影响硫酸铵结晶的因素

影响硫酸铵结晶的因素

pH数值对硫酸铵晶形影响较大,在强酸溶液中生成碎小的针状晶体,在中性的碱性溶液中晶体的直径减小,在pH5~6时弱酸性介质中生成比较大的晶体。杂质对硫酸铵晶形的影响:Fe+3会减速结晶的速度,在溶液中的浓度到0.1%会促使硫酸铵晶体变长,而在较高的浓度时生成针状晶体;Pb+2会促使大粒硫酸铵晶体析出;Mn+2会促进晶核生成,有它们存在的时候硫酸铵结晶为粗大的片状晶体;Zn离子也能促使生成比较完善的硫酸铵晶体,颗粒较圆,尺寸增大;另外,制取的硫酸中不可避免的也含有一部分的杂质,它们对产品结晶也会产生影响,杂质铁和铵因为生成胶态氢氧化物,从而附着于硫酸铵晶体表面上,它们在结晶器里促使结晶的过程变的复杂。

硫酸铵废水MVR蒸发结晶

石家庄博特环保科技有限公司 含硫酸铵废水蒸发浓缩结晶分离 技术方案 编制: 校核: 审核: 批准: 二零一四年十一月

含硫酸铵废水蒸发浓缩结晶分离技术方案 一、蒸发器选型简述 本设计方案针对含硫酸铵废水,采用MVR蒸发装置。硫酸铵废水要求蒸发结晶,装置分两部分第一部分用降膜蒸发器进行蒸发浓缩,第二部分采用抗盐析、抗结疤堵管能力强的强制循环蒸发器。 由于硫酸铵具有强腐蚀性,长期运转考虑,与物料接触部分采用316L不锈钢,其余采用碳钢。 二、计算依据 含硫酸铵废水处理量及组分:含硫酸铵废水处理量1.5t/h,其中硫酸铵6%,其余成分为水。 三、主要工艺参数

四、工艺流程简介 4.1原液准备系统 工厂产生的含盐废水流入原液池,原液池起到储存、调节原液的作用,满足废水蒸发处理设备的连续稳定运行。原液池配备有原液提升泵,原液提升泵将含盐废水均匀输送至蒸发处理系统,调节原液泵后的控制阀门保持原液提升量与蒸发量的平衡。 4.2 二次蒸汽及压缩蒸汽系统 经开始生蒸汽在加热室经过加热直至产生足量的二次蒸汽后关闭生蒸汽阀门,降膜蒸发器与强制循环蒸发器加热室产生的二次蒸汽经过蒸汽压缩机压缩后产生温度及压力都提高的压缩蒸汽。压缩蒸汽分配到降膜蒸发器和强制循环蒸发器的加热室进行加热。加热后的压缩蒸汽形成的冷凝水进入预热器对原液进行预热。 4.3 料液系统 含盐废水经预热器加热后进入降膜蒸发器蒸发浓缩到45%后进入强制循环蒸发器蒸发结晶然后经出料泵抽出料液进入旋液分离器中浓缩分离,然后排入储料器中收集,最后排入离心机离心分离。 4.4事故及洗罐 系统工作出现事故及运转过程中洗罐时,首先停止进料,将蒸发设备中的母液排净。洗罐水用冷凝水储池的水,洗罐完毕后,将洗罐水排掉,初次洗罐水排入原液池,排空蒸发罐后,首先将部分母液通过原液泵进入蒸发罐,然后通过原液泵补充加入原液,使蒸发罐中的液位满足工艺要求。

不同温度下硫酸铵饱和度计算表

在0℃硫酸铵终浓度,% 饱和度 硫酸铵初浓度,%饱和度 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 每100ml 溶液加固体硫酸铵的克数 0 10.6 13.4 16.4 19.4 22.6 25.8 29.1 32.6 36.1 39.8 43.6 47.6 51.6 55.9 60.3 65.0 69.7 5 7.9 10.8 13.7 16.6 19.7 22.9 26.2 29.6 33.1 36.8 40.5 44.4 48.4 52.6 57.0 61.5 66.2 10 5.3 8.1 10.9 13.9 16.9 20.0 23.3 26.6 30.1 33.7 37.4 41.2 45.2 49.3 53.6 58.1 62.7 15 2.6 5.4 8.2 11.1 14.1 17.2 20.4 23.7 27.1 30.6 34.3 38.1 42.0 46.0 50.3 54.7 59.2 20 0 2.7 5.5 8.3 11.3 14.3 17.5 20.7 24.1 27.6 31.2 34.9 38.7 42.7 46.9 51.2 55.7 25 0 2.7 5.6 8.4 11.5 14.6 17.9 21.1 24.5 28.0 31.7 35.5 39.5 43.6 47.8 52.2 30 0 2.8 5.6 8.6 11.7 14.8 18.1 21.4 24.9 28.5 32.3 36.2 40.2 44.5 48.8 35 0 2.8 5.7 8.7 11.8 15.1 18.4 21.8 25.4 29.1 32.9 36.9 41.0 45.3 40 0 2.9 5.8 8.9 12.0 15.3 18.7 22.2 25.8 29.6 33.5 37.6 41.8 45 0 2.9 5.9 9.0 12.3 15.6 19.0 22.6 26.3 30.2 34.2 38.3 50 0 3.0 6.0 9.2 12.5 15.9 19.4 23.0 26.8 30.8 34.8 55 0 3.0 6.1 9.3 12.7 16.1 19.7 23.5 27.3 31.3 60 0 3.1 6.2 9.5 12.9 16.4 20.1 23.1 27.9 65 0 3.1 6.3 9.7 13.2 16.8 20.5 24.4 70 0 3.2 6.5 9.9 13.4 17.1 20.9 75 0 3/2 6.6 10.1 13.7 17.4 80 0 3.3 6.7 10.3 13.9 85 0 3.4 6.8 10.5 90 0 3.4 7.0 95 0 3.5 100 0

影响熔点的因素(建文)

