极限图、厚度分布云图、应力应变等结果信息。

超高强度钢板冲压件热成形工艺

超高强度钢板冲压件热 成形工艺 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

.生产侵侵。 超高强度钢板冲压件热成形工艺 热成形技术是近年来出现的一项专门用于生产汽车高强度钢板冲压件的先进制造技术。本文介绍了该技术的原理,讨论了材料,工艺参数.模具等热成形工艺的主要影响因素,完成了汽车典型件热成形工艺试验试制。获得了合格的成形件。检测结果表明。成形件的微观组织为理想的条状马氏体,其抗拉强度.硬度等性能指标满足生产要求。 1前言 在降低油耗、减少排放的诸多措施中.减轻车重的效果最为明显.车重减轻10%.可节省燃油 3%一7%,因此塑料.铝合金.高强度钢板等替代材料在车辆制造中开始使用。其中,高强度钢板可以通过减小板厚或者截面尺寸等方式减轻零件质量.在实现车辆轻量化和提高安全性方面比其他材料有明显优势,可以同时满足实现轻量化和提高安全性的要求,因此其在汽车领域内的应用越来越广泛。 热成形技术是近年来出现的一项专门用于成形高强度钢板冲压件的新技术,该项技术以板料在红热状态下冲压成形并同时在模具内被冷却淬火为特征.可以成形强度高达1500MPa的冲压件,广泛用于车门防撞梁.前后保险杠等保安件以及A柱,B柱.C柱.中通道等车体结构件的生产。由于具有减轻质量和提高安全性的双重优势,目前.这一技术在德国.美国等工业发达国家发展迅速.并开发出商品化的高强钢热冲压件生产线.高强钢热冲压件在车辆生产中应用也很 .一吉林大学材料学院谷诤巍姜超 ●机械科学研究总院先进制造技术研究中心单忠德徐虹 广泛。国内汽车业对该项技术也十分认同,并有少数几个单位从国外 耗巨资引入了相关技术与生产线, 为一汽-大众等汽车制造公司的部分车型配套热冲压件,关于该项技术的研究工作也已经开始。本文阐述了热冲压成形工艺原理,对典型冲压件的热冲压 成形工艺进行试验研究。 2热冲压成形工艺原理

板料成形CAE技术与其应用

板料成形CAE技术及应用 长期以来,困扰广大模具设计人员的主要问题就是较长的模具开发设计周期,特别是对于某些特殊复杂的板料成形零件,甚至制约了整个产品的开发进度,而板料成形CAE技术及分析软件的出现,有效地缩短模具设计周期,大大减少试模时间,帮助企业改进产品质量,降低生产成本,从根本上提高了企业的市场竞争力。 一、前言 计算机辅助设计技术以其强大的冲击力,影响和改变着工业的各个方面,甚至影响着社会的各个方面。它使传统的产品技术、工程技术发生了深刻的变革,极大地提高了产品质量,缩短了从设计到生产的周期,实现了设计的自动化。 板料成形是利用模具对金属板料的冲压加工,获得质量轻、表面光滑、造型美观的冲压件,具有节省材料、效率高和低成本等优点,在汽车、航空、模具等行业中占据着重要地位。由于板料成形是利用板材的变形得到所需的形状的,长期以来,困扰广大模具设计人员的主要问题就是较长的模具开发设计周期,特别是对于复杂的板料成形零件无法准确预测成形的结果,难以预防缺陷的产生,只能通过经验或类似零件的现有工艺资料,通过不断的试模、修模,才能成功。某些特殊复杂的板料成形零件甚至制约了整个产品的开发进度。 板料成形CAE技术及分析软件,可以在产品原型设计阶段进行工件坯料形状预示、产品可成形性分析以及工艺技术方案优化,从而有效地缩短模具设计周期,大大减少试模时间,帮助企业改进产品质量,降低生产成本,从根本上提高企业的市场竞争力。 板料成形CAE技术对传统开发模式的改进作用可以通过图1 和图2进行对比。

图1 传统板料成形模具开发模式 图2 CAE 技术模具开发方式 通过比较,就可发现板料成形CAE技术的主要优点。 (1)通过对工件的可成形工艺性分析,做出工件是否可制造的早期判断;通过对模具技术方案和冲压技术方案的模拟分析,及时调整修改模具结构,减少实际试模次数,缩短开发周期。 (2)通过缺陷预测来制定缺陷预防措施,改进产品设计和模具设计,增强模具结构设计以及冲压技术方案的可靠性,从而减少生产成本。 (3)通过CAE分析可以择优选择材料,可制造复杂的零件,并对各种成形参数进行优化,提高产品质量。 (4)通过CAE分析应用不仅可以弥补工艺人员在经验和应用工艺资料方面的不足,还可通过虚拟的冲压模拟,提高提高工艺人员的经验。 二、板料成形需要解决的问题 板料成形通过模具对板料施加压力,使板料产生永久性的塑性变形,以获得预期的产品形状。在这个过程中影响板材变形的因素非常多,要控制好变形的形状也非常困难。首先,金属受外力作用会发生变形,变形可分为弹性变形和塑性变形,弹性变形是可逆的,外力去除后变形体就会恢复成原来的形状;第二,材料的成分和组织对变形影响极大;第三,塑性变形有多种方式,再结晶温度下的塑性变形有晶内滑移和孪动、位错(位错分多种形式),再结晶温度上的塑性变形有晶间滑移、多晶体扩散和相变变形等;第四,变形温度、变形速度的影响;第五,变形体内部应力状态的影响;第六,摩擦与润滑的影响;第七,材料塑性变形后,当变形体内部各部分变形不一致时,

冲压成形工艺 (2)

