阻尼器在结构抗震中的应用研究

阻尼器在结构抗震中的应用研究
阻尼器在结构抗震中的应用研究

阻尼器在结构抗震中的应用研究

摘要:本文介绍了结构抗震控制理论及主要控制形式,阐述了粘弹性阻尼器的耗能减震原理和有限元计算算模型,并且运用Midas软件对一五层钢筋混凝土框架结构设置粘弹性阻尼器前后进行模拟分析,通过对其动力性能进行对比,对抗震性能进行了评估,为粘弹性阻尼器在结构抗震中的应用提供参考。

关键词:阻尼器;抗震; 控制

Abstract: This paper introduces the structural seismic control theory and control form, elaborated the viscoelastic damper energy dissipation principle and finite element calculation model, and use Midas software to one five storey reinforced concrete frame structure with viscoelastic dampers and simulation analysis, based on its dynamic performance are compared, the seismic performance is evaluated, for viscoelastic dampers for seismic application provides the reference.

Key words: damper; seismic; control

1 前言

地震是危及人民生命和财产的突发式自然灾害。因此,结构控制在结构工程中的应用越来越重要。结构振动控制(简称为结构控制)技术,是指通过采取一定的控制措施以减轻或抑制结构由于动力荷载所引起的反应[1]。该技术在土木工程界广泛的应用和研究始于1972年美籍华裔学者Yao J.T.P(姚冶平)对结构控制这一概念的首次提出,通过在结构上设置一些耗能装置,由耗能材料的变形来增大结构阻尼达到消耗地震能量,减小主体结构地震反应。粘弹性阻尼器由于其显著的特性在工程中被广泛应用,它是一种与速度相关的被动耗能减震装置。本文研究了粘弹性阻尼器对钢筋混凝土框架结构的抗震性能的改善。

2 抗震控制分类

结构控制根据是否需要外部能源可以分为被动控制、半主动控制、主动控制和混合控制[2]。

⑴被动控制

被动控制是指不依靠外部能源输入的控制,其控制力是由控制装置随结构一起振动变形而被动产生的。被动控制因其低廉的造价,相对良好的减震效果,实现容易等优点而引起了科研人员的关注,许多被动控制日趋成熟,并在实际工程中的抗震抗风控制中得到广泛应用。

⑵半主动控制

控制力也是由控制装置自身的运动而被动产生,但在工作过程中控制装置可

建筑用液体粘滞阻尼器设计方法简介

1.阻尼器应用的设计目标和理念 传统建筑,无论木结构,钢筋混凝土,钢结构已经有上百年的抗风,抗震历史,为什么提出在这些建筑中添加阻尼器?精简总结,有以下几点原因: ●对于一些使用要求较高的建筑结构(超高层,大跨结构等),地震,抗风形成动力难题,需 要更合理的解决办法; ●对比其他传统方案,减少结构受力体系的造价; ●科学不断发展,开辟了解决结构工程问题的新思路;可以使结构最大限度的保持在弹性范围 内工作,为结构提升安全保障。 以某抗震加固工程为例,我们对剪力墙(传统方案)和液体粘滞阻尼器两个方案从理念和计算结果作了如下对比如下表: 我国现行抗震设计规范中已经开始有了关于消能减震的有关规定。结合国内外有关阻尼器应用发展情况和我们的应用体会,我们再谈一下在建筑上使用阻尼器的目标和理念。简单的说,我们安置阻尼器可以有以下几个目的。 A 增加抗震、抗风能力 原设计可能已经可以满足所有规范规定的抗震抗风要求,加上液体粘滞阻阻尼器,在振动过程中起到耗能和增加结构阻尼的作用,从而降低结构反应的基底剪力,减少整个结构的受力,也就可以大大提高结构的抗地震能力。同时,只要阻尼器安装的合适,设置到不同的需要方向,还可以预防和减少原设计没有考虑,或考虑不足的振动受力。 对特别重要的结构,高发地震区,花钱不多,设置这一第二防线是很值得的。对于非严重地震区,也可以用阻尼器达到抗风和增加抗震能力的目的。 B.用阻尼器去防范罕遇大地震或大风 按小震不坏大振不倒的原则,我们可以用常规的设计办法使设计满足多遇地震的抗震要求。对于罕遇的大地震可能显得不足、不理想或不经济。用结构的被动保护系统-特别是阻尼器来等待和解决这罕遇大地震的问题,不仅新建结构建议采用这一设计理念,原设计未设防抗震或设防不足的结构加固工程也很适于。 这一理念会带来经济实用和可靠的结果,设计的好,可以为工程节省费用。国外抗震先进国家大都采用这一理念。在所有可能发生地震的地区,我们主要想提出推广的这一设计理念。 国外有的工程,在结构的小振设计中也充分利用施加了阻尼器的优越。他们大胆的用加阻尼器后的修正反应谱作结构的设计。