第五节聚合物的结晶热力学 一、结晶聚合物的熔融特点 结晶聚合物的熔融过程与小分子晶体的异同: 相同点:都是一个相转变的过程。 不同点:小分子晶体在熔融过程,体系的热力学函数随温度的变化范围很窄,一般只有℃左右,可名符其实地称之为熔点。结晶聚合物的熔融过程,呈现一个较宽的熔融温度范围,即存在一个“熔限”。一般将其最后完全熔融时的温度称为熔点。 二、分子结构对熔点的影响 聚合物的熔融过程,从热力学上来说,它是一个平衡过程,因而可用以下的热力学函数关系来描述: 在平衡时,,则有 凡是分子结构有利于增加分子间或链段间的相互作用力的,则在熔融过程中增加,而使熔点升高。增加高分子链内旋转的阻力,使高分子链比较僵硬,则在熔融过程中构象变化较小,即较小,也使熔点升高。 (一)分子间作用力 通过在主链或在侧链上引入极性基团或形成氢键,则可使增大,熔点提高。 例如,主链基团可以是酰胺。酰亚胺。氨基甲酸酯。脲,这些基团都易在分子间形成氢键,从而使分子间的作用力大幅度增加,熔点明显提高。

分子链取代基的极性也对分子间的作用力有显著影响。 例如,在聚乙烯(℃)分子链上取代了(等规聚丙烯,℃)、(聚氯乙烯,=℃)和(聚丙烯晴,℃),随取代基的极性增加,熔点呈递升的趋势。 (二)分子链的刚性 增加分子链的刚性,可以使分子链的构象在熔融前后变化较小,即变化较小,故使熔点提高。 一般在主链上引入环状结构,共轭双键或在侧链上引入庞大的刚性取代基均能达到提高熔点的追求。 (三)分子链的对称性和规整性 具有分子链对称性和规整性的聚合物,在熔融过程所发生的变化相对地较小,故具有较高的熔点。 例如,聚对苯二甲酸乙二酯的为℃,而聚间苯二甲酸乙二酯的仅为℃。聚对苯二甲酰对苯二胺()的为℃,而聚间苯二甲酰间苯二胺的仅为℃。 通常反式聚合物比相应的顺式聚合物的熔点高一些,如反式聚异戊二烯(杜仲胶)为℃,而顺式聚异戊二烯的为℃。 等规聚丙烯的分子链在晶格中呈螺旋状构象,在熔融状态时仍能保持这种构象,因而熔融熵较小,故熔点较高。 三、结晶条件对熔点的影响 (一)晶片厚度与熔点的关系 晶片厚度对熔点的这种影响,与结晶的表面能有关。高分子晶体表面普遍存在堆砌较不规整的区域,因而在结晶表面上的链将不对熔融热作完全的贡献。

影响结晶的因素结晶

影响结晶的因素结晶

影响结晶的因素主要有以下几点: 1、浆料的过饱和度,这个主要由温度来控制,温度越低过饱和度越低。过饱和度越大,则,产生晶核越多,结晶体粒径越小。 2、停留时间,时间越长,则产生的结晶体粒径越大。停留时间与液位有关,液位越高,停留时间越强。 3、容器的搅拌强度,搅拌越强,容易破碎晶体,结晶体粒径越小 4、杂质成分,杂质成分较多,则比较容易形成晶核,结晶体粒径越小。 给一一偏关于结晶理论的文章: 结晶及其原理 结晶是固体物质以晶体状态从蒸汽、溶液或熔融物中析出的过程。在化学工业中,常遇到的情况是从溶液及熔融物中使固体物质结晶出来。 结晶是一个重要的化工过程,为数众多的化工产品及中间产品都是以晶体形态出现,如磷肥生产、氮肥生产、纯碱生产、盐类生产、络合物的沉析、有机物生产及胶结材料的固化等。这是因为结晶过程能从杂质含量相当多的溶液中形成纯净的晶体(形成混晶的情况除外);此外,结晶产品的外观优美,且可在较低的温度下进行。对许多物质来说,结晶往往是大规模生产它们的最好又最经济的方法;另一方面,对更多的物质来说,结晶往往是小规模制备纯品的最方便的方法。结晶过程的生产规模可以小至每小时数克,也可以大至每小时数十吨,有效体积达300m3以上的结晶器已不罕见。

近期在国际上溶液结晶的新进展主要表现在三个方面。 (1)在生物化学的分离过程中广泛采用了溶液结晶技术,如味精、蛋白质的分离与提取等。 (2)在连续和间歇结晶过程中,广泛地应用了计算机辅助控制与操作手段,对于间歇结晶过程借助CAC实现最佳操作时间表,控制结晶器内过饱和度水平,使结晶的成核与结垢问题减低到最少;对于连续结晶过程,则藉以连续控制细晶消除,以缓解连续结晶过程固有的非稳定行为——CSD周期振荡问题,稳定结晶主粒度。 (3)结晶器设计模型的最佳化。由于结晶过程是一个复杂的传热、传质过程,反应结晶(或称反应沉淀结晶过程)尤甚。在不同的物理(流体力学等)化学(组分组成等)环境下,结晶过程的控制步骤可能改变,反映出不同的结晶行为,均使结晶过程数学模型复杂化。但目前仍以使用粒数衡算模型及经验结晶动力学方程联立求解,进而建立设计模型为主。 对于不同的结晶物系,产生过饱和度的方法可能不同,可以是冷却、蒸发、盐析、加压或双相萃取等。为了适应这些不同方法的特殊要求,在国际工业结晶界已经开发出各种型式的结晶器,结构不断更新,多达30余种。实践证明,无论对于连续结晶或间歇结晶过程,细晶消除对于保证结晶产品质量都是非常有效的手段,利用它可以有效地实现结晶产品粒度分割的目的,获取指定粒度分布的结晶。实践证明,结晶器内流体力学情况是异常重要的因素,它直接影响结晶器内过饱和度水平的分布,即影响成核、成长动力学、结垢、粒度分布宽度等,近代开发的新型结晶器皆考虑了这些因素。天津大学化工系所开发的用热熔法自青海盐湖光卤石提取KCl的结晶流程中,使用了DTB型结晶器,该结晶器具有特殊W型底,可消除死区,所具有的导流筒及特制搅拌桨可保证良好均匀的流体力学状态,同时还具有消除细晶的循环。 其它结晶过程如电子元件制造中所需的单晶制取,在国外也发展迅速,而且有

