外挑梁截面计算

外挑梁截面计算
外挑梁截面计算

梁(板)截面设计与验算(LJM-1)

项目名称构件编号日期

设计校对审核

执行规范:

《混凝土结构设计规范》(GB 50010-2010), 本文简称《混凝土规范》

《建筑抗震设计规范》(GB 50011-2010), 本文简称《抗震规范》

钢筋:d - HPB300; D - HRB335; E - HRB400; F - RRB400; G - HRB500; P - HRBF335; Q - HRBF400; R - HRBF500

-----------------------------------------------------------------------

梁截面设计:

1 已知条件及计算要求:

(1)已知条件:矩形梁 b=200mm,h=400mm。

砼 C30,fc=14.30N/mm2,ft=1.43N/mm2,纵筋 HRB400,fy=360N/mm2,fy'=360N/mm2,箍筋 HPB300,fy=270N/mm2。

弯矩设计值 M=31.75kN.m,剪力设计值 V=25.20kN,扭矩设计值 T=0.00kN.m。

(2)计算要求:

1.正截面受弯承载力计算

2.斜截面受剪承载力计算

3.裂缝宽度计算。

-----------------------------------------------------------

2 截面验算:

(1)截面验算:V=25.20kN < 0.250βc f c bh0=250.25kN 截面满足

截面配筋按纯剪计算。

-----------------------------------------------------------

3 正截面受弯承载力计算:

(1)按双筋计算:as下=50mm,as上=50mm,相对受压区高度ξ=x/h0=0.042 < ξb=0.518

(2)上部纵筋:As1=160mm2ρ=0.20% < ρmin=0.20% 按构造配筋As1=160mm2

(3)下部纵筋:As=277mm2ρmin=0.20% < ρ=0.35% < ρmax=2.50%

-----------------------------------------------------------

4 斜截面受剪承载力计算:

(1)受剪箍筋计算:Asv/s=-474.81mm2/m ρsv=-0.24% < ρsvmin=0.13% 按构造配筋

Av/s=254mm2/m

-----------------------------------------------------------

5 配置钢筋:

(1)上部纵筋:计算As=160mm2,

实配2E20(628mm2ρ=0.79%),配筋满足

(2)下部纵筋:计算As=277mm2,

实配2E20(628mm2ρ=0.79%),配筋满足

(3)箍筋:计算Av/s=254mm2/m,

实配d10@200双肢(785mm2/m ρsv=0.39%),配筋满足

-----------------------------------------------------------

6 裂缝计算:

(1)计算参数:Mk=26.46kN.m,最大裂缝宽度限值0.200mm。

(2)受拉钢筋应力:σsk=Mk/(0.87h0As)=138.30N/mm2 < fyk=400N/mm2。

(3)裂缝宽度:W max=0.117mm < W lim=0.200mm, 满足。

-----------------------------------------------------------

-----------------------------------------------------------------------

【理正结构设计工具箱软件7.0】计算日期: 2015-07-28 10:51:25 -----------------------------------------------------------------------

工程力学第九章梁的应力及强度计算

课时授课计划 掌握弯曲应力基本概念; 掌握弯曲正应力及弯曲剪应力的计算;掌握弯曲正应力的强度计算; 掌握弯曲剪应力强度校核。

I D (d

根据[M],用平衡条件确定许用外载荷。 在进行上列各类计算时,为了保证既安全可靠又节约材料的原则,设计规范还规定梁内的最大正应力允许稍大于[σ],但以不超过[σ]的5%为限。即 3、进行强度计算时应遵循的步骤 (1)分析梁的受力,依据平衡条件确定约束力,分析梁的内力(画出弯矩图)。(2)依据弯矩图及截面沿梁轴线变化的情况,确定可能的危险截面:对等截面梁,弯矩最大截面即为危险截面。 (3)确定危险点 (4)依据强度条件,进行强度计算。 第三节梁的剪应力强度条件 一、概念 梁在横弯曲作用下,其横截面上不仅有正应力,还有剪应力。 对剪应力的分布作如下假设: (1)横截面上各点处剪应力均与剪力Q同向且平行; (2)横截面上距中性轴等距离各点处剪应力大小相。 根据以上假设,可推导出剪应力计算公式: 式中:τ—横截面上距中性轴z距离为y处各点的剪应力; Q—该截面上的剪力; b—需求剪应力作用点处的截面宽度; Iz—横截面对其中性轴的惯性矩; Sz*—所求剪应力作用点处的横线以下(或以上)的截面积A*对中性轴的面积矩。 剪应力的单位与正应力一样。剪应力的方向规定与剪力的符号规定一样。 二、矩形截面横梁截面上的剪应力 如图所示高度h大于宽度b的矩形截面梁。横截面上的剪力Q沿y轴方向作用。 将上式带入剪应力公式得: 上式表明矩形截面横梁截面上的剪应力,沿截面高度呈抛物线规律变化。 在截面上、下边缘处y=±h/2,则=0;在中性轴上,y=0,剪应力值最大,