阻尼器设计

1.结构设计 2.工作原理 2.1磁流变液 磁流变液是在1948 年被Rabinow,J.发明的一种由非磁性基液(如矿物油、硅油等)、微小磁性颗粒、表面活性剂(也称稳定剂)等组合而成的智能型流体材料。在无磁场加入的条件下,磁流变液将表现为低粘度较强流动性的牛顿流体特性,加入磁场后,则会表现为高粘度低流动性的Bingham 流体特性。 非磁性基液是一种绝缘、耐腐蚀、化学性能稳定的有机液体。基液所拥有的特征是:粘度较低,磁流变液在没有磁场加入的条件下表现为低粘度状态,这样能够较好的降低磁流变液的零场粘度; 沸点高、凝固点较低,这样就可以确保磁流变液在温度变化波动较大的环境下工作依然可以保持较高的稳定性;较高的密度,能够保证磁流变液不会因沉降问题而无法正常使用; 无毒无味、廉价,保障其安全性的同时做到能够广泛使用。 微小磁性颗粒是一种可离散、可极化的软磁性固体颗粒,其单位是微米数量级的。其主要的特征有[5]: 低矫顽力,对于已经磁化过的液体,加较小的磁场就能够使其恢复零磁场状态,即拥有较高的保磁能力; 高磁导率,能够在弱磁场中获得较强的磁感应强度从而节约能量;磁滞回线狭窄、内聚力小; 磁性颗粒的体积应相对大一些,用于存贮更多的能量。 表面活性剂是可以增加溶液或混合物等稳定性的化学物质。在实际使用过程中,磁流变液比较容易出现沉降分层现象,所以需要在磁流变液中加入表面活性剂保证物理化学性能的平衡,减少分层、降低沉降。 2.2磁流变液的工作模式 磁流变液在外加磁场影响下出现磁流变效应现象,改变流体的表观粘度、流动状态,从而改变剪切屈服应力等参数,使输出的阻尼力能够实时变化,达到所期望的目的。现如今,磁路变液的一般工作模式有三类:流动式、剪切式及挤压式,如下图所示。 (a)流动式(b)剪切式(c)挤压式 图1-3 磁流变液工作模式 Fig. 1-3 MR fluid working mode 流动式:如图1-3(a)所示,在两块固定静止的磁极板中间具有充足的磁流变液,对磁流变液施加一个压力使其流过两磁极板,其中,两极板之间外加了与磁流变液运动方向垂直的磁场。当磁性液体经过磁场时,其流体特性与流动状态被改变从而产生剪切应力即阻尼力。改变线圈的输入电流强弱从而使磁场强度发生变化,阻尼力也会跟着变化,实现实时调节的效果。流动式多用于控制阀、阻尼器、电磁元件等的设计。

调谐高质量阻尼器(TMD)在高层抗震中地应用

调谐质量阻尼器(TMD)在高层抗震中的应用 摘要:随着经济的发展,高层建筑大量涌现,TMD系统被广泛应用。越来越多的学者对TMD系统进行研究和改进。本文介绍了TMD系统的基本工作原理,总结了其各种新形式,分析了它的研究现状,并指出了两个新的研究方向等。 关键词:TMD系统高层建筑抗震原理发展应用 The use of the tuned mass damper in the seismic resistance of the high-rise building Abstract:With the economic development, the high-rise buildings spring up, then, the tuned mass dampers are extensively used. More and more scholars research and improve the tuned mass damper. This thesis introduces the operating principle of the tuned mass damper,summarizes many new forms of the tuned mass damper, analyzes its research status and even points out two new research directions. Keyword: the tuned mass damper the high-rise building seismic resistance principle development use 1.引言 随着社会经济的快速发展,城市人口密度不断增长,城市建筑用地日益紧张,高层建筑成为城市化发展的必然趋势[1-3]。高层及超高层建筑的不断涌现,加上建筑物的高度和高宽比的增加以及轻质高强材料的应用,导致结构刚度和阻尼不断下降。建筑物在强风或地震等激励作用下的动力反应强烈,难以满足建筑结构安全性、舒适性和使用性的要求。传统的采用提高结构强度和刚度来抗风抗震的设计方法,存在着一定的弊端[1]:(1)经济性差;(2)安全性难以保证。这主

抗震阻尼器试验台的设计

文章编号:1004-4736(2007)04-0070-04 抗震阻尼器试验台的设计 刘银水,曹树平,朱玉泉 (华中科技大学机械科学与工程学院,湖北武汉430074) 摘 要:设计了一种最大输出动态力为1000kN 的液压阻尼器试验台,对其关键技术问题,如从节能角度对油源的设计、试验台主机及其液压夹紧的设计等进行了分析并提出了相应的解决措施,对类似试验台的设计具有一定的参考价值.试验结果表明,该试验台的油源满足了动静态两种试验工况的要求,解决了动态特性试验时的大流量冲击问题;同时台架的刚度满足了设计指标的要求.关键词:抗震阻尼器;试验台;液压系统中图分类号:T H 137 文献标识码:A 收稿日期:2007-05-11 基金项目:国家自然科学基金资助项目(50405031) 作者简介:刘银水(1973-),男,江西九江人,副教授,博士.研究方向:水压传动基础技术及其工程应用研究、电液控 制工程. 0 引 言 液压阻尼器是一种对速度反应灵敏的振动控制装置,主要适用于核电厂、火电厂、化工厂、钢铁厂等的管道及设备,用于控制冲击性的流体振动(如主汽门快速关闭、安全阀排放、水锤、破管等冲击激扰)和地震激扰的管系振动.液压阻尼器在与防冲击振动设备连接之前,必须对其性能进行考核,以保证将性能合格的产品用到设备上,做到万无一失,为此需要研究相应的试验台.该试验台是一个典型的电液伺服控制系统,为了适应阻尼器试验的特殊工况,需要解决一系列关键技术问题 [1,2] .结合所研制的1000kN 的液压阻尼器冲 击振动试验台,对这些问题进行了分析,并提出了相应的解决方案. 1 试验台架功能和组成 液压阻尼器在静态时,不会阻碍正常的热膨胀,当遇到超出限定速度的突然运动时,震动吸收器立刻锁住,形成刚性连结件.因此其性能包括静态和动态特性,相应地,试验台也需要完成这两种功能[3,4].1.1 静态试验 低速阻力试验:阻尼器以2~6m m /s 的低速运动,测量此时的运动阻力. 锁死速度试验:试验台在力控制状态下,输入 一个力的方波信号,获取力达到稳定值时的速度即为锁死速度. 1.2 动态试验 正弦波振动试验:给试验台输入不同频率和振幅的正弦信号,得出阻尼器的动态响应特性.半正弦波冲击试验:给试验台输入一个半周期的正弦信号,得出阻尼器的瞬态输出力及位移. 试验台的主要性能指标如下:冲击振动方向:水平双向 最大静态负载:±1100kN 最大动态负载:2Hz 时±1000kN 15Hz 时±700kN 振幅f =1Hz X 0=100mm f =15Hz X 0=6mm 工作频率范围:0.01~33Hz 试验台的静态精度小于1%. 试验台的基本组成包括液压动力源、冲击试验台架、计算机测试控制系统、电气控制系统等. 2 液压系统 试验台的液压系统如图1所示.该油源主要满足三方面的需求:(1)进入到夹紧缸29,对横梁进行夹紧;(2)进入到推拉缸28,推动横梁运动;(3)进入到伺服缸24,完成规定的动作.根据试验台静态力的要求,选择系统工作压力为25M Pa ,取作动器活塞杆d =180mm ,活塞D =300mm ,得有效面积A =452.16cm 2.根据试验台性能指标可计算得到动态时最大流量为1704L /min,低速阻力试验时,其速度为0~6mm /s ,负载所需的流量为16.3L /min .针对此工况,需要解决下列 第29卷第4期 武 汉 工 程 大 学 学 报 V ol.29 No.42007年07月 J . W uhan Inst. Tech. Jul . 2007

