模型预测控制快速求解算法

模型预测控制快速求解算法
模型预测控制快速求解算法

模型预测控制快速求解算法

模型预测控制(Model Predictive Control,MPC)是一种基于在线计算的控制优化算法,能够统一处理带约束的多参数优化控制问题。当被控对象结构和环境相对复杂时,模型预测控制需选择较大的预测时域和控制时域,因此大大增加了在线求解的计算时间,同时降低了控制效果。从现有的算法来看,模型预测控制通常只适用于采样时间较大、动态过程变化较慢的系统中。因此,研究快速模型预测控制算法具有一定的理论意义和应用价值。

虽然MPC方法为适应当今复杂的工业环境已经发展出各种智能预测控制方法,在工业领域中也得到了一定应用,但是算法的理论分析和实际应用之间仍然存在着一定差距,尤其在多输入多输出系统、非线性特性及参数时变的系统和结果不确定的系统中。预测控制方法发展至今,仍然存在一些问题,具体如下:

①模型难以建立。模型是预测控制方法的基础,因此建立的模型越精确,预测控制效果越好。尽管模型辨识技术已经在预测控制方法的建模过程中得以应用,但是仍无法建立非常精确的系统模型。

②在线计算过程不够优化。预测控制方法的一大特征是在线优化,即根据系统当前状态、性能指标和约束条件进行在线计算得到当前状态的控制律。在在线优化过程中,当前的优化算法主要有线性规划、二次规划和非线性规划等。在线性系统中,预测控制的在线计算过程大多数采用二次规划方法进行求解,但若被控对象的输入输出个数较多或预测时域较大时,该优化方法的在线计算效率也会无法满足系统快速性需求。而在非线性系统中,在线优化过程通常采用序列二次优化算法,但该方法的在线计算成本相对较高且不能完全保证系统稳定,因此也需要不断改进。

③误差问题。由于系统建模往往不够精确,且被控系统中往往存在各种干扰,预测控制方法的预测值和实际值之间一定会产生误差。虽然建模误差可以通过补偿进行校正,干扰误差可以通过反馈进行校正,但是当系统更复杂时,上述两种校正结合起来也无法将误差控制在一定范围内。

模型预测控制区别于其它算法的最大特征是处理多变量多约束线性系统的

能力,但随着被控对象的输入输出个数的增多,预测控制方法为保证控制输出的精确性,往往会选取较大的预测步长和控制步长,但这样会大大增加在线优化过程的计算量,从而需要更多的计算时间。因此,预测控制方法只能适用于采样周期较大且动态变化过程较慢的系统中。为使预测控制方法能在更多场合中应用,快速模型预测控制算法成为了一个新的研究方向。

国内外研究现状

近年来人们对预测控制算法的不足有了越来越清晰的认识,为了将该算法应用到更多领域,越来越多的学者对其进行不断研究和改进。阅读近些年国内外核心期刊的文献可知,人们对预测控制方法能够在更大更复杂的系统中应用寄予了很高期望,同时也在其不足方面做了很多探究和尝试,发展出了多种智能预测控制方法。快速模型预测控制算法作为目前智能预测控制方法之一,其研究方向主要有以下几个方面:

(1)显式模型预测控制(Explicit Model Predictive Control,EMPC)

2002年Alberto Bemporad等学者[1]提出了显式模型预测控制,该方法在预测控制基础之上,在线性时不变系统优化求解过程中引入多参数二次规划理论,对系统的状态区域进行凸划分,根据最优控制问题计算得到状态分区上相应的控制律。EMPC将模型预测控制的在线计算过程转化为离线和在线计算相结合的过程,大大减少了算法的在线计算时间,弥补了MPC方法反复在线计算的不足,EMPC 也在电力电子[2]、电机控制[3]等领域得到了很好应用。

但随着被控对象问题规模(如输入、状态维数、约束等)的增大,EMPC算法在离线计算过程中所求的状态分区数会呈指数倍增加,而状态分区数的增加不仅会导致存储状态分区所需的存储空间增加,还会导致EMPC算法在线查找最优解所需的计算时间增加,因此该算法很难适用于状态约束较多(状态变量往往不超过5)、预测步长较大的复杂系统。

基于以上原因,许多学者提出用近似的显式模型预测控制方法[4,5]来代替精确的EMPC算法,即通过牺牲一定的控制精度来降低计算过程中的复杂度,从而简化整个求解过程。如文献[6]提出了显式模型预测控制的多尺度近似方法,通

过引入分段线性插入法和自适应分层函数近似法,运用重心插值理论对EMPC离线计算出的状态空间进行网格划分,得到近似的状态分区和近似控制律。基于同样的思想,文献[7]提出了显式模型预测控制多胞体近似方法,主要利用双描述法对最优控制问题进行近似处理,再通过重心插值得到近似控制律。文献[8]基于小波的多分辨率分析提出了近似EMPC,通过二次插值和网格划分得到低复杂度且可保证系统稳定的近似控制律。上述文献提出的方法均能在误差允许的范围内保证系统的控制性能,在一定程度上解决了EMPC随着问题规模增大而带来的复杂度和存储空间增大的问题。

(2)模型预测控制的简化算法

MPC算法采用的是在线滚动优化的控制策略,但随着工业模型和环境越来越复杂,其在线计算量越来越大,所以限制了MPC算法在动态变化较快系统中的应用。为减少MPC在线优化求解的计算量,有学者考虑对参数进行优化,提出了预测控制的简化算法,如将参数分块化的blocking技术[9],其思想是将越远离当前时刻的控制输入越粗略计算,从而减少在线计算量。在此基础上,又有学者提出了移动blocking方法,其核心是限制系统优化变量个数同时增大系统的有效输入步长[10]。相较于blocking技术,文献[11]提出的简化方法主要把约束分为起作用约束集、不起作用约束集和不确定约束集,对不起作用的约束集进行忽略操作,对起作用约束集和不确定约束集进行优化计算,从而降低在线计算量,加快控制进程。

(3)改进的在线优化算法

模型预测控制的核心是采用反复的迭代优化进行在线求解,选取适当的在线优化方法可以提高在线计算速度。近年来,有学者试图对模型预测控制的标准形式做适当变形或者近似处理,继而降低预测控制方法的在线计算量。如文献[12]提出了一种用扩展的牛顿拉夫逊(Newton-Raphson)方法来代替传统的二次规划方法,当问题规模增大时,不仅能够保证优化问题总是收敛,还可以有效解决MPC在线计算量过大的问题。文献[13]提出了将表存储和在线优化相结合的部分枚举法(Partial Enumeration,PE),对于规模较大的线性模型不仅有很好的控制

效果,而且求解速度是传统MPC 算法的5倍以上。文献[14]提出了基于降精度求

解准则的序列二次规划法,主要通过牺牲一定的精确度来降低在线优化所需的迭

代次数,从而提高在线求解速度。文献[15]提出了可用于预测控制在线优化过程

的有效内点法,该内点法不仅可以减少代码量,而且可以使在线计算时间提高

2-5倍。

理论基础

凸集与凸函数

首先给出凸优化理论中凸集、凸函数和仿射的定义。

凸集:假设C 为n 维实数空间n R 中的集合,若C 中任意两点之间的线段仍

然在集合C 中,即对于任意12,x x C ∈且对任意实数[]0,1λ∈,都满足:

12(1)x x C λλ+-∈

(3-1)则称集合C 为凸集,反之则为非凸集。

满足凸集的集合具有以下性质:

(1)若集合1C 、2C 都是凸集则集合{}12121122|,,C C x x y y y C y C +==+∈∈也

是凸集。

(2)两个或多个凸集的交集仍为凸集。

(3)空集也是凸集。

凸函数:设()f x 是定义在非空凸集n C R ∈上的函数,对于凸集C 中任意的1

x 和2x 以及任意实数[]0,1λ∈均满足

1212((1))()(1)()f x x f x f x λλλλ+-≤+-

(3-2)则称()f x 为凸函数,反之则为非凸函数(或称凹函数)。若对12x x ≠和任意

实数[]0,1λ∈均满足

1212((1))()(1)()f x x f x f x λλλλ+-<+-

3-3)则称()f x 为严格凸函数。

同样,根据凸函数的定义可以推导出凸函数的几个性质,具体如下:

