基本两级运放分析与仿真

基本两级运放分析与仿真
基本两级运放分析与仿真

基本两级运放分析与仿真

分析下图所示两级运放大的指标:

偏置电流与功耗、开环增益、GBW与相位裕度、压摆率、Swing Range、噪声、工艺corner分析、温度特性分析等

建立该放大器的网表文件存储在文件:https://www.360docs.net/doc/d3896734.html,中。

网表文件:

*subckt opa

.param rzv=1k ccv=1p clv=1p

.subckt opa vip vin vo 0 vdd

m1 1 1 vdd vdd PENH w=12u l=2u m=2

m2 vo1 1 vdd vdd PENH w=12u l=2u m=2

m3 vo vo1 vdd vdd PENH w=12u l=0.6u m=8

mu1 1 vin 2 0 NENH w=12u l=2u m=2

mu2 vo1 vip 2 0 NENH w=12u l=2u m=2

mu3 2 vb 0 0 NENH w=12u l=6u m=1

mu4 vo vb 0 0 NENH w=12u l=6u m=8

mu5 vb vb 0 0 NENH w=12u l=6u m=1

rb vdd vb 100k

rz vo1 3 rzv

cc 3 vo ccv

cl vo 0 clv

cb vb 0 10p

.ends

1.工作点分析

由仿真结果查得电路的功耗是多少?各个mos管的工作区域,以及MOS管

的漏极电流为多少?该放大器的偏置电流为多少?

网表如下:

*opa fivea.sp

.options post=2

.lib '/home/fzu/hspice/models/cz6h_v28.lib' TT

.include "/home/fzu/example/zuoye/https://www.360docs.net/doc/d3896734.html,"

xa1 vip vin vo 0 vdd opa

vdd vdd 0 5

vin1 vin 0 dc 2.4876

vip1 vip 0 dc 2.4876 ac 1 0

.op

.end

(1)电路的功耗:

电路功耗为1.7896mW

(2)各个mos管的工作区域,MOS管的漏极电流,以及放大器的偏置电流:

2.直流分析

仿真该运放的输入输出特性曲线,求小信号增益、输出摆幅(output swing range)

网表如下:

*opa fiveb.sp

.options post=2

.lib '/home/fzu/hspice/models/cz6h_v28.lib' TT

.include "/home/fzu/example/zuoye/https://www.360docs.net/doc/d3896734.html,"

xa1 vip vin vo 0 vdd opa

vdd vdd 0 5

vin1 vin 0 dc 2.4876

vip1 vip 0 dc 2.4876 ac 1 0

.dc vip1 2.484 2.491 0.0001

.end

(1)输入输出特性曲线、小信号增益

(2)输出摆幅

由输入输出特性曲线图可得输出摆幅为:4.9112V-0.01057V=4.90063V

3.交流分析

(调整管子尺寸使运放的增益大于60dB,调整补偿电容使相位裕度大于60)①在没有补偿电阻(Rz),补偿电容(Cc)为1pf的条件下求该放大器单位增

益带宽(GWB)、相位裕度;

网表如下:

*opa fivec.sp

.options post=2

.lib '/home/fzu/hspice/models/cz6h_v28.lib' TT

.include "/home/fzu/example/zuoye/https://www.360docs.net/doc/d3896734.html,"

.param rzv=0

xa1 vip vin vo 0 vdd opa

vdd vdd 0 5

vin1 vin 0 dc 2.4876

vip1 vip 0 dc 2.4876 ac 1 0

.ac dec 100 100 200meg

.print ac vdb(vo) vp(vo)

.end

List文件截图:

由上图有,该放大器单位增益带宽(GWB)为:23.44229MHz,

相位裕度为:180-110.3815=79.6185

②分析没有补偿电阻,补偿电容在(0~5pf)变化的时候对GWB和相位裕度

的影响;

网表如下:

*opa fivec.sp

.options post=2

.lib '/home/fzu/hspice/models/cz6h_v28.lib' TT

.include "/home/fzu/example/zuoye/https://www.360docs.net/doc/d3896734.html,"

.param rzv=0

xa1 vip vin vo 0 vdd opa

vdd vdd 0 5

vin1 vin 0 dc 2.4876

vip1 vip 0 dc 2.4876 ac 1 0

.ac dec 100 10 200meg sweep ccv 0 5p 0.5p

.print ac vdb(vo) vp(vo)

.end

ccv=0pf ccv=0.5pf

ccv=1pf ccv=1.5pf

ccv=2pf ccv=2.5pf

ccv=3pf ccv=3.5pf

ccv=4pf ccv=4.5pf

ccv=5pf

由上知随着电容增大,单位增益带宽减小,相位裕度增大

③分析补偿电阻在(0~2K)变化,补偿电容为1pf的时候对GWB和相位裕度

的影响。

网表如下:

*opa fivec.sp

.options post=2

.lib '/home/fzu/hspice/models/cz6h_v28.lib' TT

.include "/home/fzu/example/zuoye/https://www.360docs.net/doc/d3896734.html,"

xa1 vip vin vo 0 vdd opa

vdd vdd 0 5

vin1 vin 0 dc 2.4876

vip1 vip 0 dc 2.4876 ac 1 0

.ac dec 100 1k 200meg sweep rzv 0 2k 0.2k

.print ac vdb(vo) vp(vo)

.end

rzv=0k rzv=0.2k

rzv=0.4k rzv=0.6k

rzv=0.8k rzv=1k

rzv=1.2k rzv=1.4k

rzv=1.6k rzv=1.8k

rzv=2k

由上知随着电阻增大,单位增益带宽变化不大,稍微有点增大,相位裕度增大

4.噪声分析:

对放大器的输出节点做噪声分析,给出分析的结果。

网表如下:

*opa fived.sp

.options post=2

.lib '/home/fzu/hspice/models/cz6h_v28.lib' TT

.include "/home/fzu/example/zuoye/https://www.360docs.net/doc/d3896734.html,"

xa1 vip vin vo 0 vdd opa

vdd vdd 0 5

vin1 vin 0 dc 2.4876

vip1 vip 0 dc 2.4876 ac 1 0

.ac dec 10 10 1g

.noise v(vo) vip1 20

.end

List文件截图:

(1)f=10Hz

(2) f=1KHz

(3) f=100KHz

(4) f=10MHz

(5) f=1GHz

由上知,随着频率的增大,噪声减小

5.压摆率分析(提示:运放工作在闭环状态,用瞬态分析)

输入激励信号为: PULSE 2 3 20ns 0.1n 0.1n 100n 200n 测量上升和下降的压摆率分别为多少?