冲压成型资料 1 冲压成型工艺定义: 冲压工艺是通过模具对毛坯施加外力,使之产生塑性变形或分离,从而获得一定尺寸、形状和性能的工件的加工方法。冲压工艺的应用范围十分广泛,既可以加工金属板料、棒料,也可以加工多种非金属材料。由于加工通常是在常温下进行的,故又称为冷冲压。 2冲压工艺的特点: 2.1 用冷冲压加工方法可以得到形状复杂、用其他加工方法难以加工的工件,如薄壳零件等。冷冲压件的尺寸精度是由模具保证的,因此,尺寸稳定,互换性好。 2.2 材料利用率高,工件重量轻、刚性好、强度高、冲压过程耗能少。因此,工件的成本较低。 2.3 操作简单、劳动强度低、易于实现机械化和自动化、生产率高。 2.4 冲压加工中所用的模具结构一般比较复杂,生产周期较长、成本较高, 3 冲压材料的基本要求: 冲压所用的材料,不仅要满足产品设计的技术要求,还应当满足冲压工艺的要求和冲压后的加工要求 (如切削加工、电镀、焊接等)。冲压工艺对材料的基本要求主要有: 3.1 对冲压成形性能的要求: 对于成形工序,为了有利于冲压变形和制件质量的提高,材料应具有:良好的塑性(均匀伸长率δb高)、屈强比(σs/σb)小、板厚方向性系数大、板平面方向性系数小、材料的屈服强度与弹性模量的比值 (σs /E)小。 对于分离工序,并不需要材料有很好的塑性,但应具有一定的塑性。塑性越好的材料,越不易分离。 3.2 对材料厚度公差的要求: 材料的厚度公差应符合国家规定标准。因为一定的模具间隙适用于一定厚度的材料,材料厚度公差太大,不仅直接影响制件的质量,还可能导致模具和冲床的损坏。 3.3 对表面质量的要求 材料的表面应光洁平整,无分层和机械性质的损伤,无锈斑、氧化皮及其它附着物。表面质量好的材料,冲压时不易破裂,不易擦伤模具,工件表面质量也好。

下料成型通用工艺规范汇总

T—0908--01 剪板下料通用工艺规范 编制/日期: 审核/日期: 批准/日期:

剪板机下料通用工艺规范 1、总则 本标准根据结构件厂现有的剪床,规定了剪板机下料应遵守的工艺规范,适用于在剪板机上下料的金属材料。剪切的材料厚度基本尺寸为0.5~13mm(不同设备剪切的板厚不同),料宽最大为2500mm。 2 引用标准 GB/T 16743-1997 冲裁间隙 JB/T 9168.1-1998 切削加工通用工艺守则下料 3 下料前的准备 3.1 熟悉图纸和有关工艺要求,充分了解所加工的零件的几何形状、尺寸要求,及材质、规格、数量等。 3.2 核对材质、规格与派工单要求是否相符。材料代用时是否有代用手续。 3.3 查看材料外观质量(疤痕、夹层、变形、锈蚀等)是否符合质量要求。 3.4 为了降低消耗,提高材料利用率,要合理套裁下料。 3.5 厚板件有材质纤维方向要求的应严格按工序卡片要求执行。 3.6 下料前要按尺寸要求调准定尺挡板,并保证工作可靠,下料时材料一定靠实挡板。 3.7 熟悉所用的设备、工具的使用性能,严格遵守安全操作规程和设备维护保养规则。 3.8 操作人员应按有关文件的规定,认真做好现场管理工作。对工件和工具应备有相应的工位器具,整齐地放置在指定地点,防止碰损、锈蚀。 3.9 操作前,操作人员应准备好作业必备的工具、量具、样板,并仔细检查、调试所用的设备、仪表、量检具、样板,使其处于良好的状态。剪板机各油孔加油。 3.10 下料好的物料应标识图号与派工单一同移工。 4 剪板下料 4.1 剪床刀片必须锋利及紧固牢靠,并按板料厚度调整刀片间隙。 4.2 钢板剪切时,剪刃间隙符合JB/T 9168.1标准要求,见表1。 表1:钢板剪切时剪刃间隙(单位:mm) 4.3 先用钢笔尺量出刀口与挡料板两断之间的距离,反复测量数次,然后先试剪一块小料核对尺寸正确与否,如尺寸公差在规定范围内,即可进行入料剪切,如不符合公差要求,应重新调整定位距离,直到符合规定要求为止。然后进行纵挡板调正,使纵与横板或刀口成90°并紧牢。 4.4 剪切最后剩下的料头必须保证剪床的压料板能压牢。 4.5 下料时应先将不规则的端头切掉,切最后剩下的料头必须保证剪床的压料板能压牢。 4.6 切口端面不得有撕裂、裂纹、棱边,去除毛刺。 4.7 剪床上的剪切

板料冲压件螺纹底孔冲压成形技术

板料冲压件螺纹底孔冲压成形技术 摘要:在板料冲压件上,按其料厚不同分别采用精冲小孔、变薄翻边、冷冲挤等工艺方法,成形螺纹底孔。本文论述了上述螺纹冲压成形工艺、冲模结构及其设计与制造技术。 主题词:冲件螺纹底孔冲小孔变薄翻边冷冲挤成形技术 螺纹联接结构,尤其紧螺纹联接结构,是各种机电与家电产品中零部件最主要的联接结构型式。薄板冲压件进行紧螺纹联接,需要有大于料厚的联接螺纹长度,以确保其联接可靠性,增强其负载能力,才能达到使薄板冲件联接牢靠、重量小的目的,从而使其成为结实、轻巧、紧凑的理想结构零件。 在仪器仪表、电子电器、各类家电、家用器具、玩具等产品的板料冲压件上,经常采用M2-M10的小螺纹紧联接结构。为提高效率并满足大量生产的需求,采用精冲小孔、变薄翻边、冷冲挤等工艺方法,冲压成形这些小螺纹底孔,不仅能以冲压制孔取代钻孔而大幅度提高生产效率,同时能获得尺寸精确、一致性好的底孔,并可使螺纹联接有足够的长度,从而确保其联接可靠性及设计要求的承载能力。所以,用冲压成形技术加工小螺纹底孔,具有优质高产的效果,也是一种成熟而值得推广的工艺技术。 1 螺纹底孔的计算 合适螺纹底孔的大小,不仅取决于螺纹直径,而且与其螺距有着密切的关系,通常可按下式计算: 当t L≤1时,取:d Z=d-t L