硫酸铵分级沉淀

一,基本原理 硫酸铵沉淀法可用于从大量粗制剂中浓缩和部分纯化蛋白质。用此方法可以将主要的免疫球从样品中分离,是免疫球蛋白分离的常用方法。高浓度的盐离子在蛋白质溶液中可与蛋白质竞争水分子,从而破坏蛋白质表面的水化膜,降低其溶解度,使之从溶液中沉淀出来。各种蛋白质的溶解度不同,因而可利用不同浓度的盐溶液来沉淀不同的蛋白质。这种方法称之为盐析。盐浓度通常用饱和度来表示。硫酸铵因其溶解度大,温度系数小和不易使蛋白质变性而应用最广。 二,试剂及仪器 1 . 组织培养上清液、血清样品或腹水等 2. 硫酸铵(NH 4 )SO 4 3. 饱和硫酸铵溶液(SAS ) 4. 蒸馏水 5. PBS( 含0.2g /L 叠氮钠) 6. 透析袋 7. 超速离心机 8. pH 计 9. 磁力搅拌器 三,操作步骤 以腹水或组织培养上清液为例来介绍抗体的硫酸铵沉淀。各种不同的免疫球蛋白盐析所需硫酸铵的饱和度也不完全相同。通常用来分离抗体的硫酸铵饱和度为33% — 50% 。 (一)配制饱和硫酸铵溶液(SAS ) 1.将767g (NH 4 )2 SO 4 边搅拌边慢慢加到1 升蒸馏水中。用氨水或硫酸调到硫酸pH7.0 。此即饱和度为100% 的硫酸铵溶液(4.1 mol/L, 25 ° C ). 2.其它不同饱和度铵溶液的配制 (二)沉淀 1.样品(如腹水)20 000 ′ g 离心30 min ,除去细胞碎片; 2.保留上清液并测量体积; 3.边搅拌边慢慢加入等体积的SAS 到上清液中,终浓度为1 :1 (

4.将溶液放在磁力搅拌器上搅拌6 小时或搅拌过夜(4 ° C ),使蛋白质充分沉淀。(三)透析 1.蛋白质溶液10 000 ′ g 离心30 min (4 ° C )。弃上清保留沉淀; 2.将沉淀溶于少量(10-20ml )PBS -0.2g /L 叠氮钠中。沉淀溶解后放入透析袋对 PBS -0.2g /L 叠氮钠透析24-48 小时(4 ° C ),每隔3-6 小时换透析缓冲液一次,以彻底除去硫酸氨; 3.透析液离心,测定上清液中蛋白质含量。 四,应用提示 (一)先用较低浓度的硫酸氨预沉淀,除去样品中的杂蛋白。 1.边搅拌边慢慢加SAS 到样品溶液中,使浓度为0.5:1 (v/v) ; 2.将溶液放在磁力搅拌器上搅拌6 小时或过夜(4 ° C ); 3.3000 ′ g 离心30 min (4 ° C ),保留上清液;上清液再加SAS 到0.5:1(v/v) ,再次离心得到沉淀。将沉淀溶于PBS ,同前透析,除去硫酸氨; 4.上清液再加SAS 到0.5:1 (v/v) ,再次离心得到沉淀。将沉淀溶于PBS ,同前透析,除去硫酸氨; 5.杂蛋白与欲纯化蛋白在硫酸氨溶液中溶解度差别很大时,用预沉淀除杂蛋白是非常有效(二)为避免体积过大,可用固体硫酸氨进行盐析(硫酸氨用量参考表1 );硫酸氨沉淀法与层析技术结合使用,可得到更进一步纯化的抗体。 今天作的实验是利用硫酸铵沉淀蛋白质,从之前作过的经验知道,这一个步骤是有名的烦,要慢慢用敲的把硫酸铵缓缓的加入蛋白质溶液中。 相关的原理可以在庄荣辉学习网站中找到,与盐溶刚好相反,在蛋白质溶液中加入硫酸铵,会使得蛋白质的溶解度下降,因而沉淀出来。因为硫酸铵所解离的离子容很大,所带的电子数也多(NH4+, SO42-),因此当其溶入水中时,会吸引大量水分子与这些离子水合。 蛋白质分子表面多少有一些较不具极性的区域,水分子会在这些非极性区的表面聚集,形成类似『水笼』的构造(请见下图),以便把蛋白质溶入水中。一旦蛋白质溶液加入硫酸铵,后者吸引了大量水分子,使水笼无法有效隔离蛋白质的非极性区,造成这些非极性区之间的吸引,因而沉淀下来。因此,分子表面上若有越多的非极性区域,就越容易用硫酸铵沉淀下来。 在计算所添加的硫酸铵的重量方面,找到了一个不错的网站——硫酸铵计算机 这个网页上可以靠着输入实验温度、溶液体积、想要到达的百分浓度以及初始的百分浓度这四个数值,就可以得到需要添加的硫酸铵克数,以及在加入固体硫酸铵后所增加的体积,算是一个很不错的网站。 此外另一个比较值得提的,是我有用两种方式加入硫酸铵,第一种是固体的硫酸铵模碎加入,另一种是将硫酸铵溶成饱和溶液再加入,各有各的优缺点,比较如下: 1.造成蛋白质变质的程度:固体的硫酸铵>硫酸铵饱和溶液 利用硫酸铵饱和溶液真的超棒,滴入的速度可以很快而不造成变质(没试过用倒入的)。不像固体的硫酸铵只能磨碎慢慢加入,速度一快蛋白质就坏了(溶液有致密的白色气泡产生)。 2.操作的容易度:硫酸铵饱和溶液>>固体的硫酸铵 固体硫酸铵最大的缺点就是操作不容易,要一直敲敲敲又不能太快,所以当你要溶解的蛋白质很多时,这是很累的步骤。然而硫酸铵饱和溶液比较麻烦只有在配制部分,要先加热让它饱合后,回到操作温度让它过饱和,最后用滤纸把硫酸铵结晶去掉。