网表如下:

*opa fivee.sp

.options post=2

.lib '/home/fzu/hspice/models/cz6h_v28.lib' TT

.include "/home/fzu/example/zuoye/https://www.360docs.net/doc/d3896734.html,"

xa1 vip vin vo 0 vdd opa

vdd vdd 0 5

vin1 vin vo dc 0

vip1 vip 0 dc 0.4876 pulse 2 3 20n 0.1n 0.1n 100n 200n .tran 5n 1u

.end

仿真波形如下:

上升和下降的压摆率分别为:

6.模型corner仿真

求出模型在FF、SS、FS、SF等情况下的小信号增益,以及GWB和相位裕度。网表如下:

*opa fivef.sp

.options post=2

.lib '/home/fzu/hspice/models/cz6h_v28.lib' TT

.include "/home/fzu/example/zuoye/https://www.360docs.net/doc/d3896734.html,"

xa1 vip vin vo 0 vdd opa

vdd vdd 0 5

vin1 vin 0 dc 2.4876

vip1 vip 0 dc 2.4876 ac 1 0

.dc vip1 2.484 2.491 0.0001

.ac dec 10 10 1g

.print ac vdb(vo) vp(vo)

.alter

.lib '/home/fzu/hspice/models/cz6h_v28.lib' FF

.alter

.lib '/home/fzu/hspice/models/cz6h_v28.lib' FS

.alter

.lib '/home/fzu/hspice/models/cz6h_v28.lib' SF

.alter

.lib '/home/fzu/hspice/models/cz6h_v28.lib' SS .end

(1) 模型在TT、FF、FS、SF、SS情况下的小信号增益

(2)模型在TT、FF、FS、SF、SS情况下的GWB

(3)模型在TT、FF、FS、SF、SS情况下的相位裕度

7.温度分析

对放大器进行温度扫描,分析各种温度情况下小信号增益;分析随温度变化,单位增益和相位裕度的变化情况。(温度扫描范围:0~100,步长为20)

网表如下:

*opa fiveg.sp

.options post=2

.lib '/home/fzu/hspice/models/cz6h_v28.lib' TT

.include "/home/fzu/example/zuoye/https://www.360docs.net/doc/d3896734.html,"

xa1 vip vin vo 0 vdd opa

vdd vdd 0 5

vin1 vin 0 dc 2.4876

vip1 vip 0 dc 2.4876 ac 1 0

.dc vip1 2.484 2.491 0.0001 sweep temp 0 100 20

.ac dec 10 10 1g sweep temp 0 100 20

.print ac vdb(vo) vp(vo)

.end

(1)小信号增益

(2)单位增益和相位裕度

单管共射极放大电路仿真实验报告

单管共射极分压式放大电路仿真实验报告 班级__________姓名___________学号_________ 一、实验目的:1.学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2.掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的 测量法。 3.熟悉简单放大电路的计算及电路调试。 4.能够设计较为简单的对温度稳定的具有一定放大倍数的放大电路。 二、实验要求:输入信号Ai=5 mv, 频率f=20KHz, 输出电阻R0=3kΩ, 放大倍数Au=60,直 流电源V cc=6v,负载R L=20 kΩ,Ri≥5k,Ro≤3k,电容C1=C2=C3=10uf。三、实验原理: (一)双极型三极管放大电路的三种基本组态。 1.单管共射极放大电路。 (1)基本电路组成。如下图所示: (2)静态分析。I BQ=(V cc-U BEQ)/R B (V CC为图中RC(1)) I=βI BQ

U CEQ=V CC-I CQ R C (3)动态分析。A U=-β(R C管共集电极放大电路(射极跟随器)。 (1)基本电路组成。如下图所示: (2)静态分析。I BQ=(V cc-U BEQ)/(R b +(1+β)R e)(V CC为图中Q1(C)) I CQ=βI BQ U CEQ=V CC-I EQ R e≈V CC-I CQ R e (3)动态分析。A U=(1+β)(R e管共基极放大电路。 (1)基本电路组成。如下图所示:

(2)静态分析。I EQ=(U BQ-U BEQ)/R e≈I CQ (V CC为图中RB2(2)) I BQ=I EQ/(1+β) U CEQ=V CC-I CQ R C-I EQ R e≈V CC-I QC(R C+R e) (3)动态分析。AU=β(R C极管将输入信号放大。 2.两电阻给三极管基极提供一个不受温度影响的偏置电流。 3.采用单管分压式共射极电流负反馈式工作点稳定电路。 四、实验步骤: 1.选用2N1711型三极管,测出其β值。 (1)接好如图所示测定电路。为使ib达到毫安级,设定滑动变阻器Rv1的最大阻值是 1000kΩ,又R1=3 kΩ。

集成运放基本应用之一模拟运算电路

实验十二集成运放基本应用之模拟运算电路 一、实验目的 1、了解并掌握由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的原理与功能。 2、了解运算放大器在实际应用时应考虑的一些问题。 二、实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各 种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 理想运算放大器特性: 在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放: 开环电压增益A ud=x 输入阻抗n=x 输出阻抗r o=0 带宽f BW=x 失调与漂移均为零等。 理想运放在线性应用时的两个重要特性: (1)输出电压U O与输入电压之间满足关系式 U o= A ud (U + —U-) 由于A ud=『而U o为有限值,因此,U + —U-即U + "U—,称为虚短” (2)由于「i=x,故流进运放两个输入端的电流可视为零,即I IB = 0,称为虚断”这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 基本运算电路 1) 反相比例运算电路 电路如图5—1所示。对于理想运放,该电路的输出电压与输入电压之间的 U。一割 R1

(a)同相比例运算电路 图5-3同相比例运算电路 关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻 R 2 = R I / F F o Ri 100K -CZ) ------------- + 12V I I? 100K -12V 5-2反相加法运算电路 2)反相加法电路 电路如图5 — 2所示,输出电压与输入电压之间的关系为 R 3= R 1/R 2/R F 3)同相比例运算电路 图5— 3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 U °=(1 空)U i R 2= R I /R F 当R i —E 时,U o = U i ,即得到如图5 — 3(b)所示的电压跟随器。图中R 2= R F , 用以减小漂移和起保护作用。一般 R F 取10K Q , R F 太小起不到保护作用,太大 则影响跟随性。 Ui ------ + 12V9 + 12V? + 5 -- ° Rs ~ — [>8 + ■ + Ui a -----1—1— —+ (b)电压跟随器 图5-1反相比例运算电路图 JOK Ri Ri 100K 9 IK [RwJ 100K 1ODK. -12V Vfl