当t L>1时,取:d Z=d-~t L (2) 式中 t L-螺距,mm d z-螺纹底孔直径,mm d-螺纹直径,mm 表1 螺纹底孔直径的合理值(mm) 螺纹直径d 螺 距 t L 底 孔 直 径d z M1 M2 M3 M4 M5 M6 M8 M10 M12 1 5

M14 M16 M18 M20 M22 M24 M27 M302 2 3 3 2 冲制螺纹底孔的基本工艺方法 用冷冲压冲制板料冲压件上螺纹底孔的主要工艺方法有如下几种: (1)厚料冲小孔与精冲孔 当冲件厚t可以满足螺纹联接所需长度时,可用冲压制孔工艺解决。通常在这种情况下,多为厚料冲小孔,即冲制螺纹底孔的直径dz≤t或稍大于t,见表2。螺纹联接的最小有效长度取决于螺纹直径、螺距并与联接件的材料种类密切相关。

板料冲压工艺

板料冲压工艺 板料冲压是指用冲模使板料经分离或成形得到制件的工艺方法,它通常是在室温下进行,所以又称为冷冲压,简称冲压。 1、板料冲压的特点及应用 冲压用原材料必须具有足够的塑性,广泛应用的金属材料有低碳钢、高塑性合金钢、铝、铜及其合金等;非金属材料有石棉板、硬橡皮、绝缘纸、纤维板等。他广泛应用于汽车、拖拉机、航空、电器、仪表、国防等工业部门。 板料冲压具有以下特点: (1)冲压件的尺寸精度高,表面质量好,互换性好,一般不需切削加工即可直接使用,且质量稳定。 (2)可压制形状复杂的零件,且材料的利用率高、产品的重量轻、强度和刚度较高。 (3)冲压生产生产率高,操作简单,其工艺过程易于实现机械化和自动化,成本低。 (4)冲压用模具结构复杂,精度要求高,制造费用高。冲压只有在大批量生产时,才能显示其优越性。 (5)冲压件的质量为一克至几十千克,尺寸为一毫米至几米。 2、冲压设备 (1)剪床 剪床的用途是把板料切成一定宽度的条料,以供下一步冲压工序之用。 (2)冲床 冲床将完成除剪切以外的其他冲压工作。 右图为单柱式冲床的外形及其传动简图。电动机5带动飞轮4转动,当踩下踏板6时,离合器3使飞轮与曲轴2连接,因而曲轴随飞轮一起转动,通过连杆8带动滑块7作上下运动,从而进行冲压工作。当松开踏板时,离合器脱开,曲轴不随飞轮转动,同时制动闸1使曲轴停止转动,并使滑块7停在上面位置

3、冲压模具 (1)简单冲模 简单冲模在冲床一次行程中只完成一道工序,见右图。凸模1用压板6固定在上模板3上,通过模柄5与冲床滑块连接。凹模2用压板7固定在下模板4上。操作时,条料沿两导料板9之间送进,碰到挡料销10停止。冲下部分落入凹模孔。 此时,条料夹住凸模一起返回,被卸料板8推下。重复上述动作,完成连续冲压。导柱12和导套11组成的导向机构可保证凸模、凹模的合模准确性。 简单冲模结构简单,容易制造,价格低廉,维修方便,生产率低,适用于小批量生产。(2)连续冲模 连续冲模在冲床一次行程中,按着一定顺序,在模具的不同位置上,同时完成数道冲压工序,见右图。操作时,条料7向前送进,送进距离由挡料销控制。定位销2对准预先冲出的定位孔,上模向下运动时,冲孔凸模4进行冲孔,落料凸模1同时进行落料工序。条料夹住模具返程时,被卸料板6推下,如此循环进行操作,完成连续冲压工序。图中9是废料、8是成品、5是冲孔凹模、3是落料凹模。 连续冲模生产效率高,易于实现自动化,但定位精度要求高、结构复杂、制造成本高。主要用于大批量生产精度要求不高的中、小型零件。 (3)复合冲模 复合冲模在冲床一次行程中,在模具的同一位置上,完成两道以上冲压工序。此种模具具有生产率高,零件加工精度高,平正性好等优点,但结构复杂,成本高,主要适合批量大、精度高的冲压件的生产。 4、板料冲压的基本工序 (1)分离工序 分离工序是使坯料的一部分相对另一部分相互分离的工序,如剪切、落料、冲孔等。 1)剪切 剪切是使坯料按不封闭轮廓分离的工序,见右图。其任务是将板料切成具有有一定宽度的坯料,主要用于为下一步工序备料。 2)落料和冲孔