硫酸铵浓度表

附表一 1.调整硫酸铵溶液饱和度计算表(0℃) 在0℃硫酸铵终浓度,% 饱和度 硫酸铵初浓度,%饱和度 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 每100ml 溶液加固体硫酸铵的克数 0 10.6 13.4 16.4 19. 4 22.6 25. 8 29. 1 32.6 36. 1 39.8 43. 6 47.6 51. 6 55. 9 60.3 65. 69.7 5 7.9 10.8 13.7 16. 6 19.7 22. 9 26. 2 29.6 33. 1 36.8 40. 5 44. 4 48. 4 52. 6 57.0 61. 5 66.2 10 5.3 8.1 10.9 13. 9 16.9 20. 23. 3 26.6 30. 1 33.7 37.4 41. 2 45. 2 49. 3 53.6 58. 1 62.7 15 2.6 5.4 8.2 11. 1 14.1 17.2 20. 4 23.7 27.1 30.6 34. 3 38. 1 42. 46. 50.3 54. 7 59.2 20 0 2.7 5.5 8.3 11.3 14. 3 17.5 20.7 24. 1 27.6 31. 2 34. 9 38.7 42. 7 46.9 51. 2 55.7 25 0 2.7 5.6 8.4 11. 5 14. 6 17.9 21. 1 24.5 28. 31. 7 35. 5 39. 5 43.6 47.8 52.2 30 0 2.8 5.6 8.6 11. 7 14.8 18. 1 21.4 24. 9 28. 5 32. 3 36. 2 40.2 44. 5 48.8 35 0 2.8 5.7 8.7 11.8 15. 1 18.4 21. 8 25. 4 29. 1 32. 9 36.9 41. 45.3 40 0 2.9 5.8 8.9 12. 15.3 18. 7 22. 2 25. 8 29. 6 33.5 37.6 41.8 45 0 2.9 5.9 9.0 12.3 15. 6 19. 22. 6 26. 3 30.2 34. 2 38.3 50 0 3.0 6.0 9.2 12. 5 15. 9 19. 4 23. 26.8 30. 8 34.8 55 0 3.0 6.1 9.3 12. 7 16. 1 19. 7 23.5 27.3 31.3 60 0 3.1 6.2 9.5 12. 9 16. 4 20.1 23. 1 27.9 65 0 3.1 6.3 9.7 13. 2 16.8 20. 5 24.4 70 0 3.2 6.5 9.9 13.4 17.1 20.9 75 0 3/2 6.6 10.1 13. 7 17.4 80 0 3.3 6.7 10. 3 13.9

硫酸铵结晶工艺和设备

一、硫酸铵的作用与用途 硫酸铵一种优良的氮肥,适用于一般土壤和作物,能使枝叶生长旺盛,提高果实品质和产量,增强作物对灾害的抵抗能力,可作基肥、追肥和种肥。能与食盐进行复分解反应制造氯化铵,与硫酸铝作用生成铵明矾,与硼酸等一起制造耐火材料。加入电镀液中能增加导电性。也是食品酱色的催化剂,鲜酵母生产中培养酵母菌的氮源,酸性染料染色助染剂,皮革脱灰剂。此外,还用于啤酒酿造,化学试剂和蓄电池生产等。还有一重要作用就是开采稀土,开采以硫酸铵作原料,采用离子交换形式把矿土中的稀土元素交换出来,再收集浸出液简单过滤分离后晒干成稀土原矿,每开采生产1吨稀土原矿约需5吨硫酸铵。 二、硫酸铵生成和制备 工业上采用氨与硫酸直接进行中和反应而得,目前用得不多,主要利用工业生产中副产物或排放的废气用硫酸或氨水吸收(如硫酸吸收焦炉气中的氨,氨水吸收冶炼厂烟气中二氧化硫,卡普纶生产中的氨或硫酸法钛白粉生产中的硫酸废液)在利用硫酸铵蒸发结晶器来结晶。也有采用石膏法制硫铵的(以天然石膏或磷石膏、氨、二氧化碳为原料)。由氢氧化铵和硫酸中和后,结晶、离心分离并干燥而得。中和法氨与硫酸约在100℃下进行中和反应,通过(硫酸铵蒸发结晶器)生成的硫酸铵晶浆液经离心分离、干燥,制得硫酸铵成品。其 2NH3+H2SO4→(NH4)2SO4回收法由炼焦炉气回收氨气,再与硫酸进行中和反应而得。 根据硫酸铵的物理性质硫酸铵蒸发结晶器采用强制蒸发结晶器或DTB结晶器,若硫酸铵溶液含有氯离子,在设备选材上则需要加以注意。考虑硫酸铵蒸发结晶器设备质量保证期,材质选择主要根据硫酸铵的物理性质,硫酸铵蒸发结晶器采用强制蒸发结晶器或DTB结晶器。 考虑硫酸铵蒸发结晶器设备质量保证期,材质选择主要考虑结晶器设备的使用期限,由于溶液含有氯离子,设备材质需要耐氯离子腐蚀,硫酸铵溶液为酸性大于5小于6.5,加热室可以用钛管,酸性小于5加热室就要用石墨,分离室用钛复合板或玻璃钢,硫酸铵溶液为酸性大于6.5可以用不锈钢316L材质。

影响高分子结晶的因素及其表征

影响高分子结晶的因素及其表征在诸多影响高分子聚合物结晶能力的因素中,既有外界温度、时间与作用力等条件,又有高分子聚合物本身结构的因素。由于分子结构的不同,有能够结晶和不能结晶之分,也有易于结晶和难以结晶之分,还有熔点高低之分。 (1)化学结构的影响从分子结构来看,线型高分子聚合物、支链型高分子聚合物和交联度不大的网状结构高分子聚合物都能够 进行结晶。而体型结构的高分子聚合物,如酚醛树脂、硬质橡胶等,就根本不可能产生结晶。 大多数橡胶,如天然橡胶、聚异戊二烯橡胶、顺丁橡胶、反式聚丁二烯橡胶和氯丁橡胶等,在结构上均为有规则的立体构型,均能结晶。从高分子聚合物的结构上来看,化学结构越简单,分子链规则的或者大部分规则的就越容易产生结晶。用一般工艺合成生产的丁苯橡胶、丁腈橡胶等,由于其侧基排列不规则,链节的首尾相接的方式也无规律可言,甚至是含有一些支链结构,更使分子链的结构极不规整,所以这类橡胶不能进行结晶。使用齐格勒-纳塔催化体系而聚合的顺丁橡胶,由于其结构规整性理想就比较容易结晶。 (2)分子间作用力的影响分子间的作用力有利于将分子结合在晶体之中,从而提高了结晶的能力。 有强极性基的高分子聚合物,特别是能形成氢键的聚酰酸(即尼龙),它甚至在熔融状态时也能产生半有序区(即结晶中心)。对于橡胶类来说,以天然橡胶和氯丁橡胶相比较,后者的分子间作用力