耗能阻尼器的减振及其在实际工程中的应用

耗能阻尼器的减振及其在实际工程中的应用 摘要:本文介绍了多种阻尼器的力学性能和其优缺点,为不同环境下选用合适的阻尼器减震装置提供方便。 关键词:耗能减震阻尼器工程应用 从动力学观点看,耗能装置的作用相当于增大结构的阻尼,从而减小结构的反应。由于其装置简单、材料经济、减振效果好、使用范围广等特点,在实际结构控制中具有广泛的应用前景。耗能减震装置的种类繁多,其常用的主要有:金属耗能阻尼器、摩擦耗能阻尼器、粘弹性阻尼器和粘滞阻尼器。 1金属耗能阻尼器 金属耗能阻尼器是利用金属不同形式的弹性滞回变形来消耗能量。由于金属在进入塑性状态后具有良好的滞回特性,并在弹塑性滞回变形过程中吸收大量能量,因而被用来制造不同类型和构造的耗能减震器。目前已开发和利用的主要有:扭转梁耗能器、弯曲梁耗能器、U行钢板耗能器、钢棒耗能器、圆环耗能器、双圆环耗能器、加劲圆环耗能器、X型和三角形耗能器等。 金属耗能阻尼器在实际工程中的应用:金属耗能阻尼器中的无粘结支撑在日本、台湾和美国都得到推广应用【1】。低屈服点钢耗能器、蜂窝状耗能器在日本多栋建筑中得到应用【2】。台湾金华休闲购物中心。本工程采用三角形加劲耗能装置,共270组。在地震(PGA=0.39)作用下,最大层间位移也未超过规范规定的0.014rad。潮汕星河大厦。大厦为地下一层,地上原设计为22层。后来在施工过程中业主要求增加3层。为了使加层后的结构满足抗震设防要求,安装了28组耗能阻尼器。装上阻尼器后,在大震作用下,结构的顶层位移和层间位移角均满足要求。2000年建成的日本新住友医院,采用低屈服点剪切板耗能器进行结构减震控制。结构在短边方向采用低屈服点剪切板耗能器,采用附加短柱的形式布置。在加入耗能器后,结构的层间位移减小30%,控制效果明显。 2摩擦阻尼器 摩擦阻尼器是应用较早和较广泛的阻尼器之一。摩擦阻尼器是一种位移相关型的阻尼器,它是利用两块固体之间相对滑动产生的摩擦力来耗散能量。其基本理论是建立在以下假设的基础上: (1)总的摩擦力不依赖于物体接触面的面积; (2)总的摩擦力与在接触面上的总的法向力成比例;

减震器工作原理详解

汽车悬架知识专题:减震器工作原理详解 悬架系统中由于弹性元件受冲击产生振动,为改善汽车行驶平顺性,悬架中与弹性元件并联安装减振器,为衰减振动,汽车悬架系统中采用减振器多是液力减振器,其工作原理是当车架(或车身)和车桥间受振动出现相对运动时,减振器内的活塞上下移动,减振器腔内的油液便反复地从一个腔经过不同的孔隙流入另一个腔内。此时孔壁与油液间的摩擦和油液分子间的内摩擦对振动形成阻尼力,使汽车振动能量转化为油液热能,再由减振器吸收散发到大气中。在油液通道截面和等因素不变时,阻尼力随车架与车桥(或车轮)之间的相对运动速度增减,并与油液粘度有关。 减振器与弹性元件承担着缓冲击和减振的任务,阻尼力过大,将使悬架弹性变坏,甚至使减振器连接件损坏。因面要调节弹性元件和减振器这一矛盾。 (1) 在压缩行程(车桥和车架相互靠近),减振器阻尼力较小,以便充分发挥弹性元件的弹性作用,缓和冲击。这时,弹性元件起主要作用。 (2) 在悬架伸张行程中(车桥和车架相互远离),减振器阻尼力应大,迅速减振。 (3) 当车桥(或车轮)与车桥间的相对速度过大时,要求减振器能自动加大液流量,使阻尼力始终保持在一定限度之内,以避免承受过大的冲击载荷。 在汽车悬架系统中广泛采用的是筒式减振器,且在压缩和伸张行程中均能起减振作用叫双向作用式减振器,还有采用新式减振器,它包括充气式减振器和阻力可调式减振器。

1. 活塞杆; 2. 工作缸筒; 3. 活塞; 4. 伸张 阀;5. 储油缸筒; 6. 压缩阀;7. 补偿阀; 8. 流通阀;9. 导向座;10. 防尘罩;11. 油 封 双向作用筒式减振器示意图 双向作用筒式减振器工作原理说明。在压缩行程时,指汽车车轮移近车身,减振器受压缩,此时减振器内活塞3向下移动。活塞下腔室的容积减少,油压升高,油液流经流通阀8流到活塞上面的腔室(上腔)。上腔被活塞杆1占去了一部分空间,因而上腔增加的容积小于下腔减小的容积,一部分油液于是就推开压缩阀6,流回贮油缸5。这些阀对油的节约形成悬架受压缩运动的阻尼力。减振器在伸张行程时,车轮相当于远离车身,减振器受拉伸。这时减振器的活塞向上移动。活塞上腔油压升高,流通阀8关闭,上腔内的油液推开伸张阀4流入下腔。由于活塞杆的存在,自上腔流来的油液不足以充满下腔增加的容积,主使下腔产生一真空度,这时储油缸中的油液推开补偿阀7流进下腔进行补充。由于这些阀的节流作用对悬架