板料成型工艺 思考题

第二章板料成型工工艺 1.板料冲裁过程分为哪几个阶段,各阶段的变形特点是什么? 冲裁变形过程三阶段 (1)弹性变形阶段 在凸模压力下,材料产生弹性压缩、拉伸和弯曲变形,凹模上的板料则向上翘曲,间隙越大,弯 曲和上翘越严重。同时,凸模稍许挤入板料上部,板料的下部则略挤入凹模洞口,但材料的内应力未 超过材料的弹性极限。 (2)塑性变形阶段 凸模继续压入,材料内的应力达到屈服极限时,便开始产生塑性变形。随凸 模挤入板料深度的增大,塑性变形程度增大,变形区材料硬化加剧,冲裁变形力 不断增大,直到刃口附近侧面的材料由于拉应力的作用出现微裂纹时,塑性变形 阶段结束。 (3)断裂分离阶段 已形成的上下微裂纹,随凸模继续压入沿最大剪应力方向不断向材料内部扩展,当上下裂纹重合时, 板料被剪断分离。 2. 冲裁件的切断面具有明显的区域性特征.通常由塌角、光面、毛面、毛刺四部分组成。这 四个部分是怎样形成的? 塌角a:它是在冲裁过程中刃口附近的材料被牵连拉入变形(弯曲和拉伸)的结果。 光面b:它是在塑性变形过程中凸模(或凹模)挤压切入材料,使其受到剪切应力τ和挤压应 力σ的作用而形成的。 毛面c:它是由于刃口处的微裂纹在拉应力σ作用下不断扩展断裂而形成的。 毛刺d:冲裁毛刺是在刃口附近的侧面上材料出现微裂纹时形成的。当凸模继续下行时, 便使已形成的毛刺拉长并残留在冲裁件上。 3.影响冲裁件质量的主要因素有哪些? 冲裁件断面质量主要与凸凹模间隙、刃口锋利程度有关。同时也受模具结构,材料性能及板厚等因素的影响。 4.什么是精密冲裁?它与普通冲裁有何区别? 精密冲裁法是改变冲裁条件,以增大变形区的静水压作用,抑制材料的断裂,使塑性剪切变形延续到剪切的全过程,在材料不出现剪裂纹的冲裁条件下实现材料的分离,从而得到断面光滑而垂直的精密零件。 区别;生产中采用精密冲裁工艺,可以直接从板料中获得公差等级高(可达IT6~IT8级)、粗糙度小(可达O.8~O.4μm)的精密零件。生产率高。可以满足精密零件批量生产的要求。 5.凸凹模间歇过大或过小对冲裁过程有何影响? 当间隙过大时, (1)上、下裂纹向内错开。材料的弯曲与拉伸增大,拉应力增大,易产生剪裂纹,塑性变形阶 段较早结束,致使断面光面减小,塌角与斜度增大,形成厚而大的拉长毛刺,且难以去除。 (2)冲裁的翘曲现象严重。 (3)由于材料在冲裁时受拉伸变形较大,所以零件从材料中分离出来后,因弹性回复使外形尺 寸缩小(受拉后,弹性恢复),内腔尺寸增大。 (4)推件力与卸料力大为减小,甚至为零,材料对凸、凹模的摩擦作用大大减弱,所以模具寿 命较高。 间隙小,光面宽度增加,塌角、毛刺、斜度等都有所减小,工件质量较高当工件公差要求较严时,需要使用较小的间隙。凸凹模受到金属的挤压作用增大,从而增加了材料与凸凹模 之间的摩擦力。这不仅增大了冲裁力、卸料力和推件力,还加剧了凸、凹模的磨损,降低了模具寿命(冲硬质材料更为突出)。当工件公差要求较严时,仍然需要使用较小的间隙。 6.什么是板料的弯曲变形?

端盖零件的冲压成形工艺及模具设计

毕业设计论文论文题目:端盖零件的冲压成形工艺及模具设计 系部材料工程系 专业模具设计与制造 班级 学生姓名 学号 指导教师

毕业设计(论文)任务书 系部:材料工程系 专业:模具设计与制造 学生姓名:学号: 设计(论文)题目: 起迄日期: 4月1日~ 5月9日 指导教师: 发任务书日期:年 4 月 1 日

毕业设计(论文)任务书

目录 绪论 (1) 第1章任务来源及设计意义 (3) 1.1 设计任务来源 (3) 1.2 设计目的及意义 (3) 第2章冲压工件的工艺性分析 (4) 2.1 冲压及冲裁件的工艺性的感念 (4) 2.2 零件工艺性分析 (4) 第3章冲压工艺方案的确定 (6) 3.1 确定工艺方案的原则 (6) 3.2 工艺方案的确定 (6) 第4章模具结构形式及冲压设备的选择 (9) 4.1 模具结构形式的选择 (9) 4.2 冲压设备的选择 (10) 第5章主要工艺参数计算 (11) 5.1 排样设计与计算 (11) 5.2 计算工序压力 (13) 5.3 计算模具压力中心 (14) 5.4 计算凸、凹模工作部分尺寸并确定其制造公差 (16) 5.5 弹性元件的选取与设计 (19) 第6章选择与确定模具的主要零部件的结构与尺寸 (22) 6.1 确定工作零件 (22) 6.2 定位零件的设计 (24) 6.3 导料板的设计 (25) 6.4 卸料部件的设计 (25) 6.5 模架及其他零部件设计 (25) 第7章模具的总体装配 (29) 第8章模具工件零件的加工工艺 (30) 8.1 冲裁模凸、凹模的技术要求及加工特点 (30)

材料成型工艺

问答题 1、吊车大钩可用铸造、锻造、切割加工等方法制造,哪一种方法制得的吊钩承载能力大?为什么? 2、什么是合金的流动性及充形能力,决定充形能力的主要因数是什么? 3、铸造应力产生的主要原因是什么?有何危害?消除铸造应力的方法有哪些? 4.试讨论什么是合金的流动性及充形能力? 5. 分别写出砂形铸造,熔模铸造的工艺流程图并分析各自的应用范围. 6.液态金属的凝固特点有那些,其和铸件的结构之间有何相联关系? 7.什么是合金的流动性及充形能力,提高充形能力的因素有那些? 8.熔模铸造、压力铸造与砂形铸造比较各有何特点?他们各有何应用局限性? 9.金属材料固态塑性成形和金属材料液态成形方法相比有何特点,二者各有何适用范围? 10. 缩孔与缩松对铸件质量有何影响?为何缩孔比缩松较容易防止? 11. 什么是定向凝固原则?什么是同时凝固原则?各需采用什么措施来实现?上述两种凝固原则各适用于哪种场合? 12. 手工造型、机器造型各有哪些优缺点?适用条件是什么? 13.从铁-渗碳体相图分析,什么合金成分具有较好的流动性?为什么? 14. 铸件的缩孔和缩松是怎么形成的?可采用什么措施防止? 15. 什么是顺序凝固方式和同时凝固方式?各适用于什么金属?其铸件结构有何特点? 16. 何谓冒口,其主要作用是什么?何谓激冷物,其主要作用是什么? 17. 何谓铸造?它有何特点? 18. 既然提高浇注温度可提高液态合金的充型能力,但为什么又要防止浇注温度过高? 19.金属材料的固态塑性成形为何不象液态成形那样有广泛的适应性? 20..冷变形和热变形各有何特点?它们的应用范围如何? 21. 提高金属材料可锻性最常用且行之有效的办法是什么?为何选择? 22. 金属板料塑性成形过程中是否会出现加工硬化现象?为什么? 23. 纤维组织是怎样形成的?它的存在有何利弊? 24.许多重要的工件为什么要在锻造过程中安排有镦粗工序? 25. 模锻时,如何合理确定分模面的位置? 26. 模锻与自由锻有何区别?