比前者大,所以就易于结晶,熔点也比较高。 但是,如果高分子聚合物的极性太大,以致使分子链段不能有任何运动的可能性时(如纤维素),虽然其分子链本身较为规整,也不能进行结晶,这也是其柔性因素所影响的结果。 (3)分子链柔性的影响对于柔性分子链的高分子聚合物来说,柔性过小则不易转变为有序排列,也就不易结晶。 总而言之,高分子聚合物的分子结构对结晶的影响是比较复杂的,即使是结构非常类似的同类高聚物,如天然橡胶和顺式-1,4- 聚异戊二烯橡胶,它们冷冻结晶的速度和伸长结晶的速度都不一样。这可能是由于天然橡胶微观结构比较整齐,相对分子质量也比较大,有极性组分和有一部分天然杂质,致使冷冻结晶速度较快,其熔点也较高。一般天然橡胶和顺丁橡胶在低温下可以结晶,橡胶一旦结晶就会失去弹性,变得跟塑料一样。拉伸模量、剪切模量等性能剧增,延伸率、回弹性骤减。 高分子的结构规整度对其能否结晶看两个方面:内部因素,外部条件 内部因素中,立构规整度只是有利于结晶,但并不是唯一的决定因素。如侧基很大,严重影响了其结晶的能力,根本就不能排入晶格,那就自然不能结晶了。或者这个链根本就是刚性的,那即使是规整的对其结晶也是无用的。 外部因素:有些结晶速度很快的,迅速冻结,根本来不及结晶,那它自然不能结晶。

硫酸铵沉淀

硫酸铵沉淀: 有生物活性的蛋白一般在做硫胺沉淀的时候要小心一点。最保险的做法是,把硫酸铵配成饱和溶液,把蛋白溶液置于冰浴上,再把饱和硫胺溶液一滴一滴的加到你的蛋白溶液中,最好边加边搅拌,避免局部硫胺浓度过高,但搅拌的时候注意不要搅出气泡。按照你的比例加完之后,最好放冰箱静置至少2h,充分沉淀后离心即可。 4M的硫酸铵pH值为,在这个酸度下可能会有一些蛋白质变性,要小心。硫酸铵会破坏蛋白质水化层,最好是缓和地加入。边加入边搅拌,如果在磁力搅拌器上搅拌,小漩涡中心有很多泡沫就表示蛋白质变性,使得溶液粘度增加,泡沫难破,那就很难保证你的蛋白质有没有变性了。 溶解度,在一定温度下,某固态物质在100g溶剂中达到饱和状态时所溶解的质量,叫做这种物质在这种溶剂中的溶解度。固体的溶解度是指在一定的温度下,某物质在100克里达到饱和状态时所的克数,用字母s表示,其单位是“g/100g水”。在未注明的情况下,通常溶解度指的是物质在水里的溶解度。 溶液饱和度(化学) 某种溶液的饱和度是指在100g该溶液中溶质在溶液中所占质量分数.一般情况下,一种溶液的饱和度在同一温度下不会变.要想使不饱和溶液饱和度增加可以选择增加溶质.在刚好有晶体析出的时候就是溶液刚好饱和的时候.溶液饱和度不会出现100%

加固体比较好,加得越慢越好。如果加快了,会造成局部浓度过大,造成意想不到的沉淀。 硫酸铵沉淀的时候应该要注意pH值的变化,就我的实验来说,一株产淀粉酶曲霉固态发酵之后用超纯水浸泡离心,得到含有酶的上清液的pH值为,但是淀粉酶能耐受,为了去除更多杂质蛋白质,我把硫酸铵浓度调节到2摩尔每升的同时会控制pH值为,4度过夜之后离心取上清液再调节到pH值,4度放置,离心,又去除一部分杂质蛋白质,上清液直接用的疏水层析系统来纯化。 一个纤维素酶的纯化我也用类似的方法,只不过第一步是用。 硫酸铵是酸式盐,2M时pH值约为5,4M时更低,用来沉淀蛋白质的时候情况就更复杂了,所以最好知道自己需要的蛋白质的耐受情况,不要搞死了。 透析之前要选用一个不影响自己想要的蛋白质的pH值,硫酸铵沉淀和透析都要保持一致,才能使损失减少。透析时候产生的沉淀不知道是不是你想要的蛋白质,不过下次做最好谨慎一点,做我说过的预备实验。 分段盐析的方法

影响晶体习性的因素

武汉地质学院矿物教研室编 , 《结晶学及矿物学(上册)》 , 1979年04月第1版 , 第165页 2.影响晶体习性的因素 影响品体习性的主要冈素如下。 (1)成分、内部结构对矿物晶体习性起制约性的作用。 ①成分简单,对称程度高的矿物,一般成等轴状。如自然金(A u) 方铅矿(PbS)、石盐(NaCl)等。 ②品面发育服从布拉维法则,即晶体上出现的晶面为网面密度较大的晶面。如萤石常 见的品形是由八面体、立方体和菱形十二面体等单形所组成,因为这些单形网面密度较大 (加图3—2所示)。 ⑤晶脑形状对低级晶族矿物品习的影响。表3—1列出一些低级品族晶体品习与晶脑形状的相互关系的统计资料,说明低级晶族矿物晶体的形状是沿最小轴长方向延伸(轴型)。 和沿最大轴长的方向绍扁(面型)”的特征。 ④晶体习见晶面(或品带)平行结构中化学键最强的方向。例如辉锑矿sb2Ss联结成 平行c轴延伸的链,金红石结构中也存在乎行c轴延伸的[Ti063八面体链(图3—3)。因此,它们的晶体都是平行[o01]发育的柱状、针状、甚至毛发状。在硅酸盐矿物中,品体习性 常常与坚强的徒氧骨干形式密切相关。如岛状结构硅酸盐以等轴状为主,层状结构硅酸盐以片状为主,链状结构硅酸盐成乎行链发育的柱状、销状、纤维状品习。此外,习见晶面的发育还与结构中阳离子配位多面体的分布与联结方式有关,如石榴子石的主要晶带轴平行结构中的[AIO g]八面体链。 品胞大小和电负性差值也能反映出品体结构的键型对晶体习性所起的作用。如黄铁矿和方硫锰矿虽同属JJ2黄铁矿型结构,但二者品脑大小和电负性差值不同,轴长。。分别为5.42人和6.10 A,电负性差值Xj—又5i分别为o.7和1.o,黄铁矿的习性以立方体或