MIDAS梁格法建模算例

北京迈达斯技术有限公司

目录 概要 (3) 设置操作环境........................................................................................................... 错误!未定义书签。定义材料和截面....................................................................................................... 错误!未定义书签。建立结构模型........................................................................................................... 错误!未定义书签。PSC截面钢筋输入 ................................................................................................... 错误!未定义书签。输入荷载 .................................................................................................................. 错误!未定义书签。定义施工阶段. (60) 输入移动荷载数据................................................................................................... 错误!未定义书签。输入支座沉降........................................................................................................... 错误!未定义书签。运行结构分析 .......................................................................................................... 错误!未定义书签。查看分析结果........................................................................................................... 错误!未定义书签。PSC设计................................................................................................................... 错误!未定义书签。

曲线桥梁计算

目前解决曲线桥梁计算方法有以下几种: 1、空间梁元模型法 2、空间薄壁箱梁元模型法 3、空间梁格模型法 4、实体、板壳元模型法 第一种方法,是不能考虑桥梁的横向效应的,使用时要求桥梁的宽跨比不易太大。第二种方法,是第一种方法的改进,主要区别是采用了不同的单元模型,考虑了横向作用如翘曲和畸变。 第四种方法,是解决问题最有效的方法,能够考虑各种结构受力问题。 第三种方法,是目前设计及科研中常采用的方法,其特点是容易掌握,且对设计能保证足够的精度,其中采用比较多的方法是剪力-柔性梁格法,能充分考虑弯桥横向的受力特性。 剪力-柔性梁格法的原理 是当梁格节点与结构重合的点承受相同挠度和转角时,由梁格产生的内力局部静力等效与结构的内力。其实质是将传统的一维杆单元计算模式推进到二维计算模型,用一个二维的空间网格来模拟结构的受力特性。 对于梁格法的讨论这里也有不少帖子进行了讨论,实际与梁格之间的等效关系,主要表现在梁格各个构件的刚度计算上,理论上,原型和等效梁格承受相等的外荷载时,必须具有恒等的挠曲和扭转,等效梁格中每一构件的内力也必须等于该构件所代表的原型截面的,事实上这种理想状况是达不到的,模拟也是近似的,但事实是按梁格计算能把握住结构的总体性能,对于设计来说应该是能满足精度的。梁格也是近似的模拟,只要计算者能够和好的模拟了横向纵向的特性,应该是可以作为设计依据的。你在这里说的横向的切分使得预应力产生的次内力问题我不太清楚你指的什么,但是只要横向的刚度业等效了原型,对于计算应该不会出现逆所说的结构内力失真,这条可以通过结果验证。 当然任何结构,只要不怕麻烦都可以用实体单元来分析,只要正确模拟,实体分析也是最精确的,但是对于这种模型要准确模拟可不是一件容易的事,并且预应力的损失计算,施加等等都非常麻烦,还有最后结果的查看也不方便,因此除了结构局部的分析,一般是没有拿实体来进行全桥的整体分析的,至于说单梁我也说了,有些时候精度是可以的,但是对于这种结构相对于梁格来说单梁的精度是不如梁格的。特别是在没有把握的前提下可以做一下梁格的分析,对结果进行对比,能放心一些,其实对于设计,能用单梁算的近量用单梁能用平面的尽量不用空间,这也应该是一个原则,前提是对简化做到心中有数。像这种结构来说如果开始计算就用梁格或者更麻烦的实体来配筋都不是一般的麻烦,配筋计算还是最好用简化的单梁,如果不放心然后用其他方式来验算,这样比较合适 在midas分析中应该注意的问题: 如果你要计算的是普通钢筋混凝土结构,主要看内力结果,可以在划分的时候简单一些,直接“一刀切”,也就是顶底板在同一位置切开,但是在计算其抗弯惯性矩的时候一定要注意纵向梁格的界面惯性矩是相对于整体截面的中性轴的,而不是划分以后的梁格截面本身的惯性矩,对于预应力混凝土的结构你就得注意梁格的划分了,在划分的时候尽量使得划分以后的各个梁格截面要跟原截面的中性轴一致,只有这样计算出来的应力结果才能比较准确,当然,如果是等截面的梁只要划分一个截面就可以了,算起来也不是很费时费力,但是如果是变截