板料冲压成性能及冲压材料

板料冲压成形性能及冲压材料 板料的冲压成形性能 板料对各种冲压成形加工的适应能力称为板料的冲压成形性能。具体地说,就是指能否用简便地工艺方法,高效率地用坯料生产出优质冲压件。冲压成形性能是个综合性的概念,它涉及到的因素很多,其中有两个主要方面:一方面是成形极限,希望尽可能减少成形工序;另一方面是要保证冲压件质量符合设计要求。下面分别讨论。 (一)成形极限 在冲压成形中,材料的最大变形极限称为成形极限。对不同的成形工序,成形极限应采用不同的极限变形系数来表示。例如弯曲工序的最小相对弯曲半径、拉深工序的极限拉深系数等等。这些极限变形系数可以在各种冲压手册中查到,也可通过实验求得。 依据什么来确定极限变形系数呢?这要看影响成形过程正常进行的因素是哪些。冲压成形时外力可以直接作用在毛坯的变形区(例如胀形),也可以通过非变形区,包括已变形区(例如拉深)和待变形区(例如缩口、扩口等),将变形力传给变形区。因此,影响成形过程正常进行的因素,可能发生在变形区,也可能发生在非变形区。归纳起来,大致有下述几种情况: 1.属于变形区的问题 伸长类变形一般是因为拉应力过大,材料过度变薄,局部失稳而产生断裂,如胀形、翻孔、扩口和弯曲外区等的拉裂。压缩类变形一般是因为压应力过大,超过了板材的临界应力,使板材丧失稳定性而产生起皱,如缩口、无压边圈拉深等的起皱。 2.属于非变形区的问题 传力区承载能力不够:非变形区作为传力区时,往往由于变形力超过了该传力区的承载能力而使变形过程无法继续进行。也分为两种情况: 1)拉裂或过度变薄;例如拉深是利用已变形区作为拉力的传力区,若变形力超过已变形区的抗拉能力,就会在该区内发生拉裂或局部严重变薄而使工件报废。 2)失稳或塑性镦粗:例如扩口和缩口工序是利用待变形区作为压力的传力区,若变形力超过了管坯的承载能力,待变形区就会因失稳而压屈,或者发生塑性镦粗变形。 非传力区在内应力作用下破坏:非变形区不是传力区时,由于变形过程中金属流动的不均匀性,也可能产生过大的内应力而使之破坏。根据发生问题的部位不同,可分为: 1)待变形区拉裂或起皱:例如在盒形件的后续拉深工序中,待变形区金属流入变形区的速度不一致,靠直边部分流入速度快,角部金属流入速度慢。在这两部分金属的相互影响下,直边部分容易发生拉裂,角部则容易沿高度方向压屈起皱。 2)已变形区拉裂或起皱:如薄壁件反挤时,若金属从变形区流到已变形区的速度不均匀,则速度快的部位易因受附加压应力而起皱,速度慢的部位易受附加拉应力的作用而开裂。

冲压成形工艺

冲压成形工艺 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

冲压成型资料 1 冲压成型工艺定义: 冲压工艺是通过模具对毛坯施加外力,使之产生塑性变形或分离,从而获得一定尺寸、形状和性能的工件的加工方法。冲压工艺的应用范围十分广泛,既可以加工金属板料、棒料,也可以加工多种非金属材料。由于加工通常是在常温下进行的,故又称为冷冲压。 2冲压工艺的特点: 2.1 用冷冲压加工方法可以得到形状复杂、用其他加工方法难以加工的工件,如薄壳零件等。冷冲压件的尺寸精度是由模具保证的,因此,尺寸稳定,互换性好。 2.2 材料利用率高,工件重量轻、刚性好、强度高、冲压过程耗能少。因此,工件的成本较低。 2.3 操作简单、劳动强度低、易于实现机械化和自动化、生产率高。 2.4 冲压加工中所用的模具结构一般比较复杂,生产周期较长、成本较高, 3 冲压材料的基本要求: 冲压所用的材料,不仅要满足产品设计的技术要求,还应当满足冲压工艺的要求和冲压后的加工要求 (如切削加工、电镀、焊接等)。冲压工艺对材料的基本要求主要有: 3.1 对冲压成形性能的要求: 对于成形工序,为了有利于冲压变形和制件质量的提高,材料应具有:良好的塑性(均匀伸长率δb高)、屈强比(σs/σb)小、板厚方向性系数大、板平面方向性系数小、材料的屈服强度与弹性模量的比值 (σs /E)小。