(1)若1(),,()m f x f x L 是定义在凸集C 上的凸函数,则11()()

m m f x f x αα++L 也是凸集C 上的凸函数,其中α为任意实数。

(2)若函数()f x 是定义在凸集C 上的凸函数,则对于任意实数α,函数

()f x α也是凸集C 上的凸函数。

(3)若()g x 是单调递增的凸函数,()f x 也是凸函数,则复合函数[]()g f x 也

是凸函数。

(4)若()f x 和()g x 都是定义在凸集C 中非单调递增的凸函数,则()()

f x

g x 也是定义在凸集C 中的凸函数。

仿射:对于集合C 中任意两点1x 和2x 且任意实数R λ∈,若满足

12(1)x x C λλ+-∈

(3-4)则称集合C 是仿射的。也就是说,通过集合n C R ?中任意两点的直线仍在

集合C 中。

凸优化问题

凸优化问题是指性能指标函数和不等式约束函数均为凸函数且由约束条件

所得到的集合是凸集的最优化问题。由于凸优化问题的局部最优解就是全局最优

解,因此对于一个实际问题,如果能表示成凸优化问题,则意味着该问题可以得

到彻底解决,对实际应用有着十分重要的意义。凸优化问题有多种形式,其基本

形式可表示为:

min ()

.. ()0 1,, ()0 1,,i i f x s t g x i m h x i p

≤===L L

3-5)其中()f x 为性能指标函数,()0i g x ≤为不等式约束条件,()0i h x =为等式约束条件,()0 1,,()0 1,,i i g x i m C x h x i p ≤=??

=??≤=??L L 为可行域(也称可行集或约束集)。

如果上述问题中性能指标函数()f x 和不等式约束()i g x 都是仿射函数,则该

问题又称线性规划问题(Linear Programming ,LP ),其形式可表示为:

min .. T c x d

s t Gx h Ax b

+≤= (3-6)

其中,m n p n G R A R ??∈∈,对于线性规划问题而言,通常将性能指标函数中常

数项d 忽略,因为其不影响最优解的集合。该问题的几何解释可由图表示,图中

阴影多面体为可行域P ,若性能指标函数中T c x 为线性的,则其等位曲线是和c

正交的超平面(图中的虚线),点*x 对即为最优点。

图 线性规划的几何解释

如果性能指标函数()f x 是凸二次型且约束条件是仿射函数,则该问题又称

二次规划问题(Quadratic Programming ,QP )。对于二次规划问题,其标准形式

可表示为: 1

min 2.. T T x Qx q x r

s t Ax b Gx h

++=≤

(3-7)

其中,,,,,n n m n

m p n p Q S q R A R b R G R h R ??+∈∈∈∈∈∈。对于该问题,最优解的

求解即是在多面体上极小化一个凸二次函数,其几何解释如图所示,该问题的多

面体可行域P 如图阴影所示,性能指标函数的等位线如图虚线所示,则点*x 即

为最优点。

图 二次规划问题的几何解释

对于凸优化问题的求解,理论上很容易得到其最优解,因为其局部极小点就

是全局极小点,如果求解的凸优化问题中性能指标函数是严格凸函数,则求得的

极小点是唯一极小点。

基于凸优化的快速模型预测控制

原始对偶内点法求解QP 问题

对于标准二次规划问题(3-7),本算法采用原始对偶内点法进行求解。相较

于有效集等方法,原始对偶内点法无需热启动,且通过适当优化即可保证算法在

5-25步内迭代便可精确求解。

首先引入松弛变量p s R ∈,将标准二次规划问题转化为: 1

min 2.. 0

T T x Qx q x

s t Ax b Gx s h

s +=+=≥

(3-8)对于式(3-8),定义双变量m y R ∈且满足等式约束条件,p z R ∈满足不等式

约束,求导后得到其最优化条件(KKT 条件):

0,00

0,1,,T T i i Ax b

Gx s h

s z Qx q G z A y z s i p =+=≥≥+++===L

3-9)

其中0i i z s =为互补松弛条件。

模型预测控制问题

模型预测控制算法需要依靠计算机实现求解,其处理的问题形式一般是离散

控制问题而非连续问题。对任意线性时不变随机控制问题,其动态方程可表示为:

(1)()()()x t Ax t Bu t t ω+=++ (3-10)

其中0,1,t =L 表示时间,()n x t R ∈为状态变量,()m u t R ∈为控制输入,

()n t R ω∈为扰动项,n n A R ?∈和n m B R ?∈分别为状态和输入矩阵。

预测控制方法的核心任务往往是求解系统的性能指标函数,在优化求解过程

中,当该函数的值达到极大或极小时,表明该情况下的系统处于最优状态,而此

时的控制输入即为系统的最优控制律,因此系统最优控制律的选择往往取决于系

统的性能指标函数。可以定义上述问题中的性能指标函数为:

()()()()

()1

()()T T T T final t J x Qx u Ru x t T Q x t T ττττττ+-==++++∑

(3-11)其中{}12,,,n Q diag q q q =L 为状态权重矩阵,{}12,,,m R diag r r r =L 为输入权重

矩阵,final Q 为状态终端权重矩阵,且均为对角阵;T 为预测步长。由于实际被控

系统的输入输出往往存在局限性,需考虑状态变量和控制变量的约束条件,该问

题的模型预测控制形式可表示为:

()()()()()()()min max

min max

min .. (1) ,,1 J

s t x A x B u t t T u u u x x x τττττωττττ+=++=+-≤≤≤≤L

(3-12)

其中(1),,()x t x t T ++L 为状态变量,(1),,()u t u t T ++L 为控制变量。对于该

二次规划问题,求解后的最优解可表示为**(),,(1)u t u t T +-L 和

**(),,(1)x t x t T +-L ,预测控制方法仅取最优控制序列的第一项*()u τ作为控制输

入。

障碍内点法

为更快地求解上式(3-12)中的最优控制问题,利用其特殊结构,采用改进

后的原障碍内点法可以降低问题求解的复杂度,从而达到快速求解的目的。首先

定义全局优化变量[](),(1),,(1),()z u t x t u t T x t T =++-+L 对式子(3-12)进行重

写,代入化简后可转化为:

min .. T T z Hz g z

s t Cz b Pz h

+=≤ (3-13

矩阵H 是由各权重矩阵Q 、R 和final Q 组成的块对角矩阵,C 是由状态矩阵A 、

B 和单位矩阵I 组成的稀疏矩阵,矩阵h 由状态和输入的最大值和最小值组成。

利用原障碍内点法对重组后的QP 问题进行求解。原障碍内点法的实质是通

过引入障碍参数,将含不等式约束的最优控制问题转化为等式约束的凸优化问

题。因此,令障碍参数κ>0,替换(3-13)中的不等式约束后得到其近似问题为:

()

min .. T T z Hz g z z s t Cz b κφ++=

(3-14)

其中()()1log lT k

T

i i i z h p z φ++=--∑,i p 表示矩阵P 的行。此时,式(3-13)已经

转化为由确定目标和线性等式约束所组成的凸优化问题。同时由式(3-14)易知,障碍参数κ越接近于零,近似性能指标函数越接近于精确的性能指标函数,求得的最优解也越精确。

对于式(3-14),采用不可行初始点牛顿法进行求解。定义双变量Tn v R ∈且满足上述等式约束条件,求导后得到最优化条件: 0

20T T Cz b J

Hz g P d C v z κ-=?=++++?

(3-15)其中1()T i i i

d h p z =-,

T

i p 表示矩阵P 的行,T P d κ是()z κφ的梯度。此时,

优化问题(3-14)的求解可等价为对优化条件(3-15)的求解。对于当前优化条件,假设当前时刻全局优化变量z 不可行(z 满足不等式约束,但不满足等式约束条件),则需找到一个方向z ?和v ?分别使得z z +?和v v +?满足(至少近似满足)最优化条件,即*z z z +?≈、*v v v +?≈。然后在优化条件中用z z +?代替*z 、v v +?代替*v ,并利用泰勒公式的一阶近似,将上述问题(3-15)进行整理后可得关于梯度z ?和v ?的一组线性方程:

22()20T T T T z H P diag d P C Hz g P d C v v C Cz b κκ?????