Multisim在基本放大电路分析中的应用

¥ Multisim 在基本放大电路分析中的应用 一、实验目的 (1)初步掌握使用Multisim 软件对直流电路进行分析。 (2)验证验证二极管的单向导电性。 (3)学会测量放大电路的A v 、i R 、o R 、通频带BW 的方法。 (4)观测放大电路的动态性能。。 二、预习要求 (1)阅读关于Multisim 10软件的介绍。 (2)阅读教材中关于二极管的伏安特性、单向导电性等内容。 (3)阅读教材中关于静态工作点Q ,电压增益A v 、输入电阻i R 、输出电阻o R 和通频带BW 等内容。 三、实验电路及内容 (一)、二极管参数测试仿真实验 1. 在实验电路工作区搭建测量二极管正向伏安特性的实验电路,如图¥.1所示。依次设置滑动电阻器W R 触点至下端间的电阻值(拨动鼠标箭头显示的电位器拨动游标),调整二极管两端的电压。启动仿真开关,将测得的D v 、D i 及计算得到的D r 数据填入表¥.1。 图¥.1 测试二极管正向伏安特性实验电路 2. 在实验电路工作区搭建测量二极管反向伏安特性的实验电路,如图¥.2所示。依次设置滑动电阻器W R 触点至下端间的电阻值,调整二极管两端的电压。进行仿真实验,将测得的D v 、D i 及计算得到的D r 数据填入表¥.2。 表¥.1 二极管正向伏安特性测量数据记录表

图¥.2 测试二极管反向伏安特性实验电路 表¥.2 二极管反向伏安特性测量数据记录表 (二)、基本放大电路仿真实验 1. 静态工作点的测试 (1)阻容耦合放大电路由电阻、电容和三极管等元器件构成。在实验电路工作区搭建如图¥.3所示的阻容耦合放大电路,并存盘。 + Vs _ 图¥.3 单管分压式偏置放大电路 (2)启动Multisim 10界面菜单【Simulate】菜单中Analyses下的DC operating Point 命令,在弹出的对话框中的Output variables页将节点3、4、5、6、7节点作为仿真分析节

共射极基本放大电路分析汇总讲解

教案首页

一、组织教学(3分钟) 二、复习旧课5分钟) 三、导入新课(5分钟) 1.检查学生出勤情况、安全文明生产情况; (包括工作服,绝缘鞋等穿戴情况) 2.课前安全教育;按操作规程要求正确操作电器设备的运行。 1、复习旧知识:(1)放大电路的工作原理。 (提问:简述共发射极放大电路的工作原理。) (2)基本放大电路的工作状态分:静态和动态。 (3)静态工作点的设置。 (提问:设置静态工作点的目的是什么?) 2、启发、提出问题:(1)放大电路设置静态工作点的目的是 为了避免产生非线性失真,那么如何设置静态工作点才能避免非线性失真呢? (2)放大器的主要功能是放大信号,那怎 样计算放大器的放大能力呢? 引入新课题:必须学习如何分析放大电路。 课题:§2-2共发射极低频电压放大电路的分析 强调 安全用电 线 路 板 接 通 电 源 连 接 示 波 器 调 R B 观察示波器中输出电压的波形是否失真, 思考,回答 思 考 , 回 答 讲 授 法 讲 授 法 讲 授 法 稳定课堂秩序,准备上课。 巩固已学知识,为本次课程学习新知识作铺垫。 通过实际生产中的问题引入课程内容,激发学生的求知欲望,达到更好的教学效果。 +U CC + + V C 1 C 2 R B R C u i u o 放大电路的分析方法: 近似估算法; 图解分析法 教师活动 教学方法 设计目的 教学内容与过程 学生活动

四、讲授新课(20分钟) 1、分析静态工作点的估算。 (1) 静态工作点要估算的物理量。 提问:什么是静态工作点? 回答:当静态时,直流量I B 、I C 、U CE 在晶体管输出特性曲线上 所对应的点称为静态工作点。 提问:要确定静态工作点,必须要计算什么量? 回答:I B 、I C 、U CE 。 (2) 计算静态工作点的解题步骤。 启发提问:怎样计算I B 、I C 、U CE 呢? 以例2.1为例子,具体讲解静态的分析解题步骤。 ① 学生阅读例题;(例2.1) ② 画图:共发射极基本放大电路; ③ 提问:什么是直流通路? 回答:直流电流通过的路径。 ④画出放大器的直流通路。 方法:电容视为开路,其余不变 画图:放大器的直流通路 ⑤ 计算I B ; 适度引导板书课 题 讲解 学生阅读例题; 学生自己画出直流通路 +U CC V R B R C I CQ I BQ U BEQ U CEQ

基本放大电路及其分析方法

二、基本放大电路及其分析方法 一个放大器一般是由多个单级放大电路所组成,着重讨论双极型半导体三极管放大电路的三种组态,即共发射极,共集电极和共基极三种基本放大电路。从共发射极电路入手,推及其他二种电路,其中将图解分析法和微变等效电路分析法,作为分析基础来介绍。分析的步骤,首先是电路的静态工作点,然后分析其动态技术指标。对于放大器来说,主要的动态技术指标有电压放大倍数、输入阻抗和输出阻抗。 2.1.共射极基本放大电路的组成及放大作用 在实践中,放大器的用途是非常广泛的,它能够利用三极管的电流控制作用把微弱的电信号增强到所要求的数值,为了了解放大器的工作原理,先从最基本的放大电路学习: 图2.1称为共射极放大电路,要保证发射结正偏,集电极反偏Ib=(V BB-V BE)/Rb,对于硅管V BE约为0.7V左右,锗管约为0.2V左右,I B=(V BB-0.7)/Rb这个电路的偏流I B决定于V BB 和Rb的大小,V BB和Rb一经确定后,偏流I B就固定了,所以这种电路称为固定偏流电路,Rb又称为基极偏置电阻,电容Cb1和Cb2为隔直电容或耦合电容,在电路中的作用是“传送交流,隔离直流”,放大作用的实质是利用三极管的基极对集电极的控制作用来实现的. 上图是共射极放大电路的简化图,它在实际中用得比较多的一种电路组态,放大电路的主要性能指标,常用的有放大倍数、输入阻抗、输出阻抗、非线性失真、频率失真以及输出功率和效率等。对于不同的用途的电路,其指标各有侧重。 初步了解放大电路的组成及简单工作原理后,就可以对放大电路进行分析。主要方法有图解法和微变等效法。 2.2.图解分析法 2.2.1.静态工作情况分析 当放大电路没有输入信号时,电路中各处的电压,电流都是不变的直流,称为直流工作状态简称静态,在静态工作情况下,三极管各电极的直流电压和直流电流的数值,将在管子的特性曲线上确定一点,这点称为静态工作点,下面通过例题来说明怎样估算静态工作点。 解:Cb1与Cb2的隔直作用,对于静态下的直流通路,相当于开路,计算静态工作点时,只需考虑图中的Vcc、Rb、Rc及三极管所组成的直流通路就可以了,I B=(Vcc-0.7)/Rb (I C=βI B+I CEO ) I C=βI B,V CE=V CC-I C R C 如已知β,利用上式可近似估算放大电路的静态工作点。 2.2.2.用图解法确定静态工作点 在分析静态工作情况时,只需研究由V CC、R C、V BB、Rb及半导体三极管所组成的直