硫酸铵结晶

硫酸铵结晶 硫酸铵是一种易溶性的盐。0℃时,在100g水中溶解70g(NH4)2SO4,而100℃时,可溶解102g。可见,硫酸铵溶解度具有比较小的温度系数。所以用热法只能达到不大的过饱和度,硫酸铵结晶为无色晶体,斜方晶系。硫酸铵作为普通的肥料之一,引起了和正在引起研究者的注意。实际上,对它在生成沉淀时的性能进行了全面的研究。 硫酸铵不能生成很好的过饱和溶液。根据计算和实验数据,在75~95℃的温度范围内,其溶液绝对极限过饱和度应该是2~3g/100gH2O【10】, (NH4)2SO4的极限过冷度也比较高,接近硝酸钾溶液所具有的的极限过冷度。在30~50℃的温度范围内的极限过冷度的值,按冷却速度的不同而处在~℃之间。有晶种存在时,他们可降低到~℃【13】. 硫酸铵结晶通常在过饱和度不大的情况下进行。这时,无论是一次晶核生成或是二次晶核生成,都是有可能的。一次晶核生成服从于一般的理论规律【12】.硫酸铵溶液中的二次晶核生成,已经作为专门的研究课题【20】. 试验是在装有搅拌器的结晶器内进行的。采用大小不同的硫酸铵晶体作为晶种。每经过10min选取悬浮液的式样,并测定粒子大小的分布情况。 〝硫酸铵-水〞是属于所谓的第二级系统,它的特点之一是在低过饱和度时结晶。如果加入晶种量不大,则出现新的晶核。生成增补的晶核使过饱和度降低下来并趋于稳定。 在晶种量充足时,就不会出现新的晶核,筛分数据可以证明这一点。曾指出,自发生成的晶核仅仅是溶液过冷度超过℃时才开始。在硫酸铵结晶时,二次晶核生成的机理,据推断【20】是与固体粒子的相互碰撞及它们与搅拌器或结晶器表面碰撞有关。 硫酸铵结晶的动力学,在具体条件下取决于形成过饱和的速度、结晶开始并生成沉淀的过饱和度以及其它的结晶过程所需的一般条件。 按照拉尔森和穆林的意见,晶核生成的速度取决于极限过饱和度。考虑到式(3-11),可以用下式表述这个关系:N0=K N(△c)lim,式中在N 下角的0表示达到极限过饱和度时生成晶核的速度。另一方面,N0与溶液的冷却速度有关: N0

生产过程中的硫酸铵蒸发结晶以及中和结晶的主要对比分析

生产过程中的硫酸铵蒸发结晶以及中和结晶的主要对比分析 我国化工企业在生产过程中,会由于生产过程以及生产工艺的不同会出现不同的化学反应,文章主要针对生产过程中的硫酸铵的蒸发结晶以及中和结晶之间的内容进行对比和分析,希望通过文章的阐述以及分析能够让我国的化工行业在硫酸铵的生产过程中更好的选择生产工艺,同时也为我国的化工领域的发展以及创新贡献力量。 标签:硫酸铵;蒸发结晶;中和结晶;结晶器;真空;循环泵;浆料 在我国的化工领域,化学纤维以及工程用塑料的生产原料最主要还是己内酰胺。化学纤维的产品以及工程塑料的相关产品在发展以及创新过程中和我国的人民生活水平的提升有着非常重要的连带关系。近些年我国的人民生活水平在逐渐的提升,因此对于化工产品的需求也在不断的增多,这样就要求我们将己内酰胺的相关化学产品变成种类更加丰富,数量不断提升。现阶段在世界范围内生产己内酰胺最主要的生产工艺也是现阶段应用最为广泛的生产工艺为环己酮——羟胺生产路线工艺。这一生产工艺主要的技术基础就是环己酮贝克曼重排。我们在化工生产过程中的液相贝克曼重排能够在发烟硫酸的有关催化下,进行贝克曼重排化学反应,如果反应进一步和氨进行中和反应,就会得到我们化工生产中需要的已内酰胺,同时还能够得到硫酸铵。 在化工生产过程中,贝克曼重排反应之后,我们为了有效的中和重排反应产生的发烟硫酸,在生产过程中主要应用了两种生产工艺方法。第一种是进行硫酸铵的蒸发结晶;第二种是进行硫酸铵的中和结晶。蒸发结晶主要是在重排液体中导入总量20%的氨水,让两者在反应器中充分的进行中和反应,在中和反应结束后,我们进行分层处理。我们对上层的己内酰胺进行一系列的萃取以及精制得到了我们需要的成品己内酰胺;反应溶液下层的液体是含量在40%的硫酸铵,我们将一定浓度的硫酸铵经过硫酸铵泵进行输送,将其送到硫酸铵的储罐之中,之后我们经由相关的泵送至蒸发结晶器中进行蒸发结晶处理,然后经过相应的离心干燥得到我们需要的硫酸铵成品。中和结晶主要是在重排液体中适当的加入气态的氨,这样重排液体就会和气态的氨经由化学喷头进入中和晶体专用号器皿中,需要注意的是在进行中和结晶的过程中我们需要在结晶器中放置适当的水分,这样能够在中和反应过程中将水蒸发掉。让中和反应后的硫酸铵在专业的结晶器中形成晶浆,晶浆通过相应的稠厚处理;离心处理以及干燥处理得到我们需要的成品硫酸铵。这时候己内酰胺会在结晶器中的折流区域进行积聚,我们通过泵来进行抽取,然后萃取处理,精制处理得到化工生产需要的己内酰胺。 1 在化工生产过程中硫酸铵蒸发结晶的主要流程 整个硫酸铵液体的蒸发结晶需要从硫酸铵母液罐中开始。我们在化工生产过程中将40%浓度的硫酸铵液体经由硫酸铵泵进入硫酸铵的母液罐中,这样能够有效的和离心泵内流出的硫酸铵母液进行混合处理,然后,两种途径而来的硫酸铵溶液会由母液罐中的泵体进入结晶器中。由于有真空泵的帮助,结晶器内的压力

硫酸铵饱和度的常用表,聚丙烯酰胺凝胶的配制表

硫酸铵饱和度的常用表1.调整硫酸铵溶液饱和度计算表(0℃)