粘滞阻尼器工作原理及组成

粘滞阻尼器的工作组成及原理 传统抗震方法是依靠构件的弹塑性变形并吸收地震能量来实现的。这种传统设计方法在很多时候是有效的,但也存在着一些问题。随着建筑技术的发展,房屋高度越来越高结构跨度越来越大,而构件端面却越来越小,已经无法按照传统的加大构件截面或加强结构刚度的抗震方法来满足结构抗震和抗风的要求。 粘滞阻尼器是一种速度相关型的耗能装置,它是利用液体的粘性提供阻尼来耗散振动能量,以粘滞材料为阻尼介质的,被动速度型耗能减震(振)装置。主要用于结构振动(包括风、地震、移动荷载和动力设备等引起的结构振动)的能量吸收与耗散、适用于各种地震烈度区的建筑结构、设备基础工程等,安装、维护及更换都简单方便。 粘滞阻尼器由缸筒、活塞、粘滞流体和导杆等组成缸筒内充满粘滞流体,活塞可在缸筒内进行往复运动,活塞上开有适量的小孔或活塞

与缸筒留有空隙。当结构因变形使缸筒和活塞产生相对运动时,迫使粘滞流体从小孔或间隙流过,从而产生阻尼力,将振动能量通过粘滞耗能消掉,达到减震的目的。 粘滞阻尼器的特点是对结构只提供附加阻尼,而不提供附加刚度,因而不会改变结构的自振周期。其优点是1.经济性好,可减少剪力墙、梁柱配筋的使用数量和构件的截面尺寸。2.适用性好,不仅能用于新建土木工程结构的抗震抗风,而且能广泛应用于已有土木工程结构的抗震加固或震后修复工程。3.安装了粘滞性耗能器的支撑不会在柱端弯矩最大时给柱附加轴力。4维护费用低。缺点是暂无。粘滞性阻尼器的最新进展是与磁流变体智能材料的联合使用,通过联合拓宽了粘滞性耗能器的发展空间。 粘滞阻尼器通常和支撑串连后布置于结构中,不同的安装形式直接影响到阻尼器的工作效率。到目前为止,实际工程的应用中多采用斜向型和人字型安装方式,这是由于其构造简单、易于装配。剪刀型和肘节型安装方式能把阻尼器两端的位移放大,即起到把阻尼器的效果放大的作用,具有更好的消能能力,但因受到安装机构造型和施工工艺复杂的限制,运用较少。

阻尼器在结构抗震中的应用

阻尼器在结构抗震中的应用研究 摘要:本文介绍了结构抗震控制理论及主要控制形式,阐述了粘弹性阻尼器的耗能减震原理和有限元计算算模型,并且运用midas软件对一五层钢筋混凝土框架结构设置粘弹性阻尼器前后进行模拟分析,通过对其动力性能进行对比,对抗震性能进行了评估,为粘弹性阻尼器在结构抗震中的应用提供参考。 关键词:阻尼器 ;抗震; 控制 abstract: this paper introduces the structural seismic control theory and control form, elaborated the viscoelastic damper energy dissipation principle and finite element calculation model, and use midas software to one five storey reinforced concrete frame structure with viscoelastic dampers and simulation analysis, based on its dynamic performance are compared, the seismic performance is evaluated, for viscoelastic dampers for seismic application provides the reference. key words: damper; seismic; control 中图分类号:tu352.1+1文献标识码:a 文章编号:2095-2104(2012) 1 前言 地震是危及人民生命和财产的突发式自然灾害。因此,结构控制在结构工程中的应用越来越重要。结构振动控制(简称为结构控

飞行器结构动力学-期末考试(大作业)题目及要求

《飞行器结构动力学》 2019年-2020年第二学年度 大作业要求 一、题目: 1.题目一:请围绕一具体动力学结构,给出其完整的动力学研究报告, 具体要求: (1)作业最终上交形式为一个研究报告。 (2)所研究结构应为实际科学发展或生产生活中的真实结构,可对其进行一定程度的简化,但不应过分简化,不可以为单自由度 系统,若为多自由度系统,其自由度应不少于5。 (3)所研究内容应当围绕本学期所讲授的《飞行器结构动力学》课程内容展开,可以包含但不限于:不同研究方法的对比,对结 构动力学响应的参数影响研究,针对结构动力学响应的结构优 化设计,动力学研究方法的改进,结构动力特性影响机理分析 等。 (4)研究报告应至少包含8部分内容:摘要,关键词,引言,问题描述,分析方法,研究结果,结论,参考文献等,正文字号为 小四,1.5倍行距,篇幅不短于3页,字数不少于1500字。 2.题目二:请拟出一份《飞行器结构动力学试卷》并给出正确答案和评 分标准,具体要求: (1)作业最终上交形式为一份考试卷答案及评分标准,具体形式及格式参考附件。 (2)题目应当围绕本学期所讲授的《飞行器结构动力学》课程内容展开,且明确合理无歧义。 (3)卷面总分100分。其中,考察单自由度系统知识点题目应占总分值的30%~40%;考察多自由度系统知识点题目应占总分值的 15%~30%;考察连续弹性体系统知识点题目应占总分值的 15%~30%。考察结构动力学的有限元方法及数值解法占

15%~30%。 (4)试卷可以包含的题目类型为:单选题,填空题,简答题和计算题四类,题目类型应不少于2种,不多于这4种。其中计算题 为必含题目,且分值应不少于40%。 (5)每道题均应给出分值、标准答案和评分标准。 分值的安排应当合理并清晰,需针对每道具体题目给出。 标准答案应当正确无误,且清晰明确,包含整个分析或计算的流程步骤。针对概念或问答等类型题目,应当给出该问题及 答案的来源,并附图以证实。针对计算类型题目,应给出至少 两种不同计算方法及其相应的计算步骤和结果,以证实该结果 的正确性。 评分标准应当合理并清晰地给出标准答案和分值的对应关系,例如:填空题应给出每一空格的分值;简答题应细化给出 题目内所有的关键内容,并给出所有关键内容各自所对应的评 判标准及分值;计算题应依据计算步骤给出每一关键步骤对应 的评判标准及分值。 二、要求 1.大作业题目有两道,请自选其一完成。 2.大作业上交截止时间为2020年6月2日晚12点,逾期则认定为缺考 无成绩。 3.大作业评定分为5个等级,分别为:优(90~100分),良(80~90分), 中等(70~80分),及格(60~70分)和不及格(60分以下)。其中由于 题目难易关系,若无抄袭情况出现,选择题目一的学生可以寻求任课 老师指导,且等级至少为良。 4.抄袭判定:上交作业若出现重复率超过30%情况则判定为抄袭,有7 天时间可以修改,修改后若仍旧为抄袭,则涉及学生均按照不及格处 理。 5.大作业相关参考资料见附件。