对于分离工序,并不需要材料有很好的塑性,但应具有一定的塑性。塑性越好的材料,越不易分离。 3.2 对材料厚度公差的要求: 材料的厚度公差应符合国家规定标准。因为一定的模具间隙适用于一定厚度的材料,材料厚度公差太大,不仅直接影响制件的质量,还可能导致模具和冲床的损坏。 3.3 对表面质量的要求 材料的表面应光洁平整,无分层和机械性质的损伤,无锈斑、氧化皮及其它附着物。表面质量好的材料,冲压时不易破裂,不易擦伤模具,工件表面质量也好。 4 冲压常用材料: 冷冲压用材料大部分是各种规格的板料、带料和块料。板料的尺寸较大,一般用于大型零件的冲压。对于中小型零件,多数是将板料剪裁成条料后使用。带料 (又称卷料)有各种规格的宽度,展开长度可达几十米,适用于大批量生产的自动送料,材料厚度很小时也可做成带料供应。块料只用于少数钢号和价钱昂贵的有色金属的冲压。 4.1 黑色金属普通碳素结构钢、优质碳素结构钢、合金结构钢、碳素工具钢、不锈钢、电工硅钢等。 对冷轧钢板,根据国家标准GB708-88规定,按轧制精度(钢板厚度精度)可分为A、B级: A──较高精度; B──普通精度。

汽车厚板料零件冲压成形分析及回弹计算

汽车厚板料零件冲压成形分析及回弹计算 作者:中国第一汽车集团富壮王广盛 摘要:汽车上板厚大于5mm 的厚板料零件的冲压成形CAE技术在材料、工艺、计算和评估等方面都与薄板料零件有所不同,基于MSC.Marc 软件并结合作者在厚板料零件冲压成形CAE 分析方面的实际工作,对计算模型建立时需注意的问题如单元选择、单元划分、屈服准则、硬化曲线、工况设定和回弹计算等进行了详细说明,并对厚板料零件上的伸长类翻边结构的成形极限问题进行了探讨。 关键词:厚板料;冲压成形;成形极限;CAE 引言 随着我国汽车板料零件设计、制造水平的不断提高,薄板料零件冲压成形CAE 技术的应用已日趋成熟,相关产品的设计和制造部门针对不同软件及计算方法建立起了对应的材料、工艺、计算和评估方面的标准和规范。这些标准和规范经过实践的检验和修正,目前在产品设计和生产制造环节中得到了广泛应用。 与薄板料零件不同,对于板厚大于5mm 的厚板料零件,例如商用车车架横梁、纵梁和加强板类零件,其在冲压成形、失效判定和回弹计算方面还没有一个明确的计算方法和分析思路,应用也远不如薄板料零件冲压成形CAE 技术广泛和成熟,这是与厚板料零件冲压成形的特点及其CAE 技术有关的。 目前国内针对这方面的研究相对少,这部分工作也有进一步研究和完善的必要,为此作者将近年关于厚板料零件冲压成形CAE 技术方面的工作进行了总结,并对其中一些具体问题进行了深入探讨。当然由于个人能力有限并且所面对问题又是行业内公认的“顽疾”,因此所做的工作远没有达到解决精确回弹计算的程度。 本文所讨论的相关内容都是基于MSC.Marc 平台的,选择MSC.Marc 软件除了非线性计算功能方面的考量外,更主要的是作者有十年以上该软件的使用经验,对于成形和回弹计算模型的精度和效率的控制有一定把握。 1 厚板料零件冲压成形及其CAE 技术的特点

材料成型工艺

. 问答题 1、吊车大钩可用铸造、锻造、切割加工等方法制造,哪一种方法制得的吊钩承载能力大?为什么? 2、什么是合金的流动性及充形能力,决定充形能力的主要因数是什么? 3、铸造应力产生的主要原因是什么?有何危害?消除铸造应力的方法有哪些? 4.试讨论什么是合金的流动性及充形能力? 5. 分别写出砂形铸造,熔模铸造的工艺流程图并分析各自的应用范围. 6.液态金属的凝固特点有那些,其和铸件的结构之间有何相联关系? 7.什么是合金的流动性及充形能力,提高充形能力的因素有那些? 8.熔模铸造、压力铸造与砂形铸造比较各有何特点?他们各有何应用局限性? 9.金属材料固态塑性成形和金属材料液态成形方法相比有何特点,二者各有何适用范围? 10. 缩孔与缩松对铸件质量有何影响?为何缩孔比缩松较容易防止? 11. 什么是定向凝固原则?什么是同时凝固原则?各需采用什么措施来实现?上述两种凝固原则各适用于哪种场合? 12. 手工造型、机器造型各有哪些优缺点?适用条件是什么? 13.从铁-渗碳体相图分析,什么合金成分具有较好的流动性?为什么? 14. 铸件的缩孔和缩松是怎么形成的?可采用什么措施防止? 15. 什么是顺序凝固方式和同时凝固方式?各适用于什么金属?其铸件结构有何特点? 16. 何谓冒口,其主要作用是什么?何谓激冷物,其主要作用是什么? 17. 何谓铸造?它有何特点? 18. 既然提高浇注温度可提高液态合金的充型能力,但为什么又要防止浇注温度过高? 19.金属材料的固态塑性成形为何不象液态成形那样有广泛的适应性? 20..冷变形和热变形各有何特点?它们的应用范围如何? 21. 提高金属材料可锻性最常用且行之有效的办法是什么?为何选择? 22. 金属板料塑性成形过程中是否会出现加工硬化现象?为什么? 23. 纤维组织是怎样形成的?它的存在有何利弊? 24.许多重要的工件为什么要在锻造过程中安排有镦粗工序? 25. 模锻时,如何合理确定分模面的位置? 26. 模锻与自由锻有何区别? . . 27.板料冲压有哪些特点?主要的冲压工序有哪些? 28. 间隙对冲裁件断面质量有何影响?间隙过小会对冲裁产生什么影响? 29. 分析冲裁模与拉深模、弯曲模的凸、凹模有何区别? 30. 何谓超塑性?超塑性成形有何特点? 31、落料与冲孔的主要区别是什么?体现在模具上的区别是什么? 32、比较落料或冲孔与拉深过程凹、凸模结构及间隙Z有何不同?为什么?

