南方电网建成世界首个多端柔性直流输电工程

南方电网建成世界首个多端柔性直流输电工程

柔性直流输电

柔性直流输电 一、概述 (一)柔性直流输电的定义 高压直流(HVDC)输电技术始于1920年代,到目前为止,经历了3次技术上的革新,其主要推动力是组成换流器的基本元件发生了革命性的重大突破。 第一代直流输电技术采用的换流元件是汞弧阀,所用的换流 第二代直流输电技术采用的换流元件是晶闸管,所用的换流器拓扑仍然是6脉动Graetz桥,因而其换流理论与第一代直流输电技术相同,其应用年代是1970年代初直到今后一段时间。

通常我们将基于Graetz桥式换流器的第一代和第二代直流输电技术称为传统直流输电技术,其运行原理是电网换相换流理论。因此我们也将传统直流输电所采用的Graetz桥式换流器称为“电网换相换流器”,英文是“Line Commutated Converter”,缩写是“LCC”。这里必须明确一个概念,有人将电流源换流器(CSC)与电网换相换流器(LCC)混淆起来,这是不对的。LCC属于CSC,但CSC的范围要比LCC宽广得多,基于IGBT 构成的CSC目前也是业界研究的一个热点。 1990年,基于电压源换流器的直流输电概念首先由加拿大McGill大学的Boon-Teck Ooi等提出。在此基础上,ABB公司于1997年3月在瑞典中部的Hellsjon和Grangesberg之间进行了首次工业性试验(3 MW,±10kV),标志着第三代直流输电技术的诞生。这种以可关断器件和脉冲宽度调制(PWM)技术为基础的第三代直流输电技术,国际权威学术组织国际大电网会议(CIGRE)和美国电气和电子工程师协会(IEEE),将其正式命名为“VSC-HVDC”,即“电压源换流器型直流输电”。2006年5月,由中国电力科学研究院组织国内权威专家在北京召开

多端柔性直流输电技术

1、简介 从上个世纪 五十年代至今, 高压直流输电技 术(High V oltage Direct Current,HVDC) 经历了跨越式发 展,己经广泛应 用于风电场并网、大容量远距离输电、非同步大电网互联、孤岛和弱电网供电等领域HVDC技术从早期的汞弧阀换流技术发展到高压大功率晶闹管换流器技术,极大地促进了直流输电技术的发展。与高压输电技术相反的是换流技术几乎仍在原地踏步,线换相换流器(Line Commuted Converter, LCC)直流输电占据主流。由于晶闸管关断不可控,传统直流输电技术具有明显缺陷。 随着电力电子变流技术的迅猛发展,出现了以脉宽调制(Plus Width Modulation, PWM)技术为基础的变流器。并且PWM变流器技术也日漆完善。目前主要应用的主电路类型有电流型变流器(Current Source Converter, CSC)和电压源型变流器(V oltageSource Converter, VSC)。并且,全控器件电压和容量的等级的不断提升,控制技术的日趋完善,带动VSC开始应用于大容量高压输配电领域,如,灵活交流输电系统(Flexible ACTransmission System, FACTS)、基于电压源变流器的高压直流输电(VSC basedHVDC,VSC-HVDC)、定制电力系统(Custom Power,CP)等典型代表。VSC设备配合不同的控制策略可以控制系统潮流、调节网络运行参数,进而优化电力统运行状态,提高系统稳定性和运行可靠性。VSC-HVDC技术是以电压源变流器,可控关断的IGBT和脉宽调制(PWM)为基础的新型输电技术。VSC-HVDC不仅可以独立快速控制有功无功,还易于翻转潮流,实现了无源网络供电。同时,随着能源紧缺和环境污染的日益严重,我国开始大力幵发和利用风能、太阳能等可再生清洁能源,优化能源结构。但是其固有的分散性、小型化、远离负荷中心等特点直接制约了风电利用规模的不断扩大以及传统交流输电技术和CSC-HVDC 输电技术联网的经济性。此外,城市配电网的快速扩容一方面要求利用有限的线路走廊输送更多的电能,另一方面要求大量配电网转入地下。VSC-HVDC输电技术可以很好地解决上述问题,并且已经有实际运行的商业工程应用在分布式发电系统接入大电网、孤岛供电、城市直流配网改造、异步大电网互联等领域。然而,VSC-HVDC也尤其不容忽视的缺陷,一旦其两端输电系统中有一端VSC发生故障退出运行,系统将被迫处于瘫痪状态。 2.1 VSC-HVDC的结构 VSC-HVDC的结构如图1-1所示,两端是两个VSC换流站,中间连接换流变压器、换流电抗器、交流滤波器、直流电容器、直流输电线路等组成的两条线路。VSC既可以通过直流线路在互联系统间传输潮流又能够像STATCOM —样进行动态无功交换。 VSC换流器包括换流电路和直流电容器,由一个或多个换流桥并联(串联)组成的换流电路来实现交直流转换。目前多个换流桥组成的组合式换流器并未在实际工程中应用。VSC是换流站的核心元件,通过VSC桥臂的开通和关断切换控制系统潮流,其拓扑结构实际工程中主要采用三相两电平、二极管钳位三电平结构。系统开关频率限制了全控器件的选择,目前VSC-HVDC系统采用压装式IGBT连同驱动电路、散热片及其他辅助电路共同构成。 直流电容器为VSC变流器提供直流电压支撑、缓冲桥臂关断时的冲击电流、减小直流侧谐波。直流电容器的容量决定了VSC-HVDC直流侧的动态特性。 换流变压器和换流电抗器是换流站和交流系统之间能量交换的纽带。换流变压器一般设计为消除零序分量的接法,此时两端中必有一侧为接地系统,如Yn/Y或者Yn/△等,并带有分接头控制,可以隔离两端零序分量的相互影响。 交流滤波器的作用是滤除VSC交流侧谐波。由于VSC-HVDC采用PWM调制技术,故VSC输出的电压和电流中包含开关频率及其整数倍附近次谐波,其谐波含量与调制方式、调制比、开关频率以及所采用的拓扑结构有关。交流滤波器与换流电抗、换流变压器以及系统阻抗相互作用,对高次谐波形成一个低阻通道,从而达到滤除谐波的目的。