单管放大器的设计与仿真及误差分析

课程设计报告 题目:单管放大器的设计与仿真 学生姓名: 学生学号: 系别: 专业:电子信息工程 届别: 指导教师: 电气信息工程学院制 2013年3月

目录 引言……………………………………………………………1任务与要求…………………………………………………2系统方案制定………………………………………………3系统方案设计与实现………………………………………4系统仿真和调试……………………………………………5数据分析……………………………………………………6总结…………………………………………………………7参考文献……………………………………………………8附录…………………………………………………………

单管放大器的设计与仿真 学生: 指导教师: 电气信息工程学院电子信息工程专业 引言:放大现象存在于各种场合中,例如,利用放大镜放大微小的物体,这是光学中的放大;利用杠杆原理用小力移动重物,这是力学中的放大;利用变压器将低电压变换为高电压,这是电学中的放大。而作为电子电路中的放大晶体管放大器是放大电路的基础【1】,也是模拟电子技术、电工电子技术等课程的经典实验项目,实验内容涉及方面广泛。本文已常见的作为集成运放电路的中间级的共射放大电路为讨论对象,一方面,对具体包括模拟电路的一般设计步骤、单管共射放大电路设计方案的拟定、静态工作点的设置与电路元件参数的选取、放大电路性能指标的测量、稳定静态工作点的措施等做阐述。本文采用的是分压式电流负反馈偏置电路设计成的共发射极放大器,对分压式电流负反馈偏置电路能稳定静态工作点的原理作了说明,并将对晶体管放大器静态工作点的设置与调整方法、放大电路的性能指标与测试方法、放大器的调试技术做阐述。介绍模拟电子电路的一般设计方法和思路,以及Multsim 和Matlab软件的一些基本操作和仿真功能。

模电仿真实验 共射极单管放大器

仿真实验报告册 仿真实验课程名称:模拟电子技术实验仿真仿真实验项目名称:共射极单管放大器 仿真类型(填■):(基础■、综合□、设计□) 院系:专业班级: 姓名:学号: 指导老师:完成时间: 成绩: .

. 一、实验目的 (1)掌握放大器静态工作点的调试方法,熟悉静态工作点对放大器性能的影响。 (2)掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 (3)熟悉低频电子线路实验设备,进一步掌握常用电子仪器的使用方法。 二、实验设备及材料 函数信号发生器、双踪示波器、交流毫伏表、万用表、直流稳压电源、实验电路板。 三、实验原理 电阻分压式共射极单管放大器电路如图3.2.1所示。它的偏置电路采用(R W +R 1)和R 2组成的分压电路,发射极接有电阻R 4(R E ),稳定放大器的静态工作点。在放大器的输入端加入输入微小的正弦信号U i ,经过放大在输出端即有与U i 相位相反,幅值被放大了的输出信号U o ,从而实现了电压放大。 在图3.2.1电路中,当流过偏置电阻R 1和R 2的电流远大于晶体管T 的基极电流I B 时(一般5~10倍),则它的静态工作点可用下式进行估算(其中U CC 为电源电压): CC 21W 2 BQ ≈ U R R R R U ++ (3-2-1) C 4 BE B EQ ≈I R U U I -= (3-2-2) )(43C CC CEQ R R I U U +=- (3-2-3) 电压放大倍数 be L 3u ||=r R R β A - (3-2-4) 输入电阻 be 21W i ||||)(r R R R R += (3-2-5) 图3.2.1 共射极单管放大器

基本放大电路的分析方法

3.2 基本放大电路的分析方法 3.2.1 放大电路的静态分析 放大电路的静态分析有计算法和图解分析法两种。 (1)静态工作状态的计算分析法 根据直流通路可对放大电路的静态进行计算 (03.08) I C= I B (03.09) V CE=V CC-I C R c (03.10) I B、I C和V CE这些量代表的工作状态称为静态工作点,用Q表示。 在测试基本放大电路时,往往测量三个电极对地的电位V B、V E和V C即可确定三极管的工作状态。 (2)静态工作状态的图解分析法 放大电路静态工作状态的图解分析如图03.08所示。 图03.08 放大电路静态工作状态的图解分析 直流负载线的确定方法:

1. 由直流负载列出方程式V CE=V CC-I C R c 2. 在输出特性曲线X轴及Y轴上确定两个特殊点 V CC和V CC/R c,即可画出直流负载线。 3. 在输入回路列方程式V BE =V CC-I B R b 4. 在输入特性曲线上,作出输入负载线,两线的交点即是Q。 5. 得到Q点的参数I BQ、I CQ和V CEQ。 例3.1:测量三极管三个电极对地电位如图03.09所示,试判断三极管的工作状态。 图03.09 三极管工作状态判断 例3.2:用数字电压表测得V B=4.5V 、V E=3.8V 、V C=8V,试判断三极管的工作状态。 电路如图03.10所示 图03.10 例3.2电路图 3.2.2 放大电路的动态图解分析 (1) 交流负载线 交流负载线确定方法:

1.通过输出特性曲线上的Q点做一条直线,其斜率为1/R L'。 2.R L'= R L∥R c,是交流负载电阻。 3.交流负载线是有交流输入信号时,工作点Q的运动轨迹。 4.交流负载线与直流负载线相交,通过Q点。 图03.11 放大电路的动态工作状态的图解分析 (2) 交流工作状态的图解分析 动画 图03.12 放大电路的动态图解分析(动画3-1)通过图03.12所示动态图解分析,可得出如下结论: 1. v i→↑ v BE→↑ i B→↑ i C→↑ v CE→↓ |-v o|↑; 2. v o与v i相位相反; 3.可以测量出放大电路的电压放大倍数; 4.可以确定最大不失真输出幅度。 (3) 最大不失真输出幅度 ①波形的失真

模拟电子电路multisim仿真(很全 很好)

仿真 1.1.1 共射极基本放大电路 按图7.1-1搭建共射极基本放大电路,选择电路菜单电路图选项(Circuit/Schematic Option )中的显示/隐藏(Show/Hide)按钮,设置并显示元件的标号与数值等 。 1. 静态工作点分析 选择分析菜单中的直流工作点分析选项(Analysis/DC Operating Point)(当然,也可以使用仪器库中的数字多用表直接测量)分析结果表明晶体管Q1工作在放大状态。 2. 动态分析 用仪器库的函数发生器为电路提供正弦输入信号Vi(幅值为5mV,频率为10kH),用示波器观察到输入,输出波形。由波形图可观察到电路的输入,输出电压信号反相位关系。再一种直接测量电压放大倍数的简便方法是用仪器库中的数字多用表直接测得。 3. 参数扫描分析 在图7.1-1所示的共射极基本放大电路中,偏置电阻R1的阻值大小直接决定了静态电流IC的大小,保持输入信号不变,改变R1的阻值,可以观察到输出电压波形的失

真情况。选择分析菜单中的参数扫描选项(Analysis/Parameter Sweep Analysis),在参数扫描设置对话框中将扫描元件设为R1,参数为电阻,扫描起始值为100K,终值为900K,扫描方式为线性,步长增量为400K,输出节点5,扫描用于暂态分析。 4. 频率响应分析 选择分析菜单中的交流频率分析项(Analysis/AC Frequency Analysis)在交流频率分析参数设置对话框中设定:扫描起始频率为1Hz,终止频率为1GHz,扫描形式为十进制,纵向刻度为线性,节点5做输出节点。 由图分析可得:当共射极基本放大电路输入信号电压VI为幅值5mV的变频电压时,电路输出中频电压幅值约为0.5V,中频电压放大倍数约为-100倍,下限频率(X1)为14.22Hz,上限频率(X2)为25.12MHz,放大器的通频带约为25.12MHz。 由理论分析可得,上述共射极基本放大电路的输入电阻由晶体管的输入电阻rbe限定,输出电阻由集电极电阻R3限定。 1.1.2共集电极基本放大电路(射极输出器) 图7.1-7为一共集电极基本放大电路,用仪器库的函数发生器为电路提供正弦输入信号VI(幅值为1V,频率为10 kHz)采用与共射极基本放大电路相同的分析方法获得电路的静态工作点分析结果。用示波器测得电路的输出,输入电压波形,选用交流频率分析项分析出电路的频率响应曲线及相关参数。

集成运放基本应用之一—模拟运算电路

集成运放基本应用之一—模拟运算电路

————————————————————————————————作者:————————————————————————————————日期:

实验十二集成运放基本应用之一——模拟运算电路 一、实验目的 1、了解并掌握由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的原理与功能。 2、了解运算放大器在实际应用时应考虑的一些问题。 二、实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 理想运算放大器特性: 在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放: 开环电压增益A ud=∞ 输入阻抗r i=∞ 输出阻抗r o=0 带宽f BW=∞ 失调与漂移均为零等。 理想运放在线性应用时的两个重要特性: (1)输出电压U O与输入电压之间满足关系式 U O=A ud(U+-U-) 由于A ud=∞,而U O为有限值,因此,U+-U-≈0。即U+≈U-,称为“虚短”。

(2)由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”。这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 基本运算电路 1) 反相比例运算电路 电路如图5-1所示。对于理想运放, 该电路的输出电压与输入电压之间的 关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。 图5-1 反相比例运算电路 图5-2 反相加法运算电路 2) 反相加法电路 电路如图5-2所示,输出电压与输入电压之间的关系为 )U R R U R R ( U i22 F i11F O +-= R 3=R 1 / R 2 // R F 3) 同相比例运算电路 图5-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 i 1 F O )U R R (1U + = R 2=R 1 / R F 当R 1→∞时,U O =U i ,即得到如图5-3(b)所示的电压跟随器。图中R 2=R F , i 1 F O U R R U -=

模拟电子电路仿真

模拟电子电路仿真 1.1 晶体管基本放大电路 共射极,共集电极和共基极三种组态的基本放大电路是模拟电子技术的基础,通过EWB 对其进行仿真分析,进一步熟悉三种电路在静态工作点,电压放大倍数,频率特性以及输入,输出电阻等方面各自的不同特点。 1.1.1 共射极基本放大电路 按图7.1-1搭建共射极基本放大电路,选择电路菜单电路图选项(Circuit/Schematic Option )中的显示/隐藏(Show/Hide)按钮,设置并显示元件的标号与数值等 。 1.静态工作点分析 选择分析菜单中的直流工作点分析选项(Analysis/DC Operating Point)(当然,也可以使用仪器库中的数字多用表直接测量)分析结果表明晶体管Q1工作在放大状态。 2.动态分析 用仪器库的函数发生器为电路提供正弦输入信号Vi(幅值为5mV,频率为10kH),用示波器观察到输入,输出波形。由波形图可观察到电路的输入,输出电压信号反相位关系。再一种直接测量电压放大倍数的简便方法是用仪器库中的数字多用表直接测得。 3.参数扫描分析 在图7.1-1所示的共射极基本放大电路中,偏置电阻R1的阻值大小直接决定了静态电流IC的大小,保持输入信号不变,改变R1的阻值,可以观察到输出电压波形的失真情况。选择分析菜单中的参数扫描选项(Analysis/Parameter Sweep Analysis),在参数扫描设置对话框中将扫描元件设为R1,参数为电阻,扫描起始值为100K,终值为900K,扫描方式为线性,步长增量为400K,输出节点5,扫描用于暂态分析。 4.频率响应分析 选择分析菜单中的交流频率分析项(Analysis/AC Frequency Analysis)在交流频率分析参数设置对话框中设定:扫描起始频率为1Hz,终止频率为1GHz,扫描形式为十进制,纵向刻度为线性,节点5做输出节点。 由图分析可得:当共射极基本放大电路输入信号电压VI为幅值5mV的变频电压时,