2.调整硫酸铵溶液饱和度计算表(25℃) 3.不同温度下饱和硫酸铵溶液的数据

聚丙烯酰胺凝胶的配制 表1 配制Tris-甘氨酸SDS-PAGE聚丙烯酰胺凝胶电泳分离胶所用溶液 溶液成分 不同体积(ml)凝胶液中各成分所需体积(ml) 5 10 15 20 25 30 40 50 6% 水 2.6 5.3 7.9 10.6 13.2 15.9 21.2 26.5 30%丙烯酰胺溶液 1 2 3 4 5 6 8 10 1.5 mol/L Tris (pH8.8) 1.3 2.5 3.8 5 6.3 7.5 10 12.5 10% SDS 0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5 10%过硫酸氨0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5 TEMED 0.004 0.008 0.012 0.016 0.02 0.024 0.032 0.04 8% 水 2.3 4.6 6.9 9.3 11.5 13.9 18.5 23.2 30%丙烯酰胺溶液 1.3 2.7 4 5.3 6.7 8 10.7 13.3 1.5 mol/L Tris (pH8.8) 1.3 2.5 3.8 5 6.3 7.5 10 12.5 10% SDS 0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5 10%过硫酸氨0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5 TEMED 0.003 0.006 0.009 0.012 0.015 0.018 0.024 0.03 10% 水 1.9 4 5.9 7.9 9.9 11.9 15.9 19.8 30%丙烯酰胺溶液 1.7 3.3 5 6.7 8.3 10 13.3 16.7 1.5 mol/L Tris (pH8.8) 1.3 2.5 3.8 5 6.3 7.5 10 12.5 10% SDS 0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5 10%过硫酸氨0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5 TEMED 0.002 0.004 0.006 0.008 0.01 0.012 0.016 0.02 12% 水 1.6 3.3 4.9 6.6 8.2 9.9 13.2 16.5 30%丙烯酰胺溶液 2 4 6 8 10 12 16 20 1.5 mol/L Tris (pH8.8) 1.3 2.5 3.8 5 6.3 7.5 10 12.5 10% SDS 0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5 10%过硫酸氨0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5 TEMED 0.002 0.004 0.006 0.008 0.01 0.012 0.016 0.02

某化厂硫酸铵浓缩结晶分离干燥技术方案设计

某化厂硫酸铵浓缩结晶分离干燥技术案 一,技术要求: EF项目废水经中和,脱色,硫酸铵浓缩,结晶,干燥得到副产品硫酸铵。 硫酸铵溶液蒸发浓缩,硫酸铵浓度为18.21﹪,每小时处理量为12吨,每小时需蒸发的水量为9.6吨水,并对硫酸铵进行回收。 二,案选择: 1,采用三效蒸发浓缩设备,工艺流程见附图。 2,硫酸铵溶液通过进料泵经流量计进入预热器后,再进入一效加热器,在一效蒸发器进行蒸发,蒸发出的二次蒸汽供二效加热器使用,由于真空作用,一效蒸发器蒸发过的溶液进入二效加热器再次加热并进入二效蒸发器进行蒸发,在二效蒸发过程中,考虑到有部分晶体析出,因此在二效蒸发器下部加装一台强制循环泵,避免结晶的物料粘附到加热管的壁上。达到一定浓度后的溶液进入三效蒸发器再次蒸发,同样原因三效蒸发器也加装了一台循环泵。过饱和的物料在三效蒸发器的下部完成结晶。结晶完成后进入离心机分离出硫酸铵晶体,分离出的溶液回到蒸发器继续蒸发浓缩,将硫酸铵晶体通过气流干燥达到含水要求后,再用包装机组进行包装,得到每袋50公斤的成品硫酸铵。蒸发出的水和汽通过预热器、冷凝器后进入液封槽,再通过水泵排走。 三,设备材料的选择: 根据以往我们生产过的设备,设备材料选用1Cr18Ni9Ti不锈钢材料。 四,设备说明及价格

A:三效浓缩设备设备说明: 1)、加热器: 一、二、三效蒸发器为列管式加热,加热管规格为φ38,加热器管程及管板材质采用选用1Cr18Ni9Ti不锈钢,壳程材质:Q235B/8mm的碳钢材料。 2)、蒸发器:蒸发器采用1Cr18Ni9Ti不锈钢材料。设有人、视、温度计、真空表等装置。 3)、预热器:预热器为列管式加热,,加热管规格为φ38,预热器管程及管板材质为1Cr18Ni9Ti不锈钢材料,壳程材质:Q235B/6mm的碳钢材料。 4)、进料泵:采用材质为1Cr18Ni9Ti的泵为进料泵。 5)、循环泵、循环出料泵: 循环泵、循环出料泵,要求密封良好,耐温,保证在负压状态下,能使高浓度物料或结晶物料连续出料工作,材质为1Cr18Ni9Ti不锈钢材料。 6)、冷凝器:采用Q235B碳钢材料,冷却面积有100㎡。 7)、液封槽:采用碳钢材料,容积为2000L。 8)、真空机组:采用的水喷射真空机组。 9)、工艺配件:工艺管道采用1Cr18Ni9Ti/Q235材质。 10)、仪表:所有压力、温度、真空用传感器检测,数字集中显示。 B:分离设备说明: 采用双级活塞推料型离心机,实行连续进出料操作。同时也减轻工人劳动强度。 C:气流干燥机设备: 一)、基本条件: 2,物料: 1〉物料名称:硫酸铵 2〉物料含水量:ω1<10~12% 3〉物料温度:Tm1=15 ℃ 4〉物料粘性:松散 2、成品:

影响硫铵结晶粒度因素的控制

影响硫铵结晶粒度因素的控制 焦化厂炼焦煤气中氨的回收,普遍采用饱和器法生产硫铵。由于硫铵结晶过程受多种因素影响,生产中一旦某种因素控制不当,就会造成产品颗粒碎小,水分、酸度超标,影响产品质量。因此,找出影响硫铵结晶粒度的关键因素,寻求最佳操作方法,成为一个重要课题。  1 硫铵结晶原理  硫铵的结晶属于反应过程,主要由反应、过饱和溶液的形成、晶核的产生和晶体的成长几个阶段组成。随着反应的进行,形式过饱和溶液,达到一定过饱和度时,析出固相微观晶粒,这是晶核的形成过程,也称为初级成核,接着是晶核的长大也称为晶体的生长过程。同时,由于晶液的流动,晶体之间及晶体与设备之间的摩擦、碰撞,液体对晶体表面的冲刷,又产生新的晶核,称为二次成核。通常晶核的形成和晶体的成长是同时进行的。在结晶过程中,无论是晶核的形成,还是晶核的生长,都要消耗溶液中的溶质,均以一定的过饱和度为推动力。每一粒晶体都是由一粒晶核生长而成的,在一定条件下,如果晶核成核速率越大,晶核的生成量越多,溶液中有限的溶质要同时供应大量的晶核生长,晶核的生长速率就越慢,结果导致大量的细小结晶;反之,晶核的生成量越少,结晶粒度就会长得越大。可见,晶核的生成速率和晶核的生长速率是此消彼长的关系,如能控制这两种速率,便可控制结晶的粒度。  此外,结晶条件对产品的粒度也有很大的影响,如温度、搅拌、酸度、杂质等都以一定的方式影响结晶过程。  2 影响硫铵结晶粒度的因素  根据结晶原理分析,影响硫铵结晶粒度的因素,归纳起来,主要有以下几项:  (1)饱和器工作温度  (2)母液的搅拌程度  (3)母液的酸度和加酸制度  (4)母液的晶比  (5)母液中的杂质  生产中对一定工艺条件来说,影响较大的往往是哪些变化频繁,或在量的变化上敏感的因素,并且由于产生的结果滞后而增加了控制上的难度。对上述几个因素进行分析可以发现,饱和器工作温度和母液的搅拌程度变动不大,可以说近似恒定;母液的酸度、晶比随时间呈周期性变化,比较频繁,控制不当,对结晶