南方电网公司35kV~±800kV交直流输变电工程设计费标准

中国南方电网有限责任公司 二〇一七年三月 南方电网公司35kV ~±800kV 交直流输变电工程 设计费标准

南方电网公司35kV~±800kV交直流输变电工程 设计费标准 根据国家发展改革委《关于进一步放开建设项目专业服务价格的通知》(发改价格[2015]299号)要求,为了合理确定工程设计费,有效控制工程总体投资,实施设计费与工程投资脱钩,南方电网公司于2016年1月发布了《35kV~±800kV交直流输变电工程设计招标限价标准(试行)》(南方电网基建[2016]5号)。结合试用情况,南方电网公司组织了标准的修编,形成《35kV~±800kV交直流输变电工程设计费标准》。 一、使用说明 1.标准以中国电力企业联合会《关于落实<国家发展改革委关于进一步放开建设项目专业服务价格的通知>的指导意见》(中电联定额[2015]162号)为指导,适用于南方电网公司投资的35kV~±800kV 交直流输变电基建工程可研估算、初步设计概算、施工图预算中设计费的计算。 2.与标准对应的设计工作范围及深度按南方电网公司设计管理的相关规定和要求执行。 3.输变电工程设计费由基本设计费和其它设计费组成,按下式计算:工程设计费=基本设计费+其他设计费。 基本设计费是指在工程设计中提供初步设计文件、施工图设计文件,并相应提供技术规范书、设计技术交底、工代服务、参加试运和

竣工验收和工程总结等服务的费用。 其他设计费是指根据工程设计实际需要或者发包人要求提供相关服务的费用,包括总体设计费、施工图预算编制费、竣工图编制费等。 4.对于特别复杂引起设计工作量大幅增加的工程,如临近市区路径特别复杂的线路工程等,可根据实际情况在本标准基础上调增0~15%。 二、基本设计费 (一)交直流变电工程 交直流变电工程基本设计费由基本规模设计费、电气规模调整、建筑调整三个部分组成。 变电工程基本设计费=基本规模设计费±电气规模调整+建筑调整。具体使用说明如下: 1.基本规模设计费根据变电站的主变台数、各电压侧出线回路数设置基价,不同配电装置形式(如AIS设备、罐式断路器、HGIS设备、GIS设备等)均不作调整。当工程电气规模不同时,按电气规模增减说明进行调整。 2.随同变电站同期建设的本站配套通信设备工程设计费已包含在该站的基本规模设计费中,不再另行计算。 3.建筑调整是指超出基本规模部分,需增加费用的内容,包括主要建筑物、特殊构筑物及地基处理,超出部分按给定标准进行调整,

南方电网综合能源有限公司节能照明

南方电网综合能源有限公司节能照明供应商管理供应商须知

南方电网综合能源有限公司节能照明供应商管理 供应商须知 一、供应商管理 公司对供应商实行“潜在供应商、登记供应商、候选供应商、合格供应商、供货供应商”五级管理,以下是五级供应商的定义。 (1)潜在供应商是指:面向全社会的,具有公司所需某种物资供应能力的供应商。 (2)登记供应商是指:经过面向全社会的公开征集,愿意向公司供货的潜在供应商,按公司要求进行注册登记,通过登记审核后,潜在供应商成为登记供应商。(3)候选供应商是指:公司组织或委托独立第三方对登记供应商进行工厂审查、产品检测等考核,考核合格后的登记供应商成为候选供应商。 (4)合格供应商是指:通过资格预审的候选供应商或采用资格后审方式的候选供应商。 (5)供货供应商是指:通过招标或非招标的竞争方式,由评标委员会或谈判工作组推荐并经各级招标领导小组审批,获得中标(物资供应)资格后,合格供应商成为供货供应商。 各级供应商管理规则如下: 1、登记供应商管理 1.1公司通过相应商务平台向全社会所有的潜在供应商公开发布节能照明供应商管理相关文件。公司设置指定工作窗口,长期接受潜在供应商业务咨询和报名登记。 1.2报名登记的潜在供应商必须提交《供应商信息登记表》(见附录A)以及其他相关资料,公司审核通过后,授予其登记供应商资格。

1.3公司在公开媒体发布受理登记情况、审核结果,并接受社会监督。 1.4潜在供应商提供虚假材料、隐瞒歪曲事实的,将被拒绝登记。登记审核未通过的潜在供应商可提出复核申请。复核未通过或没有提出复核申请的,供应商进行为期一年的整改,整改期内不再受理该供应商的登记申请。整改后供应商可申请重新登记,登记复审工作纳入下一批次审核工作同期进行。 2、候选供应商管理 2.1工厂审查 公司组织人员或第三方机构对登记供应商进行工厂审查。工厂审查的主要内容包括:企业基本情况、企业技术能力指标、企业生产能力指标、企业管理能力指标等。 2.2产品检测 参与投标的产品必须经过公司组织的产品检测或公司认可的有资质的第三 方检测机构的检测。产品检测指标见附录B。 2.3对通过工厂审查和产品检测的,授予其候选供应商资格。 2.4工厂审查或产品检测不合格的供应商可向公司提出复核申请,复核未通过或没有提出复核申请的,供应商进行不少于半年的自行整改,整改期内不再安排同类产品考察和检验。整改后可申请复审,复审工作纳入下一批次审核工作同期进行。 3、合格供应商管理 合格供应商通过三种方式产生: 3.1公司定期在相关网站发布资格审查公告,公开接受候选供应商报名。 公司组织有关专家和业务部门共同组成资格评审委员会对已经报名的候选 供应商进行资格审查。资格审查的主要内容包括:供应商的整体实力、业绩情况、产品质量情况、既往合同履约情况、其他资质情况等。 资格审查应形成资格审查报告,由全体审查人员签字后报公司招标领导小组审批。资格审查合格并通过审批的候选供应商授予合格供应商资格。