脉冲阻尼器原理及选型

脉动阻尼器 脉动阻尼器是一种用于消除管道内液体压力脉动或者流量脉动的压力容器。可起到稳定流体压力和流量、消除管道振动、保护下游仪表和设备、增加泵容积效率等作用。 脉动阻尼器的原理主要有两种。 1.气囊式:利用气囊中惰性压缩气体的收缩和膨胀来吸收液体的压力或者流量脉动, 此类脉动阻尼器适用于脉动频率小于7Hz的应用,因为如果频率太高则膜片或气囊来不及响应,起不到消除脉动的效果; 2.无移动部件式:利用固体介质直接拦截流体从而达到缓冲压力脉动或流量脉动的效果,此类脉动阻尼器适用于高频脉动的应用。 脉动阻尼器分类: 1.按照缓冲介质分类: 分为压缩惰性气体缓冲式和无移动部件式,其中压缩惰性气体缓冲式又分为膜片式和气囊式等,无移动部件式分为金属结构式和陶瓷结构式等: 分为三元乙丙橡胶、丁纳橡胶、氟橡胶、聚四氟、金属、陶瓷等内部材质类型; 分为单孔式和双孔式; 分为直通式和非直通式; 消除管道振动;减小压力脉动;减小流量浮动;保护下游仪器和设备;装在泵的前端,增加泵的容积效率,提高输出功率。 选择适合的脉动阻尼器,应首先根据现场实际情况和工艺要求确定所需达到的脉动消除率指标,然后根据此技术指标进行定量选型。 准确的脉动阻尼器选型应根据流量、压力、泵类型、泵转速、泵缸数、泵相位差(多级泵)、脉动消除率、应用目的、管道流体成分、管道流体密度、管道流体粘度、管道流体温度等参数综合计算和分析后确定。 通过以上参数,关键需要计算出流体的脉冲量(即1次脉冲所输送的液体体积)和脉动频率。再结合脉动消除率指标,即可初步计算出所需要的脉动阻尼器类型和容积。

例如,要求残余脉动控制在10%以内、脉冲量为1升/次、脉动频率为2次/秒,则脉动阻尼器可选用膜片式或气囊式,容积至少为10升。 根据客户不同的实际应用,最高可以达到99.9%以上的脉动消除率,即残余脉动控制在0.1%以内。 例如:用于消除管道振动推荐残余压力脉动控制在3%以内; 用于保证涡街流量计精度则推荐残余流量脉动控制在0.75%以内。 脉动阻尼器是一种压力容器,由于材料、制造技术及实际应用的限制,脉动阻尼器一般承压在500公斤/平方厘米左右(特殊应用也可以更高),耐温大约数百摄氏度。

弹簧减震器结构图解

弹簧减震器结构图解 独立悬架与非独立悬架示意图 a. 独立悬架 b. 非独立悬架 独立悬架如图所示,其两侧车轮安装于断开式车桥上,两侧车轮分别独立地与车架(或车身)弹性地连接,当一侧车轮受冲击,其运动不直接影响到另一侧车轮。非独立悬架如图所示。其两侧车轮安装于一整体式车桥上,当一侧车轮受冲击力时会直接影响到另一侧车轮上。 钢板弹簧 1-卷耳2-弹簧夹3-钢板弹簧4-中心螺栓 钢板弹簧可分为对称式钢板弹簧和非对称式钢板弹簧,对称式钢板弹簧其中心螺栓到两端卷耳中心的距离相等如图(a),不等的则为非对称式钢板弹簧如图(b)。钢板弹簧在载荷作用下变形,各片之间因相对滑动而产生摩擦,可促使车

架的振动衰减,起到减振器的作用。 扭杆弹簧 扭杆弹簧一般用铬钒合金弹簧钢制成。一端固定在车架上,另一端上的摆臂2与车轮相连。当车轮跳动时,摆臂绕扭杆轴线摆动,使扭杆产生扭转弹性变形,从而使车轮与车架的联接成为弹性联接。 空气弹簧 空气弹簧主要用橡胶件作为密闭容器,它分为囊式和膜式两种,工作气压为0.5~1Mpa。这种弹簧随着载荷的增加,容器内压缩空气压力升高,使其弹簧刚度也随之增加,载荷减少,弹簧刚度也随空气压力减少而下降,具有有理想的变刚度弹性特性。 油气弹簧简图

油气弹簧以气体(化学性质不太活泼的气体-氮)作为弹性介质,用油液作为传力介质。简单的油气弹簧(如图4-62(a)所示)不带油气隔膜。目前,这种弹簧多用于重型汽车,在部分轿车上也有采用的。 1-活塞杆2-工作缸筒3-活塞4-伸张阀5-储油缸 筒6-压缩阀7-补偿阀8-流通阀9-导向座-10-防 尘罩11-油封 横向稳定器的安装

浅谈阻尼器的类型和原理分析

广州大学 研究生文献综述论文题目浅谈阻尼器的类型 学院土木工程学院 班级名称2016级专硕一班 学号2111616149 学生姓名陆富龙 2016 年12 月18 日