++++??=-???????-??????

3-16)其中2()T P diag d P κ为()z κφ的Hessian 阵,同时将上述方程等式右边变量分别记为对偶残差2T T d r Hz g P d C v κ=+++,原残差p r Cz b =-,残差向量(,)((,),(,))d p r z v r x v r x v =。对式(3-16)进行计算后可得到梯度z ?和v ?的值,再利用回溯直线搜索法得到步长(]0,1s ∈,同时可保证更新后的优化点满足不等式Pz h <。最后利用步长s 更新原始和对偶变量:z z s z =+?,:v v s v =+?。该迭代修正过程不断重复进行直到残余向量的二范数小于设定的误差阈值。上述问题若严格可行,则需要有限步数的计算便能获得一定的原始可行性,而一旦=0p r ,那么在以后的迭代过程中残余向量会一直等于0,且变量z 和v 将趋于优化点。

改进后的原障碍内点法

K来为加快求解,本算法采用固定的障碍参数κ和固定的最大牛顿迭代步

max

简化计算。在求解优化问题(3-16)时,原障碍内点法分别对一系列不同障碍参数x的优化问题进行依次求解,再分别比较不同障碍参数下的控制性能得出最优解,因此会花费较多的求解时间。大量仿真表明只需使得性能指标函数达到最小就能得到很好的控制律,而非精确求解QP问题,因此对于优化问题(3-16),障碍参数κ越接近于零,近似性能指标函数越接近于精确的性能指标函数J,求得的最优解也越精确。固定障碍参数x能够减少预测控制问题次迭代求解所需的牛顿迭代次数(最大牛顿迭代步),从而加快凸优化问题的求解。

在标准的牛顿法中,只有当残差达到足够小或者迭代达到上限时则停止迭代寻优。若问题不是发散的,往往最大迭代步

K在3到10之间就可以求出最优

max

解。因此,固定的迭代步

K可能会使残差未能达到足够小,优化变量没有达到

max

最优,但这并不影响最终控制效果,还能提高在线求解速度。

[1] Bemporad A, Morari M, Dua V, Pistikopoulos E N. The Explicit Linear Quadratic Regulator for Constrained Systems[J]. Automatica,2002,38(1):3-20.

[2] Beccuti A GPapafotiou G, Roberto Frasca, Marari M. Explicit Hybrid Model Predictive Control of the Boost DC-DC Converter[A]. IEEE Power Power Electronics Specialists Conference[C], Orlando, Florida, USA,2007:2503-2509.

[3] Mariethoz S, Morari M. Explicit Model-Predictive Control of a PWM Imverter With an LCL Filter[J].IEEE Transactions on Industrial Electronics,2009,56(2):389-399.

[4] Nguyen H, Olaru s, Hovd patchy approximation of explicit model predictive control[J].Intermational Jourmal of Control,2012,85(12):1929-1941.

[5] Bemporad A, Filippi C. An algorithm for approximate multiparametric convex programming[J].Computational Optimization and Applications,2006,35(1):87-108. [6] Summers S, Jones C N, Lygeros J, Morari multiscale approximation scheme for explicit model predictive control with stability, feasibility, and performance guarantees[C].48th EEE Conference on Decision and Control and 28th Chinese Control Conference[C],2009:6327-6332.

[7] Jones CN, Morari M. Polytopic Approximation of Explicit Model Predictive Controllers[J]. IEEE Transactions on Automatic Control,2010,55(11):2542-2553. [8] Summers S, Jones CN, Morari multiresolution approximation method for fast explicit model predictive control[J]. IEEE Transactions on Automatic Control,2011,56(11):2530-2541.

[9] Ricker N L. Use of quadratic programming for constrained intermal model control[J]. Industrial and Engineering Chemistry Process Design and Development,1985,24(4):925-938.

[10] Valencia-Palomo GPelegrinis M, Rossiter J A, Gondhalekar move-blocking strategy to improve tracking in predictive control[A]. American Control Conference[C], Baltimore, USA,2010:

[11]李德伟,席裕庚,秦辉.预测控制等效集结优化策略的研究[J].自动化学报,2007,33(3):302-308.

[12]Kouvaritakis B,Cannon M,Rossiter J needs QP for linear MPC anyway[J].Automatica,2002,38(5):879-884.

[13]Pannocchia J B,Wright S ,large scale model predictive control by partial enumeration[J].Automatica,2007,43(5):852-860.

[14]万娇娜,邵之江,王可心,王志强,钱积新.基于降精度求解准则的快速最优控制问题求解算法

[15] Domahidi A, Zgraggen A U, Zeilinger M N, Morari M, Jones C N. Efficient Interior Point Methods for Multistage Problems Arising in Receding Horizon Control[A]. IEEE Conference on Decision and Control[C], Maui, USA,2012:668-674.

剖析大数据分析方法论的几种理论模型

剖析大数据分析方法论的几种理论模型 做大数据分析的三大作用,主要是:现状分析、原因分析和预测分析。什么时候开展什么样的数据分析,需要根据我们的需求和目的来确定。 作者:佚名来源:博易股份|2016-12-01 19:10 收藏 分享 做大数据分析的三大作用,主要是:现状分析、原因分析和预测分析。什么时候开展什么样的数据分析,需要根据我们的需求和目的来确定。 利用大数据分析的应用案例更加细化的说明做大数据分析方法中经常用到的几种理论模型。 以营销、管理等理论为指导,结合实际业务情况,搭建分析框架,这是进行大数据分析的首要因素。大数据分析方法论中经常用到的理论模型分为营销方面的理论模型和管理方面的理论模型。 管理方面的理论模型: ?PEST、5W2H、时间管理、生命周期、逻辑树、金字塔、SMART原则等?PEST:主要用于行业分析 ?PEST:政治(Political)、经济(Economic)、社会(Social)和技术(Technological) ?P:构成政治环境的关键指标有,政治体制、经济体制、财政政策、税收政策、产业政策、投资政策、国防开支水平政府补贴水平、民众对政治的参与度等。?E:构成经济环境的关键指标有,GDP及增长率、进出口总额及增长率、利率、汇率、通货膨胀率、消费价格指数、居民可支配收入、失业率、劳动生产率等。?S:构成社会文化环境的关键指标有:人口规模、性别比例、年龄结构、出生率、死亡率、种族结构、妇女生育率、生活方式、购买习惯、教育状况、城市特点、宗教信仰状况等因素。

?T:构成技术环境的关键指标有:新技术的发明和进展、折旧和报废速度、技术更新速度、技术传播速度、技术商品化速度、国家重点支持项目、国家投入的研发费用、专利个数、专利保护情况等因素。 大数据分析的应用案例:吉利收购沃尔沃 大数据分析应用案例 5W2H分析法 何因(Why)、何事(What)、何人(Who)、何时(When)、何地(Where)、如何做(How)、何价(How much) 网游用户的购买行为: 逻辑树:可用于业务问题专题分析