柔性直流输电系统换流器技术规范()

ICS 中国南方电网有限责任公司企业标准 Q/CSG XXXXX—2015 柔性直流输电换流器技术规范 Technical specification of converters for high-voltage direct current (HVDC) transmission using voltage sourced converters (VSC) (征求意见稿) XXXX-XX-XX发布XXXX-XX-XX实施 中国南方电网有限责任公司发布

目次 前言............................................................................... III 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 3.1 额定直流电流 rated direct current (1) 3.2最大直流电流maximum direct current (2) 3.3 短时过载(过负荷)直流电流short time overload direct current (2) 3.4 额定直流电压rated direct voltage (2) 3.5 额定直流功率rated direct power (2) 4 文字符号和缩略语 (2) 4.1 文字符号 (2) 4.2 缩略语 (2) 5 使用条件 (2) 5.1 一般使用条件的规定 (3) 5.2 特殊使用条件的规定 (3) 6 技术参数和性能要求 (3) 6.1 总则 (3) 6.2 换流器电气结构 (4) 6.3 阀设计 (5) 6.4 机械性能 (6) 6.5 电气性能 (7) 6.6 冗余度 (7) 6.7 阀损耗的确定 (8) 6.8 阀冷却系统 (8) 6.9 防火防爆设计 (8) 6.10 阀控制保护设计 (8) 7 试验 (9) 7.1 试验总则 (9) 7.2 型式试验 (9) 7.3 例行试验 (11) 7.4 长期老化试验 (11) 7.5 现场试验 (12) 8 其它要求 (12) 8.1 质量及使用寿命 (12) 8.2 尺寸和重量 (12) 8.3 铭牌 (12) 8.4 包装和运输 (12)

柔性直流输电

一、概述 (一)柔性直流输电的定义 高压直流(HVDC)输电技术始于1920年代,到目前为止,经历了3次技术上的革新,其主要推动力是组成换流器的基本元件发生了革命性的重大突破。 第一代直流输电技术采用的换流元件是汞弧阀,所用的换流器拓扑是6脉动Graetz桥,其主要应用年代是1970年代以前。 器拓扑仍然是6脉动Graetz桥,因而其换流理论与第一代直流输电技术相同,其应用年代是1970年代初直到今后一段时间。

输电技术称为传统直流输电技术,其运行原理是电网换相换流理论。因此我们也将传统直流输电所采用的Graetz桥式换流器称为“电网换相换流器”,英文是“Line Commutated Converter”,缩写是“LCC”。这里必须明确一个概念,有人将电流源换流器(CSC)与电网换相换流器(LCC)混淆起来,这是不对的。LCC属于CSC,但CSC的范围要比LCC宽广得多,基于IGBT构成的CSC目前也是业界研究的一个热点。 1990年,基于电压源换流器的直流输电概念首先由加拿大McGill大学的Boon-Teck Ooi等提出。在此基础上,ABB公司于1997年3月在瑞典中部的Hellsjon和Grangesberg之间进行了首次工业性试验(3 MW,±10kV),标志着第三代直流输电技术的诞生。这种以可关断器件和脉冲宽度调制(PWM)技术为基础的第三代直流输电技术,国际权威学术组织国际大电网会议(CIGRE)和美国电气和电子工程师协会(IEEE),将其正式命名为“VSC-HVDC”,即“电压源换流器型直流输电”。2006年5月,由中国电力科学研究院组织国内权威专家在北京召开“轻型直流输电系统关键技术研究框架研讨会”,会上,与会专家一致建议国内将基于电压源换流器技术的直流输电(第三代直流输电技术)统一命名为“柔性直流输电”。 (二)柔性直流与传统直流的优缺点对比 不管是两电平、三电平或MMC换流器,由于都属于电压源换流器,其基波频率下的外特性是完全一致的。