关于阻尼器的类型总结 摘要:随着抗震在结构中的重要性越来越重要,高强轻质材料的采用,高层、超高层等高柔结构及特大跨度桥梁不断涌现,相关的研究也越来越多,从结构抗震到结构的减震再到结构的隔振,各种的理念层出不穷,然在抗震中,现在比较方便和比较常用的就是在建筑结构上加入阻尼器,用以吸收地震或风震产生的能量,以提高结构的抗震性能,随着科技的发展,各种阻尼器不断的更新创新,运用各种的原理来优化阻尼器,对于形式多样、要求各异的工程结构,如何在推广应用消能技术时,选择适合的阻尼器类型并进行阻尼器的合理优化设计将关系到这一技术的发展前景,具有重要的现实意义,值得进一步探讨研究。 关键词:阻尼器,类型,适用 Abstract:with the earthquake is becoming more and more important in the importance of the structure, high-strength lightweight material used, high-rise structure and extra long-span Bridges and super-tall soft, related research also more and more, from the structure seismic to structure of shock absorption and vibration isolation of the structure, various LiNianCeng out one after another, but in the earthquake, is now more convenient and more commonly used in building structures with dampers, earthquake or wind to absorb energy, to improve the seismic performance of structure, with the development of science and technology, the updating and innovation of various dampers, use all kinds of the principle to optimize damper, for a variety of forms and requirements of different engineering structure, how to promote application of energy dissipation technology, select the appropriate type of damper and the optimization of damper design will be related to the development prospects of this technology, has important practical significance and worthy of further research are discussed. Keywords:damper,type,apply

汽车减震器结构图

悬架系统中由于弹性元件受冲击产生振动,为改善汽车行驶平顺性,悬架中与弹性元件并联安装减振器,为衰减振动,汽车悬架系统中采用减振器多是液力减振器,其工作原理是当车架(或车身)和车桥间受振动出现相对运动时,减振器内的活塞上下移动,减振器腔内的油液便反复地从一个腔经过不同的孔隙流入另一个腔内。此时孔壁与油液间的摩擦和油液分子间的内摩擦对振动形成阻尼力,使汽车振动能量转化为油液热能,再由减振器吸收散发到大气中。在油液通道截面和等因素不变时,阻尼力随车架与车桥(或车轮)之间的相对运动速度增减,并与油液粘度有关。 减振器与弹性元件承担着缓冲击和减振的任务,阻尼力过大,将使悬架弹性变坏,甚至使减振器连接件损坏。因面要调节弹性元件和减振器这一矛盾。 (1) 在压缩行程(车桥和车架相互靠近),减振器阻尼力较小,以便充分发挥弹性元件的弹性作用,缓和冲击。这时,弹性元件起主要作用。 (2) 在悬架伸张行程中(车桥和车架相互远离),减振器阻尼力应大,迅速减振。 (3) 当车桥(或车轮)与车桥间的相对速度过大时,要求减振器能自动加大液流量,使阻尼力始终保持在一定限度之内,以避免承受过大的冲击载荷。 在汽车悬架系统中广泛采用的是筒式减振器,且在压缩和伸张行程中均能起减振作用叫双向作用式减振器,还有采用新式减振器,它包括充气式减振器和阻力可调式减振器。

1. 活塞杆; 2. 工作缸筒; 3. 活塞; 4. 伸张阀; 5. 储油缸筒; 6. 压缩阀; 7. 补偿阀; 8. 流通阀; 9. 导向座;10. 防尘罩;11. 油封 双向作用筒式减振器示意图 双向作用筒式减振器工作原理说明。在压缩行程时,指汽车车轮移近车身,减振器受压缩,此时减振器内活塞3向下移动。活塞下腔室的容积减少,油压升高,油液流经流通阀8流到活塞上面的腔室(上腔)。上腔被活塞杆1占去了一部分空间,因而上腔增加的容积小于下腔减小的容积,一部分油液于是就推开压缩阀6,流回贮油缸5。这些阀对油的节约形成悬架受压缩运动的阻尼力。减振器在伸张行程时,车轮相当于远离车身,减振器受拉伸。这时减振器的活塞向上移动。活塞上腔油压升高,流通阀8关闭,上腔内的油液推开伸张阀4流入下腔。由于活塞杆的存在,自上腔流来的油液不足以充满下腔增加的容积,主使下腔产生一真空度,这时储油缸中的油液推开补偿阀7流进下腔进行补充。由于这些阀的节流作用对悬架在伸张运动时起到阻尼作用。

剪切型金属抗震阻尼器价格是多少

当代建筑趋向于高大化,由钢构件、组合构件或钢筋混凝土构件组成的框架结构是建筑物中经常被采用的结构形式,为使建筑结构具有较强的抵抗地震、风荷载等外力破坏的能力,需要在框架结构中增设各类耗能装置,而剪切型金属屈服阻尼器因其经济性较好,力学性能优越,在工程中应用较多。 又被称为”金属阻尼器“,它是采用特种软钢为材料制作的一种易屈服、高耗能的结构防震(振)装置,主要利用特种软钢板材屈服后的非弹性特点来耗散地震等外部激烈输入结构中的能量,属于位移相关型消能减震(振)装置。 利用金属屈服后通过晶体内摩擦消耗能量,将低屈服点钢作为剪切板,利用其屈服强度低、延性好等优点,与主体结构相比,它能够更早进入屈服,从而可利用软钢屈服后的累积塑性变形来达到耗散地震能量的效果。 因其具有抗侧刚度大、延性比大,以及材料利用率高、经济性好、滞回曲线饱满,耗能能力强且稳定,在设计位移下循环30圈后其各项力学性能指标均未出现明显衰减等优点。 使用软钢板材具有屈服点低、坚固耐用且长期使用免维护的优点,抗震(振)性能不受温度影响,是目前各类消能减震装置中较具经济效益的产品。 目前,该产品的价格在2000元左右,根据产品力学性能指标及客户需求的不同而不同,其次,还需综合考虑建筑的功能、结构的布置、结构的周期、消能系统对主体结构的影响等

都会对阻尼器的价格造成影响。 青岛华润中心万象城项目,是集商业、餐饮娱乐、办公、酒店、公寓于一体的城市综合体项目,总建筑面积65.33万㎡,东面沿山东路侧设有高端购物中心及一栋写字楼与五星级酒店为主的塔楼,南面沿与香格里拉地块共用道路布置了购物中心的百货部分及酒店式公寓塔楼一栋、办公塔楼一栋。 该项目使用了南京大德减震科技有限公司生产的“金属阻尼器“其性能较好,可减小主体结构的损伤,其中软钢阻尼器具有稳定的滞回特性、良好的低周疲劳特性、不受环境温度的影响等优势,了解具体的价格是多少,可咨询:南京大德减震科技有限公司进行了解,将实际需求提供给相关的工作人员,会给出一份价格合理的报价。