16种常用数据分析方法

一、描述统计描述性统计是指运用制表和分类,图形以及计筠概括性数据来描述数据的集中趋势、离散趋势、偏度、峰度。 1、缺失值填充:常用方法:剔除法、均值法、最小邻居法、比率回归法、决策 树法。 2、正态性检验:很多统计方法都要求数值服从或近似服从正态分布,所以之前需要进行正态性检验。常用方法:非参数检验的K-量检验、P-P图、Q-Q图、W 检验、动差法。 二、假设检验 1、参数检验 参数检验是在已知总体分布的条件下(一股要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验。 1)U验使用条件:当样本含量n较大时,样本值符合正态分布 2)T检验使用条件:当样本含量n较小时,样本值符合正态分布 A 单样本t检验:推断该样本来自的总体均数卩与已知的某一总体均数卩0 (常为理论值或标准值)有无差别; B 配对样本t 检验:当总体均数未知时,且两个样本可以配对,同对中的两者在可能会影响处理效果的各种条件方面扱为相似; C 两独立样本t 检验:无法找到在各方面极为相似的两样本作配对比较时使用。 2、非参数检验 非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一股性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。 适用情况:顺序类型的数据资料,这类数据的分布形态一般是未知的。 A 虽然是连续数据,但总体分布形态未知或者非正态; B 体分布虽然正态,数据也是连续类型,但样本容量极小,如10 以下; 主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。 三、信度分析检査测量的可信度,例如调查问卷的真实性。 分类: 1、外在信度:不同时间测量时量表的一致性程度,常用方法重测信度 2、内在信度;每个量表是否测量到单一的概念,同时组成两表的内在体项一致性如何,常用方法分半信度。 四、列联表分析用于分析离散变量或定型变量之间是否存在相关。对于二维表,可进行卡 方检验,对于三维表,可作Mentel-Hanszel 分层分析列联表分析还包括配对计数资料的卡方检验、行列均为顺序变量的相关检验。 五、相关分析 研究现象之间是否存在某种依存关系,对具体有依存关系的现象探讨相关方向及相关程度。 1、单相关:两个因素之间的相关关系叫单相关,即研究时只涉及一个自变量和一个因变量; 2、复相关:三个或三个以上因素的相关关系叫复相关,即研究时涉及两个或两个以

模型预测控制

云南大学信息学院学生实验报告 课程名称:现代控制理论 实验题目:预测控制 小组成员:李博(12018000748) 金蒋彪(12018000747) 专业:2018级检测技术与自动化专业

1、实验目的 (3) 2、实验原理 (3) 2.1、预测控制特点 (3) 2.2、预测控制模型 (4) 2.3、在线滚动优化 (5) 2.4、反馈校正 (5) 2.5、预测控制分类 (6) 2.6、动态矩阵控制 (7) 3、MATLAB仿真实现 (9) 3.1、对比预测控制与PID控制效果 (9) 3.2、P的变化对控制效果的影响 (12) 3.3、M的变化对控制效果的影响 (13) 3.4、模型失配与未失配时的控制效果对比 (14) 4、总结 (15) 5、附录 (16) 5.1、预测控制与PID控制对比仿真代码 (16) 5.1.1、预测控制代码 (16) 5.1.2、PID控制代码 (17) 5.2、不同P值对比控制效果代码 (19) 5.3、不同M值对比控制效果代码 (20) 5.4、模型失配与未失配对比代码 (20)

1、实验目的 (1)、通过对预测控制原理的学习,掌握预测控制的知识点。 (2)、通过对动态矩阵控制(DMC)的MATLAB仿真,发现其对直接处理具有纯滞后、大惯性的对象,有良好的跟踪性和较强的鲁棒性,输入已 知的控制模型,通过对参数的选择,来获得较好的控制效果。 (3)、了解matlab编程。 2、实验原理 模型预测控制(Model Predictive Control,MPC)是20世纪70年代提出的一种计算机控制算法,最早应用于工业过程控制领域。预测控制的优点是对数学模型要求不高,能直接处理具有纯滞后的过程,具有良好的跟踪性能和较强的抗干扰能力,对模型误差具有较强的鲁棒性。因此,预测控制目前已在多个行业得以应用,如炼油、石化、造纸、冶金、汽车制造、航空和食品加工等,尤其是在复杂工业过程中得到了广泛的应用。在分类上,模型预测控制(MPC)属于先进过程控制,其基本出发点与传统PID控制不同。传统PID控制,是根据过程当前的和过去的输出测量值与设定值之间的偏差来确定当前的控制输入,以达到所要求的性能指标。而预测控制不但利用当前时刻的和过去时刻的偏差值,而且还利用预测模型来预估过程未来的偏差值,以滚动优化确定当前的最优输入策略。因此,从基本思想看,预测控制优于PID控制。 2.1、预测控制特点 首先,对于复杂的工业对象。由于辨识其最小化模型要花费很大的代价,往往给基于传递函数或状态方程的控制算法带来困难,多变量高维度复杂系统难以建立精确的数学模型工业过程的结构、参数以及环境具有不确定性、时变性、非线性、强耦合,最优控制难以实现。而预测控制所需要的模型只强调其预测功能,不苛求其结构形式,从而为系统建模带来了方便。在许多场合下,只需测定对象的阶跃或脉冲响应,便可直接得到预测模型,而不必进一步导出其传递函数或状

MATLAB模型预测控制工具箱函数

M A T L A B模型预测控制 工具箱函数 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

M A T L A B模型预测控制工具箱函数 系统模型建立与转换函数 前面读者论坛了利用系统输入/输出数据进行系统模型辨识的有关函数及使用方法,为时行模型预测控制器的设计,需要对系统模型进行进一步的处理和转换。MATLAB的模型预测控制工具箱中提供了一系列函数完成多种模型转换和复杂系统模型的建立功能。 在模型预测控制工具箱中使用了两种专用的系统模型格式,即MPC状态空间模型和MPC传递函数模型。这两种模型格式分别是状态空间模型和传递函数模型在模型预测控制工具箱中的特殊表达形式。这种模型格式化可以同时支持连续和离散系统模型的表达,在MPC传递函数模型中还增加了对纯时延的支持。表8-2列出了模型预测控制工具箱的模型建立与转换函数。 表8-2 模型建立与转换函数 模型转换 在MATLAB模型预测工具箱中支持多种系统模型格式。这些模型格式包括: ①通用状态空间模型; ②通用传递函数模型; ③MPC阶跃响应模型; ④MPC状态空间模型; ⑤MPC传递函数模型。

在上述5种模型格式中,前两种模型格式是MATLAB通用的模型格式,在其他控制类工具箱中,如控制系统工具箱、鲁棒控制工具等都予以支持;而后三种模型格式化则是模型预测控制工具箱特有的。其中,MPC状态空间模型和MPC传递函数模型是通用的状态空间模型和传递函数模型在模型预测控制工具箱中采用的增广格式。模型预测控制工具箱提供了若干函数,用于完成上述模型格式间的转换功能。下面对这些函数的用法加以介绍。 1.通用状态空间模型与MPC状态空间模型之间的转换 MPC状态空间模型在通用状态空间模型的基础上增加了对系统输入/输出扰动和采样周期的描述信息,函数ss2mod()和mod2ss()用于实现这两种模型格式之间的转换。 1)通用状态空间模型转换为MPC状态空间模型函数ss2mod() 该函数的调用格式为 pmod= ss2mod(A,B,C,D) pmod= ss2mod(A,B,C,D,minfo) pmod= ss2mod(A,B,C,D,minfo,x0,u0,y0,f0) 式中,A, B, C, D为通用状态空间矩阵; minfo为构成MPC状态空间模型的其他描述信息,为7个元素的向量,各元素分别定义为: ◆minfo(1)=dt,系统采样周期,默认值为1; ◆minfo(2)=n,系统阶次,默认值为系统矩阵A的阶次; ◆minfo(3)=nu,受控输入的个数,默认值为系统输入的维数; ◆minfo(4)=nd,测量扰的数目,默认值为0; ◆minfo(5)=nw,未测量扰动的数目,默认值为0; ◆minfo(6)=nym,测量输出的数目,默认值系统输出的维数; ◆minfo(7)=nyu,未测量输出的数目,默认值为0; 注:如果在输入参数中没有指定m i n f o,则取默认值。 x0, u0, y0, f0为线性化条件,默认值均为0; pmod为系统的MPC状态空间模型格式。 例8-5将如下以传递函数表示的系统模型转换为MPC状态空间模型。 解:MATLAB命令如下:

模型预测控制快速求解算法

模型预测控制快速求解算法 模型预测控制(Model Predictive Control,MPC)是一种基于在线计算的控制优化算法,能够统一处理带约束的多参数优化控制问题。当被控对象结构和环境相对复杂时,模型预测控制需选择较大的预测时域和控制时域,因此大大增加了在线求解的计算时间,同时降低了控制效果。从现有的算法来看,模型预测控制通常只适用于采样时间较大、动态过程变化较慢的系统中。因此,研究快速模型预测控制算法具有一定的理论意义和应用价值。 虽然MPC方法为适应当今复杂的工业环境已经发展出各种智能预测控制方法,在工业领域中也得到了一定应用,但是算法的理论分析和实际应用之间仍然存在着一定差距,尤其在多输入多输出系统、非线性特性及参数时变的系统和结果不确定的系统中。预测控制方法发展至今,仍然存在一些问题,具体如下: ①模型难以建立。模型是预测控制方法的基础,因此建立的模型越精确,预测控制效果越好。尽管模型辨识技术已经在预测控制方法的建模过程中得以应用,但是仍无法建立非常精确的系统模型。 ②在线计算过程不够优化。预测控制方法的一大特征是在线优化,即根据系统当前状态、性能指标和约束条件进行在线计算得到当前状态的控制律。在在线优化过程中,当前的优化算法主要有线性规划、二次规划和非线性规划等。在线性系统中,预测控制的在线计算过程大多数采用二次规划方法进行求解,但若被控对象的输入输出个数较多或预测时域较大时,该优化方法的在线计算效率也会无法满足系统快速性需求。而在非线性系统中,在线优化过程通常采用序列二次优化算法,但该方法的在线计算成本相对较高且不能完全保证系统稳定,因此也需要不断改进。 ③误差问题。由于系统建模往往不够精确,且被控系统中往往存在各种干扰,预测控制方法的预测值和实际值之间一定会产生误差。虽然建模误差可以通过补偿进行校正,干扰误差可以通过反馈进行校正,但是当系统更复杂时,上述两种校正结合起来也无法将误差控制在一定范围内。 模型预测控制区别于其它算法的最大特征是处理多变量多约束线性系统的能力,但随着被控对象的输入输出个数的增多,预测控制方法为保证控制输出的精确性,往往会选取较大的预测步长和控制步长,但这样会大大增加在线优化过程的计算量,从而需要更多的计算时间。因此,预测控制方法只能适用于采样周

BP神经网络算法预测模型

BP神经网络结构及算法 1986年,Rumelhart和McCelland领导的科学家小组在《Parallel Distributed Processing》一书中,对具有非线性连续转移函数的多层前馈网络的误差反向传播算法(Error Back Proragation,简称BP)进行了详尽的分析,实现了Minsky关于多层网络的设想。由于多层前馈网络的训练经常釆用误差反向传播算法,人们也常把多层前馈网络直接称为BP网。釆用BP算法的多层前馈网络是目前应用最多的神经网络。 BP神经网络的结构 BP网络有三部分构成,即输入层、隐含层(又称为中间层)和输出层,其中可以有多个隐含层。各层之间实现完全连接,且各层神经元的作用是不同的:输入层接受外界信息;输出层对输入层信息进行判别和决策;中间隐层用来表示或存贮信息。通常典型的BP网络有三层构成,即只有一个隐层。三层BP神经网络的结构可用图1表示。 图1 三层BP神经网络机构图 BP神经网络的学习算法 BP算法的基本思想是,学习过程由信号的正向传播与误差的反向传播两个过程组成。正向传播时,输入样本从输入层传入,经各隐含层逐层处理后,传向输出层。若输出层的实际输出与期望的输出(教师信号)不符,则转入误差的反向传播阶段。误差反传是将输出误差以某种形式通过隐含层向输入层逐层反传、并将误差分摊给各层的所有神经元,从而获得各层神经元的误差信号,此误差信号即作为修正各神经元权值的依据。这种信号正向传播与误差反向传播的各层权值调整过程,是周而复始地进行的,权值不断调整的过程,也就是网络的学习训练过程。此过程一直进行到网络输出误差减少到可接受的程度,或进行到预先设定的学习次数为止,标准BP算法流程见图2。

需求预测方法

需求预测方法 常用的物资需求预测方法主要包括基于时间序列模型的移动平均预测法、指数平滑预测法、趋势外推预测法等;基于因果分析模型的回归分析预测法,基于统计学习理论以及结构风险最小原理的支持向量机预测方法,基于人工智能技术的人工神经网络算法。归纳如图1: 图1:物资需求预测方法 一、 时间序列法 1.定义:将预测对象按照时间顺序排列起来,构成一个所谓的时间序列,从所构成的这一组时间序列过去的变化规律,推断今后变化的可能性及变化趋势、变化规律,就是时间序列预测法。 2.概况: 时间序列法主要考虑以下变动因素:①趋势变动,②季节变动,③循环变动,④不规则变动。 若以 , , , 表示时间序列的季节因素 ,长期趋势波动、季节性变动、不规则变动.则实际观测值与它们之间的关系常用模型有 加法模型: 乘法模型: 混合模型: 时间序列预测一般反映三种实际变化规律:趋势变化、周期性变化、随机性变化。 t t t t I S T x ++=t t t t I S T x ??=)() )t t t t t t t t I T S x b I T S x a +?=+?=

3.时间序列常用分析方法:移动平均法、指数平滑法、季节变动法等 (1)移动平均法 ①简单移动平均法:将一个时间段的数据取平均值作为最新时间的预测值。该时间段根据要求取最近的。例如:5个月的需求量分别是10,12,32,12,38。预测第6个月的需求量。可以选择使用3个月的数据作为依据。那么第6个月的预测量Q=。 ②加权移动平均法:将每个时段里的每组数根据时间远近赋上权重。例如:上个例子,3个月的数据,可以按照远近分别赋权重0.2,0.3,0.5。那么第6个月的预测量Q= (只是在简单移动平均的基础上考虑了不同时段影响的权重不同,简单移动平均默认权重=1.) (2)指数平滑法 基本思想:预测值是以前观测值的加权和,且对不同的数据给予不同的权数,新数据给予较大的权数,旧数据给予较小的权数。 指数平滑法的通用算法: 指数平滑法的基本公式:St=aYt+(1-a)St-1 式中, St--时间t的平滑值; Yt--时间t的实际值; St-1--时间t-1的平滑值; a--平滑常数,其取值范围为[0,1] 具体方法:一次指数平滑、二次指数平滑、三次指数平滑。 方法的选取:指数平滑方法的选用,一般可根据原数列散点图呈现的趋势来确定。当时间数列无明显的趋势变化,可用一次指数平滑预测。如呈现直线趋势,选用二次指数平滑法;若实际数据序列呈非线性递增趋势,采用三次指数平滑预测方法。如呈现抛物线趋势,选用三次指数平滑法。或者,当时间序列的数据经二次指数平滑处理后,仍有曲率时,应用三次指数平滑法。 (3)季节变动法 根据季节变动特征分为:水平型季节变动和长期趋势季节变动 ①水平型季节变动: 是指时间序列中各项数值的变化是围绕某一个水平值上下周期性的波动。若时间序列呈水平型季节变动,则意味着时间序列中不存在明显的长期趋势变动而仅有季节变动和不规则变动。

MATLAB模型预测控制工具箱函数

MATLAB模型预测控制工具箱函数 8.2 系统模型建立与转换函数 前面读者论坛了利用系统输入/输出数据进行系统模型辨识的有关函数及使用方法,为时行模型预测控制器的设计,需要对系统模型进行进一步的处理和转换。MATLAB的模型预测控制工具箱中提供了一系列函数完成多种模型转换和复杂系统模型的建立功能。 在模型预测控制工具箱中使用了两种专用的系统模型格式,即MPC状态空间模型和MPC传递函数模型。这两种模型格式分别是状态空间模型和传递函数模型在模型预测控制工具箱中的特殊表达形式。这种模型格式化可以同时支持连续和离散系统模型的表达,在MPC传递函数模型中还增加了对纯时延的支持。表8-2列出了模型预测控制工具箱的模型建立与转换函数。 表8-2 模型建立与转换函数 8.2.1 模型转换 在MATLAB模型预测工具箱中支持多种系统模型格式。这些模型格式包括: ①通用状态空间模型; ②通用传递函数模型; ③MPC阶跃响应模型; ④MPC状态空间模型;