9.2 ±800kV南网直流输电工程对供电电网安全性的影响探析

±800kV南网直流输电工程对供电电网安全性的影响探析 摘要:随着我国科学技术的发展,综合国力的不断加强,进而落实了一大批基础工程,±800kV云南到广东直流输电工程就是其中的一项,其可以有力解决中国东南部电力不足的问题,但在运行过程中,开机方式,电源接入方案,负荷水平,静止无功补偿器等都会对供电电网的安全性产生影响,为了确保西电东输的有效性,必须解决好以上问题。 关键词:±800kV;南网直流输电工程;供电电网安全性 国家为了实现西电东送战略构想,进而满足云南小湾,金安桥大中型水电站送出需要,落实了±800 kV云南到广东直流输电工程,该工程的成功运行,不仅解决了地区用电问题,同时提高了我国在这方面的用电水平,为以后的国家基础电网建设提供了有价值的产考资料,下面就一同对其内容进行详尽的分析。 一、±800kV南网直流输电工程概况 业内人士都情况,在南方建立了云南到广东的直流输电工程,下面就对这一工程进行分析,从中了解其对供电电网安全方面的影响情况。该工程额定的直流电压为±800kV,使用双12脉动阀组进行串联,额定输电容量为5GW,在输送端有楚雄变电站,处于云南的丰县,其受端是穗东换流站,位置在广州增城的东部地区,线路全长1438千米,导线的截面在6.630平方毫米。该变电站要和和平变电站连接,这条云广直流输电工程是世界上迄今为止第一条±800kV输电工程,其占到西电东送总规模的四分之一,其可以承担云南电网约三分之一的用电负荷,在该地区向外输送电力,这条电网占到了越三分之二。通过潮流稳定计算的结果说明,该线路的正式使用,可以满足贵州输送广东8GW,云南输送广东7.8GW的要求,同时还能产生10%的送电裕度。但在投产后,对南方电网有很大的安全影响,下面就对其的影响情况进行分析。 二、±800kV南网直流输电工程安全稳定计算分析 2.12011和2012年南方电网情况 在2011年云南小湾,以及金安桥、贵州构皮滩水电站已经正式投产。云南需要向广东保持送电7.8 GW,规划每年贵州增加1.5 GW对广州的输送量。而在黎平经过桂林,到贤令山的线路上,安装了50%的串联补偿。 2.2潮流计算结果和分析

综合能源服务规划项目方案计划可行性申报材料

综合能源服务项目可行性研究报告 ***设计院 一、概念: 按照专业关联的紧密程度和业务发展模式的相似程度,将能源服务归纳为三类。第一类是能源销售服务,包括售电、售气、售热冷、售油等基础服务,以及用户侧管网运维、绿色能源采购、利用低谷能源价格的智慧用能管理(例如在低谷时段蓄热、给电动汽车充电)、信贷金融服务等深度服务。第二类是分布式能源服务,包括设计和建设运行分布式光伏、天然气三联供、生物质锅炉、储能、热泵等基础服务,以及运维、运营多能互补区域热站、融资租赁、资产证券化等深度服务。第三类是节能减排服务及需求响应服务,包括改造用能设备、建设余热回收、建设监控平台、代理签订需求响应协议等基础服务,和运维、设备租赁、调控空调、电动汽车、蓄热电锅炉等柔性负荷参与容量市场、辅助服务市场、可中断负荷项目等深度服务。 综合能源服务是指将不同种类的能源服务组合在一起,即将能源销售服务、分布式能源服务、节能减排及需求响应服务等三大类组合在一起的能源服务模式。综合能源服务是在国内刚开始发展、有广阔前景的新业态,它意味着能源行业从产业链纵向延伸走向横向互联,从以产品为中心的服务模式转向以客户为中心的服务模式,成为实现国家能源革命的新兴市场力量。 二、相关名词: 1.分布式能源:国际分布式能源联盟WADE对分布式能源定义为:安装在用户端的高效冷/热电联供系统,系统能够在消费地点(或附近)发电,高效利用发电产生的废能--生产热和电;现场端可再生能源系统包括利用现场废气、废热以及多余压差来发电的能源循环利用系统。国内由于分布式能源正处于发展过程,对分布式能源认识存在不同的表述。分布式能源是一种建在用户端的能源供应方式,可独立运行,也可并网运行,是以资源、环境效益最大化确定方式和容量的系统,将用户多种能源需求,以及资源配置状况进行系统整合优化,采用需求应

柔性直流输电

南京工程学院 远距离输电技术概论 班级:输电112 学号: 206110618 姓名:钱中华 2014年12月10日

目录 0.引言 (3) 1.研究与应用现状 (3) 2.原理 (4) 3.特点 (5) 4.关键技术 (6) 5.发展趋势 (7) 6.小结 (9)

柔性直流输电技术 0.引言 随着能源紧缺和环境污染等问题的日益严峻,国家将大力开发和利用可再生清洁能源,优化能源结构。然而,随着风能、太阳能等可再生能源利用规模的不断扩大,其固有的分散性、小型性、远离负荷中心等特点,使得采用交流输电技术或传统的直流输电技术联网显得很不经济。同时海上钻探平台、孤立小岛等无源负荷,目前采用昂贵的本地发电装置,既不经济,又污染环境。另外,城市用电负荷的快速增加,需要不断扩充电网的容量,但鉴于城市人口膨胀和城区合理规划,一方面要求利用有限的线路走廊输送更多的电能,另一方面要求大量的配电网转入地下。因此,迫切需要采用更加灵活、经济、环保的输电方式解决以上问题。 柔性直流输电技术即电压源换流器输电技术(VSC HVDC)采用可关断电力电子器件和PWM 技术,是一种新型直流输电技术,它能弥补传统直流输电的部分缺陷,其发展十分迅速。为了进一步推动柔性直流输电技术在我国的研究和应用,本文结合ABB 公司几个典型应用工程, 详细介绍了柔性直流输电的系统结构、基本工作原理和与传统直流输电相比的技术优势,并就我国的实际情况讨论了柔性直流输电在我国多个领域,尤其是风电场的应用前景。 1.研究与应用现状 自1954 年世界上第一个直流输电工程(瑞典本土至GotIand 岛的20MW、100kV 海底直流电缆输电)投入商业化运行至今,直流输电系统的换流元件经历了从汞弧阀到晶闸管阀的变革。然而由于晶闸管阀关断不可控,目前广泛应用的基于PCC的传统直流输电技术有以下固有缺陷:1只能工作在有源逆变状态,且受端系统必须有足够大的短路容量,否则容易发生换相失败;2换流器产生的谐波次数低、谐波干扰大;3换流器需吸收大量的无功功率,需要大量的滤波和无功补偿装置;4换流站占地面积大、投资大。因此,基于PCC的常规直流输电技术主要用于远距离大容量输电、海底电缆输电和交流电网的互联等领域。 其先研究主要发展有一下几项基本技术: 1.高压大容量电压源变流器技术 模块化多电平变流器可以有效降低交流电压变化率,其拓扑结构如图 1 所示。桥臂中的每个子模块可以独立控制,每相上、下两个桥臂的电压和等于直流母线电压。交流电压通过控制每相中两个桥臂的子模块旁路比例来叠加实现,桥臂中的子模块越多,交流电压的谐波越小。与两电平变流器相比,由于不需要每一相上的所有器件在较高频率下同时动作,模块化多电平大大降低了器件的开关损耗。