浅谈对梁格的几点认识

浅谈对梁格的几点认识 上海浦东建筑设计研究院有限公司杭州分公司黄声涛 【摘要】: 梁格分析法是用计算机分析桥梁上部结构比较实用有效的空间分析方法,它具有基本概念清晰、易于理解和使用等特点,因此在桥梁结构分析中得到了广泛的采用。但是对于抗扭等需要做整体截面来考虑时,单梁模型则较真实得反应了结构整体受力性能。【关键词】梁格法箱梁截面特性空间单梁 一、梁格法基本原理 梁格法的基本思想是用等效梁格代替桥梁上部结构,将分散在板式或箱梁每一区段内的弯曲刚度和抗扭刚度集中于最邻近的等效梁格内,实际结构的纵向刚度集中于纵向梁格构件内,横向刚度集中于横向梁格构件内。理想的刚度等效原则应该满足:当原型实际结构和对应的等效梁格承受相同荷载时,两者的挠曲将是恒等的,并且每一梁格内的弯矩、剪力和扭矩等于该梁格所代表的实际结构部分的内力。 二、适用范围 梁格法主要针对的是宽跨比较大的直线桥以及圆心角较大的曲线梁桥。之所以需要用梁格体系来分析结构,就是因为原本当作杆系构件的梁因为承受了不能忽视的扭矩以及横向弯曲作用。如对于直线宽桥,活载的偏心布置所产生的扭矩不能简单的用偏载系数这一概念简化。而对于曲线梁桥更是如此,首先恒载的不对称就会产生一部分扭矩,这种效应更使结构不能再用一根杆来进行分析计算。要么在杆件上添加扭矩,要么就得使用梁格法以增加横向杆件数量了,或者干脆采用实体模型分析。虽然梁格法对原结构进行了面目全非的简化,大量几何参数要预先准备,人为偏差较难避免,但是相对于单梁和实体单元模型,梁格模型既能考虑桥梁横截面的畸变,又能直接输出各主梁的内力,便于利用规范进行强度验算,整体精度满足设计要求。正是由于这个优点使得梁格法成为计算曲线梁桥、宽梁桥的最佳方法。 三、梁格划分 对于有腹板的箱型、T型梁桥,其梁格模型中纵向主梁的个数,应当是腹板的个数。对于实心板梁,纵向主梁的个数可按计算者意愿决定。全桥顺桥向划分M个梁段,共有M+1 个横截面,每个横截面位置,就是横向梁单元的位置。支点应当位于某个横截面下面,也就是在某个横向梁单元下面。每一道横梁都被纵向主梁和支点分割成数目不等的单元。纵、横梁单元用同一种最普通的12自由度空间梁单元,能考虑剪切变形影响即可。对于箱梁而言,一般来说,横向梁格划分一个腹板一个梁格。且假若能尽量满足划分梁格后的各个梁格质心与原箱梁腹板的中心重合将对预应力效应模拟的准确性很有帮助。而纵向梁格每跨8到10 个梁格可以基本满足精度要求。下面结合箱梁实例来谈一谈如何进行梁格截面划分。

变截面连续梁完整计算书

28+36+46+36+28m变截面连续梁计算书 第一章概述 1.1、工程简介 上部标准段结构为预应力混凝土现浇箱梁结构,跨径28+36+46+36+28m,桥宽23.5m,梁高1.8~5.9m,桥面布置为8m(人行道)+15m(车行道)+0.5m (防撞护栏),桥面铺装为10cm沥青混凝土+8cm C50混凝土。梁体采用后张法预应力构件,结构计算考虑施工和使用阶段中预应力损失以及预应力、温度、混凝土收缩徐变等引起的次内力对结构的影响。 1.1.1、采用的主要规范及技术标准 ①、《工程建设标准强制性条文》建标【2000】202号 ②、建设部部颁标准《城市桥梁设计荷载标准》CJJ11-2011 ③、交通部部颁标准《公路桥涵设计通用规范》JTG D60-2015 ④、交通部部颁标准《公路桥涵地基与基础设计规范》JTG D63—2007 ⑤、交通部部颁标准《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62-2004 ⑥、建设部部颁标准《城市道路设计规范》CJJ37-90 技术标准: 1、道路等级:主干路 2、设计车速:主线60km/h。 3、设计荷载:公路—Ⅰ级。

4、地震烈度:Ⅶ度,地震动峰值加速度0.1g。 5、横断面:8m(人行道)+15m(车行道)+0.5m(防撞护栏)=23.5m 6、桥梁结构设计安全等级:一级 7、路面类型:沥青混凝土路面。 1.1.2、应用的计算软件 Midas CIVIL 1.1.3、主要参数及荷载取值 1)主梁:C55混凝土,γ=26kN/m3,强度标准值f ck=35.5MPa,f tk=2.74MPa。强度设计值f cd=24.4MPa,f td=1.89Pa,桥梁达到设计强度的100%张拉2)二期恒载: 结构部分:155KN/m; 装饰部分:①侧面装饰12KN/m ②底面装饰6K N/m 3)预应力钢束采用1860级φs15.20钢绞线,公称面积139.0mm2,标准强度f pk=1860MPa(270级),张拉控制应力σcon=1350MPa。 4)管道每米局部偏差对摩擦的影响系数:0.0015 k=; μ=; 5)预应力钢筋与管道壁的摩擦系数:0.17 ζ=; 6)钢筋松弛系数,Ⅱ级(低松弛),0.3 7)锚具变形、钢筋回缩和接缝压缩值:6mm l?=(单端); 8)混凝土加载龄期:7天; 9)收缩徐变效应计算至3650天 10)端横梁支座不均匀沉降为采用5.6mm,次中横梁支座不均匀沉降为采

迈达斯Midascivil梁格法建模实例

目录 概要......................................................... 设置操作环境 ................................................. 定义材料和截面 ............................................... 建立结构模型 ................................................. PSC截面钢筋输入 .............................................. 输入荷载 ..................................................... 定义施工阶段 ................................................. 输入移动荷载数据 ............................................. 输入支座沉降 ................................................. 运行结构分析 ................................................. 查看分析结果 ................................................. PSC设计......................................................