⑤ MPC 传递函数模型。 在上述5种模型格式中,前两种模型格式是MATLAB 通用的模型格式,在其他控制类工具箱中,如控制系统工具箱、鲁棒控制工具等都予以支持;而后三种模型格式化则是模型预测控制工具箱特有的。其中,MPC 状态空间模型和MPC 传递函数模型是通用的状态空间模型和传递函数模型在模型预测控制工具箱中采用的增广格式。模型预测控制工具箱提供了若干函数,用于完成上述模型格式间的转换功能。下面对这些函数的用法加以介绍。 1.通用状态空间模型与MPC 状态空间模型之间的转换 MPC 状态空间模型在通用状态空间模型的基础上增加了对系统输入/输出扰动和采样周期的描述信息,函数ss2mod ()和mod2ss ()用于实现这两种模型格式之间的转换。 1)通用状态空间模型转换为MPC 状态空间模型函数ss2mod () 该函数的调用格式为 pmod= ss2mod (A,B,C,D) pmod = ss2mod (A,B,C,D,minfo) pmod = ss2mod (A,B,C,D,minfo,x0,u0,y0,f0) 式中,A, B, C, D 为通用状态空间矩阵; minfo 为构成MPC 状态空间模型的其他描述信息,为7个元素的向量,各元素分别定义为: ◆ minfo(1)=dt ,系统采样周期,默认值为1; ◆ minfo(2)=n ,系统阶次,默认值为系统矩阵A 的阶次; ◆ minfo(3)=nu ,受控输入的个数,默认值为系统输入的维数; ◆ minfo(4)=nd ,测量扰的数目,默认值为0; ◆ minfo(5)=nw ,未测量扰动的数目,默认值为0; ◆ minfo(6)=nym ,测量输出的数目,默认值系统输出的维数; ◆ minfo(7)=nyu ,未测量输出的数目,默认值为0; 注:如果在输入参数中没有指定m i n f o ,则取默认值。 x0, u0, y0, f0为线性化条件,默认值均为0; pmod 为系统的MPC 状态空间模型格式。 例8-5 将如下以传递函数表示的系统模型转换为MPC 状态空间模型。 1 2213)(232+++++=s s s s s s G 解:MATLAB 命令如下:

组合预测方法中的权重算法及应用.

组合预测方法中的权重算法及应用 [ 08-09-19 16:57:00 ] 作者:权轶张勇 传编辑:Studa_hasgo122 摘要系统地分析了组合预测模型的权重确定方法,并估计各种权重的理论精度,以此指导其应用。文章还首次提出用主成分分析确定组合模型权重的方法,最后以短期(1年)负荷预测为例,检验各种权重下组合预测模型的精度。 关键词组合模型权重预测精度负荷预测 1 常用的预测方法及预测精度评价标准 正确地预测电力负荷,既是社会经济和居民生活用电的需要,也是电力市场健康发展的需要。超短期负荷预测,可以合理地安排机组的启停,保证电网安全、经济运行,减少不必要的备用;而中长期负荷预测可以适时安排电网和电源项目投资,合理安排机组检修计划,有效降低发电成本,提高经济效益和社会效益。 常用的负荷预测方法有算术平均、简单加权、最优加权法、线性回归、方差倒数、均方倒数、单耗、灰色模型、神经网络等。 囿于不同的预测模型的理论基础和所采用的信息资料的不同,上述单一预测模型的预测结果经常千差万别,预测精度有高有低,为了充分发挥各种预测模型的优点,提高预测质量,可以在各种单一预测模型的基础上建立加权平均组合预测模型。为此,必须研究组合预测模型中权重的确定方法及预测精度的理论估计。 设Y表示实际值,■表示预测值,则称Y-■为绝对误差,称■为相对误差。有时相对误差也用百分数■×100%表示。分析预测误差的指标主要有平均绝对误差、最大相对误差、平均相对误差、均方误差、均方根误差和标准误差等。 2 组合预测及其权重的确定 现实的非线性系统结构复杂、输入输出变量众多,采用单个的模型或部分的因素和指标仅能体现系统的局部,多个模型的有效组合或多个变量的科学综合才能体现系统的整体特征,提高预测精度。 为了表达和书写方便,下面从组合预测的角度来描述模型综合的方法和类型。设{xt+l},(t=1,2,...,T)为观测值序列,对{xt+l},(l=1,2,...,L)用J个不同的预测模型得到的预测值为xt+l,则组合模型为: ■T+L=■*9棕j■T+L(j) 式中,*9棕j(j=1,2,…,J)为第j个模型的权重,为保持综合模型的无偏性,*9棕j应满足约束条件■*9棕j=1 确定权重常用的方法有专家经验、算术平均法、方差倒数法、均方倒数法、简单加权法、离异系数法、二项式系数法、最优加权法和主成分分析法等等。下面仅简单介绍最优加权法和主成分分析法。 最优加权法是依据某种最优准则构造目标函数Q,在满足约束条件的情况下 ■*9棕j=1,通过极小化Q以求得权系数。 设{xt},(t=1,2,…T)为观测序列,已经为其建立J个数学模型,则最优加权模型的组合权系数*9棕j,(j=1,2,…J)是以下规划问题的解:

神经网络模型预测控制器

神经网络模型预测控制器 摘要:本文将神经网络控制器应用于受限非线性系统的优化模型预测控制中,控制规则用一个神经网络函数逼近器来表示,该网络是通过最小化一个与控制相关的代价函数来训练的。本文提出的方法可以用于构造任意结构的控制器,如减速优化控制器和分散控制器。 关键字:模型预测控制、神经网络、非线性控制 1.介绍 由于非线性控制问题的复杂性,通常用逼近方法来获得近似解。在本文中,提出了一种广泛应用的方法即模型预测控制(MPC),这可用于解决在线优化问题,另一种方法是函数逼近器,如人工神经网络,这可用于离线的优化控制规则。 在模型预测控制中,控制信号取决于在每个采样时刻时的想要在线最小化的代价函数,它已经广泛地应用于受限的多变量系统和非线性过程等工业控制中[3,11,22]。MPC方法一个潜在的弱点是优化问题必须能严格地按要求推算,尤其是在非线性系统中。模型预测控制已经广泛地应用于线性MPC问题中[5],但为了减小在线计算时的计算量,该部分的计算为离线。一个非常强大的函数逼近器为神经网络,它能很好地用于表示非线性模型或控制器,如文献[4,13,14]。基于模型跟踪控制的方法已经普遍地应用在神经网络控制,这种方法的一个局限性是它不适合于不稳定地逆系统,基此本文研究了基于优化控制技术的方法。 许多基于神经网络的方法已经提出了应用在优化控制问题方面,该优化控制的目标是最小化一个与控制相关的代价函数。一个方法是用一个神经网络来逼近与优化控制问题相关联的动态程式方程的解[6]。一个更直接地方法是模仿MPC方法,用通过最小化预测代价函数来训练神经网络控制器。为了达到精确的MPC技术,用神经网络来逼近模型预测控制策略,且通过离线计算[1,7.9,19]。用一个交替且更直接的方法即直接最小化代价函数训练网络控制器代替通过训练一个神经网络来逼近一个优化模型预测控制策略。这种方法目前已有许多版本,Parisini[20]和Zoppoli[24]等人研究了随机优化控制问题,其中控制器作为神经网络逼近器的输入输出的一个函数。Seong和Widrow[23]研究了一个初始状态为随机分配的优化控制问题,控制器为反馈状态,用一个神经网络来表示。在以上的研究中,应用了一个随机逼近器算法来训练网络。Al-dajani[2]和Nayeri等人[15]提出了一种相似的方法,即用最速下降法来训练神经网络控制器。 在许多应用中,设计一个控制器都涉及到一个特殊的结构。对于复杂的系统如减速控制器或分散控制系统,都需要许多输入与输出。在模型预测控制中,模型是用于预测系统未来的运动轨迹,优化控制信号是系统模型的系统的函数。因此,模型预测控制不能用于定结构控制问题。不同的是,基于神经网络函数逼近器的控制器可以应用于优化定结构控制问题。 在本文中,主要研究的是应用于非线性优化控制问题的结构受限的MPC类型[20,2,24,23,15]。控制规则用神经网络逼近器表示,最小化一个与控制相关的代价函数来离线训练神经网络。通过将神经网络控制的输入适当特殊化来完成优化低阶控制器的设计,分散和其它定结构神经网络控制器是通过对网络结构加入合适的限制构成的。通过一个数据例子来评价神经网络控制器的性能并与优化模型预测控制器进行比较。 2.问题表述 考虑一个离散非线性控制系统: 其中为控制器的输出,为输入,为状态矢量。控制