速度型阻尼器的特点有哪些

地震具有突发性的特点,至今可预报性仍然很低,为更大限度地减少地震给人们带来的影响,房屋抗震加固必不可少,其中,速度型阻尼器可有效缓解地震对建筑结构的破坏,其特点主要体现在安全性、经济性以及技术合理性等方面。 它主要与速度大小相关,速度越快,阻尼力越大,粘滞阻尼器是速度型阻尼器的一种,当流体通过节流孔时会产生节流阻力的原理而制成,是一种与活塞运动速度相关的阻尼器。 当地震来临时,阻尼器能够最大限度的吸收和消耗地震对建筑结构的冲击能量,大大缓解了地震对建筑物结构所造成的冲击和破坏。 其减震原理如下所示: 当工程结构因振动而发生变形时,安装在结构中的粘滞阻尼器的活塞与缸筒之间发生相对运动,由于活塞前后的压力差使粘滞阻尼器流体从阻尼孔中通过,从而产生阻尼力,耗散外界输入机构的振动能量,达到减轻结构振动的目的。 特点和优势主要有: 安全性: 消能减震,抗震结构体系由于特别设置非承重的消能构件(消能支撑,消能剪力墙等消能构件)或消能装置,迅速衰减结构的地震反应并保护主体结构和构件免遭破坏,以确保结构的安全。

经济性: 消能减震,抗震结构是通过“柔性消能”的途径减少结构的地震反应,因而可以减少剪力墙的设置,其抗震安全反而提高。 技术合理性: 消能减震,抗震结构则通过设置消能杆件和减震装置,在出现变形时,大量迅速地消耗能量,保护主体结构的安全,结构越高,越柔,消能减震,抗震效果越显著。 上述内容仅供参考,如有需要,可咨询专业的生产厂家:南京大德减震科技有限公司或者登陆公司官网进行详细的了解,会有专业人员为你解答,专业从事减隔震产品研发及制造的企业,提供专业的工程减隔震技术咨询、各类减隔震产品的生产、试验、销售、安装、售后服务等一体化服务,拥有专利二十余项,获得质量管理体系认证,国家高新技术企业,江苏省研究生工作站,参与过奥林匹克工程等多项国家重点工程的方案设计、产品制造、安装、售后等工作。

西北工业大学2007至2008第二学期飞行器结构动力学期末考试

至学年第二学期飞行器结构动力学期末考试试题2008西北工业大学2007诚信保证 本人知晓我校考场规则和违纪处分条例的有关规定,保证遵守考场本人签字:规则,诚实做人。 编号:成西北工业大学考试试题(卷)绩 学年第二学期2007-2008 飞行器结构动力学学时开课学院航天学院课程 考试日期2008年6月考试时间小时考试形式()()卷 名姓号考生班级学 一、填空题(共20分) 1、振动系统的固有频率,当刚度一定时,随质量的增大而________;当质量一定时,随刚度的增大而________。 2、系统的初始条件和外激励对系统的固有频率________影响。 β_________时隔振才3.对于弹簧阻尼隔振系统,不论阻尼大小,只有当频率比有效果,弹簧阻尼隔振器在低频区(相对系统固有频率)对隔振________;当频率比ββ_________;但在频率比以后,传递率曲线无穷大时,传递率趋于________βζ增大而________。;__________ 当频率比_________时,传递率随阻尼比 二、简答题(共10分) 1、(5分)简述影响结构动力学分析模型的主要因素及有限元模型的常见模型。

2、(5分)简述位移展开定律。 yYωt,,前轮轴上下运动sin=飞机在跑道上降落滑行的简化模型如图三、(10分)1mkc=5880s·,阻尼系数=294kN/m已知质量N/m=2940kg,弹簧刚度,路面的y=10sin30t(激励cm)(位移),求质量上下振动的振幅。 共3页第1页 图 1 四、(15分)如图2所示导弹头部安装带有减振装置的仪器组件。当垂直发 射时,导弹有随时间直线增加的加速度。其中为常数。如果该组件质量,求发射时组件相对弹体支承板的相对位移和组件的绝对加速度时间函数。为 阻尼忽略不计。 1 仪器组件 2 支承座 图2 带有仪器的弹头示意图 五、(20分)三个质量由两根弹性梁对称的连结在一起,可粗略作为飞机的简 化模型(如图3)。设中间的质量为,两端的质量各为,梁的横向刚度为, 梁本身质量可略去不计,,忽略阻尼。只考虑各个质量沿铅垂方向的运动,初 =[1,0,-1],=[0,0,0],求系统的响应,设=。

剪切型阻尼器是什么

在抗震减震方面,经常会用到剪切型阻尼器,利用特种软钢板材屈服后的非弹性特点来耗散地震等外部激烈输入结构中的能量,属于位移相关型消能减震(振)装置,使用软钢板材具有屈服点低、坚固耐用且长期使用免维护的优势,抗震(振)性能不受温度影响。 金属阻尼器是将低屈服点钢作为剪切板,利用其屈服强度低、延性好等优点,与主体结构相比,它能够更早进入屈服,从而可利用软钢屈服后的累积塑性变形来达到耗散地震能量的效果。 具有延性比大、抗侧刚度大,以及材料利用率高、滞回曲线饱满,耗能能力强且稳定,在设计位移下循环30圈后其各项力学性能指标均未出现明显衰减等优势,根据使用时与主体结构连接方式不同可分为三种类型:支撑式MYD、墙式MYD和连梁型MYD。 其特点主要有: 1、结构简约、外形美观、对称紧凑、施工安装简便。 2、耐久性能好,免维护。 3、软钢元件材质消能直接,不借助其他辅助材料。 4、具备双向耗能能力,在主耗能方向具有非常好的耗能能力,同时在垂直于主耗能方