梁格法截面特性计算

梁格法截面特性计算 读书报告

目录 第一章梁格法简介 (1) 1.1梁格法基本思想 (1) 1.2梁格网格的划分 (1) 1.2.1纵梁的划分 (2) 1.2.2 虚拟横梁的设置间距 (2) 第二章梁格分析板式上部结构 (3) 2.1 结构类型 (3) 2.2 梁格网格 (3) 2.3 截面特性计算 (4) 2.3.1 惯性矩 (4) 2.3.2 扭转 (4) 第三章梁格法分析梁板式上部结构 (5) 3.1 结构类型 (5) 3.2 梁格网格 (5) 3.3 截面特性计算 (6) 3.3.1 纵向梁格截面特性 (6) 3.3.2 横向梁格截面特性 (7) 第四章梁格法分析分格式上部结构 (8) 4.1 结构形式 (8) 4.2 梁格网格 (8) 4.3 截面特性计算 (9) 4.3.1 纵向梁格截面特性 (9) 4.3.2 横向梁格截面特性 (12) 第五章箱型截面截面特性计算算例 (15)

第一章梁格法简介 1.1梁格法基本思想 梁格法主要思路是将上部结构用一个等效梁格来模拟,如图1.1示,将分散在板式或箱梁每一段内弯曲刚度和抗扭刚度集中于最邻近的等效梁格内,实际结构的纵向刚度集中于纵向梁格内,而横向刚度则集中于横向梁格构件内。从理论上讲,梁格必须满足一个等效原则:当原型实际结构和对应的等效梁格承受相同荷载时,两者的挠曲应是恒等的,而且在任一梁格内的弯矩、剪力和扭矩应等于该梁格所代表的实际结构的部分内力。 图1.1 (a)原型上部结构(b)等效梁格 1.2梁格网格的划分 采用梁格法对桥梁结构进行分析时,首先考虑的是如何对梁格单元的合理划分。网格划分的枢密程度是保证比拟梁格与实际结构受力等效的必

变高梁截面的剪应力计算

1 顶底我们 2 2.1民著问题描述在实际工底板厚度以们讨论如下(1) 变截面(2) midas (3) 规范中问题讨论1 变截面梁变截面梁计算假定著。这里直 关于此计述 工程中,经常及截面宽度问题: 面梁剪应力Civil 程序中中关于变高论 梁剪应力梁剪应力计算和推导过程直接给出结论 计算公式理解变截面常会碰到变截度各项参数如何计算?中如何考虑高梁剪应力计 算简图如下程详见论文论,剪应力 解,有以下面梁的剪截面梁的设数中,任意一? 虑? 计算如何理下图2‐1: 图2‐1 计算文《变截面预力的计算公式下2 点注意事剪应力计设计,变截面一项发生变化理解? 算简图 预应力梁剪式如下: 事项: 计算 面梁是指梁高化的截面。 应力计算》高、腹板厚度关于变截面 》陈享锦、朱度、面梁朱华

2.2算选算结主从(1) 变高梁(2) 内力和2 midas C 程序在分选项,如下建立2个结果以及手单元信息截面信息边界信息从约束和弹 荷载信息梁剪应力由和应力的计Civil 中变分析主控数据图2‐2: 个测试模型,手算结果对比:1to4,梁:变高截面:i 端质心位弹性连接刚性 :节点荷载剪力Q 、轴计算是以垂直截面梁剪据中,有是否模型1不勾比,了解程梁单元,单元面,中上对齐位置固结,性; 载FX=‐ 1000轴力N 以及直的截面m 剪应力的计否修改变截图2‐2 主控勾选该选项程序计算原理图2‐3 计算元长度2m 齐,i 和j 端截j 端质心处0KN ,FZ=‐ 1及弯矩M 三mn 和m1n1计算 截面局部坐标控数据 项,模型2勾理。计算模算模型 ,共8m 长截面尺寸及处作用荷载,1000KN , M 项组成; 为对象。 标轴进行内勾选该选项模型如下图2长; 及特性见图,质心和节My=‐ 10000K 内力和应力的 项,通过软件‐3: 2‐4和图2节点间分别使N.m 。 的计件计‐5; 使用

梁格法截面特性计算知识讲解

梁格法截面特性计算

梁格法截面特性计算 读书报告

目录 第一章梁格法简介 (1) 1.1梁格法基本思想 (1) 1.2梁格网格的划分 (1) 1.2.1 纵梁的划分 (2) 1.2.2 虚拟横梁的设置间距 (2) 第二章梁格分析板式上部结构 (3) 2.1 结构类型 (3) 2.2 梁格网格 (3) 2.3 截面特性计算 (4) 2.3.1 惯性矩 (4) 2.3.2 扭转 (4) 第三章梁格法分析梁板式上部结构 (5) 3.1 结构类型 (5) 3.2 梁格网格 (5) 3.3 截面特性计算 (6) 3.3.1 纵向梁格截面特性 (6) 3.3.2 横向梁格截面特性 (7) 第四章梁格法分析分格式上部结构 (8) 4.1 结构形式 (8) 4.2 梁格网格 (8) 4.3 截面特性计算 (9) 4.3.1 纵向梁格截面特性 (9) 4.3.2 横向梁格截面特性 (12) 第五章箱型截面截面特性计算算例 (15)