预测模型运用简介

互联网大数据时代的到来,为保险业的改革和发展创造了难得的机遇,保险业是数据依赖型企业,精算师的工作也是建立在数据分析的基础上,近年来互联网大数据不仅为精算师提供了方便的分析工具,也在改变着现有的精算技能和方法。数据量的增加及获取难度的降低,为“预测模型”的建立提供了保障。传统精算技术碰上大数据时代,撞出了许多火花,预测模型也越来越多地为精算师所使用。保险业正值供给侧改革,费率市场化为公司转型和结构调整创造了空间,科学运用预测模型,为公司实现销售创新、差异化定价和精准风险管理等提供了重要的技术支持。 一、预测模型的使用 传统的精算技术利用大数法则计算平均值,只能在静态环境下较低的维度来量化风险,很难充分地反映风险的复杂性,一旦未来环境变化因素变多,对结果的预测效果将会大打折扣。而且对于一些具有高度相关性的数据缺乏甄别作用。随着技术的发展,数据数量的增加以及获取难度的降低,目前精算师越来越多地采用预测模型的方法来分析结果,预测模型建模其实是一个多变量统计方法。 与传统精算方式相比,采用预测模型建模的方式有如下优势: ?可以有效消除单变量所造成的偏差; ?是一种能有效使用数据的方式; ?得到的不仅仅是平均值,更是一个体现出不确定性的统计结果;

能更好的体现不同变量间的联系。 二、如何建立预测模型 预测模型一般先根据结果的需要收集原始数据,将尽可能多维度的数据收集起来,理解数据,清洗数据,并根据需要把数据变形或拓展。挑选有用的数据作为自变量,然后再利用模型将因变量和自变量联系起来,常用的有广义线性模型(Generalized Linear Model),决策树模型(Classification and Regression Tree)等。建立模型之后还需要通过如双向提升图,累计收益图,实际/预测之比等的不同方式评估模型,验证有效后执行,从而在今后利用自变量信息直接通过模型计算出需要的结果。 三、预测模型运用举例 (一)保证续保定期寿险退保率预测 保证续保定期寿险,一般以10年期,20年期为主,在10年或20年这段保费固定期内每年缴纳固定的保费,过了固定期后可以不经过核保直接保证续保,有的可以续保成另一个10年期或20年期保证续保定期寿险,有的可以续保成每年续保定期寿险(Annually Renewable Term,以下简称ART)。 这里以可续保成ART的10年期保证续保定期寿险为例,保费在第11个保单年度增加非常显著,在这个极端例子中,第11年的保费

模型预测算法

综述: 在20世纪80年代初,社会上出现了一种新型计算机控制算法-----模型预测控制算法。该算法包括了动态矩阵控制(DMC),模型算法控制(MAC)和基于参数模型的广义预测控制(GPC),广义预测几点配置控制(GPP)等。该算法采用了滚动优化,多步预测和反馈校正等控制策略,因此,它具有控制效果好,鲁棒性强,对模型精确性要求不高的特点。由于在工业过程中,对象往往是多输入多输出高维系统,且结构,参数和环境都具有很大的不确定性,而工业控制计算机的要求又不能太高,所以经典控制方法,如PID控制及现代控制理论,都难以获得良好的控制效果。而模型预测控制具有的有点决定了该方法能够有效地用于复杂工业过程控制,并且在不同的工业部门的过程控制系统中取得了成功。其中,由于模型算法控制采用脉冲响应模型,无需降低模型阶数,并且控制率是时变的,闭环响应对于受控对象的变化具有鲁棒性,并且能够在线修改控制规律,故本文实现模型算法控制的设计与仿真。而由于绝大部分工业控制过程都是含有约束的,故研究带约束的模型预测控制算法十分必要,所以本文研究有约束的模型。 背景: 1.预测控制的产生:预测控制算法最早产生于工业过程,由Rechalet.Mehra等提出的建立 在脉冲响应基础上的模型预测启发控制(Model Perdictive Heuristic Control,简称WHC,或模型算法控制(Model Algorithmic C ontrol,简称MAC),以及Cutler等提出的建立在阶跃响应基础上的动态矩阵控制(Dynamic Matrix Control,简称DMC)。由于脉冲响应和阶跃相应都易于从工业现场直接获得,而不要求对模型的结构有准确的认识。这类预测控制算法采用滚动优化的策略,计算当前控制输入取代传统最优控制,并在优化控制中利用实测信息不断进行反馈校正,所以在一定程度上克服了不确定性的影响,具有良好的鲁棒性。此外,算法汲取了现代控制理论中的优化思想,并且在线计算比较容易,非常适合于工业过程控制的实际要求。 2.发展现状:近年来,预测控制的研究与发展已经突破前期研究的框架,摆脱了单纯的算 法研究模式,它能够于自适应控制,多模型切换等众多先进控制技术相结合,成为新的线代预测控制策略研究领域。随着智能控制技术的发展,预测控制将已取得的成果与模糊控制,神经网络以及遗传算法,专家控制系统等控制策略相结合,朝着智能预测控制方向发展。目前,我国预测控制软件主要有: a)多变量约束控制软件包MCC。主要处理多变量,多目标,多控制模式合基于模型 预测的最优控制器。 b)APC -Hiecon多变量预测控制软件包。适用于多变量,强耦合,大时滞的复杂生产 过程的控制。 c)多变量预测控制软件包。正在进行的课题,主要针对多变量的预测控制。 原理: 首先:预测控制以计算机为实现手段,所以算法一般是采样控制算法而不是连续控制算法。一般来说,预测控制都应建立在以下三项基本原理的基础上。

常用预测模型

常用预测模型 (一) 灰色预测模型 1. 灰色系统理论 灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测。尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律,灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测。灰色预测通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理,来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势状况。灰色预测法用等时距观测到的反映预测对象特征的一系列数量值构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。 2.灰色预测理论模型数学形式 在通过灰色理论建立预测模型时,常需要先进行累加或累减后计算数据列间的关联度,再建立最终的预测模型。 如原始数据列为: ()()()()()()()()(){}n X X X X X 00000,...3,2,1=; 通过累加后变为: ()()()()()()()()(){}n X X X X X 11111,...3,2,1=; 那么进行m 次累加后有: ()()()()∑=?=k i m m i X k X 11关联度:是分析系统中各因素关联程度的方法,在计算关联度之前需先计算关联系数。 设:()()()()()()()(){ }n X X X k X 0000?,...,2?,1??=,()()()()()()()(){} n X X X k X 0000,...,2,1= ()()()()()()()()()()()()()()()()k X k X k X k X k X k X k X k X 00000000?max max ??max max ?min min ?+??+?ρρ 则关联系数定义为:式中:()()()()k X k X 00??为第k 个点()0X 和()0?X 的绝对误差;()()()()k X k X 00?min min ?为两级最小差; ()()()()k X k X 00?max max ?为两级最大差;ρ称为分辨率,0<ρ<1,一般取ρ=0.5;对单位不一,初值不同的序列,在计算相关系数前应首先进行初始化,即将该序列所有数据分别除以第一个数据。 关联系数矩阵确立后,则与()()k X 0()()k X 0?的关联度为:()∑==n k k n r 1 1η 建立预测模型:在前述准备完成后,GM (1,1)通过相应的微分方程建立模型。 () ()μ=+11d d aX t X 其中:α称为发展灰数;μ称为内生控制灰数。 设α?为待估参数向量,??? ?????=μαa ?,可利用最小二乘法求解。解得: ()n T T Y B B B 1??=α