基本运算放大器电路设计

基本运算放大器电路设计

————————————————————————————————作者:————————————————————————————————日期:

武汉理工大学 开放性实验报告 (A类) 项目名称:基本运算放大器电路设计实验室名称:创新实验室 学生姓名:**

创新实验项目报告书 实验名称基本运算放大器电路设计日期2018.1.14 姓名** 专业电子信息工程 一、实验目的(详细指明输入输出) 1、采用LM324集成运放完成反相放大器与加法器设计 2、电源为单5V供电,输入输出阻抗均为50Ω,测试负载为50Ω输出误差 不大于5% 3、输入正弦信号峰峰值V1≤50mV,V2=1V,输出为-10V1+V2. 二、实验原理(详细写出理论计算、理论电路分析过程)(不超过1页) 通过使用LM324来设计反相放大器和加法器,因为每一个芯片内都有4个运放,所以我们就是使用其内部的运放来连接成运算放大器电路。 我们采用两个芯片串联的方式进行芯片的级联。对于反相放大器,输出电压Vo=-Rf/R1*Vi;对于同相加法器,Vo=(Rf/R1*Vi1+Rf/R2*Vi2)。 由于对该运放使用单电源5V供电,故需要对整个电路的共地端进行 2.5V 的直流偏置。为实现2.5V的共地端,在这里采用了电压跟随器的运放模型。2.5V 的分压点用两个相同100k的电阻进行分压,并根据经验选取了一个10uF的极性电容并联在2.5V分压点处,起滤除电源噪声的作用。最终由电压跟随器输出端作为后面电路的共地端。同样为使反相放大器能够放大10倍,有-Rf/R1=-10,即Rf=10R1,可取R1=10kΩ,Rf=100kΩ,则R2=R1//Rf。对于加法器,有R1=R2=Rf,均取为100kΩ,则R=100kΩ。

单管共射放大电路地仿真实验报告材料

单管共射放大电路的仿真 : 学号: 班级:

仿真电路图介绍及简单理论分析 电路图: 电路图介绍及分析: 上图为电阻分压式共射极单管放大器实验电路图。它的偏置电路采用RB1和RB2组成的分压电路,并在发射极中接有电阻RE,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号ui后,在放大器的输出端便可得到一个与ui相位相反,幅值被放大了的输出信号uo,从而实现了电大的放大。 元件的取值如图所示。 静态工作点分析(bias point): 显示节点: 仿真结果:

静态工作点分析: VCEQ=1.6V, ICQ≈1.01mA,I BQ= ICQ/ ? 电路的主要性能指标: 理论分析: 设?=80,VBQ =2.8v VEQ=VBQ-VBEQ=2.1v rbe≈2.2kΩ Ri=1.12kΩ,Ro≈8.3 kΩ Au=-βRL’/rbe=56.7 仿真分析: 输入电阻:输出电阻: Ri=0.86kΩRo≈9.56 kΩ 输入电压:输出电压: 则A u=51.2 在测量电压放大倍数时,A u=-βR L’/r be,根据此公式计算出来的理论值与实际值存在一定的误差。引起误差的原因之一是实际器件的β和r be与理想值80和200Ω有出入。在测量输入输出阻抗时,输出阻抗的误差较小,而输入阻抗的误差有些大,根据公式R i=R B// r be,理论值与实际值相差较大应该与β和r be实际值有很大关系。 失真现象: 1.当Rb1,Rb2,Rc不变时,Re小于等于1.9 kΩ时,会出现饱和失真

当Re大于等于25 kΩ时,会出现较为明显的截止失真 2.当Rb1,Rb2, Re不变时,Rc大于8.6 kΩ时,会出现饱和失真 3.当Rb1, Rc, Re不变时,Rb2大于10.4 kΩ时,会出现饱和失真

运算放大器的设计与仿真

集成运算放大器放大电路仿真设计 1集成运算放大器放大电路概述 集成电路是一种将“管”和“路”紧密结合的器件,它以半导体单晶硅为芯片,采用专门的制造工艺,把晶体管、场效应管、二极管、电阻和电容等元件及它们之间的连线所组成的完整电路制作在一起,使之具有特定的功能。集成放大电路最初多用于各种模拟信号的运算(如比例、求和、求差、积分、微分……)上,故被称为运算放大电路,简称集成运放。集成运放广泛用于模拟信号的处理和产生电路之中,因其高性价能地价位,在大多数情况下,已经取代了分立元件放大电路。 2 电路原理分析 2.1 电路如图1所示 R1 10kΩV1 500mV U1A TL082CD 3 2 4 8 1 R2 9.1kΩ RF 100kΩ V2 12 V V3 12 V XMM1 1 此电路为反向比例运算电路,这是电压并联负反馈电路。输入电压V1通过电阻R1作用于集成运放的反相输入端,故输出电压V0与V1反相。 图2 仿真结果图 输入输出关系理论输仿真输出值电路功能

其中 1 //2R RF R = 2.2电路如图3所示 R1 10kΩ Ui2 200mV U1A TL082CD 3 2 4 8 1 R24.7kΩ RF 100kΩ V212 V V312 V XMM1 Ui1 100mV R310kΩ 3 此电路为反相求和运算电路,其电路的多个输入信号均作用于集成运放的反相输入端,根据“虚短”和“虚断”的原则,0==p N u u ,节点N 的电流方程为F i i i =+31 所以)1 2 31( 0R Ui R Ui RF U +-= 输入输出关系 理论输出值 仿真输出值 电路功能 )1 2 31( 0R Ui R Ui RF U +-= -3V 2.999V 反相求和放大电路 其中RF R R R //3//12= 2.3电路如图5所示 出值 11 0V R RF V -= -5V -5V 反相比例运算电路

基本放大电路仿真实验

实验报告四 一、实验目的 1、通过仿真电路掌握单管共射电路的静态分析和动态分析; 2、通过对共射电路的仿真实验,分析静态工作点队对电路输出的影响; 二、实验内容 1.测量NPN管分压偏置电路的静态工作点并与估算值进行比较; 2.测量放大电路性能指标; 3.分析放大电路交流特性; 4.通过仿真测试理解单管共射放大电路静态工作点对电路输出的影响; 三、实验环境 计算机、MULTISIM仿真软件 四、实验电路 1.实验电路 1.1静态分析 静态工作点仿真结果: 从仿真结果可知:

544127 = 1.7991.1690.63=5.21.16()=8.52BQ EQ BEQ BQ EQ BQ b b CC CQ C CEQ CC CQ c e V V V V V V V V V V V I A R R V V I mA R V V I R R V μ==-=-=--= =≈-+因此: 动态分析: 由仿真所得的数据可得: ip 421.405 ==-38.710.896 op v V A V = - 仿真波形: 1、

因此:ip i sp ip 10.642 = (1) 3.04814.13310.642 s V R R K K V V ≈?Ω≈Ω-- 2、oLp V 仿真 op V 仿真 因此:op oLp 836.417 =( 1)( 1)2 1.967421.691 o L V R R K K V -≈-?Ω≈Ω 放大电路交流仿真分析

3、通过仿真测试理解单管共射放大电路静态工作点对电路输出的影响; 在电路图中放入探针 从图中可以得出,此时:919 A ==42.521.6 V 打开示波器,图形显示: 从图中的显示数据可以知道,输出波形已有部分失真 ; 1、增大b R (增大至75K )

仿真实验四 共射极放大电路分析

仿真实验四 共射极放大电路分析 一、实验目的: (1)认真理解和掌握含三极管的非线性电路的特点 (2)使用Multisim 验证三极管的等效小信号模型 二、实验原理及实例 小信号分析法是分析非线性电阻电路的主要方法之一。在非线性电路中,同时有直流电压0U 和随时间变化变化的输入信号源s u t () 的作用。如果在任何时刻都有0U >s u t () ,则可以采用小信号分析法。 具体步骤如下: (1)画放大电路的小信号等效电路。 (2)估算be r 。为此,还要求得静态电流eq I (3)求电压增益V A 。 (4)计算输入、输出电阻o ,R R i 三、仿真实验设计 如下图所示求该电路的电压增益。 (1)当电路中只有直流电流作用时,求出静态工作点

2120.0454m 250800.0036312 1.104BE B C B CE C V I A K I I A V R I V ββ-= =Ω ====-= (2)画出该电路的小信号等效电路

计算相关参数: 26200(180)7730.0454 3.63 be r =++=Ω+ ()155.24770.63b C E V b BE i b be o C i R R A i R R R r R R k β=-=-=≈Ω ≈=Ω 对其仿真得: 由仿真结果可得67.56m 154.03435.23u O V i V V A V V = == 验证输入与输出的波形关系 :

可得到输入波形与输出波形为反向,所以-154.03V A = 测量输入、输出电阻的阻值: i 435771.30.435263.552824.40.0225i i O o V V R I mA V V R Io mA = ==Ω===Ω

反馈放大电路的特性分析与仿真要点

长春理工大学 国家级电工电子实验教学示范中心学生实验报告 2016 —— 2017 学年第一学期 实验课程反馈放大电路的特性分 析与仿真 实验地点 学院 专业 学号 姓名

图2-1 电流并联负反馈放大电路 ,输出信号电流为i0=i C2。电阻R6,R4组成反馈网 所示的反馈放大电路分解成基本放大电路和反馈网络两部分,根据前面所述的两 所示。图中直流电压V3、直流电流I E2均为保证直流工作

图2-2 电路的基本放大电路 三、预习内容 、预习用PSPICE进行电路频率特性分析的语句描述方法。 、熟悉反馈放大器所对应的基本放大器的等效原则。 四、实验内容 、根据题目要求编写输入网单文件,运行程序,分别获得负反馈电路和对应的基本放大器的电流增益、电压增益、输入电阻、输出电阻的频率特性仿真波形。

图2-4 开环电压增益的幅频特性图2-3 开环电流增益的幅频特性 )理论上,因为电流反馈系数F i≈-R6/(R4+R6),所以反馈深度D=1+A iM F i。 按方框图法,可计算闭环电流增益A if=A iM/D,把这个结果与对图2-1所示电路直接计算所得结果进行比较,看两者是否很接近。闭环源电压增益A VSf=υ0/υs =-i0R L′/[(R S+R if)i i]=- A if R L′/(R S+R if),输Rif由下面的图2-8分析获得,则计算出的| A VSf|(上面的计算忽略了Q2管的r Ce的影响),与图计算所得结果是否接近。 图2-5 闭环电流增益的幅频特性图2-6 闭环电压增益的幅频特性

图 2-7 开环输入阻抗特性 图2-8 闭环输入阻抗特性 (4)输出电阻 所示为开环输出阻抗特性曲线。其中图(a)是由晶体管Q2集电极看进去的阻抗特性(不包 ,该值较大其原因是基本放大电路中Q射极下接有负反

单管放大电路仿真实验报告

? 单管放大电路仿真实验报告 一、实验目的 1、 掌握放大电路支流工作点的调整与测量方法。 2、掌握放大电流主要性能指标的测量方法。 3、了解支流工作点对放大电路动态特性的影响。 4、掌握发射极负反馈电阻对放大电路性能的影响。 5、了解信号源内阻Rs 对放大电路频带(上限截止频率f H )的影响。 二、实验电路与实验原理图

2、直流通路 VCC 12V 将基极偏置电路用戴维南定理等效成电压源,得到支流通路。开路电压:V BB = V CC*R B2/(R B1 + R B2) 电源内阻:R B = R B1 // R B2 三、实验内容 1、静态工作点的调整 ※预习计算

直流工作点的调整 I CQ =1.0mA 时 3.3c R C CQ V R I V ==, 1.95BQ E CQ BE V R I V V ≈+= 12 '11 75.4//55.4CC BQ B CQ BQ B W B B V V R K I V R R R R K β-= =Ω +=-=Ω -7.5C CEQ CC BQ R BE V V V V V V =-+= I CQ =2.0mA 时 6.6c R C CQ V R I V ==, 3.15BQ E CQ BE V R I V V ≈+= 12 ' 1140.8, //20.8CC BQ B CQ BQ B W B B V V R K I V R R R R K β-= =Ω+=-=Ω -3C CEQ CC BQ R BE V V V V V V =-+= 由此可以得到扫描参数时的大致范围 要求:调节RW ,在ICQ=1mA 和2mA 时,测量VCEQ 的值,并记录RB1的值。 操作:对R W 进行参数扫描,通过观察Rc 上的电压变化 可以得到 CQ I ( c CQ c U I R = ), Uc 可以通过V (Vcc )-V(4)得到,从而可以在扫描参数设备时通过跟踪Uc 得到CQ I 为一 定值时对应的V CEQ 以及相应的R W 。 仿真结果(设备参数扫描):