第一章梁格法简介 1.1梁格法基本思想 梁格法主要思路是将上部结构用一个等效梁格来模拟,如图1.1示,将分散在板式或箱梁每一段内弯曲刚度和抗扭刚度集中于最邻近的等效梁格内,实际结构的纵向刚度集中于纵向梁格内,而横向刚度则集中于横向梁格构件内。从理论上讲,梁格必须满足一个等效原则:当原型实际结构和对应的等效梁格承受相同荷载时,两者的挠曲应是恒等的,而且在任一梁格内的弯矩、剪力和扭矩应等于该梁格所代表的实际结构的部分内力。 图1.1 (a)原型上部结构(b)等效梁格 1.2梁格网格的划分 采用梁格法对桥梁结构进行分析时,首先考虑的是如何对梁格单元的合理划分。网格划分的枢密程度是保证比拟梁格与实际结构受力等效的必要条件之一。合理的网格划分,不仅能准确反映结构的受力特征,还能提高工作效率。

midas联合截面问题

一:施工阶段联合截面分析的疑问: (1) 不能随施工阶段显示分层截面的逐步形成过程。 (2) 同一施工阶段内不能激活多个分层截面。 (3) 不能同时考虑非线性,PSC设计、梁单元细部分析、温度自应力也有问题。 (4) 各分层截面的理论厚度如何考虑? (5) [截面特征调整系数]与施工阶段联合截面中的[刚度系数]是什么关系? (6) 能否进行PSC设计?使用阶段截面应力验算中的P1~P10对应联合截面的什么位置? 您好! 现就您提出的几个问题逐一回复如下: 1、如果您采用的是标准的联合截面建模,是可以分阶段显示结构形状的,除此以外只能显示建模用截面形状; 2、同一阶段只能激活一种截面,如果要激活两种截面,可以另定义一个空阶段; 3、PSC设计可以执行,但对于施工过程的应力验算不能做,对于成桥的抗力验算是按建模用截面进行验算的,因此我们始终建议用联合后截面建立模型。不能给出梁单元细部分析结果,因此施工阶段联合截面的计算结果是分位置输出的,因此结果内容相对于单梁的梁单元内力和应力结果内容要详细。温度计算时,注意建模截面要采用联合后截面,否则得到的温度计算结果是错误的。(这种情况同样适用于施工阶段联合截面的动力分析中。) 4、构件理论厚度在施工阶段联合截面分析中只能指定一次,因此不同分层的不同构件理论厚度问题现在还不能模拟,建议使用联合后截面的构件理论厚度,毕竟施工过程的持续时间不是很长。这个问题我们会再做研究。 5、两者都用于对所指定截面的特性的调整,不同的是刚度系数仅用于施工阶段联合截面,针对的是当前激活截面的特性的调整;而截面特性调整针对的是该阶段所有的截面,因此如果既在刚度系数中定义了调整系数,也在截面特性值系数中定义了调整系数,这两个系数取叠加作用。 6、可以进行PSC设计,但得到的结果不完整,没有关于施工阶段过程的验算。施工阶段联合截面给出的截面应力是梁单元应力,因此只有6个点的计算应力。位置P1~P10针对的是梁单元应力(PSC)的结果。 谢谢!

变截面梁定义

1.变截面梁定义 不同截面之间可按线性变化,为了保证正确性,两个截面之间应该一一对应,必要的时候可通过将复杂的截面形状分块的方式。 主要过程包括: et,1,plane82!建立截面有限元模型 定义截面1 secwrite,mysec1 !定义对应的截面名称 !定义截面2 !同上 !截面调用命令 sectype,1,beam,mesh !读入自定义截面1 secread,mysec1,sect,,mesh sectype,2,beam,mesh !读入自定义截面2 secread,mysec2,sect,,mesh !定义变截面3,对应的 sectype,3,taper secdata,1,50 !截面1开始位置为x=50 secdata,2,150 !截面2的开始位置为x=150 2.截面栅点结果提取 !Beam189栅点结果提取命令流 jsdgs=?!栅点个数赋值,以六个(A,B,C,D,E,F)为例 jdjm=?!?=1,2,3,I节点截面=1,J节点截面=2,K节点截面=3 *dim,jsdxh,,6 !对于6个栅点,定义数组JSDXH *dim,lsxh,,6 !用于保存不考虑comp时I,J对应的LS提取编号 *dim,sxyz,,6,3 jsdxh(1)=1,7,15,18,10,12 !A,B,C,D,E,F点角栅点对应序号 *do,i,1,6 lsxh(i)=3*(jdjm-1)*jsdgs+3*(jsdxh(i)-1) !编号计算公式,可参考帮助文件

*enddo !------------------------------------------- !定义单元的各角栅点的x方向应力(sx)etab *do,i,1,6 etable,sigs%i%,ls,lsxh(i)+1 *enddo !获取单元1各角栅点的正应力sx *do,i,1,6 *get,sxyz(i,1),elem,1,etab,sigs%i% *enddo !-------------------------------------------- !定义单元的各角栅点的xz方向应力(sxz)etab *do,i,1,6 etable,sigs%i%,ls,lsxh(i)+2 *enddo !获取单元1各角栅点的剪应力sxz *do,i,1,6 *get,sxyz(i,2),elem,1,etab,sigs%i% *enddo !-------------------------------------------- !定义单元的各角栅点的xy方向应力(sxy)etab *do,i,1,6 etable,sigs%i%,ls,lsxh(i)+3 *enddo !获取单元1各角栅点的剪应力sxy *do,i,1,6 *get,sxyz(i,3),elem,1,etab,sigs%i% *enddo