多端柔性直流输电(VSC—HVD)系统直流电压下垂控制

多端柔性直流输电(VSC—HVD)系统直流 电压下垂控制 学院: 姓名: 学号: 组员: 指导老师: 日期:

摘要: 多端柔性直流输电系统(voltage sourcedconverter based multi-terminal high voltage direct current transmission,VSC-MTDC)与传统的电网换相换流器构成的多端直流输电系统相比,具有控制灵活、能够与短路容量较小的弱交流系统甚至无源交流系统相连、扩建容易等诸多优点直流电压的稳定直接影响到直流潮流的稳定,因此直流电压控制是多端柔性直流输电系统稳定运行的重要因素之一。下垂控制策略具有无需通讯、可靠性较高等优点,但存在直流电压质量较差、功率分配不独立、参数设计困难等问题。本文首先介绍了多端柔性直流输电系统控制方法的分类比较,然后重点介绍了下垂控制数学模型,分析MTDC 系统中下垂控制参数对直流电压与电流(功率)的影响机理,研究满足MTDC 系统功率平衡和直流电压稳定的V-I(V-P)下垂特性曲线。 关键词:VSC-MTDC 下垂控制模块化多电平换流器

一、引言 基于电压源换流器(Voltage Source Converter,VSC)的高压直流输电(High Voltage Direct Current,HVDC)技术(HVDC based on VSC,VSC-HVDC,也称柔性直流输电技术)系统以其灵活性、经济性和可靠性,在新能源并网、城市直流配电网、孤岛供电等领域有着广泛的应用前景。MTDC 系统接线方式分为串联、并联和混联等,目前主要采用并联式[1]。并联接线的MTDC 系统中所有VSC 工作于相同直流母线电压下,因此直流电压控制是系统稳定运行的关键,类似于交流系统中的频率控制。 多端柔性直流输电系统级直流电压控制策略可以分为三大类,分别是单点直流电压控制策略、多点直流电压控制策略以及直流电压斜率控制策略。单点直流电压控制策略将一个换流站作为直流电压控制站,其余换流站负责控制其他的变量,例如交流功率、交流频率、交流电压等,系统中仅有一个换流站对直流电压进行控制,如果这个换流站失去了直流电压的控制能力,整个柔性直流输电系统的潮流将失稳,因此单点直流电压控制策略的适用性较差。多点直流电压控制策略是使直流输电系统中的多个换流站具备直流电压控制能力。按照是否需要换流站间通信设备进行分类,多点直流电压控制策略又可分为主从控制策略和直流电压偏差控制策略。主从控制策略是一种需要换流站间通信的控制策略,这种控制方式利用换流站间的通信系统实现了直流电压的稳定,具有控制特性好、直流电压质量高等优点,但系统可靠性依赖于换流器控制器与系统控制器之间的高速通讯,这严重制约了多端直流输电尤其是长距离输电系统可靠性的提高。直流电压偏差控制策略是一种无需站问通信的控制策略,这种控制策略的实质是在定直流电压站故障退出运行后,后备定直流电压站能够检测到直流电压的较大偏移并转入定直流电压运行模式,保证了直流电压的稳定性;同时其设计简单、可靠性强。 下垂控制策略为多点控制,控制器通过测量本地直流母线电压对功率分配进行调节,因而不依赖于换流站间的高速通讯,系统可靠性较高。 二、多端柔性直流输电系统的直流电压控制策略 2.1柔性直流输电系统概述 总体上来看,目前的多端直流输电系统接线方式主要有串联型、并联型和混联型 3 种类型。由于并联型多端系统具有调节范围宽、扩建灵活、易于控制和可靠性高等突出优点,成为研究的热点和应用的重点。本文设计的直流电压混合控制策略主要是针对并联型多端系统。多端柔性直流输电系统控制是一个庞大复杂且相互耦合的多输入、多输出系统,为满足系统控制的快速性和高可靠性,一

柔性直流输电与高压直流输电的优缺点

柔性直流输电 一、常规直流输电技术 1. 常规直流输电系统换流站的主要设备。常规直流输电系统换流站的主要设备一般包括:三相桥式电路、整流变压器、交流滤波器、直流平波电抗器和控制保护以及辅助系统(水冷系统、站用电系统)等。 2. 常规直流输电技术的优点。 1)直流输送容量大,输送的电压高,最高已达到800kV,输送的电流大,最大电流已达到4 500A;所用单个晶闸管的耐受电压高,电流大。 2)光触发晶闸管直流输电,抗干扰性好。大电网之间通过直流输电互联(背靠背方式),换流阀损耗较小,输电运行的稳定性和可靠性高。 3)常规直流输电技术可将环流器进行闭锁,以消除直流侧电流故障。 3. 常规直流电路技术的缺点。常规直流输电由于采用大功率晶闸管,主要有如下缺点。 1)只能工作在有源逆变状态,不能接入无源系统。 2)对交流系统的强度较为敏感,一旦交流系统发生干扰,容易换相失败。 3)无功消耗大。输出电压、输出电流谐波含量高,需要安装滤波装置来消除谐波。 二、柔性直流输电技术