板料冲压成型工艺及模具设计

1 福建工程学院 板料冲压成型工艺及模具设计 课程设计说明书 题 目: 联锁片模具课程设计 专 业: 模具设计与制造 班 级: XXX 姓 名: XX 学 号: X608X0X12X 指导老师: 林老师 2010 年7月

2 目录 一、 前言 二、 结构工艺分析 三、 确定工艺方案 四、 绘制排样图 1.排样设计 2.搭边值确定 3.条料宽度计算 4材料利用率计算 五、 计算冲压力初选压力机 六、 模具工作零件刃口尺寸计算 七、 模具工作零件设计 八、 模具其他零件设计 九、 压力机主要技术参数校核 十、小结 参考文献

3 一、前言 冷冲模课程设计是模具专业学生在学习过程中的一个重要实践性学习环节,其目的是: 1. 应用本专业所学的理论知识和实训技能进行一次冲压模设计工作的实际训练,以提高独立分析和解决实际问题的技能、培养从科技研究工作的初步能力。 2. 通过查阅设计资料手册,熟悉设计标准和技术规范,通过进行方案论证、设计与计算CAD Pro/E 绘图数据处理和综合分析,编写说明书等环节进行工程师的基本训练 3. 培养勤奋、求实、团结互助、勇于创新的优良品质。 4. 希望通过本次设计答辩,进一步巩固、深化、扩大所学到的知识、技能。 由于初学者水平能力有限,设计中难免有不足和错误之处,恳请老师同学予以批评指正。

4 二冲裁件工艺分析 零件名称 材料 材料厚度 精度 生产批量 联锁片 冷轧钢板10 —2 2mm IT11,IT12 级 大批量 1、 结构形状: 该制件形状简单,结构对称,有利冲裁。

5 2、 尺寸精度: 该制件未注公差尺寸均按IT12计算,适合冲裁。查冲裁 件尺寸公差为:025 .038-、021.030-、015.08R -、0 18.016-、 5.3412.00Φ- 、1706.0±。 3、 材料:该制件材料为冷轧钢板有良好的塑性,冲压成型性能好。 结论:该制件适合冲裁。 三、确定工艺方案 该零件包括落料、冲孔两个工序,可有以下三种工艺方案: 方案一:先落料,后冲孔,采用单工序模生产。 方案二:落料-冲孔符合冲压,采用复合模生产。 方案三:冲孔-落料连续冲压,采用连续模生产。 分析:方案一模具结构简单,但需两道工序两副模具,生产率较低,难 以满足大批量生产。方案二只需一副模具,冲压件的形状精度和尺寸精度容易保证,且生产率也高。尽管模具结构较方案二复杂,但由于零件的几何形状简单对称,模具制造并不困难。但由于存在最小壁厚问题,不能用倒装式复合摸。方案三也只需一副生产模具,生产率也很高,但零件的冲压精度稍差,欲保证冲压的形状精度,需要在模具上设置导正销导正,故模具制造、安装较复合摸复杂。 通过对上述三种方案的分析比较,我选用正装式复合摸生产。

冲压是塑性成形加工方法之一以板料(金属

冲压是塑性成形加工方法之一以板料(金属

Chapter 1 Introduction 1.Definition of stamping ----a plastic forming method Raw material----sheet metal or non-metal Tool ----die Equipment----press Result----separate or deform, workpiece with shape, dimension and property. 冲压是塑性成形加工方法之一。以板料(金属、非金属)为原料,利用模具在压力机上对板料施加压力使其分离或变形获得所需零件。所需零件具有一定形状、尺寸和性能。 2.Basic requirement used in sheet forming Formability, surface quality, tolerance in thickness, and economy 3.Basic processes (1)cutting processes(分离工序): shearing, blanking, punching, parting, lancing, shaving (2)plastic deformation processes(成形工序): bending, deep drawing, spinning, bulging, flanging Chapter 2 Shearing, Blanking and Punching 1. Shearing

Equipment: straight parallel cutters t↑B↓ straight inclined cutters t↓B↑ 2. Blanking and punching mechanism (1) 3 deformation stages (2) Features of sheared edges of the sheet metal 4 parts----rollover, burnish zone, fracture, burr (reason); main affecting factors (3 aspects) 3. Blanking and punching clearance The effect of the amount of clearance between the punch and die on the operation process (3)features of sheared edges (4)dimensional precision (5)force and power (6)die life 4. The calculating of punch and die blade size (1) Principles of calculation: benchmarks, limit dimension (2) Methods of calculation: separately, coordinately (3) Steps

弯板冲压成型工艺与模具的设计

1 绪论 目前,我国冲压技术与工业发达国家相比还相当的落后,主要原因是我国在冲压基础理论及成形工艺、模具标准化、模具设计快速化等程度不高的原因。 1.1国内外发展概况 改革开放20多年来,我国的模具工业获得了飞速的发展,设计、制造加工能力和水平、都有一了很大的提高。据中国模具工业协会统计,1995年中国模具总产值为145亿元,而2003年已达450亿元左了,年均增长14%。另据统计2004年中国(不包括台湾、香港、澳门地区)共有模具专业生产厂、产品厂配套的模具车问(分厂)近20000家,约60万从业人员,年模具总产值达1亿元人民币以上的有十多家。但是,我国模具工业现有能力只能满足需求最的60%左右,还不能适应国民经济发展的需要。据有关部门统计,1997年进口模具价值6-3亿美元,这还不包括随设备一起进口的模具;1997年出口模具仅为7800万美元。目前我国模具工业的技术水平和制造能力,是我国国民经济建设中的薄弱环节和制约经济持续发展的瓶颈。国内已经认识到了模具在制造业中的重要基础地位,许多模具企业十分重视技术发展,增大了用于模具技术进步的投资。 1.2我国未来模具的研发探讨 ——模具设计的标准化、网络化、智能化、三维化、集成化1、标准化 标准化是实现模具专业化生产的基本前提,是系统提高整个模具行业技术水平和经济效益的重要手段,是机械制造业向深层次发展必由之路。国际上工业发达的国家和公司都极为重视模具的标准化,我国的模具标准化程度不足30%,而且标准品种少、质量低、交货期长,严重阻碍模具的合理流向和效能发挥。 CAD/CAM系统可建立标准零件数据库,非标准零件数据库和模具参数数据库。标准零件库中的零件在CAD设计中可以随时调用,并采用GT(成组技术)生产。非标准零件库中存放的零件,虽然与设计所需结构不尽相同,但利用系