梁格法在midas中的运用

Integrated Solution System for Bridge and Civil Strucutres

目录 一、剪力-柔性梁格理论 1. 纵梁抗弯刚度.......................................................................32.横梁抗弯刚度....................................................................... 43.纵梁、横梁抗弯刚度........................................................... 44.虚拟边构件及横向构件刚度.. (5) 三、采用梁格建模助手生成梁格模型 二、单梁、梁格模型多支座反力与实体模型结果比较 1. 前言.......................................................................................72. 结构概况...............................................................................73. 梁格法建模助手建模过程及功能亮点...............................114. 修改梁格..............................................................................225. 在自重、偏载作用下与FEA 实体模型结果比较. (24) 四、结合规范进行PSC 设计

MIDAS梁格法建模算例要点

迈达斯技术

目录 概要 (3) 设置操作环境................................................................................................................ 错误!未定义书签。定义材料和截面............................................................................................................ 错误!未定义书签。建立结构模型................................................................................................................ 错误!未定义书签。PSC截面钢筋输入......................................................................................................... 错误!未定义书签。输入荷载 ........................................................................................................................ 错误!未定义书签。定义施工阶段. (62) 输入移动荷载数据........................................................................................................ 错误!未定义书签。输入支座沉降................................................................................................................ 错误!未定义书签。运行结构分析................................................................................................................ 错误!未定义书签。查看分析结果................................................................................................................ 错误!未定义书签。PSC设计 ......................................................................................................................... 错误!未定义书签。

梁横截面上的剪应力及其强度计算

梁横截面上的剪应力及其强度计算 在一般情况下,剪应力是影响梁的次要因素。在弯曲应力满足的前提下,剪应力一般都满足要求。 一、矩形截面梁的剪应力 利用静力平衡条件可得到剪应力的大小为:*z Z QS I b τ=; 公式中:Q ——为横截面上的剪力; *z S ——为横截面上所求剪应力处的水平线以下(或以上)部分面积A*对中性轴的静矩; I Z ——为横截面对中性轴的惯性矩; b ——矩形截面宽度。 计算时Q 、*z S 均为绝对值代入公式。 当横截面给定时,Q 、I Z 、b 均为确定值,只有静矩*z S 随剪应力计算点在横截面上的位置而变化。 222** 2214()[()]()(1)222248z h h h h bh y S A y b y y y y h =?=-?+-=-=- 把上式及312z bh I =代入*z Z QS I b τ=中得到:2234(1)2Q y bh h τ=- 可见,剪应力的大小沿着横截面的高度按二次抛物线规律分布的。在截面上、下边缘处(y=±0.5h ),剪应力为零;在中性轴处(y=0)处,剪应力最大,其值为:

33 1.522Q Q Q bh A A τ=?=?= 由此可见,矩形截面梁横截面上的最大剪应力值为平均剪应力值的1.5倍,发生在中性轴上。 二、工字形截面梁的剪应力 在腹板上距离中性轴任一点K 处剪应力为:*1 z Z QS I b τ=; 公式中:b 1——腹板的宽度(材料表中工字钢腹板厚度使用字母d 标注的); *z S ——为横截面上阴影部分面积A*对中性轴的静矩; 工字形截面梁的最大剪应力发生在截面的中性轴处,其值为:*max max 1z Z QS I b τ=; 公式中:*max z S ——为半个截面(包括翼缘部分)对中性轴的静矩。 三、梁的剪应力强度计算 梁的剪应力强度条件为:*max max max max *[](/) z Z Z Z Q S Q I b b I S ττ==≤

midas联合截面问题

实用标准文案 一:施工阶段联合截面分析的疑问: (1) 不能随施工阶段显示分层截面的逐步形成过程。 (2) 同一施工阶段内不能激活多个分层截面。 (3) 不能同时考虑非线性,PSC设计、梁单元细部分析、温度自应力也有问题。 (4) 各分层截面的理论厚度如何考虑? (5) [截面特征调整系数]与施工阶段联合截面中的[刚度系数]是什么关系? (6) 能否进行PSC设计?使用阶段截面应力验算中的P1~P10对应联合截面的什么位置? 您好! 现就您提出的几个问题逐一回复如下: 1、如果您采用的是标准的联合截面建模,是可以分阶段显示结构形状的,除此以外只能显示建模用截面形状; 2、同一阶段只能激活一种截面,如果要激活两种截面,可以另定义一个空阶段; 3、PSC设计可以执行,但对于施工过程的应力验算不能做,对于成桥的抗力验算是按建模用截面进行验算的,因此我们始终建议用联合后截面建立模型。不能给出梁单元细部分析结果,因此施工阶段联合截面的计算结果是分位置输出的,因此结果内容相对于单梁的梁单元内力和应力结果内容要详细。温度计算时,注意建模截面要采用联合后截面,否则得到的温度计算结果是错误的。(这种情况同样适用于施工阶段联合截面的动力分析中。) 4、构件理论厚度在施工阶段联合截面分析中只能指定一次,因此不同分层的不同构件理论厚度问题现在还不能模拟,建议使用联合后截面的构件理论厚度,毕竟施工过程的持续时间不是很长。这个问题我们会再做研究。 5、两者都用于对所指定截面的特性的调整,不同的是刚度系数仅用于施工阶段联合截面,针对的是当前激活截面的特性的调整;而截面特性调 文档