1. 柔性直流输电系统换流站的主要设备。柔性直流输电系统换流站的主要设备一般包括:电压源换流器、相电抗器、联结变压器、交流滤波器和控制保护以及辅助系统(水冷系统、站用系统)等。 2. 柔性直流输电技术的优点。柔性直流输电是在常规直流输电的基础上发展起来的,因此传统的直流输电技术具有的优点,柔性输电大都具有。此外,柔性输电还具有一些自身的优点。 1)潮流反转方便快捷,现有交流系统的输电能力强,交流电网的功角稳定性高。保持电压恒定,可调节有功潮流;保持有功不变,可调节无功功率。 2)事故后可快速恢复供电和黑启动,可以向无源电网供电,受端系统可以是无源网络,不需要滤波器开关。功率变化时,滤波器不需要提供无功功率。 3)设计具有紧凑化、模块化的特点,易于移动、安装、调试和维护,易于扩展和实现多端直流输电等优点。 4)采用双极运行,不需要接地极,没有注入地下的电流。 3. 柔性直流输电技术的缺点。系统损耗大(开关损耗较大),不能控制直流侧故障时的故障电流。在直流侧发生故障的情况下,由于柔性直流输电系统中的换流器中存在不可控的二极管通路,因此柔性直流输电系统不能闭锁直流侧短路故障时的故障电流,在故障发生后只能通过断开交流侧断路器来切除故障。可以使用的最佳解决方式是通过使用直流电缆来提高系统的可靠性和可用率。 三、常规直流输电技术和柔性直流输电技术的对比

柔性直流输电对比

1. 柔性直流输电系统换流站的主要设备。柔性直流输电系统换流站的主要设备一般包括:电压源换流器、相电抗器、联结变压器、交流滤波器和控制保护以及辅助系统(水冷系统、站用系统)等。 2. 柔性直流输电技术的优点。柔性直流输电是在常规直流输电的基础上发展起来的,因此传统的直流输电技术具有的优点,柔性输电大都具有。此外,柔性输电还具有一些自身的优点。 (1)潮流反转方便快捷,现有交流系统的输电能力强,交流电网的功角稳定性高。保持电压恒定,可调节有功潮流;保持有功不变,可调节无功功率。 (2)事故后可快速恢复供电和黑启动,可以向无源电网供电,受端系统可以是无源网络,不需要滤波器开关。功率变化时,滤波器不需要提供无功功率。 (3)设计具有紧凑化、模块化的特点,易于移动、安装、调试和维护,易于扩展和实现多端直流输电等优点。 (4)采用双极运行,不需要接地极,没有注入地下的电流。 3. 柔性直流输电技术的缺点。系统损耗大(开关损耗较大), 不能控制直流侧故障时的故障电流。在直流侧发生故障的情况下,由于柔性直流输电系统中的换流器中存在不可控的二极管通路,因此柔性直流输电系统不能闭锁直流侧短路故障时的故障电流,在故障发生后只能通过断开交流侧断路器来切除故障。可以使用的最佳解决方式是通过使用直流电缆来提高系统的可靠性和可用率。 三、常规直流输电技术和柔性直流输电技术的对比

1. 换流器阀所用器件的对比。 (1)常规直流输电采用大功率晶闸管,由于晶闸管是非可控关断器件,这使得在常规直流输电系统中只能控制晶闸管换流阀的开通而不能控制其关断,其关断必须借助于交流母线电压的过零,使阀电流减小至阀的维持电流以下才行。 (2)柔性直流输电一般采用IGBT阀,由于IGBT是一种可自关断的全控器件,即可以根据门极的控制脉冲将器件开通或关断,不需要换相电流的参与。 2. 换流阀的对比。 (1)常规直流输电系统中换流阀所用的器件是大功率晶闸管和饱和电抗器,可以输送大功率。 (2)柔性直流输电系统中的换流阀采用了IGBT器件,可实现很高的开关速度,在触发控制上采用PWM技术,开关频率相对较高,换流站的输出电压谐波量较小,主要包含高次谐波。故相对于常规直流输电,柔性直流输电换流站安装的滤波装置的容量大大减小。(3)常规直流输电通过换流变压器连接交流电网,而柔性直流输电是串联电抗器加变压器,常规直流输电以平波电抗器和直流滤波器来平稳电流,而柔性直流输电则采用直流电容器。 3. 换流站控制方式的对比。 (1)常规直流输电系统的换流站之间必须进行通信,以传递系统参数并进行适当的控制,而柔性直流输电系统中各换流站之间的通信不是必需的。

南方电网3C绿色电网输变电示范工程建设指导意见(试行版)

南方电网3C绿色电网输变电示范工程建设指导意见(试行) (送审稿) 中国南方电网有限责任公司基建部 2011年5月

目次 前言..................................................................................................................................................... I I 1 范围 (1) 2 规范性引用文件 (1) 3 总则 (2) 4 变电站设计 (3) 4.1 站址选择 (3) 4.2 电气一次部分 (4) 4.3 电气二次部分 (6) 4.4 土建部分 (10) 5 输电线路设计 (14) 5.1 电气部分 (14) 5.2 结构部分 (21) 6 施工要求 (22) 6.1 一般要求 (22) 6.2 场地环境保护 (22) 6.3 大气环境保护 (23) 6.4 噪声影响控制 (24) 6.5 水污染控制 (24) 6.6 节地、节能、节水、节材措施 (24) 附录本指导意见用词说明 (26)