硫酸铵蒸发结晶

硫酸铵蒸发结晶 一、物料组成及处理量: 溶质名称:硫酸铵 溶剂:水 进料浓度:20% 进料总量:3吨/小时 进料温度:30℃ 蒸发总量:2.4吨/小时 进料液:PH6~7 二、处理要求: 将物料蒸发浓缩、把硫酸铵结晶出来 运行方式:连续给料 三、工艺说明: 1、工艺流程说明: (1)物料加热、蒸发: 物料通过进料泵经过进料流量计计量后进预热器预热,利用蒸发器二次蒸汽冷凝下来的凝结水,将物料预热到80度以上,然后进强制循环泵的入口和结晶器出来的液体混合。经强制循环泵的输送,进入加热蒸发器,物料经过蒸发器壳程蒸汽的间接加热,吸收热量后温度升到108°C,然后进入DTB结晶器的闪蒸室,由于闪蒸室内为负压,物料进来后瞬间进行蒸发,大部分水变成温度为90°C的二次蒸汽,由二次蒸汽出口进入MVR蒸汽压缩机,蒸汽经压缩后蒸汽的压力提高,同时温度也升高到110°C,满足物料闪蒸脱水加热温度的要求。水蒸气经冷凝后成冷凝水排出,进入下道工序的处理。 (2)结晶 进入结晶器中的物料在螺旋桨的推动下,通过导流筒快速上升至液体表层,由于设备内为负压,部分水瞬间产生蒸发成为蒸汽后有顶部出口排出再利用,没有蒸发的物料沿导流筒与挡板之间的环形通道流至器底,重又被吸入导流筒的下端,形成了内循环通道,以较高速率反复循环,使料液充分混合,保证了器内各处的过饱和度比较均匀,极大地强化了结晶器的生产能力。 圆筒形挡板将结晶器分隔为晶体生长区和澄清区。澄清区的物料溢流后和母液混合后经循环泵输送加热器循环加热。 结晶器内的物料经设备内混合区、养晶区后晶体颗粒很快的长大,颗粒大晶体由于沉降速度大于悬浮速度,在结晶器的底部会形成一个悬浮密度稳定的晶浆区,通过密度的自动控制,利用晶浆泵的输送,将含晶体30%~40%的晶浆送往离心机进行分离。得到颗粒较大的硫酸铵晶体。 母液经处理将剩余的产品提出后返回系统重新蒸发提纯。 2、设备情况介绍: (1)加热蒸发器 换热面积为200m2,管程介质为饱和硫酸铵溶液,壳程介质为水蒸气,管程介质为:316L,壳程介质为碳钢。设备形式为卧式双回程。外形尺寸为:¢ 1100*~5500. 该设备是将物料进行加热,提供物料的温度,为物料蒸发提供热能。

影响硫铵结晶粒度因素的控制.

影响硫铵结晶粒度因素的控制 焦化厂炼焦煤气中氨的回收,普遍采用饱和器法生产硫铵。由于硫铵结晶过程受多种因素影响,生产中一旦某种因素控制不当,就会造成产品颗粒碎小,水分、酸度超标,影响产品质量。因此,找出影响硫铵结晶粒度的关键因素,寻求最佳操作方法,成为一个重要课题。 1硫铵结晶原理 硫铵的结晶属于反应过程,主要由反应、过饱和溶液的形成、晶核的产生和晶体的成长几个阶段组成。随着反应的进行,形式过饱和溶液,达到一定过饱和度时,析出固相微观晶粒,这是晶核的形成过程,也称为初级成核,接着是晶核的长大也称为晶体的生长过程。同时,由于晶液的流动,晶体之间及晶体与设备之间的摩擦、碰撞,液体对晶体表面的冲刷,又产生新的晶核,称为二次成核。通常晶核的形成和晶体的成长是同时进行的。在结晶过程中,无论是晶核的形成,还是晶核的生长,都要消耗溶液中的溶质,均以一定的过饱和度为推动力。每一粒晶体都是由一粒晶核生长而成的,在一定条件下,如果晶核成核速率越大,晶核的生成量越多,溶液中有限的溶质要同时供应大量的晶核生长,晶核的生长速率就越慢,结果导致大量的细小结晶;反之,晶核的生成量越少,结晶粒度就会长得越大。可见,晶核的生成速率和晶核的生长速率是此消彼长的关系,如能控制这两种速率,便可控制结晶的粒度。 此外,结晶条件对产品的粒度也有很大的影响,如温度、搅拌、酸度、杂质等都以一定的方式影响结晶过程。 2影响硫铵结晶粒度的因素 根据结晶原理分析,影响硫铵结晶粒度的因素,归纳起来,主要有以下几项:(1)饱和器工作温度 (2)母液的搅拌程度 (3)母液的酸度和加酸制度 (4)母液的晶比 (5)母液中的杂质 生产中对一定工艺条件来说,影响较大的往往是哪些变化频繁,或在量的变化上敏感的因素,并且由于产生的结果滞后而增加了控制上的难度。对上述几个因素进行分析可以发现,饱和器工作温度和母液的搅拌程度变动不大,可以说近似恒定;母液的酸度、晶比随时间呈周期性变化,比较频繁,控制不当,对结晶

相关文档
最新文档