基本放大电路说课稿

王学民说课稿 各位老师下午好: 我说课的内容是09高级电工班《电子技术》课中《2.1 共发射极基本放大电路的静态分析》。 教材分析 1、选用教材 本教材是由天津职师推荐的高等自学考试用书,北京理工大学出版社出版。全书分为模拟电路和数字电路两个部分,总体难度不大,但比较抽象,适合高职高专学校用书。《2.1 共 发射极基本放大电路的静态分析》是模拟电路的第2章半导体 三极管及放大电路基础中的一节,是高自考的一个重点内容之 一。 2、考试要求: 1)了解直流通路的概念 2)掌握阻共发射极基本放大电路的静态分析 3) 掌握静态工作点的计算 3、课题时间:1课时 学生是09级电工高级班的孩子,他们需要通过天津高等自学考试,但学生学习的积极性不高,基础薄弱,没有良好的学习习惯,自觉性和主动性较差,抽象分析问题的能力和计算能力不强。学生擅长模仿式学习、合作式学习,喜欢动手操作。在进行此课题之前已经学习了分压式偏置电路,本次课在此基础上对新电路进行学习。 教学目标 根据以上情况,我将此课教题教学目标制定如下: 一、知识与技能目标: 1、了解直流通路的概念 2、掌握电路的静态分析计算,会画直流通路 3、掌握静态工作点的计算

4、公式的综合应用能力 二、过程与方法: 通过自主学习、对比分析、合作学习等方式,通过学生的亲身参与,达到以下目标: 1、通过本次课掌握晶体管放大电路静态分析方法 2、掌握公式的推导方法 3、培养自己独立或合作解决问题的能力 4、提高自主分析问题和表达能力 三、态度与价值观: 1、激发学生对电子学习的兴趣 2、提高学生解决问题的自信心 3、增强学生的自我价值评价 4、增强学生世界观的形成 5、加强学生的纪律意识 6、提高学生的思想道德水平 教学过程 一、教学思路 放大电路的静态分析是分析放大电路的基础,也是考自考每年的必考内容之一,此次课的学习效果直接影响其它放大电路的学习。同时由于11电工高级工的学生基本没有经过筛选,学习主动性、纪律性不强,基础比较薄弱。因此在整个教学过程中注重吸引学生兴趣,调动学生积极参与学习,同时大力进行德育和纪律教育。 总的思路是:复习提问(以选择题为主)——导入(创设情境)引出共发射极基本放大电路——教师、学生动态分析——小组讨论——学生总结——例题——总结——作业 学生的学情是学生自主性差,学习、分析能力不强,如果完全采用行为导向教学法,学生可能会出现失控或完成不了课题的情况,而采用层层推进起到了引导和督促作用,也确保了每个组每一个步骤

单级放大电路的设计与仿真

实验一单级放大电路的设计与仿真 一、实验目的 1、掌握放大电路的静态工作点的调整和测试方法。 2、掌握放大电路的动态参数的测试方法。 3 、观察静态工作点的选择对输出波形及电压放大倍数的影响。 二、实验原理 当三极管工作在放大区时具有电流放大作用,只有给放大电路中的三级管提供合适的静态工作点才能保证三极管工作在放大区,如果静态工作点不适合,输出波形则会产生非线性失真——饱和失真和截止失真,而不能正常放大。 当静态工作点设置在合适的位置时,即保证三极管在交流信号的整个周期均工作在放大区时,三极管有电流放大特性,通过适当的外接电路,可实现电压放大。表征放大电路放大特性的交流参数有电压放大倍数,输入电阻,输出电阻。 由于电路中有电抗元件电容,另外三极管中的PN结有等效电容存在,因此,对于不同频率的输入交流信号,电路的电压放大倍数不同,电压放大倍数与频率的关系定义为频率特性,频率特性包括:幅频特性——即电压放大倍数的幅度与频率的关系;相频特性——即电压放大倍数的相位与频率的关系。 三、实验要求和实验步骤 (1)实验要求 1.设计一个分压偏置的单管电压放大电路,要求信号源频率2kHz(峰值5mV) ,负载 电阻3.9kΩ,电压增益大于50。 2.调节电路静态工作点,观察电路出现饱和失真和截止失真的输出信号波形,并测试 对应的静态工作点值。 3.调节电路静态工作点,要求输入信号峰值增大到10mV电路输出信号均不失真。在 此状态下测试: ①电路静态工作点值; ②三极管的输入、输出特性曲线和 、r be 、r ce值; ③电路的输入电阻、输出电阻和电压增益; ④电路的频率响应曲线和f L、f H值。

实验六、集成运算放大器虚拟仿真

实验六、集成运算放大器虚拟仿真 实验目的: 1、掌握用集成运算放大器组成的比例、加法、积分电路的特点及性能,掌握比例、积分电路的测试和分析方法; 2、掌握基于集成运算放大器的过零比较电路的特点。 实验内容: 1、反相比例放大器比例运算验证。 反相比例放大器输出电压 思考:1)调整负载R4对比例运算的影响。 对放大倍数不影响 2)调整输入信号对比例运算的影响。 没有影响 3)调整R1和R2对比例运算的影响。 随比例的增大,放大倍数增大相应的倍数 2、用3554AM 设计一个加法器。设计要求: 满足123(2)o u u u =-+,输入信号1u ,2u 都是频率为1KHZ 的正弦信号,幅度分别为100mV 和200mV ,观察输出是否满足要求。 电路图:

通过观察波形及其电压表的读数,可得所设计的电路与要求相符 3、用3554AM设计一个反相积分器。设计要求: 1)时间常数为2ms,输入信号为方波,频率为1KHZ,幅度为6V,观察输出信号的波形和幅度。 2)改变积分器的时间常数,使之增大或者减小,观察输出波形幅度的变化及失真情况。 增大时间常数为20ms后的波形

减小时间常数为0.2ms是的波形 由上可知积分器的时间常数T增大时输出幅值减小,T减小时输出波形失真。 思考:1)反相运算电路中反馈电阻的变化对运算器的闭环电压增益有何影响。 减小输出端的直流漂移 2)实际应用中,积分器的误差与哪些因素有关。 积分器在主回路上是延迟,反馈上是超调;本身电路与电阻和电容密切相关,对系统有修正的影响,如配置微分环节可克服超调 4、用运放741设计一个过零比较电路。设计要求: 稳压管选用1Z6.2,输入信号为幅值为1V,频率为500HZ的正弦波,通过示波器观察过零比较电路输出波形。 电路图: 波形图:

相关文档
最新文档