前言 南方电网公司建设智能、绿色电网的任务是:运用先进的计算机技术、通信技术、控制技术,建设一个覆盖城乡的智能、高效、可靠的绿色电网(简称cccgp,即3C绿色电网,下同)。根据《南方电网公司基建一体化管理推进工作方案》的相关要求,南方电网公司基建部制定了《南方电网公司“3C绿色电网”示范工程建设工作方案》,要求通过技术标准的建立和示范工程的建设,将智能、绿色、节能等理念逐步融入到电网工程建设中,不断提高公司基建工程的建设管理水平。 为规范开展3C绿色电网输变电示范工程的建设,统一建设原则,特制定本指导意见。 本指导意见由中国南方电网有限责任公司基建部提出、归口、组织编写并解释。 本指导意见起草单位:中国南方电网有限责任公司基建部、广东省电力设计研究院。 本指导意见主要起草人:徐达明、李品清、邓恩宏、陈兵、周健、廖毅、游复生、侯婷、刘宝英、简翔浩、蔡田田、施世鸿、李涛、谭可立、吴琛、徐中亚、王咏莉、池代波、汪晶毅、龚有军、林方新、刘万群、张帆。

柔性直流输电技术

柔性直流输电 一、柔性直流输电技术 1. 柔性直流输电系统换流站的主要设备。柔性直流输电系统换流站的主要设备一般包括:电压源换流器、相电抗器、联结变压器、交流滤波器和控制保护以及辅助系统(水冷系统、站用系统)等。 2. 柔性直流输电技术的优点。柔性直流输电是在常规直流输电的基础上发展起来的,因此传统的直流输电技术具有的优点,柔性输电大都具有。此外,柔性输电还具有一些自身的优点。 1)潮流反转方便快捷,现有交流系统的输电能力强,交流电网的功角稳定性高。保持电压恒定,可调节有功潮流;保持有功不变,可调节无功功率。 2)事故后可快速恢复供电和黑启动,可以向无源电网供电,受端系统可以是无源网络,不需要滤波器开关。功率变化时,滤波器不需要提供无功功率。 3)设计具有紧凑化、模块化的特点,易于移动、安装、调试和维护,易于扩展和实现多端直流输电等优点。 4)采用双极运行,不需要接地极,没有注入地下的电流。 3. 柔性直流输电技术的缺点。系统损耗大(开关损耗较大),不能控制直流侧故障时的故障电流。在直流侧发生故障的情况下,由于柔性直流输电系统中的换流器中存在不可控的二极管通路,因此柔性直流输电系统不能闭锁直流侧短路故障时的故障电流,在故障发生后只能通过断开交流侧断路器来切除故障。可以使用的最佳解决方式是通过使用直流电缆来提高系统的可靠性和可用率。 二、常规直流输电技术和柔性直流输电技术的对比 1. 换流器阀所用器件的对比。 1)常规直流输电采用大功率晶闸管,由于晶闸管是非可控关断器件,这使得在常规直流输电系统中只能控制晶闸管换流阀的开通而不能控制其关断,其关断必须借助于交流母线电压的过零,使阀电流减小至阀的维持电流以下才行。 2)柔性直流输电一般采用IGBT阀,由于IGBT是一种可自关断的全控器件,即可以根据门极的控制脉冲将器件开通或关断,不需要换相电流的参与。 2. 换流阀的对比。 1)常规直流输电系统中换流阀所用的器件是大功率晶闸管和饱和电抗器,

柔性输电技术

柔性输电之直流输电 内容简介 轻型直流输电技术是20世纪90年代开始发展的一种新型直流输电技术,核心是采用以全控型器件(如GTO和IGBT等)组成的电压源换流器(VSC)进行换流。这种换流器功能强、体积小,可减少换流站的设备、简化换流站的结构,故称之为轻型直流输电,其系统原理如图2-1所示。 图2.1 柔性直流输电系统原理示意图其中两个电压源换流器VSC1和VSC2分别用作整流器和逆变器,主要部件包括全控换流桥、直流侧电容器;全控换流桥的每个桥臂均由多个绝缘栅双极晶体管IGBT或门极可关断晶体管GTO等可关断器件组成,可以满足一定技术条件下的容量需求;直流侧电容为换流器提供电压支撑,直流电压的稳定是整个换

流器可靠工作的保证;交流侧换流变压器和换流电抗器起到VSC与交流系统间能量交换纽带和滤波作用;交流侧滤波器的作用是滤除交流侧谐波。由于柔性直流输电一般采用地下或海底电缆,对周围环境产生的影响很小。 1引言 随着科学技术的发展,到目前为止,电力传输经历了直流、交流和交直流混合输电三个阶段。早期的输电工程是从直流输电系统开始的,但是由于不能直接给直流电升压,使得输电距离受到较大的限制,不能满足输送容量增长和输电距离增加的要求。 19世纪80年代末发明了三相交流发电机和变压器,交流输电就普遍地代替了直流输电,并得到迅速发展,逐渐形成现代交流电网的雏形。大功率换流器的研究成功,为高压直流输电突破了技术上的障碍,因此直流输电重新受到人们的重视。直流输电相比交流输电在某些方面具有一定优势,自从20世纪50年代联接哥特兰岛与瑞典大陆之间的世界第一条高压直流输电(HVDC)线路建成以来,HVDC在很多工程实践中得到了广泛的应用,如远距离大功率输电、海底电缆输电、两个交流系统之间的非同步联络等等。目前,国内已有多个大区之间通过直流输电系统实现非同步联网:未来几年,南方电网将建成世界上最大的多馈入直流系统;东北电网也有多条直流输电线路正在建设或纳入规划。交直流混合输电是现代电网的主要发展趋势。 经过多年来的研究和工程实践工作,HVDC技术有了较大的提高,在降低损耗、控制和保护技术等方面取得了长足的进步。但是HVDC在应用中,仍然存在着一些固有的缺陷:受端网络必须是一个有源系统,不能向无源系统供电;在向短路容量不足的系统供电时易发生换相失败;换流器本身为一谐波源,需要配置专门的滤波装置,增加了设备投资和占地而使费用相对较高;同时,运行过程中吸收较多的无功功率等。尽管人们对传统HVDC输电技术进行了不断的改进,但