3.数据建模中分类与预测模型---张龙

数据建模中分类与预测模型 成文日期:2018/8/27 摘要: 随着计算机技术的兴起,当前社会已经进入大数据信息时代。资本市场随着投资者的不断涌入以及金融科技的不断发展,交易时所涉及到的信息也逐渐繁杂。如果还是利用过往的分析模式,个人的力量就显得愈加薄弱。因此,利用量化平台对多元化的数据进行提取,按照自身的分析模式搭建合理化的分析框架,自动化的得到针对基本面、技术面的分析结果的分析方法也开始逐渐火热起来,这个结果根据需求既可以是定量的,也可以是定性的,目前这种量化建模的方式也已经在众多私募、券商等中应用已久,但是对于大多数个体投资者而言,还是一个十分陌生的领域。 因此,本文基于上期数据预处理部分之后,介绍如何在清洗过后的数据基础之上建立分类与预测模型,为此种模型的构建方法进行简单介绍,辅助投资者对自身分析逻辑中的分析框架进行量化分析,方便其多元化的交易分析。 一、分类与预测的介绍 数据建模中分类与预测模型主要是寻求合适的分类模型并在此基础之上进行未来徽商期货研究所 程序化部 张 龙 量化分析师 从业资格号:F3047985 邮箱:840671808@https://www.360docs.net/doc/d412224264.html,

预测。分类主要是预测分类标号(离散属性),通俗点而言就像在基本面分析中判定哪些是未来影响价格的因素,比如产量、季节因素、下游产品价格等,这些因素除了其自身属性的不同外还应该具备在同级影响因素中具备较低的相关性,也就是最终分类的因素都会对价格进行影响,但是彼此之间的影响相对较小。而预测主要就是建立连续值函数模型,预测给定自变量对应的因变量的值。 二、分析与预测模型的实现过程 1.分类 分类是构造一个分类模型,输入样本的属性值,输出对应的类别,将每个样本映射到先定义好的类别。 分类模型建立在已有类标记的数据集上,模型在已有样本上的准确率可以方便地计算,所以分类属于有监督的学习。 2.预测 预测是指建立两种或两种以上变量间相互依赖的函数模型,然后进行预测或控制。 3.实现过程 分类算法有两步过程:第一步是学习步,通过归纳分析训练样本集来建立分类模型得到分类规则;第二步是分类步,先用已知的测试样本集评估分类规则的准确率,如果准确率是可以接受的,则使用该模型对未知类标号的待测样本集进行预测。 预测模型的实现也有两步,第一步是通过训练集建立预测属性(数值型的)的函数模型,第二步在模型通过检验后进行预测或控制。 三、常用的分类与预测算法 常见的分类与预测算法如表1所示。由于对于新入学者而言,掌握人工神经网络、

预测方法的分类(1)

预测方法的分类 郑XX 预测方法的分类 由于预测的对象、目标、内容和期限不同,形成了多种多样的预测方法。据不完全统计,目前世界上共有近千种预测方法,其中较为成熟的有150多种,常用的有30多种,用得最为普遍的有10多种。 1-1预测方法的分类体系 1)按预测技术的差异性分类 可分为定性预测技术、定量预测技术、定时预测技术、定比预测技术和评价预测 技术,共五类。 2)按预测方法的客观性分类 可分为主观预测方法和客观预测方法两类。前者主要依靠经验判断,后者主要借 助数学模型。 3)按预测分析的途径分类 可分为直观型预测方法、时间序列预测方法、计量经济模型预测方法、因果分析 预测方法等。 4)按采用模型的特点分类 可分为经验预测模型和正规的预测模型。后者包括时间关系模型、因果关系模 型、结构关系模型等。 1-2 常用的方法分类 1)定性分析预测法 定性分析预测法是指预测者根据历史与现实的观察资料,依赖个人或集体的经验与智慧,对未来的发展状态和变化趋势作出判断的预测方法。 定性预测优缺点 定性预测的优点在于: 注重于事物发展在性质方面的预测,具有较大的灵活性,易于充分发挥人的主观能动作用,且简单的迅速,省时省费用。

定性预测的缺点是: 易受主观因素的影响,比较注重于人的经验和主观判断能力,从而易受人的知识、经验和能力的多少大小的束缚和限制,尤其是缺乏对事物发展作数量上的精确描述。 2)定量分析预测法 定量分析预测法是依据调查研究所得的数据资料,运用统计方法和数学模型,近似地揭示预测对象及其影响因素的数量变动关系,建立对应的预测模型,据此对预测目标作出定量测算的预测方法。通常有时间序列分析预测法和因果分析预测法。 ⅰ时间序列分析预测法 时间序列分析预测法是以连续性预测原理作指导,利用历史观察值形成的时间数列,对预测目标未来状态和发展趋势作出定量判断的预测方法。

预测模型分类

预测模型分类及优缺点分析 灰色(系统)预测模型 神经网络预测模型 趋势平均预测法 1 微分方程模型 当我们描述实际对象的某些特性随时间(或空间)而演变的过程、分析它的变化规律、预测它的未来性态、研究它的控制手段时,通常要建立对象的动态微分方程模型。微分方程大多是物理或几何方面的典型.问题,假设条件已经给出,只需用数学符号将已知规律表示出来,即可列出方程,求解的结果就是问题的答案,答案是唯一的,但是有些问题是非物理领域的实际问题,要分析具体情况或进行类比才能给出假设条件。作出不同的假设,就得到不同的方程。比较典型的有:传染病的预测模型、经济增长预测模型、正规战与游击战的预测模型、药物在体内的分布与排除预测模型、人口的预测模型、烟雾的扩散与消失预测模型以及相应的同类型的预测模型。其基本规律随着时间的增长趋势是指数的形式,根据变量的个数建立初等微分模型。微分方程模型的建立基于相关原理的因果预测法。该法的优点:短、中、长期的预测都适合,而.既能反映内部规律,反映事物的内在关系,也能分析两个因素的相关关系,精度相应的比较高,另外对初等模型的改进也比较容易理解和实现。该法的缺点:虽然反映的是内部规律,但是由于方程的建立是以局部规律:的独立性假定为基础,故做中长期预测时,偏差有点大,而且微分方程的解比较难以得到。 2 时间序列法 将预测对象按照时问顺序排列起来,构成一个所谓的时间序列,从所构成的这一组时间序列过去的变化规律,推断今后变化的可能性及变化趋势、变化规律,就是时间序列预测法。时间序列预测一般反映三种实际变化规律:趋势变化、周期性变化、随机性变化。考虑一组给定的随时间变化的观察值,t=1,2,3,?,n},如何选取合适模型预报,t=n+1,n+3,n+k}的值。 上面的模型统称ARMA模型,是时间序列建模中最重要和最常用的预测手段。事实上,对实际中发生的平稳时间序列做恰当的描述,往往能够得到自回归、滑动平均或混合的模型,其阶数通常不超过2。时间序列模型其实也是一种回归模型,属于定量预测,其基于的原理是,一方面承认事物发展的延续性,运用过去时间序列的数据进行统计分析就能推测事物的发展趋势;另一方面又充分考虑到偶然因素影响而产生的随机性,为了消除随机波动的影响,利用历史数据,进行统计分析,并对数据进行适当的处理,进行趋势预测。优点是简单易行,便于掌握,能够充分运用原时间序列的各项数据,计算速度快,对模型参数有动态确定的能力,精度较好,采用组合的时间序列或者把时间序列和其他模型组合效果更好。缺点是不能反映事物的内在联系,不能分析两个因素的相关关系,常数的选择对数据修匀程度影响较大,不宜取得太小,只适用于短期预测 3 灰色预测理论模型 灰色预测的基本思路是将已知的数据序列按照某种规则构成动态或非动态的白色模块,再按照某种变化、解法来求解未来的灰色模型。它的主要特点是模型使用的不是原始数据序列,而是生成的数据序列。其核心体系是灰色模型(GM),即对原始数据作累加生成(或其他方法生成)得到近似的指数规律再进行建模的模型方法。优点是不需要很多的数据,一般只需要4个数据就够,能解决历史数据少、序列的完整性及可靠性低的问题;能利用微分方程来充分挖掘系统的本质,精度高;能将无规律的原始数据进行生成得到规律性较强的生成数列,运算简便,易于检验,具有不考虑分布规律,不考虑变化趋势。缺点是只适用于中长期的预测,只适合指数增长的预测,对波动性不好的时间序列预测结果较差。

相关文档
最新文档