五金冲压拉伸成型加工工艺的种类型解析

五金冲压拉伸成型加工工艺的16种类型 内容来源网络,由深圳机械展收集整理! 更多冲床及冲压自动化生产线技术,就在深圳机械展! 拉伸成型加工是利用模具将平板毛坯成形为开口空心零件的冲压加工方法。拉伸作为主要的冲压工序之一,应用广泛。用拉伸工艺可以制成圆筒形、矩形、阶梯形、球形、锥形、抛物线形及其他不规则形状的薄壁零件,如果与其他冲压成形工艺配合,还可制造形状更为复杂的零件。 使用冲压设备进行产品的拉伸成型加工,包括:拉伸加工、再拉伸加工、逆向拉伸以及变薄拉伸加工等。 拉伸加工:使用压板装置,利用凸模的冲压力,将平板材的一部分或者全部拉入凹模型腔内,使之成形为带底的容器。容器的侧壁与拉伸方向平行的加工,是单纯的拉伸加工,而对圆锥(或角锥)形容器、半球形容器及抛物线面容器等的拉伸加工,其中还包含扩形加工。 再拉伸加工:即对一次拉伸加工无法完成的深拉伸产品,需要将拉伸加工的成形产品进行再次拉伸,以增加成形容器的深度。 逆向拉伸加工:将前工序的拉伸工件进行反向拉伸,工件内侧变成外侧,并使其外径变小的加工。 变薄拉伸加工:用凸模将已成形容器挤入比容器外径稍小的凹模型腔内,使带底的容器外径变小,同时壁厚变薄,既消除壁厚偏差,又使容器表面光滑。 使用冲压设备进行五金冲压拉伸加工时,包括以下16种类型: 1、圆筒拉伸加工(Round drawing):带凸缘(法兰)圆筒产品的拉伸。法兰与底部均为平面形状,圆筒侧壁为轴对称,在同一圆周上变形均匀分布,法兰上毛坯产生拉深变形。

2、椭圆拉伸加工(Ellipse drawing):法兰上毛坯的变形为拉伸变形,但变形量与变形比沿轮廓形状相应变化。曲率越大的部分,毛坯的塑性变形量就越大;反之,曲率越小的部分,毛坯的塑性变形越小。 3、矩形拉伸加工(Rectangular drawing):一次拉伸成形的低矩形件。拉伸时,凸缘变形区圆角处的拉伸阻力大于直边处的拉伸阻力,圆角处的变形程度大于直边处的变形程度。 4、山形拉伸加工(Hill drawing):冲压件的侧壁为斜面时,侧壁在冲压过程中是悬空的,不贴模,直到成形结束时才贴模。成形时侧壁的不同部位变形特点不完全相同。 5、丘形拉伸加工(Hill drawing):丘形盖板件在成形过程中的坯件变形不是简单的拉伸变形,而是拉伸和胀形变形同时存在的复合成形。压料面上坯件的变形为拉伸变形(径向为拉应力,切向为压应力),而轮廓内部(特别是中心区域)坯件的变形为胀形变形(径向和切向均为拉应力)。

板料冲压成形模拟软件

eta/DYNAFORM 板料冲压成形模拟软件返回 发布时间:2004-02-06 22:29:00来源: ETA公司 双击鼠标滚屏 eta/DYNAFORM 板料冲压成形模拟软件 eta/DYNAFORM是由美国ETA公司开发的用于板料成形模拟的专用软件包,可以帮助模具设计人员显著减少模具开发设计时间及试模周期,不但具有良好的易用性,而且包括大量的智能化自动工具,可方便地求解各类板成形问题。DYNAFORM可以预测成形过程中板料的破裂、起皱、减薄、划痕、回弹,评估板料的成形性能,从而为板料成形工艺及模具设计提供帮助;DYNAFORM专门用于工艺及模具设计涉及的复杂板成形问题;DYNAFORM包括板成形分析所需的与CAD软件的接口、前后处理、分析求解等所有功能。目前,eta/DYNAFORM已在世界各大汽车、航空、钢铁公司,以及众多的大学和科研单位得到了广泛的应用,自进入中国以来,DYNAFORM已在长安汽车、南京汽车、上海宝钢、中国一汽、上海汇众汽车公司、洛阳一拖等知名企业得到成功应用。 主要特色 1.集成操作环境,无需数据转换 完备的前后处理功能,实现无文本编辑操作,所有操作在同一界面下进行 2.求解器 采用业界著名、功能最强的LS-DYNA,是动态非线性显示分析技术的创始和领导者,解决最复杂的金属成形问题。 3.工艺化的分析过程 囊括影响冲压工艺的60余个因素 以DFE为代表的多种工艺分析模块 有好的工艺界面,易学易用 4.固化丰富的实际工程经验 功能介绍 1. 基本模块 eta/DYNAFORM提供了良好的与CAD软件的IGES、VDA、DXF,UG和CATIA等接口, 以及与NASTRAN, IDEAS, MOLDFLOW等CAE软件的专用接口,以及方便的几何模型修补功能。 IGES 模型转入自动消除各种孔 eta/DYNAFORM的模具网格自动划分与自动修补功能强大,用最少的单元最大程度地逼近模具型面。比通常用于模具网格划分的时间减少了99%! 初始板料网格自动生成器,可以根据模具最小圆角尺寸自动确定最佳的板料网格尺寸,并尽量采用四边形单元,以确保计

相关文档
最新文档