中国南方电网超高压输电公司第二届高压直流输电技术技能竞赛试题(含答案)

中国南方电网超高压输电公司 第二届高压直流输电技术技能竞赛试题 一、填空题(20题,每空1分,共20分,将答案编号填写在题后的括号中) 1.(果特兰岛)直流输电工程的成功商业应用标志着直流输电的崛起。 2. 通常直流输电系统由(送端交流系统)、(整流站)、(逆变站)、(直流输电线路)、(受端交流系统)五部分构成。 3. 换流变压器的主要作用是(改变电压)、(提供30度的换相角)、(实现交直流电气隔离)、(提高换相阻抗(漏抗))。 4. 整流站的基本控制功能包括(最小触发角控制)、(定直流电流控制)、(定直流电压控制)、(低电压限流控制)、(直流功率控制)等。 5. 直流输电控制系统一般分为(系统控制级)、(双极控制级)、(极控制级)、(换流器控制级)、(单独控制级)和换流阀控制级等。 二、简答题(每题4分,共48分) 1. 金属回线转换开关MRTB 、金属回线开关MRS 和高速接地开关HSGS 各有什么作 用? 答:见《高压直流输电现场实用技术问答》第40页 2. 直流滤波器高压电容器发生接地故障,有哪些保护可以动作? 答:电容器不平衡保护。 3. 简述高压直流分流器(光TA )的工作原理。 答:直流分流器的工作原理如下: (1) 信号采集单元。采样直流回路中的电流值,该部分为于装置的高压部分。 (2) 光电转换模块。实现被测信号的模数转换以及数据的发送。光电转换模块内的电 子元件是通过光纤由位于控制保护屏柜内的光电源进行单独供电的。这部分也为于装置的高压部分。 ( 3) 光纤回路。信号的传输光纤,两根分别传输数据和能量。 (4) 光接收模块。该部分位于控制保护屏柜内,用于接收光纤传输的数字信号,并通 过模块中处理器芯片的检验控制送到相应的控制保护装置。 4. 直流线路故障再启动功能的作用是什么? 答:见《高压直流输电现场实用技术问答》第19页 5. 直流保护测量通道异常时对直流保护有何影响? 答:该套保护系统自动退出。 6. 下图中位置8发生短路故障,哪些保护(含主保护及后备保护)可能动作?并简述 其动作判据和出口方式。 答:角侧短路保护,动作判据:IAC ?-Min (IdH;IdN)>?,出口方式:ESOF, 跳交流侧开关和HSNBS 开关 星侧桥差保护,动作判据:Max(IACY;IAC ?)- IACY >?,出口方式:降电流或ESOF, 跳

厦门双极柔性直流输电工程系统设计

研究背景 基于模块化多电平换流器(Modular Multilevel Converter,MMC)的柔性直流系统由于谐波畸变小且开关损耗低,是高电压大容量直流输电的重要发展方向。目前,世界X围内基于MMC的柔性直流工程发展迅猛;国内已有5项MMC工程投运,同时还有多项高压乃至特高压MMC工程处于规划之中,并可能成为我国未来大区域电网互联的重要手段。与交流输变电工程不同,柔性直流工程需要根据送受端交流系统条件、输电距离、投资和占地等条件开展定制化的系统设计。 (来源:电力系统自动化ID:AEPS-1977) ±320kV/1000MWXX柔性直流输电工程(以下简称XX工程)是世界X围内第一个采用双极接线的柔性直流工程,也是额定直流电压和输送容量均达到世界之最的柔性直流工程,两端换流站鸟瞰示意图如图1所示。与以往对称单极柔性直流工程相比,首次采用的双极接线和大传输容量对工程的系统设计提出了新的要求。本文对双极高压大容量柔性直流工程的系统设计展开研究,研究结论在XX工程得到成功应用,验证了设计方案和技术参数的正确性。 (a) 彭厝换流站 (b) 湖边换流站 图1 XX工程换流站鸟瞰示意图 1 主接线及运行方式 当高压大容量柔性直流工程采用对称单极接线,存在如下问题: 1)与同容量双极柔性系统相比,可靠性较低。 2)换流单元采用三台单相双绕组变压器,导致变压器容量大,运输困难。 3)换流站设备的绝缘水平要求较高。考虑到上述因素,XX工程采用双极带金属回线的主接线,主接线设计如图2所示。

图2 双极柔性直流换流站接线示意图 根据主接线设计特点和转换开关配置方案,XX工程存在以下3种运行方式: 方式1:双极带金属回线单端接地运行(见图3(a))。其中,接地点仅起钳制电位的作用,不提供直流电流通路。双极不平衡电流通过金属回线返回。 方式2:单极带金属回线单端接地运行(见图3(b))。接地点的作用同方式1,且单极极线电流通过金属回线返回。 方式3:双极不带金属回线双端接地运行(见图3(c))。双极不平衡电流通过大地回路返回。该方式为运行方式转换过程中出现的临时方式,且必须保证直流系统处于双极对称状态。

相关文档
最新文档