整针对的是该阶段所有的截面,因此如果既在刚度系数中定义了调整系数,也在截面特性值系数中定义了调整系数,这两个系数取叠加作用。 6、可以进行PSC设计,但得到的结果不完整,没有关于施工阶段过程的验算。施工阶段联合截面给出的截面应力是梁单元应力,因此只有6个点的计算应力。位置P1~P10针对的是梁单元应力(PSC)的结果。谢谢! 二:联合截面对于等高梁非常方便,但当梁是变高的呢,在转换成变截面组后,截面非常多,而且梁高是变化的,输入相对点坐标非常麻烦,请问有没有好的方法建立联合截面? 您好! 变截面组不必转换为变截面,这样定义施工阶段联合截面会方便些。 同样进行其它梁单元分析时,变截面组也不必转换为变截面,程序内部会根据单元组的长度和变化规律来计算各单元的截面特性的。如果对变截面组所用变截面定义了PSC截面钢筋,程序也可以根据各单元所处位置按照PSC截面钢筋距离截面边缘距离不变的原则转换成各个变截面的截面钢筋计算换算截面特性。 谢谢! 三:施工阶段联合截面问题 1、施工阶段联合截面中的混凝土材龄如果输入为0,该施工阶段若持续三天,则是否表示当截面在该阶段激活后在阶段末具有三天的材龄? 2、接上,如果定义了强度发展函数,在该阶段末计算时程序采用的混凝土强度为具有3天材龄时的强度? 四:主题如何使用截面定义中的组合截面和联合截面?

梁格法问题集锦

1.如果你要计算的是普通钢筋混凝土结构,主要看内力结果,可以在划分的时候简单一些,直接“一刀切”,也就是顶底板在同一位置切开,但是在计算其抗弯惯性矩的时候一定要注意纵向梁格的界面惯性矩是相对于整体截面的中性轴的,而不是划分以后的梁格截面本身的惯性矩,对于预应力混凝土的结构你就得注意梁格的划分了,在划分的时候尽量使得划分以后的各个梁格截面要跟原截面的中性轴一致,只有这样计算出来的应力结果才能比较准确,当然,如果是等截面的梁只要划分一个截面就可以了,算起来也不是很费时费力,但是如果是变截面的那种异型箱梁在进行划分和计算截面特性的时候就应该采取一定的方法,用excell或者自己编制小程序来批量划分和计算,要不然会非常费时费力。 其中抗扭惯性矩的计算一定要按相关书籍中介绍的公式进行计算,否则是不准确的,因为输入的抗扭惯性矩实际上是顶底板的抗扭,另一部分抗扭由腹板来承担,因此梁格的抗剪面积也要输入准确,就是腹板的面积,建立模型的时候注意一定不要使用midas自带的梁格截面,因为这里面的截面都是上面所说的那种“一刀切”的截面,并且其计算得到抗扭惯性矩根剪切面积也是不准确的。 2. 请问bridgedlut兄,为什么对于钢筋混凝土和预应力钢筋混凝土结构对于梁格的划分的要求是不一样的,个人认为两种梁格的划分方法是基于箱梁受力分析的基础上得出的,虽然你提到的划分后可能存在边梁中合轴升高,但是仍然按照整体的中合轴计算刚度应该精度上能够满足要求吧? 还有就是有点不清楚的就是对于加腋的箱梁在计算Asy和Asz时分别是5/6(顶板面积+地板面积)和腹板面积,这个时候梗腋处怎么处理? 还有就是我看书上时发现对于没有斜腹板的一类箱梁都会在两边各加虚设梁,刚度是悬臂部分刚度的一半,不知道这个是什么意思。 3.以上各位的问题在论坛的相关帖子中都有相关讨论,希望能利用一下论坛的搜索功能,只要输入"梁格"进行搜索就能搜到,大部分的有关梁格的帖子都在桥梁设计版。 不能直接应用midas中的梁格截面是因为它其中的截面特性不是按梁格法的计算方法得到的,应该数值输入;截面特性的计算公式相关书籍中都有,可以查阅;想保持一致有很多种方法,其实原理就是解方程,对于变宽的截面由于要计算的截

梁格法在计算弯、斜、异形梁桥中应用

梁格在弯、斜、异形梁桥结构分析中的应用 1、概述 近几年,随着处领导经营生产意识的改变,原来结构稍复杂的弯、斜、异形梁大都外委,而目前类似的结构全部让我们内部消化。桥梁所的大多数人员平常对此类结构接触不多,在时间紧迫的情况下,要消化这些“难啃的骨头”,着实不易。虽然我们手头有很多的计算软件,特别是下面介绍的梁格法,几乎人人皆知,但是误区也不少,所以我整理部分资料,结合自己的理解,力争清晰、准确地介绍一下,希望对大家有所帮助。 对弯梁桥,目前一般有三种计算模式:①简化为单根曲梁计算;②简化为平面梁格计算; ③不加简化地用块体单元、壳单元计算。 单根曲梁模型的优点:简单、易行;缺点:几乎所有类型的梁单元都有刚性截面假定、不能考虑桥梁横截面的畸变,总体精度较低。 块体单元、壳单元模型,优点:与实际模型最接近,不需要计算横截面的形心、剪力中心、翼板有效宽度,截面的畸变、翘曲自动考虑;缺点:输出的是梁横截面上若干点的应力,不能直接用于强度、应力计算。当然可以把若干点的应力换算成横截面上的内力,对于板壳单元输出的各点的应力影响面重新合成为横截面的内力影响面,要另外附加大量工作。这个缺点为在设计中应用增添了不少的难度。 平面(柔性)梁格法的优点:可以直接输出各主梁的内力,便于后处理(用规范验算),整体精度能满足设计要求。由于这个优点,使得该法成为计算弯、斜、异形梁桥的唯一实用方法。缺点:它对原结构进行了面目全非的简化,大量几何参数要预先计算准备,如果由设计者手工准备,工作量大,而且人为偏差不可避免。 2、.梁格法的理论分析简介 2.1 梁格法的基本原理