向的水平方向也具有一定的耗能能力。 5、屈服前增加结构刚度,屈服后为结构增加滞回阻尼耗能能力。 6、布置在结构层间。当结构发生层间变形时,阻尼器即发挥滞回耗能作用。 7、产品力学性能稳定,满足建筑使用寿命内正常使用要求。 上述内容仅供参考,了解更多这方面的信息,可咨询:南京大德减震科技有限公司进行详细的了解,该公司专业从事减隔震产品研发及制造,以市场为导向,提供专业的工程减隔震技术咨询、各类减隔震产品的生产、试验、销售、安装、售后服务等一体化服务,拥有专利二十余项,拥有丰富的减震产品研发制造经验,参与过奥林匹克工程多项国家重点工程的方案设计、产品制造、安装、售后等工作。

建筑消能减震-阻尼器

一、消能减震结构的发展与应用: 利用阻尼器来消能减震并不是什么新技术,在航天航空、军工枪炮等行业中早已得到应用。从20世纪70年代后,人们开始逐步地把这些技术专用到建筑、桥梁、铁路等工程中。 在美国,20世纪80年代开始,美国东西两个地震研究中心等单位做了大量试验研究,发表了几十篇有关论文。90年代美国科学基金会和土木工程协会组织了两次大型联合,给出了权威性的试验报告,供工程师参考。 在我国,1997年,沈阳市政府大楼的抗震加固中首次采用了摩擦耗能装置,其后北京饭店、北京火车站和北京展览馆等多座建筑中应用消能减震技术。 在日本,目前已有超过100多栋的建筑物采用消能减震技术。 现代高层建筑日益增多,结构受地震和风振影响十分明显,减小结构所受的地震和风振反应,成为结构设计的一个重要方面。消能减震阻尼器,通过增加结构阻尼,耗散结构的振动能量来达到减小结构所受振动。 (1)“阻尼”是指任何振动系统在振动中,由于外界作用或系统本身固有的原因引起的振动幅度逐渐下降的特性,以此一特性的 量化表征。 (2)《高层建筑混凝土结构技术规程》JGJ3-2010中: 2.1.1 高层建筑:10层及10层以上或房屋高度大于28m的住宅 建筑和房屋高度大于24米的其他高层民用建筑。

(3)《民用建筑设计通则》GB50352-2005中: 3.1.2建筑高度大于1OOm的民用建筑为超高层建筑。 二、阻尼器耗能减震原理: 耗能减震的原理可以从能量的角度来描述。 传统结构:Ei =Er+Ed+Es 耗能结构:Ei =Er+Ed+Es+Ea Ei为地震时输入结构的总能量; Er为结构在地震过程中存储的动能和弹性应变能; Ed为结构本身阻尼消耗的能量; Es为结构产生弹塑性变形吸收的能量; Ea为耗能装置消耗的能量; (其中Er为能量转换,并不是能量的消耗。) (1)传统结构中: 构件在利用其自身弹塑性变形消耗地震能量的同时,构件本身将遭到损伤甚至破坏。 (2)在消能减震结构中: 耗能(阻尼)装置在主体结构进入耗能状态前率先进入耗能工作状态,耗散大量输入结构体系的地震、风振能量,则结构本身需消耗的能量很少,主体结构反应将大大减小,从而有效地保护了主体结构,使其不再受到损伤或破坏。 三、阻尼器的种类: 阻尼器种类繁多,我国将其分为位移相关型和速度相关型。

新型摩擦阻尼器在建筑结构抗震的应用

新型摩擦阻尼器在建筑结构抗震的应用 [摘要]提出了一种新型摩擦阻尼器,构造简单、工作机理明确,能够提供随着位移变化而变化的摩擦力,给出了连续性滞回模型描述其力学性能,进行了新型摩擦阻尼器和普通摩擦阻尼器的非线性比较和分析,结果表明:在不同地震波作用的情况下,采用本文提出的新型摩擦阻尼器对体系位移和加速度控制效果最佳。 [关键词]摩擦阻尼器;滞回模型;振动控制;抗震

传统的建筑结构抗震设计理念是通过增大结构自身的抗震性能(强度、刚度或延性)来抵御地震作用,利用结构自身储存或者耗散输入的能量,这种方法不具备自我调节与控制的能力[1]。20世纪70年代学者将振动控制理念引入土木工程领域,在结构振动控制理论、方法以及工程应用等方面均取得了大量成果,理论实践表明,结构振动控制能有效减小结构在外荷载作用下的反应和损失,是一种有效的抗震减灾技术。按照是否需要外部能量输入可以对结构振动的控制分为主动控制、被动控制、两者结合控制。主动控制通过对结构加设消能装置或者将结构构件设计为消能构件,通过消能装置和结构共同作用来吸收或者耗散输入能量,成为目前结构控制领域关注的热点。常用的耗能装置有位移型阻尼器、速度型阻尼器和混合型阻尼器。摩擦阻尼器属于位移型阻尼器,具有构造简单、耗能能力强等优点,成为建筑结构被动控制领域常用的耗能装置。近40多年来,国内外研究人员针对摩擦耗能器开展了大量研究,研发出的摩擦耗能器主要有:普通摩擦耗能器、Pall耗能器、摩擦剪切铰耗能器、EDR摩擦耗能器、多级摩擦耗能器、摩擦复合耗能器。多数摩擦耗能器是位移型消能装置,只有在外力作用超过起滑力之后才产生滑动实现耗能,在运动过程中正压力和摩擦面系数保持不变。消能效果与起滑力设定具有密切联系,起滑力过大则耗能器不产生滑动,消能为零,可能会增大结构内力;起滑力过小,可能小震或者风振作用下耗能器就起滑,虽然滑动位移较大,但耗能效果欠佳。传统摩擦消能器不能根据结构的对作用力反应,实现对结构自有特性的改变,在结构振动控制领域具有一定局限性[2]。早在1990年Kobri便提出了结构半主动变刚度控制方法[3];2006年我国学者赵东等提出了一种可控变力单向摩擦阻尼器,利用振源位移反馈信号进行主动控制[4];2010年,王茜茜等提出了一种具有简单控制律的Off-On

相关文档
最新文档