梁格法的特点是用一个等效的梁格来代表桥梁的上部结构,即假定把上部结构的抗弯、抗扭刚度集中到最邻近的梁格内:纵向刚度集中到纵向构件内,横向刚度集中到横向构件内。理想的刚度等效原则应该满足:当原型结构和等效梁格体系承受相同荷载时,两者的挠曲将是恒等的,而且任一梁格内的弯矩、剪力及扭矩将等于该梁所代表的实际结构的截面上应力的合力。由于实际结构和梁格体现在结构特性上的差异,这种等效只是近似的,但对一般的计算,梁格法的计算精度是足够的。 2.2 梁格网格的划分 梁格法最关键之处在于其与上部结构的等效性,等效与否严重影响结构分析的精度,所以梁格的划分特别重要。对于箱形截面而言,单元的划分应明确结构分析的目的,考虑力在原箱梁内的传递方向和原箱梁的变形特征,同时要考虑加载的方便。选取等效梁格可遵循如下原则。 (1)纵向梁格以腹板单位划分梁格,即纵梁的位置应与纵向腹板重合,这样可以直接获得腹板的受力特征。为了加载的方便,可在悬臂端部设置虚拟的纵向单元。 (2)纵梁的划分应尽量使各部分截面的形心轴位置和原箱梁截面的形心轴位置重合,这样使得各纵梁在纵向弯曲时符合与原箱梁截面一样的平截面假定(汉勃利原理p94:“....所有的梁受载后均绕同一中性轴而弯曲。这中性轴实际上与整体的上部结构的主轴是重合的。因此,梁格构件所代表的每根工字梁的截面特性将绕整体的上部结构主轴计算。”)。 (3)横向梁格一般与纵向梁格垂直,在斜桥的端部或斜桥的斜角较小时可用斜交网格,以有效模拟结构的工作状态。 (4)横向梁格的间距一般不超过反弯点之间距离的1/4,通常在跨中,1/4跨,1/8跨,支座处,横隔梁处设置横向单元,保证荷载在纵梁之间传递的连续性。 (5)梁格在支点附近和内力变化较大的地方进行加密,使得梁格结构对荷载的静力分

梁格法精度的影响因素(个人总结)

梁格法精度的影响因素梁格单元划分的疏密程度,直接关系到结构原型与比拟梁格之间的等效程度和计算精度。从理论上讲,网格划分的越细,也就越能代表真实结构。但网络划分的越细,在实际工程中具体应用时也就越麻烦,耗费机时就越多,实际应用也就越不方便。所以有必要找一种既能反映结构的受力特性,又运用方便的网络划分方法。因此,找出影响其分析精度的因素是有必要的。 1.纵梁划分模式的影响 在梁格分析法中,纵梁的划分是关键。纵梁划分方法的不同,对计算结果的可信度及精度有较大影响。对于T 形梁桥,其梁格模型中纵向主梁的个数,应当是腹板的个数;对于实心板梁,纵向主梁的个数可按计算者意愿决定;对于箱形梁桥,由于箱梁桥上部结构的形状和支座布置的多样性,对纵向网格的划分很难提出一个通用的划分方法。汉勃利提出了一个原则:应当使划分以后的各工形的形心大致在同一高度上,也就是要满足:梁格的纵向构件应与原结构梁肋(或腹板) 的中心线相重合,通常沿弧向和径向设置:纵向和横向构件的间距必须相近,使荷载的静力分布较为灵敏。这样划分主要是考虑使得格梁和设计时的受力线或中心线重合,也就是要根据原结构的受力来划分网格。按照上述的划分原则,以一个单箱单室的箱梁上部结构为例截面尺寸见图1 ,把其从两腹板间中央切开成“工字形”梁,图1 给出了箱梁截面的梁格划分图式,所划分的梁格网格是具有与腹板中心线相重合的两根

“结构的”纵向构件1 ,2 ,很显然,这样的划分方式使得两个纵向构件的中性轴位于同一直线上,并且恰好与整体箱梁截面的中性轴重合,便可以在计算梁格刚度时简化计算,每一“工字梁”的惯性矩是上部结构总惯性矩的1/ 2 ,其梁格性质 见表1 。 2 虚拟横梁间距的影响 在梁格分析法中,纵梁与纵梁的分离必然需要通过在纵梁间的虚拟横梁来使得各纵梁共同承担外力荷载。若全桥顺桥向划分M 个梁段,则共有M + 1 个横截面,每个横截面位置就是横向梁单元的位置。支点应当位于某个横截面下面,也就是在某个横梁下面,每一道横梁都被纵向主梁和支点分割成数目不等的单元。纵桥向梁格网格的划分,每跨至少划分成4 段~6 段,其中在截面变化处、边界条件变化处、横隔梁处、关键截面(如跨中、四分点) 等

相关文档
最新文档